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A vast number of scalar-tensor theories have been proposed and studied in various contexts

of physics, hence it is desirable to have the most general theory that can be used as a

framework to treat those theories in a unified manner. In the single scalar field case, the

most general scalar-tensor theory called the Horndeski theory played that role, while there

were no such general theories in more generic cases where, e.g., more degrees of freedom

are present in the theory. To make a progress in this situation, in this essay we propose

an extension of the most general scalar-tensor theory with multiple scalar fields, and also

examine nonlinear wave phenomena in this theory to elucidate its fundamental properties.

The goal of this essay is threefold: i) construct the most general scalar-tensor theory with

second-order equations of motion in the two scalar field case, ii) examine propagation of

gravitational wave and scalar field wave to clarify the causal structure in this theory, and iii)

examine nonlinear effects in wave propagation focusing on the shock formation phenomenon

in this theory. Combining findings obtained from these studies, we aim to obtain insights into

universal features of various scalar-tensor theories and also to open up brand-new avenues

of future investigations.
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I. INTRODUCTION

The general relativity (GR), Einstein’s theory of gravitation, was proposed as a theory that reduces

to Newtonian theory in the limit of weak gravity and slow motion. However, GR is not the unique

theory with this property, and actually there are numerous theories of gravitation where GR is modified

by introducing additional degrees of freedom such as scalar fields, or by correcting the theory with

higher-order corrections. Such modifications to GR typically appear in top-down models where the

gravitation theory emerges as a part of the low-energy effective theory. In this kind of construction,

various fields other than the gravitational one naturally appear in the theory and we are lead to consider

their gravitational effects.

Scalar-tensor theories, in which GR is modified by additional scalar fields, are the simplest among

those modified theories of gravitation. Such scalar fields naturally arise in top-down models, and also

they play key roles in phenomenological studies since a lot of interesting phenomena can be realized using

them. Just to list some of examples, the inflation scenario describing our universe in the earliest era [1] is

typically based on a scalar field called inflaton that is coupled to gravity. Also, many attempts have been

made to explain the accelerated expansion of our universe at late time [2] by modifying gravitation at

cosmologically large scale rather than by attributing it to the cosmological constant, whose origin it yet

to be known. Black holes dressed with scalar field cloud (see e.g. [3, 4]) are attracting interest since they

could be important targets of various astrophysical observations and particularly the gravitational wave
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observations, which was recently realized by LIGO [5]. Even in high energy physics and the string theory,

black holes with scalar fields plays a crucial role in the context of the gauge-gravity correspondence [6]

and their various applications (see e.g. [7–10]).

A plethora of scalar-tensor theories have been proposed by now (see [11] for a review), hence it

is desirable to have a theory that could be used as a framework to treat them in a unified manner.

Such a theory should be free from pathological behaviors including ghost instability, and also it should

encompass a wide variety of scalar-tensor theories as its subclass. In such a context, the Galileon

theory [12] in flat spacetime was proposed as a scalar field theory that is free from the Ostrogradsky

ghost instability [13, 14] although its Lagrangian contains higher derivative terms. Later on, this theory

was covariantized to include dynamical gravity and also was generalized to incorporate more parameters

into the theory by [15, 16]. The resultant theory was dubbed the generalized Galileon theory, which was

shown by [17] to be equivalent to the Horndeski theory [18] constructed in 1970’s. This theory has been

utilized in studies on cosmology and gravitational physics, e.g. by [17] which pursued inflation scenario

based on it.

The Horndeski theory is the most general covariant scalar-tensor theory with a single scalar field

whose Euler-Lagrange equation has derivatives of the metric and the scalar field only up to second order.

There are a several ways to extend this theory further. One of the simplest extensions is to incorporate

multiple scalar fields into the theory, which can describe inflation models with multiple fields (see [19]

for a review). Extensions of this type was first realized by the generalized multi-Galileon theory [20].

Later on it was realized that, however, the multi-DBI inflation models [21–28] are not included in this

theory [29], hence this theory is not the most general theory for multiple scalar fields.

