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A vast number of scalar-tensor theories have been proposed and studied in various contexts
of physics, hence it is desirable to have the most general theory that can be used as a
framework to treat those theories in a unified manner. In the single scalar field case, the
most general scalar-tensor theory called the Horndeski theory played that role, while there
were no such general theories in more generic cases where, e.g., more degrees of freedom
are present in the theory. To make a progress in this situation, in this essay we propose
an extension of the most general scalar-tensor theory with multiple scalar fields, and also
examine nonlinear wave phenomena in this theory to elucidate its fundamental properties.
The goal of this essay is threefold: i) construct the most general scalar-tensor theory with
second-order equations of motion in the two scalar field case, ii) examine propagation of
gravitational wave and scalar field wave to clarify the causal structure in this theory, and iii)
examine nonlinear effects in wave propagation focusing on the shock formation phenomenon
in this theory. Combining findings obtained from these studies, we aim to obtain insights into
universal features of various scalar-tensor theories and also to open up brand-new avenues
of future investigations.
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I. INTRODUCTION

The general relativity (GR), Einstein’s theory of gravitation, was proposed as a theory that reduces
to Newtonian theory in the limit of weak gravity and slow motion. However, GR is not the unique
theory with this property, and actually there are numerous theories of gravitation where GR is modified
by introducing additional degrees of freedom such as scalar fields, or by correcting the theory with
higher-order corrections. Such modifications to GR typically appear in top-down models where the
gravitation theory emerges as a part of the low-energy effective theory. In this kind of construction,
various fields other than the gravitational one naturally appear in the theory and we are lead to consider
their gravitational effects.

Scalar-tensor theories, in which GR is modified by additional scalar fields, are the simplest among
those modified theories of gravitation. Such scalar fields naturally arise in top-down models, and also
they play key roles in phenomenological studies since a lot of interesting phenomena can be realized using
them. Just to list some of examples, the inflation scenario describing our universe in the earliest era [I] is
typically based on a scalar field called inflaton that is coupled to gravity. Also, many attempts have been
made to explain the accelerated expansion of our universe at late time [2] by modifying gravitation at
cosmologically large scale rather than by attributing it to the cosmological constant, whose origin it yet
to be known. Black holes dressed with scalar field cloud (see e.g. [3, 4]) are attracting interest since they

could be important targets of various astrophysical observations and particularly the gravitational wave



observations, which was recently realized by LIGO [5]. Even in high energy physics and the string theory,
black holes with scalar fields plays a crucial role in the context of the gauge-gravity correspondence [6]

and their various applications (see e.g. [THI0]).

A plethora of scalar-tensor theories have been proposed by now (see [11I] for a review), hence it
is desirable to have a theory that could be used as a framework to treat them in a unified manner.
Such a theory should be free from pathological behaviors including ghost instability, and also it should
encompass a wide variety of scalar-tensor theories as its subclass. In such a context, the Galileon
theory [12] in flat spacetime was proposed as a scalar field theory that is free from the Ostrogradsky
ghost instability [I3] [14] although its Lagrangian contains higher derivative terms. Later on, this theory
was covariantized to include dynamical gravity and also was generalized to incorporate more parameters
into the theory by [15] [16]. The resultant theory was dubbed the generalized Galileon theory, which was
shown by [17] to be equivalent to the Horndeski theory [18] constructed in 1970’s. This theory has been
utilized in studies on cosmology and gravitational physics, e.g. by [17] which pursued inflation scenario

based on it.

The Horndeski theory is the most general covariant scalar-tensor theory with a single scalar field
whose Euler-Lagrange equation has derivatives of the metric and the scalar field only up to second order.
There are a several ways to extend this theory further. One of the simplest extensions is to incorporate
multiple scalar fields into the theory, which can describe inflation models with multiple fields (see [19]
for a review). Extensions of this type was first realized by the generalized multi-Galileon theory [20].
Later on it was realized that, however, the multi-DBI inflation models [21H28] are not included in this

theory [29], hence this theory is not the most general theory for multiple scalar fields.

This finding tempts us to construct the truly most general scalar-tensor theory with multiple scalar
fields, and also to clarify properties of the general theory so that we can make predictions about various
multi-field theories incorporated in that general theory. These are the main motivation in this essay, and
for the latter half of it we will focus on the nonlinear wave phenomena in the most general theory. We

will explain more details below.

Let us state the problem for the first half of the above motivation more precisely. We will try
to construct the most general scalar-tensor theory with multiple scalar fields that is described by a
covariant Lagrangian and whose equations of motion are up to second order in derivatives of the dynamical
variables, which are the metric and the scalar fields. For simplicity, we consider only the case with two
scalar fields in four-dimensional spacetime, which may be viewed as a minimal extension of the original
Horndeski theory for a single scalar field. We call this theory the bi-Horndeski theory in this work. This

construction was attempted in Ref. [30], and in the first part of this essay we will review its outcome.

The goal of the program addressed in this essay is not only to construct the most general scalar-tensor
theory, but also to use such a theory as a framework to study the properties of various theories in a unified
manner. Some of such properties will be model-dependent, in which case they can be studied only after
specifying the model. If there are properties shared universally by various theories, however, they should
be found by studying the most general theory as well. Clarification of such universal properties of the
most general theory is another goal of this essay.

For this purpose, we will focus on the wave propagation in the most general theory. Wave propagation
is one of the most fundamental dynamical processes in a theory, since it governs perturbative dynamics

of the theory and also it defines the causal structure upon which the future and past regions in the



spacetime are defined. The properties of the wave propagation become important particularly when we
consider black hole horizons, which are defined as the boundaries of causal contact for an observer outside
the black hole region. One of the aim of this work is to clarify such causal structure and properties of
black hole horizons in the most general theory.

Another focus of this essay is the nonlinear effects in wave propagation. In the most general scalar-
tensor theory, the propagation speeds of the gravitational wave and scalar field wave may depend on the
background and also the amplitude of the waves themselves, unlikely to GR and the canonical scalar
field for which the waves just propagate at the light speed. Once we take into account such a nonlinear
effect in wave propagation, the waveform may be distorted in time and eventually it may form a shock.
The simplest example of such shock formation induced by the nonlinear interaction is found in the wave
obeying Burgers’ equation u; +uu , = 0, where the nonlinear term uu , causes the waveform distortion
and the shock formation (see Fig. . Such shock formation takes place also for fields obeying other
nonlinear equations [31], B2], compressible perfect fluids [33] and gravitational wave in Lovelock theories

in higher dimensions [34].

u(t, z)

FIG. 1: Schematic of waveform distortion and shock formation in a solution of Burgers’ equation. Due to the
nonlinear term wwu ., the waveform is distorted and eventually becomes double-valued, which corresponds to a
shock formation.

Since the derivative of the dynamical variable diverges at the shock, this shock formation process
can be regarded as a singularity formation process. It may lead to breakdown of the theory unless the
singularity is resolved by some mechanisms, and also it could be an important target of astrophysical
measurements including the gravitational wave observations. Motivated by these interests, we will ex-
amine if the scalar field wave and also the gravitational wave in the most general scalar-tensor theory
suffer from this type of effect. Such formation of shock (or caustics) was studied for a probe scalar field
with Horndeski-type action on flat spacetime in [35737HI| Our aim is to extend these studies by taking
into account nontrivial backgrounds and also the dynamics of gravity, aiming to obtain implications to
gravitational wave physics. Combining insights obtained from this study and also from the analysis on
the wave propagation, we try to elucidate various features of scalar-tensor theories as much and general

as possible.

A. Outline and Summary

As stated above, the aim of this essay is to clarify universal features shared by a broad variety of
scalar-tensor theories with multiple scalar fields. For this purpose, we first construct the most general
scalar-tensor theory with two scalar fields, which we call the bi-Horndeski theory, and then analyze the

wave phenomena realized within such a theory. For the latter, we focus on the (linear) wave propagation

! Properties of caustics were studied also by [38] in the DBI-type scalar field theories and by [39] in other theories.



and the causality defined by it, and also the nonlinear effects in wave propagation such as the shock
formation. Below, we outline our strategies to tackle these problems and summarize the main results.
Based on them, we conclude this essay in section [V} Outlook with discussions on possible future
directions. Lengthy formulae used in the main text are summarized in the appendices to make this essay

self-contained.

e Construction of the bi-Horndeski theory (section

To construct the bi-Horndeski theory, we follow the original construction in the single scalar field case
done by Horndeski [I8]. We first formulate the problem and the construction strategy in section
As explained there, the construction is divided into Step 1: construction of the most general
equations of motion (sections that is compatible with the covariance of the theory, and
Step 2: construction of the Lagrangian (section that generates the equations of motion as

its Euler-Lagrange equations.

The key idea to accomplish Step 1 is to use the generalized Bianchi identity @D, which follows from

the general covariance of the theory. We use this identity in two ways as explained at the beginning

of section [[TB] Correspondingly, the construction procedure is divided into [Step 1—al and [Step 1-b|

Following these steps, we accomplish the construction of the most general equations of motion, where
the resultant equation is shown in Eq. . We examine their physical properties in section and
confirm that the theory defined by those equations of motion is more general than the generalized

multi-Galileon theory also the multi-DBI models, as we aimed.

Having the most general equations of motion at hand, the next task is to tackle Step 2 for the
construction of the Lagrangian. In the case of the Horndeski theory for a single scalar field, it turned
out that the trace of the equations of motion is intimately related to the Lagrangian, and based
on this fact the full expression of the Lagrangian was correctly found. We follow this procedure in
section and obtain a set of partial differential equations and for the arbitrary functions
in the candidate Lagrangian. We have to solve these differential equations to construct the Lagrangian,
but unfortunately it has not accomplished yet thus far. However, results up to here would serve as a
stepping stone for further trials for the theory construction, and also it may be possible even to solve
those equations if we take into account the integrability conditions for Lagrangian, as we mention in

section [V] Such trials toward the Lagrangian construction is one of the future tasks in this project.

o Wave propagation in the bi-Horndeski theory (section

Based only on the equations of motion of the bi-Horndeski theory, we can study the dynamics in this
theory without directly referring to the Lagrangian, which is yet to be constructed. Taking advantage
of this fact, we study the wave propagation in the bi-Horndeski theory aiming to elucidate some

properties that are shared universally by the theories incorporated in the bi-Horndeski theory.

Our analysis is based on the method of characteristics [40], which is a mathematical tool to find the
maximum propagation speed allowed in the theory, or in other words the propagation speed in the short
wavelength limit. After introducing this method for a generic equation of motion in section [[ITA] we
apply it to the following two problems, both of which are related to the causal structure implemented

in this theory.



Black hole horizon and causal edge (section : In GR with a minimally-coupled canonical
scalar field, the gravitational wave and the scalar field wave propagate at the speed of light, and then
it is ensured a black hole horizon in the metric becomes an event horizon for those waves. However,
once the theory is modified, propagation speeds of the waves may be modified as well. When they
becomes faster than the light speed, the event horizon for these waves may differ from the metric
horizon, which is defined in accord with the light propagation. Motivated by this point, we examine
properties of Killing horizons, such as black hole horizons in stationary spacetimes, in section
based on the method of characteristics. As argued around Egs. and , it turns out that the
Killing horizon becomes an event horizon for gravitational and scalar field waves if the scalar fields
share the symmetry of the background spacetimeﬂ These conditions will provide a useful way to
clarify causal structures of black hole solutions realized within the bi-Horndeski theory and various

multi-scalar-tensor theories incorporated in this theory.

Wave propagation on plane wave solution (section : To study the wave propagation and
causal structure in this theory in a more general situation, we study another example of nontrivial
background solution. For this purpose we focus on the plane wave solution [45], which is an exact
solution describing gravitational wave and scalar field wave propagating in a common null direction.
Unfortunately, this solution had been constructed only in the (single scalar) Horndeski theory that is
invariant against a constant shift in the scalar field (see Eq. for definition). Hence we will limit our
analysis to this subclass of the bi-Horndeski theory below. In section [[ITB2] after briefly introducing
the Horndeski theory that is shift-symmetric in scalar field, we analyze the propagation speeds and
causal structure for fluctuations on the plane wave solution background. We will find that effective
metrics , which differ from the physical metric, can be defined in this case, and the propagation
of the gravitational wave and scalar field wave obey those effective metrics. Hence the cones of the
wave propagation surfaces differ from the light cone, and it turns out that they form a nested cones
that are aligned to the background null direction (Fig. [4)). Hence, on the plane wave background, the
causality can be defined in a usual manner if we use the largest cone as the causal boundary instead

of the light cone.

e Shock formation in the Horndeski theory (section

In the above studies on the wave propagation, we were basically focusing on the behavior of linear
waves. In this section, we aim to go beyond by taking into account the nonlinear effects in the wave
propagation. As mentioned earlier, we particularly focus on the shock formation phenomenon that is

caused by such nonlinear effects.

In section IV A} Formalism for shock formation, we summarize the formalism to study shock
formation for a generic equations of motion, which was originally introduced in [46] for relativistic
hydrodynamics and utilized by [34] to study shock formation of gravitational wave in Lovelock theories.
This analysis focuses on the transport of the weak discontinuity introduced to second derivatives of
dynamical variables, as depicted in Fig. |5l It turns out that the transport equation (Eq. ) is given
by a nonlinear equation of the amplitude of the discontinuity (II(z*) of Eq. (90)). The nonlinear

2 This result is intimately related to the properties of Lovelock theories of gravity [4I] and scalar-tensor theories with a
non-minimally coupled scalar field studied in Refs. [42H44]. In Lovelock theories, it was shown that the superluminal
propagation of the gravitational wave is prohibited on a Killing horizon [42, [43], hence it becomes an event horizon
automatically. In the scalar-tensor theories with non-minimal coupling, it was shown that the scalar field must obey the

background symmetry so that a Killing horizon to be an event horizon [44].



term is proportional to a coefficient N (Eq. ), which is given by a derivative of principal symbol
P (essentially the coefficients of the kinetic term) of the equations of motion. Roughly speaking,
this quantity governs the dependence of the propagation speed on the wave’s amplitude. When N is
nonzero, two nearby wave trajectories cross each other, and the amplitude of the wave diverges there.
It corresponds to a shock formation. Such scenario is depicted by the solution of the transport
equation, from which we can find that the amplitude of the weak discontinuity diverges within finite
time when A # 0. [

In this essay, we apply this formalism to the shift-symmetric Horndeski theory, which was studied
in section [ITB2 as well. As explained above, some explicit solutions are known in this subclass
of the most general theory, and they can be used as the background solutions to study the shock
formation. The results of this analysis is summarized in section [V B} Shock formation in the
shift-symmetric Horndeski theory. It turns out that the so-called k-essence model [47] coupled to
GR can be studied without specifying the background solutions, and it is found that the gravitational
wave in this theory is always free from the shock formation, while the scalar field wave suffers from it
unless the model reduces to the scalar field version of the DBI model [48]. For a probe scalar field on
flat spacetime, this property of the scalar DBI model was found by Refs. [35-37] and also in earlier
works [49]. We confirm that this property of the scalar field wave persists even when we take the
gravity sector into account. Also, the gravitational wave was not studied in these works, and it is

shown for the first time by our work that it is free from the shock formation in this class of the theory.

For theories more general than the above, we need to specify the background solution to make
progress. Such studies on some given background solutions are summarized in section [V C: Ex-
amples of shock formation, where we focus on the plane wave solution and also the dynamical

solution with symmetries in angular directions in sections [V C 1] and [V C 2] respectively. The back-

ground solution of this type can describe, e.g., the spatially homogeneous and isotropic universe, that
is, the Friedmann-Robertson-Walker (FRW) universe, and also spherically-symmetric dynamical stars
(see Fig. @) It turns out that, in any of these examples, the gravitational wave is always free from the
shock formation, while the scalar field wave generically suffers from it unless the theory is set to the
scalar DBI model coupled to GR. This result may be suggesting that, at least on the backgrounds with
some symmetries, the gravitational wave in the most general scalar-tensor theory is more well-behaved

compared to the scalar field wave, in the sense that it is protected against the shock formation.

Notation. Before starting our discussion, we summarize the notations used throughout this paper. We
consider a four-dimensional spacetime with a metric gq, and two scalar fields ¢! with I = 1,2. Following
[18], partial derivatives of gq, and ¢! with respect to % are denoted as

; _ 09!

