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Abstract. This manuscript was written out in December, 1998. After
submission, we noticed the paper
J. Arazy and G. Zhang, Lq-estimates of spherical functions and an invari-
ant mean-value property, Integral Equation Operator Theory, 23 (1995),
123–144,
and recognized that our computation techniques overlap with theirs sig-
nificantly. Thus we have withdrawn our paper. However, since we believe
that our paper still has its meaning in the point that it directly relates
the spherical Fourier transform of the Berezin kernel to the spectral ex-
pression of the Berezin transform via Helgason’s theory, and since RIMS
kōkyūroku is of somewhat informal character, we decide to publish the
original manuscript here. Of course we claim no priority concerning the
contents of this manuscript. — The abstract of the original paper is the
following.

This paper presents a direct computation of the spherical Fourier
transforms of the Berezin kernels on symmetric Siegel domains. Our
computation is based on the Jordan-theoretic structure in terms of which
symmetric Siegel domains are described, and involves evaluations of some
integrals related to symmetric cones.

Introduction

Berezin transforms on symmetric Siegel domains are studied by Unterberger-
Upmeier [9], and a proof is supplied for the spectral-theoretic expression previously
announced by Berezin himself [1] for the case of classical domains only. However, the
approach of [9] necessitates a number of inequalities which are not quite trivial. The
aim of this paper is to show a shorter way by computing directly the spherical Fourier
transforms of the integral kernels (the Berezin kernels) of the Berezin transforms.
Since the Berezin transforms are invariant integral operators for the holomorphic
transformation group G on the domain, Helgason’s theory [5] of Fourier transform
on Riemannian symmetric spaces then yields the spectral expression.

The basic standpoint that we take is the Jordan algebraic one like [9], because
symmetric Siegel domains are described in terms of Jordan triple systems (JTS), see
[7] and [8]. With the Jordan structure everything that we need acquires a concrete
expression. In particular, by [9], the Berezin kernels A∏(z1, z2) are expressed by using

1E-mail: hideyuki@yokohama-cu.ac.jp
2E-mail: tnomura@math.kyushu-u.ac.jp

1



2

the determinant function of a Jordan algebra (see (1.12) and (1.13)). Moreover it
turns out that the zonal spherical function is an average over a maximal compact
subgroup K of G of a function defined through a product of Jordan algebra principal
minors (see (2.2) and (2.5)) as in the case of symmetric cones (cf. [2, Theorem
XIV.3.1]). These facts make it possible to carry out a direct explicit computation
of the spherical Fourier transform of a∏ := A∏(·, e), where e is the reference point.
It should be noted in passing that by a simple observation using the property of
reproducing kernel, a∏ is an integrable function (Lemma 1.1). Our computation
has its own interests, because it involves evaluations of some integrals related to
symmetric cones. Among them, a decisive role is played by a generalization of the
beta integral stated much earlier in [3, Proposition 2.6], to which we shall give a
corrected formula in Theorem 3.4. Furthermore, our proof of Theorem 3.4 is simpler
in that it does not require the introduction of a group structure on the cone unlike
[3]. The main theorem of this paper is Theorem 4.1, which shows that the spherical
Fourier transform of a∏ is expressed in terms of the gamma function Γ≠ of the
symmetric cone ≠. Although the result is expected by interpreting the paper [9],
what we would like to emphasize here is the fact that it is directly computable as
an explicit harmonic analysis on symmetric cones, thereby giving a simplification.

1. Preliminaries

1.1. Symmetric Siegel domains. We describe here symmetric Siegel domains by
using JTS following the presentation in [9]. Let Z be a Hermitian JTS. This means
that Z is a finite-dimensional complex vector space endowed with a real trilinear
map {·, ·, ·} : Z × Z × Z → Z such that

(1) {x, y, z} is complex linear in x, z and antilinear in y,
(2) {x, y, z} = {z, y, x},
(3) {a, b, {x, y, z}} = {{a, b, x}, y, z} − {x, {b, a, y}, z} + {x, y, {a, b, z}}.