This finding tempts us to construct the truly most general scalar-tensor theory with multiple scalar

fields, and also to clarify properties of the general theory so that we can make predictions about various

multi-field theories incorporated in that general theory. These are the main motivation in this essay, and

for the latter half of it we will focus on the nonlinear wave phenomena in the most general theory. We

will explain more details below.

Let us state the problem for the first half of the above motivation more precisely. We will try

to construct the most general scalar-tensor theory with multiple scalar fields that is described by a

covariant Lagrangian and whose equations of motion are up to second order in derivatives of the dynamical

variables, which are the metric and the scalar fields. For simplicity, we consider only the case with two

scalar fields in four-dimensional spacetime, which may be viewed as a minimal extension of the original

Horndeski theory for a single scalar field. We call this theory the bi-Horndeski theory in this work. This

construction was attempted in Ref. [30], and in the first part of this essay we will review its outcome.

The goal of the program addressed in this essay is not only to construct the most general scalar-tensor

theory, but also to use such a theory as a framework to study the properties of various theories in a unified

manner. Some of such properties will be model-dependent, in which case they can be studied only after

specifying the model. If there are properties shared universally by various theories, however, they should

be found by studying the most general theory as well. Clarification of such universal properties of the

most general theory is another goal of this essay.

For this purpose, we will focus on the wave propagation in the most general theory. Wave propagation

is one of the most fundamental dynamical processes in a theory, since it governs perturbative dynamics

of the theory and also it defines the causal structure upon which the future and past regions in the
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spacetime are defined. The properties of the wave propagation become important particularly when we

consider black hole horizons, which are defined as the boundaries of causal contact for an observer outside

the black hole region. One of the aim of this work is to clarify such causal structure and properties of

black hole horizons in the most general theory.

Another focus of this essay is the nonlinear effects in wave propagation. In the most general scalar-

tensor theory, the propagation speeds of the gravitational wave and scalar field wave may depend on the

background and also the amplitude of the waves themselves, unlikely to GR and the canonical scalar

field for which the waves just propagate at the light speed. Once we take into account such a nonlinear

effect in wave propagation, the waveform may be distorted in time and eventually it may form a shock.

The simplest example of such shock formation induced by the nonlinear interaction is found in the wave

obeying Burgers’ equation u,t +uu,x = 0, where the nonlinear term uu,x causes the waveform distortion

and the shock formation (see Fig. 1). Such shock formation takes place also for fields obeying other

nonlinear equations [31, 32], compressible perfect fluids [33] and gravitational wave in Lovelock theories

in higher dimensions [34].

FIG. 1: Schematic of waveform distortion and shock formation in a solution of Burgers’ equation. Due to the

nonlinear term uu,x, the waveform is distorted and eventually becomes double-valued, which corresponds to a

shock formation.

Since the derivative of the dynamical variable diverges at the shock, this shock formation process

can be regarded as a singularity formation process. It may lead to breakdown of the theory unless the

singularity is resolved by some mechanisms, and also it could be an important target of astrophysical

measurements including the gravitational wave observations. Motivated by these interests, we will ex-

amine if the scalar field wave and also the gravitational wave in the most general scalar-tensor theory

suffer from this type of effect. Such formation of shock (or caustics) was studied for a probe scalar field

with Horndeski-type action on flat spacetime in [35–37].1 Our aim is to extend these studies by taking

into account nontrivial backgrounds and also the dynamics of gravity, aiming to obtain implications to

gravitational wave physics. Combining insights obtained from this study and also from the analysis on

the wave propagation, we try to elucidate various features of scalar-tensor theories as much and general

as possible.

A. Outline and Summary

As stated above, the aim of this essay is to clarify universal features shared by a broad variety of

scalar-tensor theories with multiple scalar fields. For this purpose, we first construct the most general

scalar-tensor theory with two scalar fields, which we call the bi-Horndeski theory, and then analyze the

wave phenomena realized within such a theory. For the latter, we focus on the (linear) wave propagation

1 Properties of caustics were studied also by [38] in the DBI-type scalar field theories and by [39] in other theories.
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and the causality defined by it, and also the nonlinear effects in wave propagation such as the shock

formation. Below, we outline our strategies to tackle these problems and summarize the main results.