_ agab
Oxc’ P = oxa’ (1)

Yab,c =

while the covariant derivative of ¢! and its scalar product are denoted as
1
o =Vad', XU =g’ (2)

3 There are certain theories for which A identically vanishes and the transport equation becomes linear, in which case
the theory is called exceptional or linearly degenerate [46]. For example, GR coupled to a canonical scalar field is an
exceptional theory, hence the gravitational wave and scalar field wave in this theory are guaranteed to be free from the

shock formation.



where X!/ is symmetric in I and .J. We use a strike “ | 7 also as a separator in (anti-)symmetrization
unless it causes ambiguity. For example, [I|JK, L|M] stands for anti-symmetrization of I and M. Partial

derivatives of a function A% *(g,dg, 8%g, !, ¢!, 0%¢’) are expressed as

Ad-bied — %‘lb a..bed,e — oA™-T Aa--biedef — w
B 8gcd ’ o 8gcd,e’ - agcd,ef’

Aa...b; _ %‘lb Aa...b;c _ HA-b Aa...b;cd _ HAa-b
I — 8¢I ’ I — 8¢7Ic ) I = 6¢16d s

and partial derivatives of a function A(¢!, X7/K) are expressed as

0A _1<8A 8A>

8XIJ + 8XJI

’IEE)TSI’ dJ B

In the equations of motion and the Lagrangian, we use the generalized Kronecker delta defined by

Gplopr =nlogt oy, 8L = 260,67 (4)

Repeated indices are summed over a = 0,1,2,3 and I = 1,2. We also use various indices summarized in
Table [I] for the analysis in sections [[T]] and since we need to decompose the spacetime according to
the wave propagation surface and also the background symmetry directions. See also the definitions in

each section for more details.

TABLE I: Indices used in this work.

a,b,c,d,..., q,r, s, t|Four-dimensional indices for £¢=%1:23

T3 780 Three-dimensional indices for #=123 on the hypersurface ¥ at 2% =0
Two-dimensional spatial indices for =23 in section m,

B, and for angular directions in section [V C2]

1,9 Two-dimensional spatial indices of the null basis in section |IH B 2|

A B,... Two-dimensional indices for 4 = 7, x in section |IV C 2|

1. Scalar field indices of the bi-Horndeski theory ¢r—1 2 ;

used also as generic indices (e.g. in Eq. )

II. CONSTRUCTION OF THE BI-HORNDESKI THEORY

We summarize the method to construct the most general scalar-tensor theory with two scalar fields
whose Euler-Lagrange equations are up to second order in the derivatives. We will closely follow the
method of Ref. [I8] for the single scalar field case, hence the procedure below reduces to [18] once the
number of the scalar field is reduced from two to one. In this section, we show how this method can be

generalized into the two scalar field case.

A. Assumptions and construction strategy

The problem we consider is defined as follows. We consider a generally-covariant theory described

by a Lagrangian scalar density £, which is a function of a metric gqp, two scalar fields ¢/=12, and their



derivatives of arbitrary order. Hence £ in our problem is given by

£:£(galﬂgab,c:gab,cd?'"a¢17¢{a7¢{ab7"')' (5)

We also demand that the equations of motion derived as the Euler-Lagrange equations for £ are given

by derivatives of the field variables up to second order:

50 )

0= (59 ) =V g g b (gcd yY9cd,e y Ged,ef 5 d)J ) ¢:]c ) ¢:{;d) ) (6)
oL

0= W =v g g[ (gab s 9ab,c s Gab,cd » QSJ y d):z s ¢:{zb) . (7)

Then the problem we try to solve is to construct the most general Lagrangian £ that fulfills the

requirements @ and .
In the single scalar field case, such a theory was constructed by Horndeski [I8]. The construction

procedure is divided into the following two steps:

Step 1. Construct the most general equations of motion that obey the identity following from the

general covariance of the theory.

Step 2. Construct the Lagrangian that generates the equations of motion obtained in Step 1.

In this work, we employ the same construction strategy, generalizing it for the two scalar field case.

B. Construction of the most general equations of motion

To accomplish Step 1 in the above, we utilize the identity following from the general covariance of
the theory. Since the theory we consider is generally covariant, the action must be invariant under a

coordinate transformation x% — z% + £¢, that is,
0=2¢ / diz L =2 / dz/—g (vbgab - ;slv%f) £a. (8)
Since this equation must be satisfied for any &, it implies an identity given by
VG = %&V%I. (9)

This equation is a generalization of the contracted Bianchi identity in GR, V,G% = 0 for the Einstein
tensor Ggp = Rap — %Rgab.

Identity @ constraints the structure of G,; and &7 in the following two ways. First, it forbids VG to
depend on the third derivatives of the fields, because the right-hand side is manifestly up to second order
in derivatives. Since V;G% may have such third derivative terms in general as we can see from Eq. @,
this property gives a nontrivial constraint on G,,. Second, identity @D demands that the divergence
VG is proportional to a gradient of scalar field V¢¢! and the components in any other directions must
vanish. This property gives further constraints on the structure of G%. Hence, it is useful to subdivide

Step 1 of the construction procedure into the following two steps:

Step 1—a. Construct the most general two-tensor G, of the form of Eq. @ whose divergence is up to

second order in derivatives.

Step 1-b. Require that V;,G® is proportional to V2¢!, to restrict further the form of Gg.

Below, we will follow these steps to construct the most general G.
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Step 1-a. The most general tensor whose divergence is second order in derivatives

Step 1-a of the construction is based on the property that V,G% must be free from third derivatives
of ga» and ¢!, which may be expressed as
ov ab ov ab
OViGT _  IVET (10)
agccl,efg aCb ,cde
Applying the chain rule to the derivatives of G, and &;, which are given by Egs. @ and , we can

show that the above condition is equivalent to
gab;cd,ef + gae;cd,fb + gaf;cd,be =0, gab cd + gac ;db + gad;)c —0. (11)

Adding to this one, we have another type of symmetry in the indices that follows from the fact that £
behaves as a scalar density [50, [51]

gab;cd,ef + gab;ce,fd + gab;cf,de -0 (12)
We also have obvious symmetries such as Qab cd _ Qba ied _ g‘“’ de Then, combining and , we
can show that Gebiedel and g% ;d are symmetric under swapping of the sets of two indices:
bicd, d;ab dab. bied __ nediab
gabie ef _ — gedia ef gefc a ga ; _gc ?' (13)
Due to this symmetry and the property , in four-dimensional spacetime a derivative of G% with
respect to geq.er and d)gd identically vanishes once it has nine or more tensor indices. It is because one of

the indices appears three times at least in that case, and then the property or asserts that the

derivative must vanish. This fact implies the following identities:

0 0

g =, 14

09ed,ef 09ij ki (14)
0 0 0

g =0, 15

Oged,ef OPL; 067, 19)

0 0 0 0 gu_y (16)

0oL, 097 DK 0%,
Identities f can be integrated to give G% as follows. First, integrating Eq. yieldsﬂ
ab _ gadeefgcd,ef + gab _ fadeechdef + fab’ (17)

where £2b¢def and €% are functions of ggp, Jab,c» ot ol @ qﬁ o that have the symmetries same as Eqs. .—
., that is, they are symmetric with respect to swapping of sets of two indices and vanish if three
indices are symmetrized. Substituting Eq. into Eq. , and integrating it, we obtain
bedefgh
G = &" " Rege by, + €7 Regey + €, (18)
bede fah abede fgh
where £2bedefgh and 3
Iab. It can be also seen that all the £ tensors have the symmetries of Eqs. f. Repeating the
same procedure for Eq. , we find

gab _ S(Izbcdefgthdequ'Igh + 5?3%efgh¢‘0d¢|ef¢|gh + gabcdechdef + gabcdef¢|6d¢lef +§ de¢|cd + gab (19)

are functions of gap, gab,c, ot qb{a, while £ is a function of ggp, Gab.c» ot gi)’la,

4 The second equality of Eq. can be shown using the identity Eabc‘iefg cdief = géadeEfRecdf + €% for some tensor £7°,
which follows from the deﬁnition of the Riemann tensor and the fact that £2°°#¢f has the symmetries of Egs. 7.
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where all of the above £ tensors are composed of gup, Gap,c !, qbfa, and have the symmetries of Eqgs. —

([13).
The tensor contains the £ tensors, which appeared as integration constants in the above derivation.
and have the symmetries of Egs. f. The next task to

accomplish Step 1-a is to construct those £ tensors with the most generality, using which we can find

They are functions of gap, gab.c, ¢7, @Y

7‘17

the explicit form of the most general two-tensor G* with the desired properties.
To construct such £ tensors, we can use ¢!l g% and the totally antisymmetric tensor € as the

building blocks. For the simplest ¢ tensor, £, it is easy to find the most general form of it:
fab — (I(QSI,XJK)gab+b[](¢I,XJK)¢I|a¢J|b, (20)

where a(¢!, X75) and b!7 (¢!, X7K) are arbitrary functions of ¢! and X/X satisfying b’/ = b’!. Here, we
have used the assumption that the number of the scalar fields is two for the first time in the derivationﬂ
The explicit forms of gabed, gabedef ,f‘}SCdef ,cabedefgh and §?b6def 9" for the bi-scalar case are given in
appendix Substituting all the £ tensors into Eq. and rearranging it, we arrive at the most
general tensor G% that remains to be second order in derivatives after taking a gradient:
I K M|h
Gy = Ad} + Brso"*¢i} + Crogg |C| + DIJK525;¢|C¢JM¢ iy EIJKLM(sZg;}g¢\C¢J|d¢\[§¢L‘f¢|g |
Mlh I\d J
+ Frarcimdygh (ccepad 6”165 6HT 4 ol ol W6 ol ) il 1 Gryopi o o)
Ll I|d
+ Hyyrr oot o’ ok ol + 1655 R Y 4 T80t LT R, I 4 Kbt ol R, I

d h
+ Lk pgionon o ", (21)

where A, B[J,C[,D[JK,E[JKLM,F[JKLM,G[J,H]JKL,I, J[J,K[, and L[JK are arbitrary functions of
o' and X1/ satisfying

By = By, Dijk = Dk, Erjkim = —FExjiom = —Erokom = Ejrokw,
Grj =Gy, Hrjxr = Hykr = Hrjok, Frokim = —Frikom = —Frooekm = Frrokw,
Jry = Jr, Lijxk = Lyik = Liky- (22)

Step 1-b. Imposing VG x V¢!

Step 1-b of the construction procedure is to demand that the tensor obeys Eq. @, that is, the
divergence VG calculated from Eq. becomes proportional to the gradient of the scalar field V¢!,
This condition is not satisfied in general, and to satisfy it the arbitrary functions in must be related
with each other in a certain way. We will find constraints on the form of G, in this manner below.

Strategy to find the constraints from Eq. @ is to calculate VG from Eq. first, and then to
project it onto vectors orthogonal to £7V?®¢! next. Such projected components must vanish if V,G% is
proportional to V¢!, which become the constraints to be imposed. What we do below is to find those
constraints starting from Eq. .

From Eq. , VG is calculated as

I\d
V'Gh = Qro" + arsdiio 6" Ry M+ Briohif oo Re Y+ vrswndii ol 01 6f07 " Ry

51If the number of the scalar fields were greater than two, we would have for example the term such as
CIJKL (saCdeqﬁ‘ICqSl{l(j)fgqﬁL‘b + sb°d6¢fc¢fd¢f§¢L‘a) in £°°, where cryxr is arbitrary functions of ¢’ and X7, and totally

anti-symmetric in I, J and K.
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+ eUKdgfﬁl,n¢K|d¢I|f¢J|gR hm 4 p6ae R bplll 4 uIJKLdg§f¢ff¢L“b¢”d¢J|f

+ wr oo o + ersoon + G disolo N N R + Lk oo el B, T

+ 205 oo 0 O Ry M+ (Npskciar — Mroarax) ot oM Pl e o1l

+ UIJKLMNébfh¢M¢N|Zb¢I ¢J|e¢|f:|f¢L|h n TIJKLM5Z§;;€¢L”¢M|b¢1|d¢|e|f¢mh

+2F1 kLM <€bdfh¢1‘a¢J‘g¢K‘d¢L|f + Eace%\c(ﬁ]é(ﬁﬁfﬁﬁﬁl) MR,

+ 4€pdfn (FIJKLMW‘%M) ¢K|d¢L‘f¢M‘h + 4e%9 (FIJKLM¢\C¢|e¢|[§¢|h> ¢>M|ha (23)

where the coefficients ar s, Br7, . . . are functions of ¢!, X% made from the arbitrary functions in Eq. .
Their expressions and also the definitions of Q; are given in appendices and respectively.

As the next step, we need to project to vectors orthogonal to V%¢!, and find necessary and
sufficient conditions on the coefficient functions to make them vanishing for any configuration of the
scalar fields ¢! and the spacetime curvature Rgfi’. For this purpose, we classify the terms in according

to the numbers of gbfb‘a and Rgdb appearing in those terms. For example, the terms of highest power in
qb”a and R‘C’db are given by
d d
vbGy = €IJdeflellk¢ch¢I=£¢JlgRgl hh LIJK5§dfg¢J|1¢K|lb¢IICRegfh +-, (24)
where the ellipses denote the terms with less numbers of ¢|Iba or Rgg. Then, we can extract the coefficient
of ¢A7mn¢3 .op9qr,st out of this expression by taking its derivative with respect to (bA,mn(bB,Opgqr,st as
(vbga) ymmn; Op ;qryst 26(A|J|B)6d;iezlk§(m n)d5 (¢J| k(5 s t) +g q5 ¢J|(s t) )

+ 2LIJK(SZ§;;QL (5114(5113¢J\(mgn)b5£0 pd 4 sl 5K¢J| b5(m n)d) 5éqgr)h5§sgt)f,

(25)

where the terms in the ellipses of Eq. drop out by this operation. Equation must vanish when
contracted with a vector Y, such that Y, ¢! la— 0, because Eq. @) implies that

mn;o 7,8 ]‘ a \smn;op:.qr,s 1 a smn;iop:.qr,s
(nga)’ opiarst a(551¢1| )A opiarst — 5ya¢1| £ mmoparst — (26)
Thus, we obtain a constraint equation given by
2€(41518) Va0, 00" g 0L g (¢JI kG gt 4 ghlagy) g1 gt )
+ 2LIJKY0,5§§;}€ (dz(aéqb(]l(mgn)bé((: P)d + 5[ 5K¢J|(0 b(s(m n)d) 5(‘1 )haésgt)f =0. (27)

This constraint has eight free indices (m,n,0,p,q,r, s,t), and its any components must vanish. To find

the conditions on €455 and ¢7;x from it, we first look at the trace part by contracting with gmngopgqr:

— 8ea1py®” YD + 8ui a1y pyd” YD = —8€ (a3 07 Y =0, (28)

where we have used ¢(4)7p) = 0 that follows from the definition (A7). This equation must be satisfied
for any ¢/, and therefore it is necessary to impose €(l7|B) (= €asp) = 0. Then, we can plug it back
in to Eq. to obtain an equation on t7yx. It turns out that this equation implies ¢y = 0, as we
can confirm as follows. Let us project Eq. with €455 = 0 imposed to the basis vectors Y¢, 17“, plle
(I =1,2) such that

VYo=Y, Y =1, Y,Y°=0, Yyo'l*=Y,¢!l*=0. (29)
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Contracting Eq. with ZmWn%¢|f,¢§¢ﬁ¢f;¢|§y where Z% W, V@ are either Y or Y, we find

0 = 4easpOgg YV (ZW 7 + Wez9) X 7€ (X (PIFXOIE) _ xDEXFG) (30)

We may focus on the 147X 7¢ part of this equation, and it must vanish identically for any X/¢. Then
we can see that ¢4 75 = 0 must be imposed.
Applying this procedure to any other second derivative terms in Eq. one by one from higher to

lower power ones, we find

ary = =28y1, YKL = =410k, QAT [51(CX5)13 - 5IBX511)} =4 (nepyaB — NC|BAID)) (31)
€1JK = UJK = WIJK = AN1)KLM — AN1|LM|))K = K1 = k) = &7 = Trykim = Froxov =0,
vacpBXpp — VapEcX[Fp — 20(Er)caps =0, VB[A|K|C] = OEFicAIDB = 0, (32)

must be imposed, where XI_J1 is the inverse matrix of X!/. Expressions in terms of the functions
appearing in Eq. , the constraints are expressed as

BIJ = -2 (JT + QW)J,J + A,IJ + 2D(IIK‘J)7LXKL — 16EK(I|MN|J)7LXKLXMN -8 (JK(LJLL - JKL,I,J) XKL’
Cr=—2(F+2W) [ +2 (D1 + 8 yk,1) XX = 8E ks XTH XM,
Frokom =0, Gry=2Jr7 — 2K 1.5 + 4Tk, X0, Hijkr =2J1 kL,

2 1
K1,y = =2 X", Krjk = Kjik, Lijk = gK(I,JK)a I= 5}-4‘ w, (33)

where W = W(¢!), and F = F(¢!, X'K) is a function satisfying F ;s = G, which can be integrated

as

f:/G[JdXIJ:/(QJIJ—2K1J+4JKLJLXKL) ax1’. (34)

The conditions CI[JK] =WJjJK = )\(IJ)KLM — A(I|LM‘J)K =0in Eq 1Inply

Driyr) = —AJry k) + 8B X Y, (35)

1
Dryky = §CJ,IK + Gk, + (=Dromaix + 4Hpik ) X5 + 8E g ipmm X ™ + AEpynos gk XM XN,

(36)
1 1
0= §DIJK,LM - iD(I\LM,\J)K + Hrjxmn — Hijovr,| g
—2(Eyvpank — Exanom) —4 (Exoank,om — Exouiom,ni) xNe, (37)
and Eq. implies
Gruxir =0, Hygpawn =0, Guixrn) =3Hrux + 2Houasxny XN = 2K 10 - (38)

Among these, Gy, = 0 implies F 15 k1 = F k1,17, which is nothing but the integrability condition
that guarantees the integral to exist.
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C. Properties of the most general equations of motion

Imposing the constraints to Eq. , we finally obtain the most general second-order field

equations of the bi-scalar-tensor theory Gy = 0, where

gy = Adsp + [—2./?71 —4Wr+2 (D]K[ + SJJ[K’[]) XK _ SEJKLMIXJKXLM] 51(715 fld
+ (=2F 15— Wi+ A1+ 2Dri g 1. X5 = 16Ex g XFEXMY — 16JK[1,L},JXKL) ¢(I|a¢?