We put (x § y)z := {x, y, z} and Q(y)z := {y, z, y}. We suppose further that the
trace form tr(x § y) defines a positive definite Hermitian inner product on Z.

An element e ∈ Z is said to be a tripotent if {e, e, e} = e. Let r be the rank of
the JTS Z and fix a JTS frame {e1, . . . , er}, that is, a maximal system of primitive
tripotents in Z such that ei § ej = 0 if i 6= j. Put e := e1 + · · · + er. Then e is a
maximal tripotent, so that the selfadjoint operator e§ e has only eigenvalues 1/2
and 1. Denoting by U (resp. W) the 1/2-eigenspace (resp. 1-eigenspace), we have

(1.1) Z = U ©W.

We do not exclude the possibility U = {0}. The product z1 ◦ z2 := {z1, e, z2} turns
Z into a complex Jordan algebra. W is a Jordan subalgebra of (Z, ◦). Moreover the
anti-linear operator Q(e) induces an involutive real Jordan algebra automorphism
on W . For w ∈ W , we shall write w§ for Q(e)w. Let V := WQ(e), the fixed points of
Q(e). Then V is a real form of W , and is in fact a euclidean Jordan algebra of rank
r with unit element e. Furthermore, {e1, . . . , er} becomes a Jordan algebra frame
of V .
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Let ≠ be the interior of the set {x ◦ x ; x ∈ V } in V . We know that ≠ is a
symmetric cone [2]. Define a sesqui-linear map Φ : U × U → W by

(1.2) Φ(u, u0) := 2 {u, u0, e}.
It turns out that Φ is an ≠-positive Hermitian map. With these data we form a
Siegel domain D = D(≠, Φ):

D = {(u, w) ∈ U ×W ; w + w§ − Φ(u, u) ∈ ≠}.
We suppose from now on that the Siegel domain D is irreducible. Thus Z is a

simple JTS and V a simple Jordan algebra. The frame {e1, . . . , er} gives the Peirce
decompositions U =

P©
1∑j∑r Uj and V =

P©
1∑i∑j∑r Vij of U and V respectively,

where

Uj :=
©
u ∈ U ; (ek § ek)u = 1

2 δjk u (1 ∑ k ∑ r)
™

,(1.3)

Vij :=
©
v ∈ V ; (ek § ek)v = 1

2 (δik + δjk) v (1 ∑ k ∑ r)
™

.(1.4)

The dimension b := dim Uj is independent of j, and similarly d := dim Vij does not
depend on i, j.

1.2. Gamma functions of ≠. Let ∆j (j = 1, 2, . . . , r) be the principal minors
(∆r := ∆, the Jordan algebra determinant of V ) of the euclidean Jordan al-
gebra V defined by the Jordan algebra frame {e1, . . . , er} (cf. [2, p. 114]). For
s = (s1, . . . , sr) ∈ Cr, we set

(1.5) ∆s(x) := ∆1(x)s1−s2∆2(x)s2−s3 · · ·∆r(x)sr .

Let h · | · i be the real inner product on V defined by the Jordan algebra trace form
of V : hx | y i := tr(x ◦ y). We know that if dx denotes the euclidean measure on V ,
then ∆(x)−n/r dx is the GL(≠)-invariant measure on ≠, where n := dimR V . The
gamma function Γ≠ of the symmetric cone ≠ is defined by the following absolutely
convergent integral: if Re sj > d(j − 1)/2 for j = 1, . . . , r,

Γ≠(s) :=

Z
≠

e− tr(x)∆s(x)∆(x)−n/r dx.

By [2, Theorem VII.1.1] one knows that

(1.6) Γ≠(s) = (2π)(n−r)/2
rY

j=1

Γ
°
sj − d

2 (j − 1)
¢
.