Based on them, we conclude this essay in section V: Outlook with discussions on possible future

directions. Lengthy formulae used in the main text are summarized in the appendices to make this essay

self-contained.

• Construction of the bi-Horndeski theory (section II)

To construct the bi-Horndeski theory, we follow the original construction in the single scalar field case

done by Horndeski [18]. We first formulate the problem and the construction strategy in section II A.

As explained there, the construction is divided into Step 1: construction of the most general

equations of motion (sections II B, II C) that is compatible with the covariance of the theory, and

Step 2: construction of the Lagrangian (section II D) that generates the equations of motion as

its Euler-Lagrange equations.

The key idea to accomplish Step 1 is to use the generalized Bianchi identity (9), which follows from

the general covariance of the theory. We use this identity in two ways as explained at the beginning

of section II B. Correspondingly, the construction procedure is divided into Step 1–a and Step 1–b.

Following these steps, we accomplish the construction of the most general equations of motion, where

the resultant equation is shown in Eq. (39). We examine their physical properties in section II C, and

confirm that the theory defined by those equations of motion is more general than the generalized

multi-Galileon theory also the multi-DBI models, as we aimed.

Having the most general equations of motion at hand, the next task is to tackle Step 2 for the

construction of the Lagrangian. In the case of the Horndeski theory for a single scalar field, it turned

out that the trace of the equations of motion is intimately related to the Lagrangian, and based

on this fact the full expression of the Lagrangian was correctly found. We follow this procedure in

section II D, and obtain a set of partial differential equations (46) and (47) for the arbitrary functions

in the candidate Lagrangian. We have to solve these differential equations to construct the Lagrangian,

but unfortunately it has not accomplished yet thus far. However, results up to here would serve as a

stepping stone for further trials for the theory construction, and also it may be possible even to solve

those equations if we take into account the integrability conditions for Lagrangian, as we mention in

section V. Such trials toward the Lagrangian construction is one of the future tasks in this project.

• Wave propagation in the bi-Horndeski theory (section III)

Based only on the equations of motion of the bi-Horndeski theory, we can study the dynamics in this

theory without directly referring to the Lagrangian, which is yet to be constructed. Taking advantage

of this fact, we study the wave propagation in the bi-Horndeski theory aiming to elucidate some

properties that are shared universally by the theories incorporated in the bi-Horndeski theory.

Our analysis is based on the method of characteristics [40], which is a mathematical tool to find the

maximum propagation speed allowed in the theory, or in other words the propagation speed in the short

wavelength limit. After introducing this method for a generic equation of motion in section III A, we

apply it to the following two problems, both of which are related to the causal structure implemented

in this theory.
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Black hole horizon and causal edge (section III B 1): In GR with a minimally-coupled canonical

scalar field, the gravitational wave and the scalar field wave propagate at the speed of light, and then

it is ensured a black hole horizon in the metric becomes an event horizon for those waves. However,

once the theory is modified, propagation speeds of the waves may be modified as well. When they

becomes faster than the light speed, the event horizon for these waves may differ from the metric

horizon, which is defined in accord with the light propagation. Motivated by this point, we examine

properties of Killing horizons, such as black hole horizons in stationary spacetimes, in section III B 1

based on the method of characteristics. As argued around Eqs. (64) and (66), it turns out that the

Killing horizon becomes an event horizon for gravitational and scalar field waves if the scalar fields

share the symmetry of the background spacetime.2 These conditions will provide a useful way to

clarify causal structures of black hole solutions realized within the bi-Horndeski theory and various

multi-scalar-tensor theories incorporated in this theory.

Wave propagation on plane wave solution (section III B 2): To study the wave propagation and

causal structure in this theory in a more general situation, we study another example of nontrivial

background solution. For this purpose we focus on the plane wave solution [45], which is an exact

solution describing gravitational wave and scalar field wave propagating in a common null direction.