K|f

Mlh 1 1 ,J
+ DIJK5g§f¢\C¢J|d¢ + Erk LS o0’ ol ¢L|f¢ | (2.7:4— W) Obif Ree ™ + Fo11055 9 | e g

L|h K|h

Ild 2 Ild
+ Kropgd o R, T+ S K ropste ol o

180l Ry + 211055007 0 o) R
(39)

Note that one can eliminate WW(¢!) from the above equation by redefining F — F (¢!, XTKY) = F 42w,
We can see that Egs. f do not reduce the number of the arbitrary functions, because these are
the relations between derivatives of the functions, and then they do not affect the structure of the field
equations directly. From @D, the scalar-field equations of motion are found as

ce m 2 m
0=&r =297+ (dezm < ’YJ[KL(bK'b(mCQﬁL‘d h + O'JIKLMN¢|C¢M‘b¢K‘d¢L|h¢N‘ ) . (40)

3

We can confirm these equations reduce to that for the single scalar field derived by [18] once the number
of the scalar fields is reduced from two to one [30].
In [29], cosmological perturbations was studied in the multi-field DBI galileon theories [21H2§], and

as a result it was noticed that the double-dual Riemann term

L =/=g0110k00m00,0" ol 0" R, T (41)

is not included in the generalized multi-Galileon theory [20]. We can check that this term is actually

contained in our theory. It is straightforward to derive the field equations from Eq. :
J b Ll
Eab(ﬁ) (aél;cZgXI[lqsk;]ng‘dRegfh + 8gl(a(sl;;}ebgél[J6K]L¢|c¢Jld¢) ‘f(b | ) (42)

This is reproduced by setting Jr; = 2 (8770x1, — 01xdsL) XKL in our field equations. It can be generalized
further, since Jr; can be an arbitrary function of ¢! and X!/ in our theory. In addition, the Erjx i
term in the equations of motion is another new term which was not incorporated in the generalized
multi-Galileon theory nor in the Horndeski theory, since this term identically vanishes when the number
of the scalar fields is reduced from two to one.

To conclude, by our construction we successfully reproduced the terms missing in the candidate of

the most general theory proposed earlier [20] and also found an additional new term.

D. Construction of Lagrangian and challenges thereof

As mentioned in section [[TA] Step 2 of the construction procedure is to construct the Lagrangian
from which the most general equations of motion is obtained as its Euler-Lagrange equations. This

would be accomplished by “integrating” the equations of motion following the inverse of the calculus of
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variation. Unfortunately there are no systematic ways to do it in general, and it is difficult particularly
for complicated equations of motion such as Egs. and . Below, we introduce our attempt to
construct the Lagrangian based on the strategy for [I8] in the single scalar field case.

In the single scalar field case, the expression of the Lagrangian was guessed from the trace of the
equations of motion, and the correct expression was found based on it. Motivated by this fact, we
examine the trace of the equations of motion in the two scalar field case. It turns out that the terms

appearing in the trace can be classified according to their tensorial structure as

£y = =g MO, ¢|Ic|c’ (43a)
Lo=+/—g (M(z)(;ceR df | 2M(2)5C€¢I|dq§‘]‘f> (43b)
Ls=+—g M1§¥<5df¢|c¢‘”d¢mfv (43¢)
Li=+—g <M(4)5ce;gl¢1 Ry + 3M§4JKéceigL¢I|d¢|€|f¢K|h)’ 43d)
£ /3 (e« 2ol ), (159
Py (43¢)
£ = ¢—*gM}%LM(S“Z@CW'%%L'f«>M'ha 5

where MM M3 MI(:O’,)K, ]\41(4)7 MI(5), M©) and MI(?KLM are arbitrary functions of ¢! and X!/ satisfying

3 3 5 5 7 7 7 7

MI(J)K = M‘S'I)K’ MI(J) = M§1)7 MI(J)KLM = _MI((}ILM = _MI(L)KJM = M§I)LKM7 (44)
(1) (2) (3) (4) (4) (5) (7)

M[I,J]K M I[J,K]|L MIJ[K LM — M[I JK — MI J[K, LM MIJK[L MIN — MIJKL[M Njo — =0. (45)

The condition is crucial to keep the equations of motion second order in derivatives; the Euler-
Lagrange equations derived from (43) contains higher derivative terms such as V,V;,V.¢! multiplied by
derivatives of M1~7) and they can be eliminated only when is imposed.

The Euler-Lagrange equations for the Lagrangian densities (listed in appendix must repro-
duce the most general equations of motion if defines the most general theory for two scalar
fields. Comparing Eq. with equations in appendix term by term, we find it is the case if

A= MI(,l}X” + 4M,(12,?1X” - QMI(LS])K,LXIJXKL -8 (MI(?])KL - MI(?,J,K> XTI xRE
1
+ §M(6) + SMI(?KLM,NXIJXKLXMNv (46a)
L/ @ 30 (3) 3) (3) LM
Drjr = _§M(I NK ~ 4M( DK M(IJK) (ML(IJ),MK + M(I|LM,|J)K - MIJL,KM) X

(4) (5) 5) (%) 5) L
— o+ 2 (20, 5 = M) + 4 (2M) 5 ke = M) i) X

+ 12MI(J)(KLM)X M 8MI(J)NLM,OKX IMYNO, (46D)
P P 1. 5 7 7
Erjkiv = 3 (5 Jo85 + 67 20f, ) [_2M1(31)2Q,SM - 4M1(31)%,Q,SM + MI(DI)?QSM + MI(DI)%MSQ
7 7 7 7 NO
+ MJ(DI)%rQMS - (Mé})zQSN,OM - QMél)%NSQ,OM - 2M1(3127QSO,RM) XM, (46¢)
Frow=M® oM@ xT —oMX 1 oM) X1 Ay, XTI XKL, (46d)

2 5 5
I = _§M§} - M((L)J) + M5 4 <2M§{()L e — M} J?KL) XKL (46¢)
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Kp =M, x7%. (46f)

In addition, comparing the ¢(l2g7) b and oy, gbl ‘c terms, we see that the following two conditions must
be satisfied:

—2(F+2W) 1 ;+ A+ 2Dk, L XEE 4 16EKMN(IJ),LXKLXMN —8 (0,0 — JKL1,7) XKL

3 (3) 3) (5) (5) 5
= M(( : N T 2M(I?7 (MI(J)KL T2Myr )~ M( K(1J), L) XKt —4 <M1J,KL + Myep g — 2M[(12,JL> xKE
(7) (7) (7) KL~ MN
+ MIJ +38 (MMNKL(I 7 " 2Myineengn Y Mynaak, L) XPHXT, (47a)

—2(F+2W) i +2 (Drix +8J11.K)) X" —8Er e XM XM

_ (1) x1J P (2) y1J 3) 1J (3) IL yJM
= M X =2 (M) 4 20 XTT) 4 3M) 0 X 2M ) XTEXTM (47b)
If we could solve these equations for M (127 to express them in terms of the arbitrary functions A, . .., K7

appearing in , then the Lagrangian density would be given by a summation of £ 7 of Eq. . In
the single scalar field case, the first step was to integrate the equation corresponding to Eq. , hence
this equation would be the starting point even in our two scalar field case. It have not been achieved
yet, however, and also it should be kept in mind that the terms we considered (M W, .M (7)) may be
insufficient to construct the true Lagrangian. In the single scalar field case, the terms corresponding to
Eq. happened to be enough to reproduce the most general equations of motion. However, there is
no guarantee that they are enough also in the two scalar field case. Albeit these difficulties, we believe

that above results are useful to build the Lagrangian for the most general theory.

III. WAVE PROPAGATION IN THE BI-HORNDESKI THEORY

In section[[I} we have successfully constructed the most general equations of motion in the bi-Horndeski
theory. Although we still lack the Lagrangian that gives those equations, some physical properties of the
theory can be studied using only the equations of motion. An example is the classical dynamics of wave
in those theories, which is governed by the equations of motion and does not depend on the Lagrangian
directly.

Wave propagation is one of the most basic physical process ongoing in a theory. It governs the
dynamics of small fluctuations in the theory, and also the causal structure will be implemented in accord
with the maximum propagation speed. Motivated by these facts, as a first investigation on the physical
properties of the bi-Horndeski theory, we study the maximum propagation speed in this theory and

examine the causal structure based upon it.

A. Method of characteristics

As a preparation, let us briefly review the method of characteristics for a generic equation of motion.
This method is particularly useful when we study the maximum speed of propagation. Suppose that a

vector of dynamical variables v; obeys field equations

Er(v,0v,0%v) = 0. (48)



17

To describe the time evolution based on this equation, we introduce a three-dimensional hypersurface 3
and a coordinate system (z%) = (20, 2#), where ¥ is at 2° = 0 and z* lies on 3. We use the notation
that Latin indices (a,b,...) denote all the four dimensions and Greek indices (u,v,...) denote only the
three dimensions on . Now let us assume that Ej is linear in d3v, which is the case in the bi-Horndeski
theory. Then Eq. is expressed as

OE;
0v 1,00

vjo0 + - =0, (49)

where the ellipses denote terms up to first order in derivatives with respect to z°. Equation can be
solved to determine v 0o in terms of quantities with lower-order 20 derivatives as long as the coefficients
of the vjgo term, OE7/0v 0, is invertible as a matrix acting on the vector v;. If it is not invertible, on
the other hand, the value of v cannot be fixed by Eq. , and particularly v 00 can be discontinuous
there. We call X a characteristic surface in such a case.

A characteristic surface X can be interpreted as a wavefront in the high frequency limit, and also it
defines the maximum propagation speed in the theory and thus ¥ becomes a boundary of causal domain.
These properties can be seen as follows [40] (see also [42], [43]). Suppose that we have discontinuity in
vr,00 across X, while v, and vg ¢ are continuous there. Then this surface must be characteristic, because
otherwise v oo cannot be discontinuous as we argued above. It implies that the discontinuity propagates
on the characteristic surface X. Then, interpreting the discontinuity as wave in high-frequency limit, we
may regard X as the wavefront for the high-frequency wave.

Now let us consider time evolution from an initial time slice o, and focus on a finite part oy on
it (see Fig. [2). In the region enclosed by oy and the characteristic surface emanating from its edge,
the time evolution will be uniquely specified by the initial data on oy. It is because we can solve the
equations of motion to fix the time evolution in such a region by taking z°-constant surface that is
not characteristic (say ¥’ in the figure). On the other hand, the solution outside this region cannot be
fixed only by the initial data on og, because disturbances outside oy can propagate in this outer region
along characteristic surfaces. In this sense, the boundary of the causal domain for oy is given by the
characteristic surface emanating from its edge. In other words, the maximum propagation speed in a

theory is determined by characteristic surfaces.

FIG. 2: Initial time slice ¢ and the causal domain for the region op. In the green shaded region enclosed by g
and the characteristic surface ¥ from its edge (green dashed line), the solution is uniquely fixed by the initial data
on og by solving the field equations using non-characteristic surfaces (say X’ represented by the red dot-dashed

curve).

To express the coefficient matrix (8E 1/0v J70()) covariantly, we introduce a normal vector of X, &, =
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(dx®),, with which we can express the equation to determine characteristic surfaces as

ry =0. (50)

J,st

Y is characteristic if Eq. has a nontrivial solution r;, which is realized when det P(§) = 0. The
eigenvector r; for a vanishing eigenvalue of P corresponds to a mode propagating on Y. P is called the
principal symbol of the field equation , and det P(§) = 0 is called the characteristic equation. In this

essay we call also P -r = 0 a characteristic equation, which should be understood in the above sense.

B. Wave propagation in the bi-Horndeski theory

Based on the the method of characteristics introduced above, we analyze the wave propagation and

causal structure in the bi-Horndeski theory in this section. The first step is to express the equations of

motion , in the form of Eq. , which are given a&ﬁ
G (L) = A" gpe 00 + BY ér.00 + CH, Er = A" 900 + Brido0 + Cr, (51)
where A#P7 B and C* in the metric equation G are given by
o 0 o 0 o 0 o Ild
AT = (F 4 2W) ghgu 0 gt gom 9.1y 5 gplaghedle gt goml ¢ 71d g fepgpligl 0 gt g°m¢|c| :
(52)
B,Iw _ Blgl(“(;;)l Om+DJK19 (“5 )c0 0m¢| ¢K\d+EJKLMIgl( 51Vd)f0510 0m¢‘ ¢K|d¢L¢M|f +2F 19 (“5 cO 0m¢J\d

+ 4JJK,LIg (M(slud)fcreno Om(b‘ ¢K|d¢L|f + K gl(udu)Oce OmR df + 2K[ JKY (Méldf(ﬁ? Om¢J\d¢K|f

(53)

C* = C" (Gpor, 9po,0+ Gposes Gpo0s Gporhs PTs P10, Plps P1,0ps Dl por) - (54)
B; in Eq. is defined as

Br=—2F ;1 —Wi+2(Dykr+8Jyxn) X' —8E kpar XK XM, (55)

Expressions of .Z?V, B, 7, 51 of the scalar equation in are rather lengthy, as shown in appendix

Using the expressions above, the equations of motion are written as P - v gy = .S, where

HV,po i uv
P= ANpg 57 _ (%) s (). (56)
A By oy Cr

Then the characteristics are found by solving
P.r=0, (57)

where r = (rq,77) is a vector made of a symmetric tensor 74, and a vector of scalars with two compo-
nents rj. The characteristic equation is given by det P = 0, and eigenvectors for vanishing eigenvalues

correspond to the modes propagating on the characteristic surface ¥, as we argued in section [[IT A]

6 Tt turns out that, in the bi-Horndeski theory, the (00) and (Ox) components of the gravitational equations do not contain
second derivatives of the dynamical variables with respect to z°, and only the (ur) components have them. It can be
confirmed also that goo,00 and gou,00 do not appear in those equations and also in the scalar field equations. Hence, it

suffices to look at the (ur) components of field equations in which only g,.,00 appears.
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The integrability conditions for equations of motion, Eq. (135)) we discuss later in section guarantee

that the matrix P is symmetric, i.e.,
AWPT = .Apg“uy, Bj—w = .Z,uu’ g[] = g]]. (58)

The integrability conditions have not been imposed to the field equations , , and then the principal
symbol P defined by Eq. does not have the symmetry in general. We proceed without imposing
these conditions in the analysis below, and we leave the full analysis with these conditions for future
work. In the next section, we find that some properties of the causal structure in this theory can be read

out despite this restriction.

1. Black hole horizon and causal edge

In GR, a null surface is always a characteristic surface and hence it gives a boundary of causal domain.
This property may be lost in the bi-Horndeski theory. Particularly, a Killing horizon, a null hypersurface
at which the spacetime is locally stationary, may not be a characteristic surface in this theory, which
means that the black hole region defined based on the metric may not be an event horizon, because there
may be superluminal modes that enables communication beyond the horizon in the metric.

In this section, as a first application of the formalism developed in the previous section, we clarify
conditions for a null hypersurface to be characteristic. We will find that, for a Killing horizon to become

a boundary of causal domain, the scalar fields must obey the symmetry of the background spacetime.

