						合計点	
得点	[1]	得点 [2]	得点 [3]	得点 [4]	得点 [5]		
							整理番号

微分積分学 B:中間試験

1	枚	目	(4	枚あ	ŋ	ます	-)
	10	_	(-±	120	_	00 2	•

	•	1 枚 目 (4 枚あります)	2018年12月5日出題 13:00~	~14:30
	学生番号	si)site 氏名		
得点	$\boxed{ \begin{bmatrix} 1 \end{bmatrix} \ f(x,y) = \text{Arctan} }$	$\frac{x}{y}$ のとき,点 P $\left(1, -\sqrt{3}, f\left(1, -\sqrt{3}\right)\right)$) における ƒ のグラフの接平面の方程式をx (求めよ. 15 点)

得点	[2] 次の極限は存在するか.	存在するなら極限値を求め,	存在しないなら理由を述べよ.	
	(1) $\lim_{(x,y)\to(0,0)} \frac{x\sqrt{ y }}{\sqrt{x^2+2y}}$	$\frac{1}{2} \qquad \qquad (2) \lim_{(x,y)\to(0,0)}$	$\frac{x^2y^2}{x^2y^2+(x+y)^2}$	(20 点)

微分積分学 B: 中間試験

2 枚目(4枚あります)

2018年12月5日出題 13:00~14:30

氏名

得点

[3] 本問では、f(x,y,z) はなめらかな函数とする.

$$\Delta := \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}, \quad D := x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} + z \frac{\partial}{\partial z}$$

を考える. すなわち, $\Delta f = f_{xx} + f_{yy} + f_{zz}$, $Df = xf_x + yf_y + zf_z$ とする.

- (1) $\frac{\partial^2}{\partial x^2}(Df)$ を求めよ。
- (2) $\Delta(Df) D(\Delta f)$ を簡単な形で表せ.

(20点)

微分積分学 B: 中間試験

3 枚 目 (4 枚あります)

2018年12月5日出題 13:00~14:30

氏名

[4] 函数 $f(x,y) := 12xy - x^2y - xy^2$ に極値があればそれを求めよ。極大か極小かも述べること。 (20 点)

微分積分学 B: 中間試験

4 枚 目 (最後のページです)

2018年12月5日出題 13:00~14:30

氏名

得点		1
		ı

[5] 次の函数を考える.

$$f(x,y) = \begin{cases} xy \log(x^2 + y^2) & ((x,y) \neq (0,0)) \\ 0 & ((x,y) = (0,0)) \end{cases}$$

- (1) 函数 f(x,y) は,原点において x に関しても y に関しても偏微分可能であることを示せ. また, $f_x(0,0)$ と $f_y(0,0)$ も求めよ.
- (2) f(x,y) は原点において全微分可能であることを示せ.

(25 点)