If s = (∏, . . . , ∏), we shall write ∆∏(x) and Γ≠(∏) for ∆s(x) and Γ≠(s) respectively.
Let us set s§ := (sr, . . . , s1) for s = (s1, . . . , sr) ∈ Cr. Let ∆§

1, . . . , ∆
§
r stand for

the principal minors corresponding to the reverse Jordan algebra frame {er, . . . , e1}.
By Propositions VII.1.2 and VII.1.5 in [2], we have for Re sj > d(r − j)/2 (j =
1, . . . , r),

(1.7) Γ≠(s§)∆−s(y) =

Z
≠

e−hx | y i∆§
s§−n/r(x) dx (y ∈ ≠).

This shows in particular that the function ∆−s originally defined on ≠ is analytically
continued to a holomorphic function on the tube domain ≠ + iV .
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1.3. Berezin kernels. We now introduce the Bergman spaces H2
∏(D) on D follow-

ing [9, p. 583]. First we extend the inner product h · | · i of V to a complex bilinear
form on VC = W , which we still denote by h · | · i. On W , we have the Hermitian
inner product defined by (w1 |w2) := hw1 |w§

2 i, whereas on U we take the Hermitian
inner product (u1 |u2) := hΦ(u1, u2) | e i. Let dm(u) and dm(w) be the euclidean
measures on U and W respectively corresponding to each of the euclidean structures
Re(· | ·). We put

(1.8) m := dimC U, p :=
2n + m

r
, N := n + m.

Let G denote the identity component of the group of holomorphic automorphisms
of D. We know that G is a semisimple Lie group with trivial center. Moreover, the
G-invariant measure dµ on D is given by

(1.9) dµ(u, w) = ∆(w + w§ − Φ(u, u))−p dm(u)dm(w).

For every ∏ satisfying ∏ > p− 1, set

dµ∏(u, w) := c∏ · ∆(w + w§ − Φ(u, u))∏−p dm(u)dm(w),(1.10)

c∏ :=
1

πN

Γ≠(∏)

Γ≠(∏−N/r)
,(1.11)

and let H2
∏(D) be the Hilbert space of holomorphic functions f on D such thatZ

D

|f(z)|2 dµ∏(z) < 1.

The reproducing kernel ∑∏(z1, z2) (z1, z2 ∈ D) of H2
∏(D) is given by

(1.12) ∑∏(z1, z2) = ∆(w1 + w§
2 − Φ(u1, u2))

−∏ (zj = (uj, wj), j = 1, 2).

Observe here that Re
°
w1 + w§

2 −Φ(u1, u2)
¢ ∈ ≠. Thus ∑∏(z1, z2) is indeed holomor-

phic in z1 ∈ D and anti-holomorphic in z2 ∈ D by (1.7).
The Berezin kernel on D associated to H2

∏(D) is the function A∏ defined by

(1.13) A∏(z1, z2) :=
|∑∏(z1, z2)|2

∑∏(z1, z1) ∑∏(z2, z2)
(z1, z2 ∈ D).

We know that A∏ is G-invariant:

(1.14) A∏(g · z1, g · z2) = A∏(z1, z2) (g ∈ G).

Put e := (0, e) ∈ D for simplicity, and set

(1.15) a∏(g) := A∏(g · e, e) (g ∈ G).

Let K be the stabilizer at e in G. Then K is a maximal compact subgroup of G.
We shall normalize the Haar measure dg on G in such a way that

(1.16)

Z
G

f(g · e) dg =

Z
D

f(z) dµ(z).

By (1.14) it is clear that a∏ is K-biinvariant.

Lemma 1.1. Suppose ∏ > p− 1. One has a∏ ∈ L1(K\G/K).



5

Proof. Note that we have, in view of (1.9), (1.10) and (1.12), ∑∏(z, z) dµ∏(z) =
c∏ dµ(z) with c∏ as in (1.11). Then by (1.13) and (1.16) we getZ

G

a∏(g) dg =

Z
G

A∏(g · e, e) dg =

Z
D

A∏(z, e) dµ(z)

=
c−1
∏

∑∏(e, e)

Z
D

|∑∏(z, e)|2 dµ∏(z) = c−1
∏ < 1.