Null hypersurface. Let us check if a null hypersurface is characteristic

in the bi-Horndeski theory. It is guaranteed to be so in GR, while it is :CO 3}1
nontrivial in the bi-Horndeski theory due to the modifications made to

the theory. We assume that a z° = constant surface ¥ is null, which is "Il surface

expressed in terms of the metric components as xr%

g° =0, ¢**=0, g1n1=0, g1a=0, (59)

hence only ¢!, go1 remain nonzero, where ! is the null coordinate lying onFIG. 3: Coordinates adapted to
Y and z® (a = 2, 3) are the other spatial coordinates along ¥ (see Fig. |3)). a null hypersurface.

Under the conditions , we can evaluate P of Eq. and show that some of its components vanishes:
A — glhle . gledl (60)

while any other component remain nonzero. Hence, the characteristic equation has the following

structure on the null hypersurface:

All,ll 2A11717 All,’yts B}l 11 0 0 All;yd Blljl 11
0_p B Ala,ll 2A1a,1y Ala,fy& B}]a ry | 0 _All,afy Ala,76 B(l]a 1y 61
- r= Aaﬁ,ll 2Aa,3,1'y Aaﬁ,'y& B?ﬂ Tos - All,aﬁ 2Aa,3,1'y Aaﬁ;yé B?ﬁ Tos : ( )
A A A By )\ A 2@ A By \ny

Even after imposing Eq. , P is invertible unless some of the remaining components happen to vanish,
hence a null hypersurface is not characteristic in general. It implies that the scalar field wave and

gravitational wave typically propagate at subluminal or superluminal speed in the bi-Horndeski theory.
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Killing horizon with additional conditions. Since a null hypersurface is not characteristic in general,
next let us examine what happens if more conditions are imposed upon it. One important example of
such a null hypersurface is the Killing horizon, which is a null hypersurface aligned to the symmetry
direction of the spacetime. For example, black hole horizons in stationary spacetimes are Killing horizons.
Since a Killing horizon is aligned to the spacetime symmetry direction, the derivatives of the metric in

that direction vanish:
Dgap =0,  0igap =0,  010gas =0, (62)
which implies that the following components of the Riemann tensor vanish on the null surface X:
Riagy = Ric1p = 0. (63)

In Gauss-Bonnet and Lovelock theories of gravity, it was confirmed that a Killing horizon becomes
characteristic once these conditions are imposed [42, [43]. In the Horndeski-type theory, however, it was
noticed that these conditions are insufficient and some additional conditions on the scalar field must be
imposed to make the Killing horizon characteristic [44].

What happens in the bi-Horndeski theory is similar to that for the Horndeski theory. By explicit
calculations, we can show that the conditions make some terms with curvature tensors in P vanishing.
Even when this occurs, however, no components in P vanish completely and hence the Killing horizon
3. will not be characteristic in general.

In Ref. [44], it was noticed that a Killing horizon in the Horndeski theory becomes characteristic if

the scalar field satisfies certain conditions. We consider generalizations of these conditionsﬂ given by
or=0,  er=0,  0apr =0. (64)

A physical interpretation of these conditions are that the scalar fields share the symmetry of the back-
ground metric on the Killing horizon. With these conditions imposed, we can check that the components

of P vanish except for
All,aﬁ — Aaﬁ,ll — _2A1a,1ﬁ

= (") [(F+2W) g =271 (2X7 g7 + ¢lo6717) 42k, (9797 = 91°7) |, (650)

Bt = (g")? [—Bz + 2Dy XI5 — 8Ejpepar X7H XML Qf,ud%w
— i) o N — 20 e8Pl - 2KIRM] , (65b)
Aft = 2(g")? [(DUK —8Jyx, — 8ELk i X M) XK — Dy XK — 8By X TP XM

—2Jr1, JK576¢J ¢L|6¢K|f +2I; —2(Jry — Kigy + 2Tk 1. X F) ¢J|ﬁ

Jé  K|f

- K1k 5”% Ple — K[Rs"|. (65¢)

7 In some class of scalar-tensor theories, these conditions on scalar fields are automatically satisfied if spacetime is station-
ary [52, [63].
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Then, the characteristic equation simplifies in this case to

0 0 ./411’76 B§1 T11
0 —A% 0 0
0=Por=| 11 A "y (66)
Alle 0 0 0 Tos
A 0 0 0 Ty

The principal symbol P is degenerate, and it gives d conditions in total on an eigenvector r with vanishing
eigenvalue. Then the eigenvector will have 2d(d — 1) +2 — d = $d(d — 3) + 2 degrees of freedom, which
coincides with the number of physical degrees of freedom of the bi-scalar-tensor theory. Therefore, the
additional conditions on the scalar fields guarantee the Killing horizon ¥ to be characteristic for
all of the physical modes. In more physical terms, we have found the sufficient condition for the Killing
horizon becomes an event horizon, and the conditions were that the gradients of scalar fields are aligned
to the symmetry direction of the background spacetime. A trivial background with flat spacetime and
constant scalar fields satisfies the above condition, hence the gravitational wave and the scalar field wave

propagate at the light speed on such a trivial background.

2. Wawve propagation on plane wave solution

We focused on the properties of the Killing horizon and event horizon in the above, and in this
section let us focus on a more general background solution and the causal structure realized therein. It
is desirable to do this analysis in the bi-Horndeski theory, but unfortunately it is not straightforward
to do it at this moment since no explicit solutions have been constructed in this theory. We can still
make progress by focusing on some theories included in the bi-Horndeski theory for which some solutions
are known. A particularly important theory of this sort is the (single-scalar) Horndeski theory that is
invariant when the scalar field is shifted by a constant, which is called the shift-symmetric Horndeski
theory. In this theory, we have an exact solution describing a composite of plane wave of scalar field
and gravitational waves propagating in the same direction [45]. We will study the propagation of linear,

small amplitude wave on this background in this section.

For this purpose, we employ a covariant formalism developed for the Lovelock theories of gravity in
Ref. [43], which is equivalent to an analysis in the harmonic gauge. Using this formalism, we will find
that, on the plane wave solution, we can define effective metrics that differ from the physical metric
and characteristic surfaces are given by null hypersurfaces with respect to the effective metrics. Later in
section[[VCT] we will study shock formation phenomena on the plane wave solution later in section[[V CT]

based on the results in this section.

Shift-symmetric Horndeski theory. Let us first introduce the subset of the bi-Horndeski theory we
focus on in the following part of this essay. We assume that the theory has a single scalar field, and also
that the theory is invariant under a constant shift of the scalar field ¢ — ¢ 4+ ¢. Then, the most general
theory whose equations of motion is up to second order in derivatives is given by the Horndeski theory

with its arbitrary functions K, G345 depending only on X = —%q§|aq§|“ but not explicitly on ¢. Hence
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the Lagrangian of the theory we consider is given by L = 22:2 L,,, where

Ly=K(X), L3=—G3(X)0p, Li=Gs(X)R+ Gax(X)o0b2 |7 5l22

a1ag |b1 |b2 )
|ab 1 bibobs (|ar |az ,|as (67)
L5 = G5(X)Gab¢ - 6G5X(X)5 19203 ¢|b1 ¢|b2 ¢|b3 .

aiazas

The metric equations Gy, = 0 and the scalar field equation £, = 0 in this theory can be derived from
this Lagrangian, and also they can be reproduced from the equations of the bi-Horndeski theory by
reducing the number of the scalar field from two to one. For convenience of our analysis, we define the

“trace-reversed” metric equations of motion g~ab =0 by
~ 1 c
gab = gab - §g ¢ 9ab- (68)

Later, we will see that this formulation is useful particularly when we examine GR.

From these equations of motion, we can derive the characteristic equation as we did around
Eqgs. , or equivalently by taking derivatives of the equations of motion with respect to the second
derivatives of the variables £:£;gqrst and &9 ¢ as we did in Eq. . We summarize the explicit
expressions of these derivatives in appendix Using them, the principal symbol P based on the

trace-reversed metric equation and the scalar equation is constructed as

p = (P(x’§>.r)ab — % % Tqr
P(xaf)-r—<(p(x7£)'r)¢ = (M ) (7). )

8gq'r,st 8¢,st

and the characteristic equation is given by P(x, €) - r = 0 using this expression.

Gauge symmetry and physical modes. Since we are now studying a scalar-tensor theory that
is covariant, we have gauge invariance that leads to non-dynamical gauge modes besides the physical
propagating modes. One way to remove such non-dynamical modes from the analysis is to introduce
a time coordinate and look only at the spatial components of the equations of motion, as we did in
section [[ITB] Below, we show how to study the physical modes based on our covariant formalism.

For this purpose it is useful to notice that, as we can confirm using the expressions in appendix

the mode r = (E(aXb), 0) for any vector X, is annihilated identically by acting 15(:13, €), that is,

~ G ab X, 0
Pla€) -1 =& (%ﬂ’gf(q )> - ( ) - (70)

Tar.a ST 0

This property originates from the Bianchi identity @I), which becomes V%G, = %¢|b5¢ in this theory,
and the fact that the left-hand side of this identity cannot not have third derivatives since &4 is up to
second order in derivatives. This property implies that P -7 is invariant under the transformation

Tab = Tab + &0 Xp), (71)

as manifested by Eq. 1} Hence, we can regard r = (§(aXb), 0) as the gauge mode that does not affect
the characteristic equation .
One way to eliminate the gauge mode from consideration is to impose the following condition or r:

1
§'rap = 5&1% = 0. (72)
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We call this the transverse condition. Identity implies that the gravitational part of the principal

symbol is transverse:

~ 1

(P 1)y — z&(P-1)% =0. (73)

Hence, P can be regarded as a map acting on transverse tensors. Below, we consider the space of the

physical modes r satisfying the transverse condition , and examine the characteristic equation.

Characteristic surfaces in GR. Before studying the wave propagation in the Horndeski theory, let
us see how the above formalism works in the GR, which is reproduced by setting K = G35 = 0 and

(G4 constant in @ The characteristic equation P - r = 0 in this case becomes, as we can obtain from

Eq. (B15)),
1
—5G (&%rab — 267 (4&p) + EaborCc) = 0. (74)

When ¢ is not null, this equation implies 74, = §(,Xp) for some vector X,. This r is pure gauge and
does not correspond to a physical propagating mode. When ¢ is null (2 = 0), Eq. is satisfied for
r obeying the transverse condition . Also, the gauge mode rq, = §(,Xp) is transverse as well when
€2 = 0. Hence, the number of physical modes will be two: among the ten components of 74, four of
them are constrained by the transverse condition , and in the remainder four components correspond
to the gauge mode 4, = {4 Xp). The remaining two components propagate on X that is null, and they

correspond to the usual gravitational wave in GR.

Characteristic surfaces on the plane wave solution. Now let us apply the above covariant formal-
ism to the plane wave solution in the shift-symmetric Horndeski theory [45]. This solution is based on

the ansatz adapted to the plane wave of metric and scalar field:
ds® = F(u,x,y)du® + 2dudv + dz* + dy?, & = ¢(u). (75)

Constant-u lines are null in this ansatz, and the gravitational and scalar field waves are propagating in

that direction. To describe this solution, we introduce a null basis £*, n* and m;* with ¢ = z, y satisfying
by = (du)a, 'ng =1, miem;® = b, 2 =n? = m;, = n%my, = 0. (76)

In this frame, the non-vanishing components of the Riemann tensor are given by

1 1
Ruiuj = _iEij ) Ruu = _§AF1 (77)
where F;; = 0’F/0z'02) and AF = F;;. Adding to that, the derivatives of ¢ are proportional to ¢
(Bla = &' (W)la, Pap = ¢ (u)laly) and hence X = —%¢|a¢)‘“ becomes zero. These properties drastically

simplify the equations of motion, and it turns out that they are satisfied if K(0) = 0 and F(u, z,y) obeys

Kx(0)

AF =G0

¢,2 = _/{Qsaa (78)
while ¢ = ¢(u) remains arbitrary. For our study, we consider a solution of Eq. given by

1 o
F = —Zmﬁa (a:2 + y2) + ajj(u)x'z’?, (79)
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where a;;(u) is a symmetric traceless matrix.

Now let us take the plane wave solution with imposed as the background solution and consider
propagation of wave upon it. The maximum propagation speed can be found from the characteristic
surface ¥, which is fixed by solving the characteristic equation p(x,{) -r = 0 using Eq. . This is
an eigenvalue problem where the matrix P depends on the normal vector £ of 3. For an appropriately
chosen ¢, an eigenvalue of P becomes zero and there will be a nontrivial eigenvector 7 corresponding to
the vanishing eigenvalue.

In the basis (76), we may expand r = (rq,7¢) in general as
r= (’I”ab, 7“¢) = (2€(aXb) + QTL(GYE)) + (fij + « (5ij)mmmjb, T’¢) 5 (80)

where X and Y* are arbitrary vectors and 7;; is a symmetric traceless tensor. The first term in 74,
(4 Xp), corresponds to the aforementioned gauge mode. By plugging into the characteristic equation
and solving it for &, it turns out that nontrivial solution is obtained only when Y* = a = 0 (see [54] for
more details). Then, imposing further the transverse condition , we find that the physical modes are
described by

r = (Tab,79) = (2rmliaMp) + FijMiamjp, 7g) , (81)

and the nontrivial components of the characteristic equation reduce to

(fi) ' T)En 7% £2T€n + (7%G3X¢/2 + G4X¢”) (5 ) 6)2T¢
0= (Pr)y | = | -% €0y - Grom(c- 0%y @
(Pr), —Kx&ry + (Kxx¢? —2G3x¢" — GaxAF) (€-0)*rg

where G5 does not appear in the above expression although it appears in P on the general background,
as shown in appendix [B2 The ¢n component of this equation just fixes 74, in terms of ry. The other
components can be solved by the following two ways. First way is to impose the following on & and r:

G

.G R . R
5 i — G E 0P =0, (ren,Tij 1) = (0,735,0). (83)

2

Another way is to impose
— Kx&ry + (Kxx¢” — 2G3x¢" — Gax AF) (€ £)*ry = 0, (Tens Pigs 7¢) = (Fon, 0,7¢), (84)

where

2K x —1G3x9? + Gax¢”

. 85
Gy Kxx¢? —2G3x¢" — Gax AF i (85)

an =

The first solution has two modes because 7;; is a traceless symmetric tensor. We call the first
solution and the second one the tensor and scalar modes, respectively.

The characteristic surfaces 3, or the wave propagation surfaces for these modes, are obtained as
surfaces normal to &, that obey the first equations in Egs. and . These equations can be

equivalently expressed as

Gé%fqbﬂ (tensor)

_ (?XX + Géf) ¢/2 + 2[%3;()( ¢// (scalar)

0= (9" +wl) &6 = GP&s,  w= . (86)
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where we used Eq. ((78) to simplify w for the scalar mode. Hence, a characteristic surface ¥ is obtained as
a surface whose normal is null with respect to G2, and in this sense G2 can be regarded as the inverse
effective metric for the tensor and scalar modes. We can also construct the effective metrics for tangent

vectors of X as

G:b = Gab — wﬁaﬁb, (87)

which is shifted from the physical metric g, by an additional term —w/f/fp.

The light cone, i.e., the characteristic cone for matter field minimally coupled to the physical metric
Jab Such as the maxwell fields, is defined based on g,,. From the effective metric , we can see that
the tensor and scalar modes in this setup propagate differently. The characteristic cones for the tensor
and scalar modes do not coincide with each other in general, while they always do along ¢, because ¢ is
null with respect to G% for any w. Therefore, the characteristic surfaces form nested cones that touch
with each other along ¢, as shown in Fig. {4l We can see also that w vanishes when ¢/ = ¢” = 0, and then
all the modes propagate at the speed of light. This situation is realized not only on the flat background
but also on the purely gravitational plane wave background, for which ¢ is constant but F' = aij(u)mixj
is nontrivial. The effect of nontrivial F’ appears only in the physical metric and spacetime curvature, but

not in the deviation of the effective metrics from the physical one.

FIG. 4: A schematic of characteristic cones for waves on the plane wave solution at F(u,x,y) = 0, where —u and
v are taken toward the future direction. The null cone with respect to the physical metric is given by solid
black line, and the characteristic cones obtained from the effective metrics are shown by green dashed curve
and red dot-dashed curve for w > 0 and w < 0, respectively. All the cones are aligned in the direction parallel to ¢¢

and they split in other directions if w # 0, hence the characteristic surfaces form a nested set of cones in general.

