平成6年度 数学解析II (2回生) 試験問題

1995 年 1 月 26 日実施

(担当:野村隆昭)

 $16:50 \sim 18:20$

時間

*[1]と[2]は必ず解答し、[3-a]、[3-b]は <u>どちらか一方のみ</u> に解答のこと.

- *問題は用紙の両面にある。
- * 解答用紙は 片面のみ を使用のこと.
- * 先行する小問の結果は(解けなくても)自由に用いてよい.
- [1] 集合 X の部分集合の列 $\{A_k\}_{k=1}^\infty$ に対して

$$\limsup_{k \to \infty} A_k := \bigcap_{j=1}^{\infty} \left(\bigcup_{k=j}^{\infty} A_k \right), \qquad \liminf_{k \to \infty} A_k := \bigcup_{j=1}^{\infty} \left(\bigcap_{k=j}^{\infty} A_k \right)$$

とおく. そして $\limsup_{k\to\infty}A_k=\liminf_{k\to\infty}A_k$ のとき,集合列 $\{A_k\}$ は収束するといい,その等しい集合を $\lim_{k\to\infty}A_k$ で表す.

- (1) $\{A_k\}$ が単調ならば収束することを示せ. またその極限とは何か.
- (2) 相異なる任意の i, j に対して $A_i \cap A_j = \phi$ であるとき, $\{A_k\}$ は収束するか.
- (3) 部分集合 E の定義函数を χ_E で表す. $A:=\lim_{k\to\infty}A_k$ が存在するとき,各点 $x\in X$ において $\lim_{k\to\infty}\chi_{A_k}(x)$ も存在して $\chi_A(x)$ に等しいことを示せ.
- (4) (X,\mathcal{B},μ) が測度空間であり,各 A_k が \mathcal{B} に属するとする. $\mu\Big(igcup_{k=1}^\infty A_k\Big)<\infty$ で $A:=\lim_{k\to\infty}A_k$ が存在するならば, $\lim_{k\to\infty}\mu(A_k)$ も存在して $\mu(A)$ に等しいことを示せ.
- (5) (4) において、仮定 $\mu\Big(\bigcup_{k=1}^\infty A_k\Big)<\infty$ を取り除くとどうなるか.
- [2] $\frac{\sin x}{x}$ を x の冪級数に展開してから項別積分をすることにより、s>1 のとき次の等式が成り立つことを示せ:

$$\int_0^\infty e^{-sx} \frac{\sin x}{x} dx = \operatorname{Arctan}\left(\frac{1}{s}\right).$$

($\operatorname{Hint}:\operatorname{Arctan} t$ の冪級数展開は、知らなくても $\int_0^t \frac{dx}{1+x^2}$ の項別積分から得られる \cdots \cdots $\frac{1}{1+x^2}$ を等比級数の和と見よ。)

次の [3-a] と [3-b] はどちらか <u>一方のみ</u> を選択のこと.

- [3-a] 函数 $f(x,y) = e^{-xy} \sin x$ を考える.
- (1) f は $E:=(0,a)\times(0,\infty)$ $(0< a<\infty)$ 上で Lebesgue 可積分であることを示せ.
- (2) 次の等式を示せ $(0 < a < \infty)$:

$$\int_0^a \frac{\sin x}{x} \, dx = \frac{\pi}{2} - \cos a \int_0^\infty \frac{e^{-ay}}{1 + y^2} \, dy - \sin a \int_0^\infty \frac{y e^{-ay}}{1 + y^2} \, dy.$$

- (3) (2) より $\lim_{a\to\infty}\int_0^a \frac{\sin x}{x}\,dx=\frac{\pi}{2}$ を示せ(優収束定理に固執する必要はない).
- [3-b] 函数 $f(x) := \int_0^\infty \frac{1 e^{-|x|t^2}}{t^2} dt$ を考える.
- (1) f(x) はすべての実数 x で定義されて連続であることを示せ
- (2) f(x) は $x \neq 0$ で微分可能であって,x > 0 のとき $f'(x) = \frac{\sqrt{\pi}}{2} \frac{1}{\sqrt{x}}$ であることを示せ.
- (3) f(x) を求めよ.

以上