Since a∏ ≥ 0, this implies that a∏ is integrable over G. §

2. Zonal spherical functions

In order to give an expression of zonal spherical functions on G in the present
context, we need to specify some of the subgroups of G and of the Lie subalgebras
of g := Lie(G). We first observe ([7] and [8]) that elements of g are holomorphic
polynomial vector fields p(z) @/@z on D, so that the bracket operation in g is the
Poisson bracket∑

p(z)
@

@z
, q(z)

@

@z

∏
:=

≥
p0(z)

°
q(z)

¢− q0(z)
°
p(z)

¢¥ @

@z
.

We will drop the symbol @/@z in what follows for simplicity. Thus we simply
think of elements of g as holomorphic polynomial maps Z → Z. With the JTS
frame {e1, . . . , er} fixed in §1 let a :=

P©
1∑j∑r R (ej § ej). Then a is a commutative

subalgebra of g such that ad a consists of semisimple operators on g. Recalling (1.3)
and (1.4), we set

g0
ij := {x § ei ; x ∈ Vij} (1 ∑ i < j ∑ r),

g1/2
j := {u + 2 e§u ; u ∈ Uj} (j = 1, . . . , r),

g1
jk := {ia ; a ∈ Vjk} (1 ∑ j ∑ k ∑ r),

and n :=
°P©

i<j g0
ij

¢ © °P©
1∑j∑r g1/2

j

¢ © °P©
j∑k g1

jk

¢
. Then, with k := Lie(K), we

have an Iwasawa decomposition g = k © a © n of g. The corresponding Iwasawa
decomposition of G is G = NAK with A := exp a and N := exp n. For g ∈ G, we
write g ∈ N

°
exp l(g)

¢
K with l(g) ∈ a.

Let φ∫(g) (∫ ∈ a§C) be the zonal spherical function on G. We have

(2.1) φ∫(g) =

Z
K

e(i∫+ρ)(l(kg)) dk,

where ρ(H) := 1
2 tr ad(H)|! (H ∈ a) (see [4]). To rewrite the general formula (2.1)

into the present context, we put

n0 :=
X©

i<j
g0

ij, nD :=
≥X©

1∑j∑r
g1/2

j

¥ M ≥X©
j∑k

g1
jk

¥
,

and s0 := a © n0, s := a © n = s0 © nD. The subgroup S0 := exp s0 acts on ≠
simply transitively, and similarly S := exp s acts on D simply transitively. For each
α ∈ a§C, let ξα be the complex character of A defined by ξα(exp H) = eα(H) (H ∈ a).
The character ξα extends to S by setting ξα(na) = ξα(a) (na ∈ NA). We define a
function ξD

α on D by ξD
α (s · e) := ξα(s) (s ∈ S). Similarly, for the zonal spherical
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function φ∫ , we set φD
∫ (s · e) := φ∫(s) (s ∈ S). Since we have ks · e = n0 exp l(ks) · e

for some n0 ∈ N , it holds that if z := s · e ∈ D, then ξD
α (k · z) = eα(l(ks)). Hence

(2.1) is rewritten as

(2.2) φD
∫ (z) =

Z
K

ξD
i∫+ρ(k · z) dk (z ∈ D).

Let α1, . . . , αr be the basis of a§ dual to the basis e1 § e1, . . . , er § er of a. From
now on we identify a§ (resp. a§C) with Rr (resp. Cr) through the basis α1, . . . , αr:P

ajαj $ (a1, . . . , ar). Let ∆s be as in (1.5). Then, if s = ns0 with n ∈ ND :=
exp nD and s0 ∈ S0, we have

(2.3) ξD
s (s · e) = ξs(s) = ξs(s0) = ∆s(s0e),

the third equality being a consequence of [2, Proposition VI.3.10]. To make the
function ξD

s more explicit, we observe that ND acts on D by affine maps. In fact,
putting

n(a, b) = exp(ia + b + 2 e§ b) ∈ ND (a ∈ V, b ∈ U),

we have by the proof of [7, Lemma 10.7 (3)] together with (1.2),

(2.4) n(a, b) · (u, w) =
°
u + b, w + ia + 1

2 Φ(b, b) + Φ(u, b)
¢

(u ∈ U, w ∈ W ).