As long as w in Egs. (87) is finite, propagation speeds of waves are finite and we can define causality
as usual, despite the propagation may become superluminal if w > 0. The only difference from the
canonical scalar field coupled to GR is that the causality is not defined with respect to the light cone but
to the largest characteristic cone, which is realized for the largest w. Since the effective metrics are
always Lorentzian, the hyperbolicity of the field equation is maintained and the initial value problem is

guaranteed to be well-posed.
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IV. SHOCK FORMATION IN THE HORNDESKI THEORY

The target of the previous section was the maximum propagation speed of the wave in the most general
scalar-tensor theory, and we used the method of characteristics to study it. This analysis clarified the
structure of the wave propagation surface and also the causality implemented in this theory, but it did
not tell us much about what happens in the dynamics inside the characteristic cones. This raises a
natural question to ask: what happens to the waves as they propagates?

In GR and also for the canonical scalar field, the answer is simple: the characteristic surfaces are always
null, and correspondingly the gravitational wave and the scalar field wave in those theories propagate at
the speed of light. In more general theories, however, it is no more true and generically the propagation
speeds of waves depend on the background and also their own amplitudes. This property results in the
waveform distortion and shock formation, as we can see a simple example in the time evolution based
on Burgers’ equation (see Fig. . The aim of this section is to examine if a similar shock formation
phenomenon could occur in the scalar-tensor theory.

For this purpose, we focus on the propagation of discontinuity in second derivatives of the scalar field
and also the metric. This method enables us to study the nonlinear effects in the wave propagation, such
as the waveform distortion and shock formation, in a relatively simple manner. This method was applied
to Lovelock theories of gravity in [34], and it was found that the gravitational wave suffers from shock
formation due to the deviation of this theory from GR. The Horndeski theory has a structure similar
to Lovelock theories, hence in principle a similar phenomenon could take place even in the Horndeski
theory. Below, we examine this possibility using the formalism of [34].

We first review the formalism of shock formation for a generic equation of motion in section [VA]
following Ref. [34]. We will apply this formalism to the shift-symmetric Horndeski theory, and examine
conditions to avoid the shock formation for a subclass of this theory without specifying the background
solution in section [VB] In more general cases, we have to specify the background solution to make

progress. We do it in sections [V C 1] and [V C2| using the plane wave solution and also the solutions

that have certain symmetries, respectively. The latter includes simple background solutions such as the
FRW universe and also the spherically symmetric solutions. For these background solutions, we will find
that the gravitational wave is always free from shock formation, while the scalar field wave suffers from

it generically.

A. Formalism for shock formation

In this section, we introduce a formalism to treat the propagation of discontinuity in second derivatives
based on a generic equation of motion (48). This formalism was introduced in Ref. [46] for relativistic
fluids and was employed by Ref. [34] to analyze shock formation process in Lovelock theories. We
reproduce a part of their formulation to get our analysis oriented and to fix the notation.

We will employ the coordinates (%) = (2", 2*) introduced in section where a characteristic

surface ¥ lies on 2° = 0. We assume that the equation of motion has the following structure:
Pry(vuw 0,0, 0u,0,2)v500 + br(vop s Vw00, 0,,0,2) = 0. (88)

Here we assumed that Pr; is independent of v q,, which is the case in the Horndeski theory. On the

characteristic surface 3, det P = 0 is satisfied and hence there is an eigenvector of P with vanishing
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eigenvalue:
r1Pry= Pryry =0, (89)

where we assumed that Prj is symmetric in its indices, hence the left and right eigenvectors of P
coincide with each other. This symmetry is guaranteed if the equations of motion is derived from a
Lagrangian, hence it holds even in the Horndeski theory.

Now let us consider time evolution from an initial time slice that intersects with z° = 0, and assume
that the dynamical variable v has a discontinuity in its second derivative with respect to 2% at the locus
of % = 0 on the initial time slice (see Fig. [5). The discontinuity propagates on ¥, and the solution on
the past side of ¥ will not be influenced by the discontinuity. Hence, we may regard the wave of the
discontinuity to propagate into the “background solution”, which is a solution (before introducing the
discontinuity) of the equation of motion.

Since the discontinuous part of is given by Pr [vs00] = 0, where the quantity with square brackets
denotes its discontinuous part, comparing with Eq. we find that [v; go] must be proportional to an

eigenvector r; and hence
[vr,00] = IL(z") 71, (90)

where TI(z*) is the proportional factor, which may be regarded as the amplitude of the discontinuity.
Below, we focus on the time evolution of this amplitude II.

The evolution equation of II can be constructed by firstly taking z° derivative of the equation of
motion , acting ! on it to remove third derivatives with respect to z°, and finally picking up

discontinuous part of the resultant equation. With some calculations, we can show that this operation

results in
KMIL, + MII+ N TI% =0, (1)
where
obr
KH =rmr 9
! JavJ,OM (92)
M 0br 0Pry 0P n OPr; OPr;  Obs L Py, ( -
=rj;{ —r — — Ly r o, ,
I v o Jops VK K, 0pv OVK Kout 5o VK0T B0 Bu10 J Buko (J1,00) TIK)
(93)
OPry
- 94
N =rmryrg Durco’ (04)

and (vj0)” = limgo_, gvje0. The coefficients in Eq. depend only on the field values at z° —
—0, that is, the background solution on the past side of the characteristic surface. The discontinuity

propagates along the integral curve generated by K*, which can be found by integrating

dzt
—_— ,LL v
o= kra), (95)

where we have introduced a parameter s along the integral curve z# = z#(s) and set s = 0 at the initial
time slice. Then, denoting II = dll(s)/ds, Eq. may be written as

I+ MII+ N T2 = 0. (96)
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An equation equivalent to Eq. is obtained also for propagation of weakly-nonlinear high frequency
waves, whose frequency is sufficiently large compared to the background time dependence [34] [46], [55H57].
As we can see from the following analysis, the coefficient of the nonlinear term A plays a key role in

the shock formation process. Time evolution of the amplitude II(s) is described by the general solution
of Eq. , which is given by

B I1(0)e~2()
= 1 —|—H(0) fdsN(S/)efq’(s/)dS/ )

I1(s) (97)
where ®(s) = [7 M(s')ds’. When N = 0, II(s) remain finite unless M(s) diverges. Since M(s) is
determined only by information of the background solution and the characteristic surface, divergence of
M occurs only when the background solution or X is not regularﬂ When N # 0, TI(s) diverges even
when the background is regular and ®(s) remains finite, since the denominator of @ may vanish as s
increases from zero, particularly for sufficiently large initial amplitude I1(0).

At the moment when I1(s) diverges, the second derivatives on the future side become infinite hence the
first derivatives become discontinuous at . We call it a shock formation in this work. This phenomenon
originates from the nonlinear effect due to nonzero N as we observed above, and also it can be shown
that it occurs when two different characteristic surfaces collide with each other in time evolution [31H34].

See also [46] for more details on this shock formation process.

FIG. 5: Propagation of discontinuity in second derivatives of the metric and scalar field, where red curves
show profile of difference between the “background solution” without discontinuity and the solution to which the
discontinuity is added. Solution in the future region of ¥ (shaded region) is influenced by the discontinuity, while
that in the past region is not. The discontinuity propagates on 3, and its amplitude TI(s) evolves as it propagates.
When N # 0, TI(s) and hence the second derivatives of fields generically diverge at finite s, which corresponds to
a shock formation.

B. Shock formation in the shift-symmetric Horndeski theory

As shown in the previous section, shock formation in second derivatives may occur when N defined

by Eq. does not vanish. In the following, we examine properties of A and shock formation process

8 Divergence of ®(s) happens when characteristic curves on ¥ form a caustic on it by crossing with each other, where the
amplitude of wave may diverge due to the focusing effect. To distinguish it from the shock generated by nonlinear effect

associated with nonzero N, sometimes this type of shock formation is called a linear shock [46].
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in the shift-symmetric Horndeski theory. We first show the expression of A in this theory on general

background, and then examine sufficient conditions for A" = 0 for a subclass of this theory.

Expression of A/ on general background. As shown in Eq. , the coefficient of the nonlinear
term N is given by a derivative of the principal symbol of the field equation. In the shift-symmetric
Horndeski theory, it is given by

8 8 88gab agab Ted
N = <7"e + ) Tab r 9ed,00 00 c 7 (98)
f 896)”,0 (o] ad),O { ( ¢) O a¢ 00 re

09cd,00

where we have taken &, = (da:o)a and expressed 5@% = ag‘z ” and {cfd% =3 foo . The derivatives

with respect to gef0 and ¢ o act only on the components of the two-by-two matrix in Eq. . Calculating

the terms in this expression, it turns out that that the following relation holds:

%y Gw ab _ 9%&, 0*Gap ab _, d%E, 0?Gap

T ————Teds TefmF—Ff—T 4= r
ref 09ef00b00 06000 00 0¢,009cd,00 T S Dge £,000,00 “/0ge £,009¢d,00 e 0¢,009cd,00

(99)
Using it, A is expressed as

0 G 4 0 08 ( 0 Gw o o O 0&
=rrgresf—— + 74 +3 Te % 4+ 1o re
el O09er 0Ged,00 96,0 0 00 T 8ger0 9et.0 06 00 ¢ el 0Ger,0 09,00

where the explicit expressions of the terms of (100 are shown in appendix This N does not vanish

in general, hence the shock formation occurs generically in this theory, while there are some special cases

> . (100)

where N’ = 0, as we see some examples below.

Sufficient conditions for A/ = 0. In this section, let us examine sufficient conditions for A to vanish.
Among the theories incorporated in the shift-symmetric Horndeski theory, we find that the k-essence [47]
coupled to GR emerges as the special theory where the scalar sector decouples from the metric sector,
and also that the scalar field version of the DBI model [48] turns out to be the unique nontrivial theory
to make N = 0 on the general background.

For the k-essence coupled to GR (G = G5 = 0, G4 = const. with general K (X)), non-vanishing parts

of the (trace-reversed) principal symbol can be obtained from expressions in appendix as

( 4o Kxx 0Gar _ Ga

gqr st 2

gsft

¢'a¢"’) Cabor Ebirary o = =t (—€%ras + 26, ) — i) - (101)

3¢s

There are no terms that mix the scalar and metric parts, and in this sense the scalar part decouples from
the metric part in this analysis. Characteristic surfaces can be found by equating these expressions with
zero and solving for .

The metric part in is the same as that of GR, which was already discussed at Eq. . The
result was that there are two physical modes of the form r = (74, 7r4) = (7ap,0) for which £ is null. For

the scalar part, we can see that the characteristic equation is given by

(gab Kxx ¢'“¢>") €y = 0, (102)

where the expression in the parenthesis can be regarded as the effective metric for the scalar mode. A

surface whose normal ¢ satisfies this equation is characteristic, and the eigenvector is simply given by

= (rap,76) = (0,74).

ab

Ted -



30

Let us evaluate N for these modes next. For the k-essence coupled to GR, only (C11)) contributes
among the terms appearing in A, hence
9 0&?
N =gt = 301Ky x 6 — (6°) Kxxx, 103
* D60 0600 (¢") (103)
where ¢l0 = §a¢‘“. For the tensor modes, this N vanishes identically, and hence the shock formation
does not occur. For the scalar mode, normalizing r4 = 1 and using (102)), we find
(¢)°

= Kxx? - KxK . 104
N K (3Kxx xKxxx) (104)

The condition A = 0 to avoid the shock formation is equivalent to 3K xx2 — KxKxxx =0 (assuming
$l0 # 0), which may be viewed as a differential equation of K (X). A trivial solution is K oc X, which

corresponds to a canonical scalar field. The general solution other than this one is given by
K=-X ct X +A, (105)

where A, ¢, A are constants. This is the Lagrangian of the scalar DBI model. Hence, among the theories
described by the k-essence coupled to GR, the scalar DBI model is singled out as the nontrivial
theory free from the shock formation.

This behavior is the same as that of plane-symmetric simple wave solutions for probe scalar field
studied by Refs. [35, [36], where the scalar DBI model turned out to be the theory free from caustics
formationﬂ As discussed above, the scalar and metric part decouples in our setup if G35(X) and non-
constant part of G4(X) are set to zero. Having this decoupling, it seems natural that the result obtained
from our setup coincides with those for the probe scalar field, although the metric sector is taken into
account in our setup.

For more general theories, it seems difficult to find characteristics and eigenvectors since the scalar
and metric parts do not decouple in the characteristic equation. However, we can still find a sufficient
condition to realize N = 0] that is to set

¢l =T = (106)

on X. As we can see from the expressions in appendix[C 1] all the terms appearing in N vanish identically
once this condition is imposed.

ng is proportional to extrinsic curvature on X, that is essentially the derivative in the normal direction
of the induced metric on X, dyg,,. Hence, the metric and also the scalar field are locally constant in
the 29 direction. It seems that the shock formation is suppressed when the background has this local
homogeneity. The flat spacetime with constant ¢, and also the Killing horizon with ¢/ = 0 imposed
additionally are examples in which the condition is satisfied and then the shock formation is

suppressed.

¥ See [49] for earlier discussions on exceptional theories for a scalar field on flat spacetime, in which the canonical scalar
and the scalar DBI were found to be exceptional, that is, N vanishes identically and the shock formation does not occur

for them. Also the DBI model for a probe vector field is shown to be exceptional [5§].
10 1t is sufficient that T'? 5 Vvanishes, since I'%, is always contracted with £,/&, and a generalized Kronecker delta in A (see

appendix , and due to this structure I'J, and T',, are eliminated and only 1"26 is left in \V.
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C. Examples of shock formation

To study the properties of shock formation for more general choices of G,,(X) on generic background,
we need to look into explicit examples of background solutions and study wave propagation on them.
Such a study using explicit background solutions is the main subject of this section.

The first example is the plane wave solution, for which we follow the analysis of Ref. [34] for shock
formation on the plane wave solution in Lovelock theories. We introduce coordinates adapted to geodesics
in this setup, and examine shock formation using them. We find that the tensor modes or the gravitational
wave does not suffer from the shock formation, while the scalar field wave forms a shock in general.

Another example of the background is the dynamical solutions that are symmetric in the two-
dimensional angular directions. Some simple solutions appearing in the studies on cosmology and as-
trophysics, such as the FRW solutions and spherically-symmetric dynamical star (see Fig. @ fall into
this class of solutions, for example. On this background, we again find that the gravitational wave is
protected from the shock formation, while the scalar field wave is generically not. We also show an
example of nontrivial theory for which even the scalar field wave, not only the gravitational wave, is

protected against the shock formation on the FRW universe background.

1. Shock formation on plane wave solution

As the first example, let us examine the shock formation on the plane wave background, for which we
studied the propagation of perturbations in section We first introduce the coordinates adapted
to the wave propagation direction, and then derive the transport equation to check if the amplitude
I1(s) of the discontinuity diverges or not.

Characteristic surfaces on the plane wave background is given by null hypersurfaces with respect to
effective metric , which can be transformed as

G datds” = (F — w)du? + 2dudv 4 dz? + dy? = Fdu? + 2dudv’ + dz? + dy?, (107)

where we introduced a new coordinate v/ = v — %w u. For simplicity, we consider plane-fronted wave
propagating from a surface u = v = 0, and focus on the propagation in the (negative) u direction,
which is opposite from the direction of ¢* in Fig. [l Such wave propagates along the null geodesics of

the effective metric ((107)), which can be found by solving the geodesic equation for the effective metric
d2
danz

b .
%+ Fgc%\ ‘gﬂ; = 0. Its components are given by

1 1
i=0, V4 i (UFy + 20 Fee) =0, E% = JiFee =0, (108)

where =% = x,y and a dot denotes a derivative with respect to the affine parameter A. The first of these

implies that we may take u = \. Below, for simplicity we consider a background given by
ou) = u, F= _ggb’? (22 + %) + A (22— y?), (109)

where ¢’ and A are constants. It corresponds to setting az, = —ayy = A and ay = 0 in Eq. , and
making the gradient of the scalar field constant. Then the last of Eq. (108) can be solved by

o = cosh(vVAN) (A=A md? Ay=—A— 1no?), (110)
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where ! is the initial position 2! of a geodesic at A = 0. Assuming x > O it is guaranteed that one
of A, and A, becomes negative at least for any choice of A. We proceed with assuming A < 0 (hence
A, <0 at least) below. Then the second of Eq. (108) can be integrated as

== Z % sinh QrA) (111)

awy

Introducing the coordinates adapted to the geodesics by

«

«_ o_ 1 1 ST an?
n= COSh(\/E)\)7 r =0 2wu+4azxy Aa (77 ) Slnh(Q\/ AaU), (112)

the physical metric becomes

ds* = wdu® + 2dudz® + Z cosh? (VAaqu) (dn®)?. (113)
Ot:JI,y
The characteristic surface is at 2% = 0, and its normal is given by ¢ = dz”. This metric becomes singular
at u = +—"—— \/7 for A, < 0, which corresponds to a caustic of the null geodesics. The only nonzero
components of Faﬁ on 2 = 0 are

., = —%\/Aa sinh(2v/Aqu) (no sum on «). (114)

N on the plane wave solution can be obtained by plugging the background solution , ,
(114)) into the general expression , whose expressions are given in appendix We summarize the
explicit formula obtained from this procedure in appendix

For the tensor mode , the only term that could contribute to A is the pure metric term (C3)):

" o 96>, ¢‘

bb1babs ¢a ay a2 .as
N = rreares 99ef,0 09cd 00 1 X G5X0aarazas€ €T, Thy Ty - (115)
(& Ci
This term becomes zero because X = 0 for the plane wave solution and also 05210263 ¢ag, TpiThTho

vanishes identically if Eq. is plugged in. Hence, N vanishes for the tensor modes on the plane wave
background, or in other words gravitational wave on this background does not suffer from the shock
formation.

