					合計点	
得点 [1]	得点 [2]	得点 [3]	得点 [4]		
						整理番号

微分積分学 B:期末試験

1 枚 目 (4 枚あります)

2014年2月7日出題 10:30~12:00

学生番号	氏名

[1] 函数 $f(x,y) := 4x^2e^y - 2x^4 - e^{4y}$ に極値があれば、それを求めよ、極値の場合は、極大か極小かも判定すること。

微分積分学 B: 期末試験

2 枚 目 (4 枚あります)

2014年2月7日出題 10:30~12:00

氏名

得点

[2] f(x,y,z) はなめらかな函数とする. また

$$\Delta := \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}, \quad D := x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} + z \frac{\partial}{\partial z}$$

とする.すなわち, $\Delta f = f_{xx} + f_{yy} + f_{zz}$, $Df = xf_x + yf_y + zf_z$ とする.以下の問いに答えよ.

- (1) $\Delta(Df) = D(\Delta f) + 2\Delta f$ であることを示せ.
- (2) $\Delta f = 0$ のとき、 $\Delta \left((x^2 + y^2 + z^2) f \right)$ を f と Df を用いて表せ.
- $(3) \ \Delta f = 0 \ \mathcal{O} \ \mathsf{とき}, \ \Delta^2 \left((x^2 + y^2 + z^2) f \right) = 0 \ \mathsf{であることを示せ}. \ \mathsf{ただし}, \ \Delta^2 g \ \mathsf{とは} \ \Delta (\Delta g) \ \mathcal{O} \ \mathsf{ことである}.$

微分積分学 B: 期末試験

3 枚 目 (4 枚あります)

2014年2月7日出題 10:30~12:00

氏名

得点

- [3] 以下 $x = (x,y) \in \mathbb{R}^2$ とし、 $||x|| := \sqrt{x^2 + y^2}$ とおく.
- (1) $\log(1+u)=u-\frac{1}{2}u^2+R(u)$ とおく、 $u\to 0$ のとき, $R(u)=o(u^2)$ であることは前期で学習したので証明なしで使う.ここで $u:=2y+x^2+y^2=2y+\|x\|^2$ とすると,

$$oldsymbol{x}
ightarrow oldsymbol{0}$$
 のとぎ, $R(u) = o(\|oldsymbol{x}\|^2)$

であることを示せ.

(2) 函数 $f(x,y) := (x^2 + (1+y)^2)^x$ の原点における 3 階までの(3 階も含める)各偏微分係数をすべて求めよ.

微分積分学 B: 期末試験

4 枚 目(最後のページです)

2014年2月7日出題 10:30~12:00

氏名

得点

- [4] $f(x,y) := (x^2 + y^2)^2 2(x^2 y^2)$ とし、平面曲線 $N_f : f(x,y) = 0$ を考える.
- N_f はレムニスケートと呼ばれる曲線である。以下の各問いに答えよ。
- (1) 極座標を利用して、 N_f は有界であることを示せ. さらに N_f 上では $|x| \le \sqrt{2}$ であることも示せ.
- (2) N_f の特異点を求めよ.それはどのような特異点か.結節点ならば,その点における接線も求めること.
- (3) N_f の通常点(非特異点)で、座標軸に平行な接線を持つ点をすべて求めよ.