Now if (u, w) ∈ D, then Re w − 1
2 Φ(u, u) ∈ ≠ by definition, so that there exists a

unique element s0 ∈ S0 such that s0e = Re w − 1
2 Φ(u, u). By (2.4), the element

n := n(Im w, u) ∈ ND yields n · (0, Re w − 1
2 Φ(u, u)) = (u, w). Therefore we have

ns0 · e = (u, w). These observations together with (2.3) lead us to

(2.5) ξD
s (u, w) = ∆s(Re w − 1

2 Φ(u, u)).

The formulas (2.2) and (2.5) will enable us to calculate explicitly the spherical
Fourier transform (a∏)b of a∏ ∈ L1(K\G/K) defined by

(2.6) (a∏)b(∫) :=

Z
G

a∏(g)φ−∫(g) dg (∫ ∈ a§).

3. Integral formulas related to ≠

In this section we prepare two integral formulas that are necessary to calculate
(a∏)b. Recall the decomposition (1.1) of Z, where U (resp. W ) is the 1/2-Peirce
(resp. 1-Peirce) space for the maximal tripotent e. To every a ∈ W we associate an
operator π(a) on U by π(a)u := 2 {a, e, u} (u ∈ U). By [8, Proposition V.6.2], the
map π : a 7→ π(a) ∈ End (U) is a unital Jordan algebra representation of (W, ◦). In
other words, we have

π(a ◦ b) =
1

2

°
π(a)π(b) + π(b)π(a)

¢
, π(e) = I.

Taking the inner product trZ (u1 §u2) in U , we see by [7, Lemma 10.2 (3)] that
π(a§) = π(a)§ (a ∈ W ), the right hand side being the adjoint operator of π(a). In
particular, π gives rise to a selfadjoint representation of the simple euclidean Jordan
algebra (V, ◦). Thus, recalling (1.8), we get the following lemma by virtue of [2,
Proposition IV.4.2].
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Lemma 3.1. Let detR π(a) denote the determinant of the real linear operator π(a)
on the underlying real vector space UR of U . Then

detR π(a) = ∆(a)2m/r (a ∈ V ).

Let P be the quadratic representation of the Jordan algebra (W, ◦) (cf. [2, II.3]).
Recalling our sesqui-linear map Φ defined by (1.2), we have the following formula
by [7, Proposition 10.11 (2)].

Lemma 3.2. Let a ∈ W and u1, u2 ∈ U . Then

P (a)
°
Φ(u1, u2)

¢
= Φ(π(a)u1, π(a§)u2).

With these preparations, we now evaluate some integrals related to the symmet-
ric cone ≠. Recall that the euclidean measure dm on U comes from the real inner
product Re(Φ(u1, u2) | e). The first one is the following integral.

Proposition 3.3. Suppose Re sj > d
2 (r − j) + m

r for j = 1, . . . , r. If x ∈ ≠, then

(3.1)

Z
U

∆−s

°
x + 1

2 Φ(u, u)
¢
dm(u) = (2π)m Γ≠(s§ −m/r)

Γ≠(s§)
∆−s+m/r(x).

Proof. Since y = P (y1/2)e for y ∈ ≠, and since P (y1/2) restricted to V is a symmetric
operator relative to the inner product h · | · i in V , Lemma 3.2 gives

hΦ(u, u) | y i = hP (y1/2)Φ(u, u) | e i
= hΦ°

π(y1/2)u, π(y1/2)u
¢ | e i = kπ(y1/2)uk2.

This together with (1.7) gives

∆−s

°
x + 1

2 Φ(u, u)
¢

=
1

Γ≠(s§)

Z
≠

e−hx | y ie−kπ(y1/2)uk2/2 ∆§
s§−n/r(y) dy.

Hence, by interchanging the order of integrations, we see that the left hand side I
of (3.1) is rewritten as

I =
1

Γ≠(s§)

Z
≠

e−hx | y i∆§
s§−n/r(y) dy

Z
U

e−kπ(y1/2)uk2/2 dm(u).