For the scalar mode (84)), A is given by
N =Chty(u)+C_t_(u)+ Co, (116)
where
u) = \/Aiztanh(\/Aimu) + /Ay tanh(\/Ayu), (117)

and C4 o are constants given by

1 2KxxG
Ct :¢'2{—2G(2G3XG4x+KxG5x) );()_(?’X—G:;XX} (118)
X
C_=-2AGsx (119)

" = Kx(0)/G4(0) is defined by Eq. , and it will be positive if we require Kx(0),G4(0) > 0, which is the stability

conditions for the canonical scalar field minimally coupled to GR.
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3 3K x x>
13 a2k K XX
Co=¢ {G4 (—Gsx xGaxx + KxxGax) + e

We have also taken the normalization 4 = 1. For a generic choice of K and G345, N defined by Eq. (116))

becomes nonzero and hence the shock formation occur within finite time, as we showed in section [V A]

—KXXX}. (120)

Actually, in this case we can show more than that, since we know the detailed structure of the
characteristic surface ¥ and the properties of N. From the background metric , we can evaluate
the entire part of the transport equation , not only the coefficient N of the nonlinear term. Based
on the full transport equation, we can give an estimate on the time at which the shock formation occurs.
Leaving the details to appendix [C3] let us just summarize the main results below. Since N defined by
diverges at u = 2\/% = Uy, it can be shown that II(u) diverges at |u| < |u.| even if the initial

amplitude of the discontinuity I1(0) is arbitrarily small, and the moment of the shock formation u = ug is

roughly estimated as ug/us ~ 1 — (%H(O)) for small enough I1(0). Hence, the shock formation
occurs for arbitrarily small initial amplitude I1(0) on this background, and the shock formation time

becomes earlier for larger I1(0).

2. Shock formation on dynamical solutions with symmetries

We now focus on another type of dynamical background, for which the two-dimensional angular part of
the spacetime is maximally symmetric. For example, the FRW universe, and also spherically-symmetric
dynamical solutions fall into this class of background. We will see that the conditions for shock formation

can be derived without making much assumptions on the free parameters (K (X), G, (X)) of the theory.

Two-dimensionally maximally-symmetric dynamical solutions. Dynamical solutions with metric

whose two-dimensional spatial part is maximally symmetric can be expressed in general as

ds® = f(1,x) (—dm? + dx?) + p*(7, X)Vapdz®dz’ = fnapde?da® + p*ryapda®ds®, ¢ = ¢(,x), (121)

where 4

= T, X, and 43 is the metric of the two-dimensional subspace with constant curvature k = 0, +1
spanned by z¢. We also assumed that the scalar field shares the symmetry of the spacetime. Due to the

symmetry, components of the curvature tensor vanish except for

2 2 2 2
AL A (02 = %) log f 44, _ AL A Aras _ p A kf+pz—ryx _
Bop,=——5¢ — Omp, = Blnp, Rpjg = Ropdp, Ry = 72 = R303/5,
(122)

where Rgg is a two-dimensional tensor defined by Eq. . Also, the components of ¢4, other than
¢4 and ¢|,5 vanish, as shown in Eq. . These properties simplifies the evaluation of A drastically.

Below, we focus on wave whose wavefront shares the symmetry with the background spacetime, that
is, we assume that the wavefront is given by a x-constant surface and &, has only 7, x components. For
example, plane wave in the flat FRW universe, and spherically-symmetric wavefront around a spherically-

symmetric dynamical star fulfill this assumption (see Fig. @

Gravitational wave. Characteristic surfaces on the background (121)) can be found by solving the
characteristic equation following the procedure of section [II1 B To accomplish it for the gravitational

wave, we focus on the vector r given by

r = (rap,re) = (r'3),0), (123)
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EV@(T)

Y X

(a) FRW universe (b) Spherically-symmetric solution

FIG. 6: Examples of two-dimensionally maximally-symmetric dynamical solutions and wave propagation therein.
Panel @ shows a flat FRW universe and wave with plane-symmetric wavefront, and panel @ shows a spherically-
symmetric background and spherically-symmetric wavefront. The ansatz (121f) can describe more general solutions
than these examples.

(T)

where r,;’ is a traceless tensor which has components only in the angular directions, that is, rfg = 0. By
explicit calculations, we can check that this vector actually solves the characteristic equation as follows.
The scalar and mixed parts of P -7 vanish for this r, hence only the metric part shown in appendix

remains nontrivial and is given by

oG 1 1

§obirgy) g = =5 (G = 2XGux) 0 + SCux SRR M € Moy, r D (124)
qr7s
) 06 1

Gl gt = =5 XGax SR e 0/ (125)

From these expressions, we find that the characteristic equation P - r = 0 is satisfied if

{(G4 —2XGyx) 0§ — 655 (G4X<Z5"41¢|B1 - XG5X¢I§1> } ¢l =0, (126)

where the expression in the curly brackets is the effective metric for gravitational wave on the back-

ground B

Let us check if shock could form for gravitational wave (123)) by evaluating A'. The only term that

. 9]
could be nonzero is r%rqqre s ﬁ 5 ggd . in Eq. (C3), which is proportlonal to 622111212217335“&74@);11 r(T)er(T)Zs.
T)

However, #(T) is a traceless tensor living in the two-dimensional angular part of the spacetime, and then
Eq. 1} identically vanishes since it involves three r(T) tensors contracted with a single generalized

Kronecker delta. Hence, N is zero and shock formation does not occur for gravitational wave on the
background (121)).

Scalar field wave. Next, we study wave that involves the scalar field and examine if it suffers from the
shock formation. The first step is to find the characteristic surface and the eigenmode corresponding to
the scalar field wave. On the background (121)) and for the wavefront that inherits the symmetry of the

background, we may assume that the eigenvector r has the same symmetry and is given by

r= (Tab, r(f))a TAB = TnMAB + 52 €A€By TAa = 07 TaB = Ty YaB, (127)

12 This effective metric for gravitational wave coincides with that of [59], though G5 was not taken into account in their
analysis. Also, the propagation speed obtained from (126]) coincides with that derived in [I7] when the background

solution is set to the FRW universe.
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where 74, 1, and 7, are functions of 7, x. The term involving {4£p is the gauge part added so that r
satisfies the transverse condition ([72)).

For the ansatz , we may parameterize the eigenvector by (ry,7,74), and then we can solve the
characteristic equation to fix the characteristic surface with normal &, and the eigenvector (7, 7+, 7).
Once they are found, the propagation speed of the scalar mode will be given by cg = |£7/&,|. It turns out
that the physical eigenvector is uniquely fixed by this process, although its expression typically becomes
lengthy and not illuminating. Below, we show an example for which we can obtain relatively compact

expressions for it.

Scalar field wave propagation in the FRW universe. An example is when the background is given
by the FRW universe described by

f=pr=a(r)?,  ¢=0¢(7), (128)

where 7 in this case is the conformal time from which a standard time coordinate may be defined by
dt = a(r)dr. We will use the Hubble parameter in terms of ¢, H(t) = a./a, and also the notation
gﬁ =¢iand X = gf)Q /2 below. tt and xx components of the background equation of motion 1' give the

modified Friedmann equations

~K+2XKx +6HX$Gsx —6H? (Gy — 4XGax +4X*Gaxx) +2H*X$ (5G5x + 2XGsxx) = 0, (129)

£ =K +2(3H + 2H) (G4 — 2XGax) — 4H (H* + H) X $Gsx
~ 2 | XGyx +2H$ (Gix +2XGaxx) + H2X (3Gsx +2XGsxx)| = 0. (130)

Properties of the background solution ({128)) and its perturbations are studied by Ref. [I7]. Particularly,
propagation speed of the scalar mode is given by cg = 1/ Fs/Gg, where

This ¢s coincides with the propagation speed obtained from the eigenvalue obtained above once the
Friedmann equations , are imposed.

Expressions of the propagation speed and the eigenvector r become lengthy in general. One exception
is the case discussed in section where ('3 45 are constants while K (X)) is kept general. In this case

it follows that

1 a by
D=XEx+;HEn, ©= (6g%) —Fr. s = 5597 +30r. (131)

Kx
Kx +2XKxx’
and also we can check that A/ = 0 is achieved by the scalar DBI model coupled to GR, as we discussed
in section Another case that gives relatively simple cg and r is when

K=-MW1+cX, Gi=as/1+¢X, Gs5=0, (133)

where A, ¢, aq, ¢ are constants that satisfies ¢ # EB In this case, using the Friedmann equations ([129)),
(130) we can simplify the propagation speed and the eigenvector as

(14 cx)3 ¢ ¢ 6

C( +c ) Cd) a4(1+5X)1/4 :

2
cs“=1+cX, Tiy Ty Tep) OX : , A —
S (77 Y ¢) ( C¢ (1_'_0)()1/4 A

(Tabv T¢) = (07T¢>7 c% - (132)

(134)

13 When ¢ = &, Fs and Gs vanish and then the quadratic Lagrangian for scalar perturbation shown in [17] vanishes identically,

which indicates that the theory is in the strong coupling regime.
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and we can check that A identically vanishes even in this case. It can be confirmed by direct calculations
that other choices of G4 such as Gy x (1 4+ X )71/ % typically result in N # 0. Hence, it seems that the
choice is special among other choices of K (X) and G4(X) in the sense that it leads to a cosmological
solution free from shock formation.

For more general choices of the arbitrary functions K(X), G34,5(X), the expressions of the propa-
gation speed and the eigenvector become more lengthy and complicated. We can still make progress in
such a case by evaluating those expressions and N with the aid of computer algebra. In general, we can

confirm that N becomes nonzero hence the scalar field wave suffers from the shock formation.

V. OUTLOOK

The main results and implications obtained in this essay are summarized in section[[ Al In this section,
let us conclude this essay with comments on open questions and possible future directions of the study.

Let us categorize them according to the three main topics addressed in this essay.

e Construction of the bi-Horndeski theory (section

Construction of Lagrangian using integrability conditions. In this essay, we have successfully
constructed the most general equations of motion compatible with the covariance of the theory, while
we are still missing the Lagrangian that gives rise those equations as its Euler-Lagrange equations. We
can study the classical dynamics in this theory using only the equations of motion, as we exemplified
in sections and but it is better to have the Lagrangian at hand, particularly when we consider
quantum effects in this theory or when we apply it to studies in the cosmology context (see e.g.
Ref. [17]).

One of the conditions we have not used in our construction was the integrability condition that

guarantees the existence of the Lagrangian

SV=gGha) 3= y) _ 6v=gG"w) SV=gEily) _ dv=gEilx) 3v=gEsy)
5gcd(y) 6gab(x) 5d)](y) 5gab($) 5¢J (y) 6¢I (.CC)

=0, (135)

where 0/0A denotes variation with respect to a field A. Explicit formula obtained from this condition
can be derived following [60], and it is summarized in [54]. In the single scalar field case, the Lagrangian
was constructed without using these conditions. In the multi-scalar field case, however, they may
restrict the form of the equations of motion, and then some clues to the construction of the Lagrangian
may be obtained from them. Such a trial employing the integrability conditions will be one of the

future tasks.

Construction of Lagrangian using simple solutions/ansatz. A possible approach toward con-
struction of the Lagrangian may be to focus on simpler solutions and construct the Lagrangian that
generates them. For example, we could take the mini-superspace approach where we focus only on
the FRW-type solutions. The solutions with some symmetries we studied in section may be
useful as well. The equations of motion and also the candidate Lagrangian are simplified for these
simpler solutions, hence it may be fruitful to examine these subclass of the general solutions first

before trying the construction for the general solutions. Also, these simpler solutions can be useful
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also for applications of this theory to various problems in the context of astrophysics and cosmology,

such as studies on cosmological solutions or black hole solutions realized in this theory.

Another possible approach is to introduce ansatz for the Lagrangian and try to find the correct
choice of the parameters in the ansatz by comparing the field equations to the Euler-Lagrange
equations obtained from the ansatz. The approach taken in section is one example of this
approach, where we have used the trace of the field equations as the ansatz. There are some theories
with multiple scalar fields proposed by different methods (see e.g. [61H63]), and it would be fruitful
to examine those theories to see if we can extract any hints for the correct form of the most general

Lagrangian.
Wave propagation in the bi-Horndeski theory (section

Phenomenology of super/subluminal propagations. In section we formulated the method
of characteristics for the gravitational wave and scalar field wave in the most-general scalar tensor
theory. Using them, we can study the conditions for those waves to propagate at super/subluminal
speeds. It would be fruitful to study the phenomenology of those super/subluminal propagation of
the waves. When the waves propagate subluminally, they can be emitted as Cherenkov radiation
from rapidly-moving particles. Such Cherenkov radiation could be used to constrain the theory ob-
servationally [64]. On the other hand, superluminal propagation of waves could be an obstacle for
the UV completion of a low-energy effective theory [65], although there are some subtleties about
it [66, [67]. In [59], anomalous propagation speed of the gravitational wave and its importance in the
future multi-messenger gravitational wave astronomy was investigated. It deserves to re-examine these
issues for the general scalar-tensor theories based on the formalism given in this essay. Also, it may be
interesting to study the implications of the new terms in the equations of motion of the bi-Horndeski
theory, which was discussed in section in the light of the phenomenology of super/subluminal

propagations.

Black hole horizon and causal structure of spacetime. In section we showed that a
Killing horizon, a null hypersurface at which the spacetime is locally stationary, is not a causal edge
in general in the bi-Horndeski theory. We found also that a superluminal propagation across the
horizon is shut off if the scalar fields share the Killing symmetry on the horizon. This property may
be regarded as a natural generalization of that found for scalar-tensor theories with a non-minimally
coupled scalar field studied in Ref. [44]. In [68] the causal structure in Einstein-aether and Hofava—
Lifshitz theories were studied, and it was noticed that the universal horizon, which acts as the causal
edge for any mode, is orthogonal to the background vector field in those theories. This property seems
similar to that found in this work, if the gradient of the background scalar field is identified as such
a vector field. It is tempting to conjecture that the property of this kind is universal in gravitational
theories with additional degrees of freedom, that is, a Killing horizon becomes an event horizon in
any theory if the fields are aligned to the background symmetry direction. It would be interesting to

pursue such a possibility and examine its implications.

Extensions to more general theories. In this essay, we focused on the (bi-)Horndeski theory,
which is the most general covariant theory whose Euler-Lagrange equations are up to second order

in derivatives. Rather recently, some scalar-tensor theories that encompass the Horndeski theory as



38

their subclass were proposed in the single scalar field case. In these theories, the Euler-Lagrange
equations contain higher-derivative terms, unlikely to the Horndeski theory, while the number of the
degrees of freedom is unchanged (one plus two from the scalar field and graviton) due to nontrivial
constraints built in those theories. A theory in this class was first introduced in [69H71], where the new
theory was related to the Horndeski theory by disformal transformation. This theory was dubbed the
beyond-Horndeski theory, and later on it was extended further to incorporate higher order terms in
Lagrangian without re-introducing the ghost instability [72H83]. There are similar extended theories
involving vector degrees of freedom and also derivatives of spacetime curvature [84] [85], which have
been attracting wide interest recently. It would be interesting to check if the formalism used in this
essay could be extended for these theories. The subtleties are that the equations of motion contain
higher order derivatives, and also that nontrivial constraints are present in those theories. The second-
order formalism in this essay must be generalized to incorporate them, or it might be helpful to use
the first-order formalism employed in [86] for nonlinear massive gravity theory, which has a nontrivial

constraint built in the theory.

