九州大学理学部

学生番号

2008年度前期 定期試験

問題・解答用紙 (1)

次頁以降にも問題がある

評点

	子埋子部		皮削删	化别 讽微		问趣• 胜合用紙	(1)
授業科目	解析学 B2	試験日時	8月1日	13:00~15:00	担当教員	野村隆昭	
	gue 可測な ℝ の部分集合の全体を 急が正しいかどうか,理由とともに		esgue 測度を	<i>m</i> とする.			
$(1) E \in \mathcal{L} \ \ (2) \mathbb{R} \perp \mathcal{O} \ \mathcal{L}$	こする。 $m(E)=0$ ならば, E は $\mathbb C$ 可測な函数 f が $\mathbb R$ 上 Lebesgue	高々可算集合であ e 可積分ならば,	$\lim_{ x \to\infty} f(x) =$	= 0 である.			
(3) R 上 Lel (4) f(x) は	besgue 可積分な函数の列が ℝ 上 ℝ 上の実数値函数とする.任意の : る所不連続な函数でも,ある連続	一様収束すれば, $\varepsilon>0$ に対して	その極限函数 $f(x) > -\varepsilon$ (なもまた ℝ 上 Lebesg m-a.e.x) が成り立て	gue 可積分であ ば、 $f(x) \ge 0$	る. (<i>m</i> -a.e.x) が成り立つ.	

氏名

左连带 中部手段

次頁にも問題がある

評点

九州大学	学理学部	2008 +	·医則期	正期試験		問題・解答用紙 (2)
授業科目	解析学 B2	試験日時	8月1日	13:00~15:00	担当教員	野村隆昭
[2] 優収束気	E理を用いて次の極限を求めよ: li <i>n</i> -	im $\int_{-\infty}^{1} \frac{1+n}{(1+n)^2}$	$\frac{x^2}{2\sqrt{\pi}} dx$			
	n-	$\rightarrow \infty J_0 (1+x)$	$^{2})^{n}$			
[3] 測度空間	$\exists \; (X,\mathcal{B},\mu) \;$ で考える.		C			
(1) 非負の可	側函数列 $\{f_n\}$ に対して, $\int (\liminf_{n \to \infty}$	$\inf_{\infty} f_n \big) d\mu \geq \lim_{n \to \infty} f_n \big) d\mu$	$ \min_{n\to\infty}\int f_nd\mu $	ι の大小関係を主張	する	
Fatou の	補題を述べ,等号ではない例をあり 定理を Fatou の補題から導け.	ずよ .				
(2) 平明机米)	定在で Fatou の冊圏かり等り。					

氏名

学生番号

九州大学理学部

2008年度前期 定期試験

問題·解答用紙 (3)

授業科目 解析学 B2

試験日時 8月1日 13:00~15:00

担当教員

野村隆昭

[4]
$$\int_0^1 \sin x \log x \, dx = \sum_{n=1}^\infty \frac{(-1)^n}{(2n)(2n)!}$$
 を次の手順に従って示せ.

$$(1) \sin x \log x = \sum_{n=0}^{\infty} f_n(x). \quad \text{til } f_n(x) := (-1)^n \frac{x^{2n+1}}{(2n+1)!} \log x \quad (n=0,1,\dots).$$

$$(2) \int_0^1 |f_n(x)| \, dx = \frac{1}{(2n+2)(2n+2)!} \, \, \text{if } \, \int_{n=0}^{\infty} \int_0^1 |f_n(x)| \, dx < \infty \text{ Tid} \, \delta.$$

[5] f は区間 $[0,\infty)$ 上の Lebesgue 可積分な函数とする.このとき, $\varphi(t):=\int_0^\infty e^{-tx}f(x)\,dx\;(t>0)$ で定義される函数 φ は開区間 $(0,\infty)$ で微分可能であることを示せ. φ が well-defined であることもコメントすること. (a > 0 を固定し、まず t > a で考えよ.)

学生番号

氏名

評点