Now Lemma 3.1 says detR π(y−1/2) = ∆(y)−m/r. Thus we obtain

I =
(2π)m

Γ≠(s§)

Z
≠

e−hx | y i∆§
s§−m/r−n/r(y) dy,

from which the proposition follows in view of (1.7). §
The second one is an analogue of the beta integralZ 1

0

tp−1

(1 + t)p+q
dt = B(p, q) (Re p > 0, Re q > 0),

and is a generalization of the formula given by [2, Exercise VII.4]. The formula in
the following theorem was given incorrectly by [3, Proposition 2.6]. Although our
shorter proof works also for non-symmetric convex cones, we restrict ourselves here
to the symmetric case for simplicity.
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Theorem 3.4. If Re pj > d
2 (j − 1), Re qj > d

2 (r − j) (j = 1, . . . , r), then

(3.2)

Z
≠

∆p−n/r(x)∆−p−q(e + x) dx =
Γ≠(p)Γ≠(q§)
Γ≠(p§ + q§)

.

Proof. By (1.7) we have

∆−p−q(e + x) =
1

Γ≠(p§ + q§)

Z
≠

e−h e+x | y i∆§
p§+q§−n/r(y) dy.

Hence interchanging the order of the integrations, we see that the left hand side of
(3.2) is rewritten as

(3.3)
1

Γ≠(p§ + q§)

Z
≠

ΩZ
≠

e−hx | y i∆p−n/r(x) dx

æ
e− tr(y)∆§

p§+q§−n/r(y) dy.

By Propositions VII.1.2 and VII.1.5 in [2], we see that the inner integral in (3.3)
equals Γ≠(p)∆§

−p§(y). Thus (3.3) reduces to the right hand side of (3.2) by virtue
of (1.7) again. §

4. Spherical Fourier transform of a∏

We are now able to compute the spherical Fourier transform (a∏)b.

Theorem 4.1. If ∏ > p− 1, then one has

(a∏)b(∫) =
πN

Γ≠(∏)2
Γ≠(−i∫ + ρ + ∏−N/r) Γ≠(i∫§ − ρ§ + ∏) (∫ ∈ a§).

Proof. Let ∫ ∈ a§ ≡ Rr and we suppose that the real number ∏ is so large that
the integrals in (4.1), (4.2) and (4.3) below are absolutely convergent. We have by
(1.14), (1.15), (1.16), (2.2) and (2.6)

(a∏)b(∫) =

Z
D

A∏(z, e)φD
−∫(z) dµ(z) =

Z
D

A∏(z, e)ξD
−i∫+ρ(z) dµ(z).

Since dµ(z) = c−1
∏ ∑∏(z, z) dµ∏(z) and since ∑∏(e, e) = ∆(2e)−∏ = 2−r∏, we get by

using (1.10), (1.12), (1.13) and (2.5),

(a∏)b(∫) =
2r∏

c∏

Z
D

|∑∏(z, e)|2 ξD
−i∫+ρ(z) dµ∏(z)

= 2r(2∏−p)

ZZZ
D

|∆(x + e + iy)|−2∏ ∆−i∫+ρ+∏−p

°
x− 1

2 Φ(u, u)
¢
dm(u)dxdy.

We first perform the integration with respect to x and change the variable x 7→ t =
x− 1

2 Φ(u, u). Then we see that (a∏)b(∫) equals

2r(2∏−p)

Z
≠

∆−i∫+ρ+∏−p(t) dt

Z
V

dy

Z
U

ØØ∆°
t + 1

2 Φ(u, u) + e + iy
¢ØØ−2∏

dm(u).