Shock formation in the Horndeski theory (section

Gravitational wave and shock formation. In any example studied in this essay, the propagation
modes corresponding to gravitational wave were always free from shock formation. If this feature
persists on any background solution, we may conclude that the gravitational wave in this class of theory
is more well-behaved compared to the scalar field, which typically suffers from shock formation. On the
other hand, if we could find some background solutions or nontrivial shape of wavefront for which shock
formation occurs even for gravitational wave, it might give interesting implications to gravitational
wave observations which was realized recently by LIGO [5]. Such studies on shock formation in

gravitational wave with nontrivial wavefront on nontrivial background would be interesting.

In this essay, we analyzed the shock formation only in the shift-symmetric Horndeski theory for
simplicity. It is straightforward to extend it to more general theories including the bi-Horndeski theory.
One of the problems in this approach is that not so many solutions have been constructed in these
theories, and then we lack the background solutions to use in the analysis. Hence it may be better first
to look at simpler theories, such as the generalized multi-Galileon theory [20], and seek for background

solutions which can be used for the analysis.

In Lovelock theories of gravity in higher dimensions, it was shown that the shock formation occurs
in gravitational wave [34]. In this theory, the Lagrangian and the equation of motion contain products
of the spacetime curvature tensors, and also the gravitational wave have more degrees of freedom
compared to the four-dimensional case. These ingredients might have been the source of the shock
formation in this theory, because the shock formation is caused by nonlinear self interaction of the
wave. In the bi-Horndeski theory in four dimensions, it seems that these ingredients are missing, and
maybe it implies that shock formation does not occur even in this theory and also in other multi-field

scalar field theories related to it. It would be interesting to examine this expectation.

Time evolution after shock formation. When a shock forms, derivatives of fields diverge there
and the theory would break down unless higher-order corrections to the theory ameliorate the singular
behavior, or unless we accept such a field configuration as a weak solution of the theory. Also, a shock

formation would correspond to a naked singularity formation unless it is covered by an event horizon
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or resolved by corrections to the theory, as argued in [34] [36]. It would be interesting to study time
evolution after shock formation by taking higher-order corrections into account or by regarding a

shock as a weak solution, as we usually do in dynamical simulations of compressible fluids.

To treat a shock as a weak solution in the theory, we need use the junction conditions to impose
at the shock surface, which correspond to the Rankine-Hugoniot conditions for shock waves in usual
fluids. Such junction conditions have been derived and applied in the Horndeski theory [87, [88]. Using
them, it may be possible to simulate a shock formation and time evolution after that starting from
smooth initial data. It may be fruitful to conduct such numerical or analytical analysis on phenomena
that involve shock formation and to examine their implications in, e.g., dynamical phenomena in

astrophysics such as binary star motion or gravitational collapse of matter field.

Nonlinear time evolution with shock formations. As discussed above, the phenomena discussed
in this work could be important in time evolution that involves nonlinear dynamics of gravity and
scalar fields. In this work, we focused only on the evolution of weak discontinuity, and found that its
shock formation is controlled by the parameter A/ , which is given by a derivative of the principal
symbol P of the equations of motion. The importance and implications of this quantity in the full
nonlinear dynamics within scalar-tensor theories should be investigated further. Such a study may
provide some insights that help us when we apply the scalar-tensor theories to various problems in

physics, including those in astrophysics and cosmology.
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Appendix A: Formulae for construction of the bi-Horndeski theory

1. The £ tensors

We summarize the explicit forms of the ¢ tensors introduced in section [TB| to construct the most
general equations of motion. As described in section [[TB] the £ tensors are constructed by taking the
products and linear combinations of ¢l%, g2 and gabed
of Egs. f. We need to find all such £ tensors to construct the most general second-order tensor

whose divergence remains of second order. In doing so, we find that not all of the £ tensors give nontrivial

so that the resultant £ tensors have the symmetries

contributions to Eq. (19)), because there are some degeneracies and the identical terms appear from more

than one £ tensor. The £ tensors that give nontrivial contributions to Eq. (19)) are summarized as

;zbcd =ay <gacgbd + gadgbc . 2gabgcd>
+ bk |:gac¢J|b¢K|d + gadQSJ\bqbK\c + gbd¢J\a¢K|C + gbc¢J|a¢K|d _9 <gab¢J|c¢K|d + gcd¢J|a¢K|b>:|
F CLIKLM (¢J|a¢K\c¢L|b¢M|d i ¢J\a¢K|d¢L|b¢M|C _ 2¢J\a¢K\b¢L\c¢M|d>

+drykLm (¢J|G¢K‘C6bdef¢ﬁ¢f\f + ¢J|Q¢K|d5bcef¢ﬁ¢f\f) ; (A1)

é-abcdef _ dIJ <EIace€def + elbceﬁJadf + 6Iadeﬁchf + 6IbdeeJacf)
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+b doh (8aceg€bdfh + 8bcegé,adfh + eadegsbcfh + 6bdeggacfh, + 5acfggbdeh + 6bcfggadeh + 6a,dfggbceh 4+ 6bdfg€aceh) ’

(A2)

f}szdef — A <6Kace€Lbdf + 6KbceeLadf + 6KadeeLbcf + €Kbd66Lacf)

+ bIJ doh (Eacegsbdfh + Ebceg!,:\aalfh + Eadeggbcfh + Ebdeggacfh + gacngbdeh + Ebcngadeh + Eadfggbceh + Ebdfgé_aceh)’

(A3)
éabcdefgh — d(gacegebdfh + 6bcegeaclfh + 6adeg€bcfh + 6bdegsacfh + 8acfgebaleh + 6bcfg€adeh + 6aalfggbceh + sbdfgeaceh)7
(Ad)
where ay, brjx, cryxLm, Arjxom, G, ary, Grjgr, b and byy are arbitrary functions of gf)l and X7K
satisfying
bryk =bikJy, ClIKLM = CIKJLM = CIJKML = CILMJK, drgxoym = —dixgoym = —drjkmr = diomik,
(A5)
ary = ajr, arjKL = arjLK- (A6)

We have also defined e/ ¢ = gabed ‘Id.

2. Coefficient functions of VG{

By direct calculations, the coefficients appearing in ngg can be derived and expressed in terms
of the coefficients of G} as

arg = Gry—2Jy + 2Ky — 2H 1 X5F, Bry=—I1s+Jig— K1+ 2Jkp 10 X",
3
YiokL = —2JrykL + Hik gL, 1k = Ky — 5Lk,
1
pr = 501 +21; — (Dykr+8J ) X5 + 4E g pann XTH XM,

viskr = —GrixL +3Hkn) + 2Hunrxn XY = 3LL1sk,
wrok = —Crux + 2D ) — 2G i,y + 2 (Donr,x — AHpy prc ) XY
— 16E(p0 )X M — 8ELpnor ik XM XNO,

&y =—A1s+ Brs— Cyr — 4Dk X ™" = 8Bk Lrn s s X P XYY + 16 B ppynvy . XHEXMY,
1 1
Clk = _§DIJK —2Jr0k + 4B XM NIJKL = §H1JKL,

NO
AJKLM = §DIJK,LM + Hrgxmrn — 2Evrox —4ENorgk,om X,

orJkLMN = Hrjxp,mMN — HivNLJK, TrokLM = =L k,0Mm) trgrk = — K1 k- (AT)

3. Explicit form of Q;

The explicit form of Q; appearing in Eq. and also in the scalar field equations of motion is
given by

0, =0 4+ 0P 4+ 0@ 4 o) 4 ol 4 Ql®) | QlH) | gDy gbh) L QlE) 4 glh), (A8)
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where
oM = A, (A9)
o) = 2B XK ~ Bry kol o™ ¢, + Brigp,"”, (A10)
o =0k, (A11)
Q§ = Dykr,104 ¢\C¢K|d¢L|f + 2Dk, LXJL¢K|C + Dijk L¢ch¢f§d¢L|d
+ Dy a5 oi0™ ool — Dryc ool PolV — §DUK55€¢;’C¢K"R61 ", (A12)

Q§ = EjkLMN 152fh¢|c¢Kld¢|L¢M‘f¢N|h —2EL k1M N52;fl¢|c¢‘”d¢f§¢mf¢|ﬂgﬂh
— 2B ki nody ol 6% olof o oM+ ABL by oL o 71 g

+ Erskiuygofol o’V oM IR ", (A13)
Q§ = GK,10y ¢\c|d¢|e|f (Al4)
Qg = Hykim Iédfh¢|c¢K‘d¢ |f¢M|h HIJKL5§;%¢J‘b¢K‘f¢L|h

+2H L XMW oI SL I+ 2H a6 0010l T ol 1

— Hyyiro ootV MRy ™ + Hyyicr anopghon o™ ooV ol (A15)
o) = 1105%R,. ", (A16)
QY = Ty 65 ot 1R, I + 2JUKXJK(5'39R T4 2015 65 SR, ) T

+ JIJ,KL5§;%¢|d¢L‘db¢|c eg - JIJ5ceg¢ ‘bR fh, (A17)
o) = K858 67 "R, 1" — %KJIK(SE;‘ZZm(ﬁ‘IC( gl Ry M — gK 1055 Roo ¥ Ry, (A18)
QgL) = LJKL,I5§;ﬁ¢\JC|d¢K|f¢L Ih ELLJK,1M5§;im¢f‘fld¢ﬁ;|f¢J |h¢K|m (A19)

These expressions appear also in the (re-organized) scalar field equations in Eq. and used to derive
the principal symbol P in section [[IIB]

4. Euler-Lagrange Equations of the candidate Lagrangian

The explicit form of the Euler-Lagrange equations of the candidate Lagrangian £1—L7 defined by
Eq. are given by

B (£1) = MPY (610670 1 X1 ) — Zafe (o 0o ol 0”190V +2X 1 g6 (a20)

7

Eab (Eg)

) 7

2M(12 (¢I|(a¢J|b) + 2gabXIJ) _9 (M,(12) i 2M’(K)’IJXJK) g aéldc¢|lc|d

%M(I} aélfg;}igqs‘c¢J|dRegfh (;M(z) _ M’(IZJ)XIJ) Z(a(sl;}:eR df

<M(12J i 2MIJKLXKL) a5 ce¢I |d¢J lf _ 1} w10 a(;ld]fz%l ¢J|d¢K|f¢L |h

—AM P 9Oy ol (AZ1)
B (L) = _2MI(J)K7LXIJXKL g% — Ml(i)K . (XKL¢I|(a¢J\b) 4 ox! pRltaglib) 4 2XL(I¢J)|(a¢K|b))

3 a Ce a c 1 a ce
+§M((13()]K)( 5 i QZS‘ ¢J|d¢K\f_|_2XIJ I( 517) d)K\d) I(i)K,LMg 6ll)¢)lfhg¢|c¢J‘d¢\ ¢L|f¢M|h

2
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+ <M1€i)M,JK 2MI([}M] KL) x LM zaab)c%‘ ¢J|f¢K|h+2MI(J)KL xILx K l(a5 ¢M|d

(A22)
E% (L) = —M}fl) x1J gn(a5b)egl ¢K\fR hm _ M(4)XIJ 91(a5b)egR fh _ M}‘l} aéldﬁzggbl ¢J|dR
5 (M X ML) g0 Ol P 20 o oo o
_9 (M}} + M}({y)}J’LXKL> l(adb)ced)l |d¢J|f 2M§,41)((J,L) a(;lbg;;gd)wu%f |f¢K|h (A23)

Fab (L5) = (Mf}) 4 QMI(?’JLXKL> x1J gZ(a5l}ZgRegfh

1 [MI(? i <2MI(§() - Ml(i)KL) XKL] gl(“éb)ceggbf ¢J\dR fh

+2 [MI(? + (MI(?)L 1y +AM JL) XHE 4 2Mz(\2v KL IJXKMXLN} g, ce¢|1c|d¢‘] i/

+2 [QMﬁg,JL + (2M1£1\21,JN,KL - MéJ?KL,MN) XM } a‘szdﬁgﬁb\cﬁbﬂ%fﬂfﬁsﬁh

+2 [2MI((5},J - g)K +2 <2Ml(i),J,MK - MI?L,MK) XLM} gl(a(sfc)l;eqﬂcwl%feﬂf

M XX — g (M, + 0E), —20f) ) XREgI

- 4MI(J)K LmY a‘szdﬁzg@b\cquld@f)K‘f’Llf‘ﬁM'h (A24)
B (L) = 5M(G)gab i §M’(;3}¢I|(a¢J|b ’ (A25)
E®(L7) = (M[(?KLM + MI(TT)MLK + MI(?KML) a(szbc};iigﬁb\c‘bjl% ¢>L|f¢M|h

+4 (MI(J)KLM + MI((QMIJ + MI(Q)LIMJ> X' gt a(sldf ¢\K¢L|d¢M‘f

+ (_MI(?KLN,OM + QMI(T])NLK,OM + 2MI(]\;KLO,JM> XNO gl a‘szdﬁ%\c@b‘”dﬁb ¢L‘f¢M‘h

+ 8M](\2JJM’KOXLMXNO gl(a5zl);;e¢|lc¢J‘d¢|[e<|f + SMI(T])KLM’NXUXKLXMN gab

+ 8 (MDcsriw = 2M s + Migawie ) X7 X LM Iag ), (A26)

The partial differential equations and on the arbitrary functions M7 of the candidate

Lagrangian are obtained by the above equations to the most general equations of motion of the
bi-Horndeski theory.

Appendix B: Formulae for analysis on wave propagation in the bi-Horndeski theory

1. Coefficients of the bi-Horndeski theory field equations

In section |ILII B the equations of motion of the bi-Horndeski theory and is re-expressed in
the form of Eq. to find the principal symbol P from it by Eq. . The coefficients A#"P7 Bﬁw, CcHv
of the metric equation G are already given by Eqs. —. The coefficients jﬁb Y, B; 7 C; of the scalar

equation are given by

AY = (Dryk — 81 — 8ELx s XM )500 rg”) ¢J¢K|d "™ 42D XS (ng)lgmo
+ 2B i1 g ol ol oM g + i g oy ) oo g g

- 41,19d(“5d}09f0 +4(Jrg = Ky + 20k X5F) 560(“ v fcf)‘”b ho
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+ 2KJ,1K52;;ZQV)h¢J|d¢Ie{|f mo | K; 5ceo(u u)hR df mO (B1)
Bry = 2B179" — 2B £s,6"1°6 + 2C 19 + 4D k(1101 <2XKL900 + ¢K|O¢L|O>

+ 2D 1501 0§yl 07 g1 + 2D s w0550 0 610" — ADy ey O5h e g

+2(ExLmNIT — 2EKLMIIN) 5§f2¢|c ¢L‘d¢ N gh?

— AEk LvrNoSii ol o™ o ¢>N|Z¢O|b " — 4Bk miN0s0, 5ol 0™ o ¢N‘h¢0‘09b0

+ 16E(K\LMI\J)5bfh¢|C |b<l5|]\e4¢L‘f9h0 +4G K 15df9f0¢K‘d

M Kb, L
+8(Jrrarsr — Jireansn) OG0l 0F100 Tg" — 1201 x1 1O5ihPle | Ple g0

M|d¢)| |f¢)N|h m0 Mé-ego m0¢| |f¢N|h
e e

—4Jkm,LN IJ5d;hm¢\c o = 8Jrk,LM NI X
- 2JKL,IJ52;z?nng¢|C ¢L|dRegfh
—2(=K g+ Jis + 20k XF) 526590dRegfh - 2KJ,1K52;£fn90d¢> R o

Kld L M|d K|h
+4KJ,KL,I(5§;2¢ |¢ 17 gho BKL,JK,IMﬁ;Z?n(Z) |¢‘e|f¢> I gmo, (B2)

Cr=Cr (gpaa 900,05 Gpo,ks 9po,k05 Gpo,kX> o1, ¢I,Da d)l,pa ¢I,Opa ¢I,p0) . (B3)

2. Equations of motion and principal symbol of the shift-symmetric Horndeski theory

Metric equation following from the Lagrangian is given by

5
Gy = 301, = 0, (B4)
where

6% = S Kxdyud" — Ko} (B5)
G%h =~ Gax (0lhlz, ol 02y, + 2X 01k o] ) (B6)

G4 = 1 (Gax +2XGaxx) Sl 0lul 122 + S Caxxdllulils ol ol oo,
4Gy~ 2XCax) ol Rt + 1G4X522a€3f33 Ryl 01y, (B7)
G = é (Gsx + XGaxx) ol gl g2 glie — ZXGE,Xagzl};gngRg;g; o, (BS)

The scalar equation of motion is given by

5
Eo= E4=0, (B9)
=2
where
€¢2) = —KxUo¢ + KXX¢|Q1¢IZ;¢|Q2 (B10)
1
€5 = (Gax + XCaxx) 01201 07 + 5 Caxx O ol 620/ by, — Cax Ryl 96" (B1D)

1 b1b2b, b1b2b3b.
€4 = — 5 (3Gixx +AX Gaxxx) SRR Ol ofs2 o2 — §G4XXX6a1az§3;4¢{Z;¢{Z§¢{Z§¢'a4¢|b4
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1 1
~3 (Gax +2XGuxx) 521122;5’3¢I311 Ry — §G4XX521122;;13§34¢}le3§§?33¢‘“4¢\b4 (B12)
1 bibobsb
€)= 13 (2Gsxx + XCrxxx) LAt o 021 o)
1 b1babsb 1 bibobsb
+ 7 (Gsx + XGxx) s Ry W + T X CoxOmiaiats Ryt Ry, (B13)

The above equations hold in any dimensions except for QE,, and 82, which are simplified by using the
Schouten identities §55%20sb4 Ry }Z;ff"““@ by = 5331112221’3534??)}?11¢IZ§¢IZ§¢'“4¢|Z>4 = 0 that hold only in four
or lower dimensions.