Let us set s := t + 1
2 Φ(u, u) + e ∈ ≠ for simplicity. Then by [2, Proposition III.4.2],

∆(s + iy) = ∆
°
P (s1/2)(e + iP (s−1/2)y)

¢
= ∆(s)∆

°
e + iP (s−1/2)y

¢
.
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Since det P (s1/2) = ∆(s)n/r (loc. cit.), the change of the variable y 7→ P (s1/2)y with
s fixed yields

(a∏)b(∫) = 2r(2∏−p)

Z
≠

∆−i∫+ρ+∏−p(t) dt×

×
Z

U

∆
°
t + 1

2 Φ(u, u) + e
¢−2∏+n/r

dm(u)

Z
V

∆(e + y ◦ y)−∏ dy.

Now the formula [2, Exercise VII.5] shows

(4.1)

Z
V

∆(e + y ◦ y)−∏ dy = 4n−r∏πn Γ≠(2∏− n/r)

Γ≠(∏)2
,

whereas Proposition 3.3 together with (1.8) gives

(4.2)

Z
U

∆
°
t + 1

2 Φ(u, u) + e
¢−2∏+n/r

dm(u) =

= (2π)m Γ≠(2∏−N/r)

Γ≠(2∏− n/r)
∆−2∏+N/r(t + e).

Recalling (1.8) again, we therefore obtain

(4.3)

(a∏)b(∫) = πN Γ≠(2∏−N/r)

Γ≠(∏)2

Z
≠

∆−i∫+ρ+∏−p(t)∆−2∏+N/r(t + e) dt

= πN Γ≠(2∏−N/r)

Γ≠(∏)2
· Γ≠(−i∫ + ρ + ∏−N/r) Γ≠(i∫§ − ρ§ + ∏)

Γ≠(2∏−N/r)

in view of Theorem 3.4. Hence we arrive at the formula in the theorem in case ∏ is
sufficiently large.

Now both sides of the formula are analytic in ∏, so that Theorem 4.1 follows by
analytic continuation. §

We conclude this paper by touching on the result of [9] concerning the Berezin
transforms on D. Put dµ0(z) := ∑∏(z, z) dµ∏(z, z). The Berezin transform B∏

associated to H2
∏(D) is the integral operator on L2(D, dµ0) given by

B∏f(z) =

Z
D

A∏(z, z
0)f(z0) dµ0(z

0) (f ∈ L2(D, dµ0)).

Since dµ0 = c∏ dµ, the map I∏ defined by I∏f(gK) := c1/2
∏ f(g · e) (g ∈ G) gives

rise to a unitary isomorphism of L2(D, dµ0) onto L2(G/K) in view of (1.16). Using

I∏, we transfer B∏ to the operator BG/K
∏ on L2(G/K): BG/K

∏ = I∏B∏I
−1
∏ . An easy

computation making use of (1.14) and (1.15) shows

(4.4) BG/K
∏ f(gK) = c∏

Z
G

a∏(h
−1g)f(hK) dh (f ∈ L2(G/K)).

On the other hand, let M be the centralizer of a in K. We put A(gK, kM) :=
l(k−1g) (g ∈ G, k ∈ K). Then the Helgason-Fourier transform f̃ of a function
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f ∈ C1
c (G/K) is defined as (see [5, p. 223])

f̃(∫, b) :=

Z
G/K

f(x)e(−i∫+ρ)(A(x,b)) dx (∫ ∈ a§, b ∈ K/M).

Let a+ be the Weyl chamber in a corresponding to n, and a§+ the dual Weyl chamber.
Let c(∫) be the c-function of Harish-Chandra (cf. [4]). We denote by d∫ and db
the euclidean measure on a§ and the normalized K-invariant measure on K/M
respectively. Then by [5, Theorem III.1.5], the Helgason-Fourier transform f 7→ f̃
extends to a unitary isomorphism of L2(G/K) onto L2(a§+×K/M) with the measure

|c(∫)|−2 d∫db. By (4.4) we have BG/K
∏ f = c∏f × a∏ in the notation of [5, p. 225 (9)],

so that Lemma III.1.4 in [5] shows°
BG/K

∏ f
¢e(∫, b) = c∏ · (a∏)b(∫)f̃(∫, b).

This together with Theorem 4.1 and (1.11) yields the spectral expression of B∏ given
by Unterberger-Upmeier [9].
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