In the main text, we considered the trace-reversed equations of motion defined by deforming the
expressions above following Eq. , and then we defined the principal symbol P by taking its

derivatives with respect to &s&gqr,st and 5§10 st We show their expressions below. For the derivation

we use the fact that the Riemann tensor is given by Rapcd = —29[a|jc,q)jp) T+ » hence its derivative with
. ORoL2 b
respect to €s§tgqr,st 15 3gqu,sz2 Tqrgsgt = _2r%a11§a2]€b2}~

The pure metric part is given by

062 0G°"
Tor m——— = ror=—— =10 B14
gsgt v 8gqr,st gsgt r agqr,st ( )
oGt Gy —2XG G 1
gsgtrqr a _ 2 (52?11113122 - 52‘221?2) §a1§b17"g§ ~ 24 52211%221733 - 7(52(52111()122%3 galgblrgjé‘as(ﬁ\b:a
agqr,st 2 2 2
(B15)
oG 1 1
Eiar 5t = S X Gix (B0, — RO00E, ) € Gnrilof, (B16)
and the mixed part between the metric and scalar parts is given by
L (B17)
T =
sStlgr 3gq7«,st
855; 1 bb1bs ¢a b1 ila2 aal ¢ca as
tirarg, = —5Gox (%mg &l 612 gy, + 2X 570 gber) (B18)
ot
g = (Gax +2X Gaxx) S €6 2+ Gaxx Ol cogyr gl ol oy, (B19)
qr,s
2 1 bbibabs cae a1 laz as L bbibobs cas a1 pasas
gsftrqrm = _5 (G5X + XG5XX) 5(1&1(12(135 gbrbl [b2 ¢|bs B ZXG5X§aa1a2a3£ gbrln Rb2b3 : (BQO)
Finally, the scalar part is given by (where £2 = £,6% and € - ¢ = fad)‘“)
8535 2 2
fsft% = —Kxf + KXX(f : ¢) (B21)
,S
852 bb1 ca e lar bb1bs cae (a1 s las
gsgt% =2 (G3X + XG3XX) 50,0,15 gb(zzs‘bl + G3XX5aa1a2§ §b¢|bl (rb ¢|b2 (B22)
,S
85; bb1bs cae flar  laz bb1babs cae slar (laz |az
fsét% == (3G4XX + 2XG4XXX) 5aa1a2§ £b¢|b1 ¢|b2 - G4XXX§aa1a2a3£ £b¢|b1 ¢|b2 ¢ ¢|b3
,S
]‘ bb1b2 a al1a2 ]‘ bblb2b3 a al1a2 \a3
~3 (Gax +2XGaxx) g0 0§ 0B 1 — §G4XX5aala2a3§ Eo L2y, D' Dy (B23)

0&>
o = R SERO gty cogofptofgz s + ST RO gl ool Rz, (B24)

[b1 ¥ b2 7|b3 2 aaiazasz by tb2bs

gsft
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Expressions with non-contracted indices is obtained just by removing one of r{ from the expressions
above. i

The other mixed part between the metric and scalar parts, & 5&%. can be obtained as follows. Since
the equations of motion and of the shift-symmetric Horndeski theory are derived from the
Lagrangian , they automatically satisfy the integrability conditions as we argued at Eq.
and also at Eq. . It implies that the principal symbol P (before trace-reversing) becomes symmetric,

that is,

oG 0E,

£C§d 6¢ cd B £C§d agab,cd '

(B25)

~b
Using this symmetry, §s§t% is obtained just by trace-reversing fcfd% in accord with Eq. l@)
Then, the components of the principal symbol can be obtained by summing the above expressions
over n = 2,3,4,5.

Appendix C: Formulae for analysis on shock formation in the Horndeski theory

1. N of the shift-symmetric Horndeski theory

We summarize the explicit formula of N in the shift-symmetric Horndeski theory discussed in sec-
tion [[VB] This quantity is derived by taking derivatives of the principal symbol obtained in section [[TI B]
and appendix In this appendix, we use the coordinate z° where &, = (d:co)a is a normal of

a x’-constant surface. We also utilize the following formula for derivatives by &:ﬁ = 89?1)0 and
d J . ’
Sadon = oy’
OR; 12 2 X
Tab b1b2 == 21—‘0{2‘17"(;2]]7 agb - 2¢)‘07 a = _d)‘ou a¢a = 04 = fau
09ab,0 12 0¢.0 09 09 1)
00— 10, e B = 2 (gl — el — i) = 2ol
090 ’ 09edo 2 ¢ 2

The last equality (~) holds only when 68g¢ is contracted with the generalized Kronecker delta multiplied

by £%&, by which the terms involving & vanish identically.
We summarize the terms appearing in A/ (100)) in general spacetime below. First, the pure metric

terms proportional to rq> are given by

a 8g234

ab

T eqr =0 C2

e Dgero 09ef.0 Oed.00 (©2)
o 0G5, pl0 bb1bob ai az,a

rTedre 09es0 Ogedoo 4 T XG5X 000, a5 €Ty, Tha T, - (C3)

Next, the mixed terms proportional to rab2r¢ are given by

ab 0 8g
ref 0ger,0 00,00
ab a 6g _ @‘0
ref 0gef0 000 2

-0 (C4)

|0
(Gax +2XGaxx) Gaaya§ &y 117 + %G4xxézza%2b;35% b 158" B, (C5)
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5 0
ab 9 06, __QL bb1babs cas .a1,.a2 |as_XG5X bbibabs ca¢ . .a1,.as10a3
r TEfagef,O 96 00 = 5 (Gsx +XG5XX)5aa1a2a3§ fbrbl Tba Dby 5 (5mla2a3§ {brbl rb2F b

(Co)

where the overall factor r4 is omitted. The other mixed terms proportional to rabr¢2 are given by

o 0
. _ c7
L 09010 000 (C7)
o 03 [0
S Baere 950 = O (Gax + XGaxx) G + %ngxéz’;a%zs“&brs;¢'“2¢|b2 (Cs)
€ b K
9 ag;% 0¢cae lar_as bb1 bo bb1babz |az
7"efwf0 D00 —¢ P, s {(3G4XX +2XGuxxX) Oparay T GaxX X040 aras P ¢|b3}
€ K b
— (Gax +2X Gaxx) 02 €agyri T2 — Gy x 0int2ls 2 T2 glo3 gy, (C9)
o 08 1
et e B = 3 (O XGsx) e (0 R + a0 1052
¢l bbibobs cag lai las as
-+ 7 (2G5XX + XG5XX)() (5aa1a2a3§ fb(b'bl ¢|b2 T - (ClO)

Last, the pure scalar terms proportional to T¢3 are given by

iag‘i —3(Z>|0K 2 (1]0\3
Ao oo XxE = (07) Koxx (C11)
i agg _ _¢|o {2(2G XG bby cae 4lar bbiba cae lar i|as
060 0b00 3xx T XG3xxx) 0aar § 60y, + G3XXX00aran 8 EbPpp, ¢|b2}
—2(Gax + XGaxx) 0o E°6I %) — Gaxx 0t 6 6l ¢/ o, (C12)
o 0 o

Db 0boo 5 a6 {2 (5Gaxxx +2XGaxxxx) 8fs 8fi2 + (3Gaxx +2X Gaxxx) Rgfg;}

|0
+ %53211%;335@5@'“@1;1 <2G4XXXX¢}ZQZ¢}Z§ + G4XXXRZ§533)
+2(3Guxx +2XGuxxx) 52211132§a5b¢=211 T0%2 4 2G x x x 228 £ 6T IZ§¢|a3¢|b3
(C13)

o 0& 1
e —52211%221)335[‘&{(26:5)()( + XGs5xxx) ¢IZ;¢IZ§FO§§ + = (Gsx + XGsxx) FOZngf;
00,0 09,00 2
¢l

¢l
T3 2

lar a2

(BGsxxx + XGsxxxX) Opy, ),y ¢}Z§ + 5 (2Gsxx + XGsxxx) ¢>=le Ry }

(C14)

Then the terms appearing in Eq. (100]) are obtained by summing the above expressions over n = 2, 3,4, 5.

2. N on the plane wave solution

In this appendix, we show the explicit form of N on the plane wave solution, which can be obtained
by plugging the background solution shown in section [ITB2] into expressions in appendix [C1 We also
need to use the expressions of the eigenvectors , of the tensor and scalar modes to find N for

each mode.
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For the tensor mode r = (rglf), 0), the only nontrivial term is , but this term is zero for the plane
wave solution since X = 0. Hence N' = 0 for the tensor mode on the plane wave solution.
Let us move on to the scalar mode , whose eigenvector is given by
2K x —3G3x¢” + Gux¢”
Gi Kxx¢? —2Gsx¢" — GaxAF ' ©
When this eigenvector is contracted with the generalized Kronecker delta multiplied by &,£°, it simplifies

1= (rab,r¢) = (2Fmlignp);7¢) ;  Ten = (C15)

to (by dropping the £ terms)
TZ =T (Eanb + Ebna> ~ wrpnla 0. (C16)

Below, we evaluate the terms appearing in A/, whose general expression is summarized in appendix[C 1]
for the plane wave solution using the eigenvector given by (C15]). It is useful to use the following formula
for the evaluation:

lo = (du),, *=(0,)" = (¢"€")=(0,1), &= (da"),, & =("¢) =1, -w), (C17)

w

Ce=g"=1 €=¢"=-w, nm=Slaté& n-&=-3 =g =¢s =9, (Cl13)

First, we find that the pure metric terms and also the mixed terms proportional to rab2r¢ identically

vanish:

o 8g2345 o 8@2345
ab

ab
rredret o 99er0 09ed,00 — e dgeso Odoo =0 (C19)
The other mixed terms proportional to rabr¢ are given by
05" o€ P 54
89(3f 0 99,00 =0 Tes agff 0 99,00 = ¢/ Gaxdua, §88ry s Ter ag(jf 0 99,00 = ~Gaxlinad o 1“00‘17«“2
(C20)
where % = z,y as we defined in section Last, the pure scalar terms are given by
9 ag¢2> / 13
960 0b00 3w Kxx — ¢ Kxxx (C21)
9 852 4 " a¢ pal bB1 ¢a Oa1 2 bB1b2 ¢a 0ai pas
960 0000 @' ¢ G3x x OUL E2Ep0M by, — 2G5 x 652 €76, T 5 — 9 Gaxx04a, "G 5 (2, (C22)
i 85; _ 3¢/G 5b61b2 a Q1 paz /1 ¢bb1 B2 ~a a1 (1]e%)
9600000 41X X 0aaan S G0 F g, €% by, + 6GaX X D" 0gq) & ol by, I 57 (C23)
5
o GO G F (24

Summing up the above terms, we find N for the scalar mode on the plane wave solution to be given

N = Bury2an (8 Gisx Ol €604y, — Gax Ol €6 105 020y, )

aal a1 a2

+ T¢3{—3WKXX¢/ — Kxxx¢® — 4¢'¢" G3x x 000 €26, 4y,

— 2G3x 0ot E°G TG + (—9”Gax + 69" Gaxx) Gial € &G e,

aa aaiaz

_ 3¢/G4XX55,31132 ga&’F;Ball %20, + Gsx §bB1b203 é-agbr()g: 20, FE;, } (C25)

acaz at1a2a3
If we further assume ¢” = 0 and F to be given by Eq. (109)), we can introduce the metric (113|) adapted
to geodesics, with which we can evaluate Eq. (C25) more explicitly to arrive at Eq. (116]) by setting
Ty = 1.
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3. Details of shock formation analysis on the plane wave background

In this appendix, we show the details of the shock formation analysis on the plane wave background
discussed in section [[V C1. For this purpose, we need to derive the full expression of the transport
equation . In principle, we can derive it based on the definition 7, but it is cumbersome.
Since we have already found geodesics and the coordinates adapted to it, as summarized in section [V C1]
there is an alternative method to derive N and also the other parts of the transport equation. The key

is to assume that the field variables are given by

o = G+ 5 (0 OGO () vy, 6= 6+ 5 (PO M) rg,  (C2)

where gup, ¢ are the background solutions and ©(z) is a step function. The above gqp, ¢ correctly give
the discontinuities in their second derivatives at 20 = 0 as prescribed by Eq. , although they do not
satisfy the equations of motion in zy > 0. However, the quantities appearing in the transport equation
depend only on the values of gu, ¢ for £y — —0, hence the transport equation is correctly obtained
by evaluating the equation of motion at z° = 0 using Eq. and contracting it with r. See [34] for
more details on the construction of the transport equation by this method.

With the aid of computer algebra, we can follow the above procedure to find the transport equation
of I(u,n%) as

K, +MII+NTI? =0, (C27)
where N is given by Eq. (116)), and the other coefficients are given by
K= —2Kx, M = —th+(u>. (028)

Then, the transport equation takes the form of Eq. once the parameter s along the characteristic
curve is introduced following (95 as

1

We assume A < 0, as we defined below Eq. (110]). It implies that A, < 0 and |A;| > |Ay|. Then
Eq. (117)) becomes

ty =/ —A,tan (g;) T /Ay tanh <72rss> , (C30)

where s, = R/ and also e~® appearing in the general solution of I1(s) 1) is calculated as

o s ~1/2
e" =qcos| o cosh(2KX\/Ays> , (C31)

which diverges for s — s,— like o< (s, — s)*l. Also, Ne ® behaves for s — s,— as

— _ —3/2 _ —3/2
Ne ® ~ (€ +C2) Aa (S*S 8) =Ny <S*S S) . (C32)
T Ay * *
cosh!/? <2 Az>

This quantity diverges for s — s,—, hence the denominator of II(s) given by Eq. can be zero at finite

s = so (such that 0 < sp < s4) no matter how small [II(0)] is, only if the sign of II(0) is appropriately
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chosen. Hence, II(s) can diverge and the shock formation occurs at s = sy for an arbitrarily small I1(0)
in this example.

Assuming that Ne~® is well approximated by Eq. , so may be estimated as follows. Using
Eq. the integral in the denominator of is estimated as

s _ -1/2
/ N(Ne ) ds’ ~ 25, <S* 8) . (C33)
0

Sx

If this approximation is valid, sg will be approximated by
50 = {1 - (QH(O)S*/\/'O)Q} 5. (C34)

When Cy = C_ = 0 but Cy # 0, the denominator of does not vanish for 0 < s < s, if the
initial amplitude II(0) is made sufficiently small. Even in this case, if II(0) is sufficiently large so that
I1(0)Cps = —1 at s < sS4, the denominator vanishes at s < s, hence shock formation occur at that s.

In this example, TI(s) diverges at s = s, even when N happens to vanish, because N' = 0 implies
that II(s) = I1(0)e~® and then it diverges due to e® o (5% —s)~1/2 — oo for s — s,—. This divergence
occurs at the caustics of geodesics on ¥ due to a focusing effect, and sometime called a linear shock (see

footnote .

4. Formulae for the two-dimensionally maximally-symmetric dynamical solutions

Section is dealing with the dynamical background solutions that is symmetric in the two-
dimensional angular directions. Based on the ansatz ({121]), we can derive the curvature tensor as (122)),

where the two-dimensional tensor Rg’g in it is given by

(R2)

1 (— (frprt+ fxpx = 2fprr)  =2(fp) = fPrx) > . (C35)

2f2'0 2 (f,(Tp,x) - fpﬂ'x) f,T,O,T + f,Xp,X — pr,XX
Also, the nonzero components of ¢4, are given by

() =~ (M” +ada =260 2 st~ o)

)
5 af — 7\ 7P, ,T+ R s af:
27\ 2(F b — F6m) f,7¢,7+f,x¢,x—2f¢>,xx> Plap = 7 (Prbir + Pxbix) Yo

(C36)
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