Unfortunately, this solution had been constructed only in the (single scalar) Horndeski theory that is

invariant against a constant shift in the scalar field (see Eq. (67) for definition). Hence we will limit our

analysis to this subclass of the bi-Horndeski theory below. In section III B 2, after briefly introducing

the Horndeski theory that is shift-symmetric in scalar field, we analyze the propagation speeds and

causal structure for fluctuations on the plane wave solution background. We will find that effective

metrics (87), which differ from the physical metric, can be defined in this case, and the propagation

of the gravitational wave and scalar field wave obey those effective metrics. Hence the cones of the

wave propagation surfaces differ from the light cone, and it turns out that they form a nested cones

that are aligned to the background null direction (Fig. 4). Hence, on the plane wave background, the

causality can be defined in a usual manner if we use the largest cone as the causal boundary instead

of the light cone.

• Shock formation in the Horndeski theory (section IV)

In the above studies on the wave propagation, we were basically focusing on the behavior of linear

waves. In this section, we aim to go beyond by taking into account the nonlinear effects in the wave

propagation. As mentioned earlier, we particularly focus on the shock formation phenomenon that is

caused by such nonlinear effects.

In section IV A: Formalism for shock formation, we summarize the formalism to study shock

formation for a generic equations of motion, which was originally introduced in [46] for relativistic

hydrodynamics and utilized by [34] to study shock formation of gravitational wave in Lovelock theories.

This analysis focuses on the transport of the weak discontinuity introduced to second derivatives of

dynamical variables, as depicted in Fig. 5. It turns out that the transport equation (Eq. (96)) is given

by a nonlinear equation of the amplitude of the discontinuity (Π(xµ) of Eq. (90)). The nonlinear

2 This result is intimately related to the properties of Lovelock theories of gravity [41] and scalar-tensor theories with a

non-minimally coupled scalar field studied in Refs. [42–44]. In Lovelock theories, it was shown that the superluminal

propagation of the gravitational wave is prohibited on a Killing horizon [42, 43], hence it becomes an event horizon

automatically. In the scalar-tensor theories with non-minimal coupling, it was shown that the scalar field must obey the

background symmetry so that a Killing horizon to be an event horizon [44].
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term is proportional to a coefficient N (Eq. (94)), which is given by a derivative of principal symbol

P (essentially the coefficients of the kinetic term) of the equations of motion. Roughly speaking,

this quantity governs the dependence of the propagation speed on the wave’s amplitude. When N is

nonzero, two nearby wave trajectories cross each other, and the amplitude of the wave diverges there.

It corresponds to a shock formation. Such scenario is depicted by the solution (97) of the transport

equation, from which we can find that the amplitude of the weak discontinuity diverges within finite

time when N 6= 0. 3

In this essay, we apply this formalism to the shift-symmetric Horndeski theory, which was studied

in section III B 2 as well. As explained above, some explicit solutions are known in this subclass

of the most general theory, and they can be used as the background solutions to study the shock

formation. The results of this analysis is summarized in section IV B: Shock formation in the

shift-symmetric Horndeski theory. It turns out that the so-called k -essence model [47] coupled to

GR can be studied without specifying the background solutions, and it is found that the gravitational

wave in this theory is always free from the shock formation, while the scalar field wave suffers from it

unless the model reduces to the scalar field version of the DBI model [48]. For a probe scalar field on

flat spacetime, this property of the scalar DBI model was found by Refs. [35–37] and also in earlier

works [49]. We confirm that this property of the scalar field wave persists even when we take the

gravity sector into account. Also, the gravitational wave was not studied in these works, and it is

shown for the first time by our work that it is free from the shock formation in this class of the theory.

For theories more general than the above, we need to specify the background solution to make

progress. Such studies on some given background solutions are summarized in section IV C: Ex-

amples of shock formation, where we focus on the plane wave solution and also the dynamical

solution with symmetries in angular directions in sections IV C 1 and IV C 2, respectively. The back-

ground solution of this type can describe, e.g., the spatially homogeneous and isotropic universe, that

is, the Friedmann-Robertson-Walker (FRW) universe, and also spherically-symmetric dynamical stars

(see Fig. 6). It turns out that, in any of these examples, the gravitational wave is always free from the

shock formation, while the scalar field wave generically suffers from it unless the theory is set to the

scalar DBI model coupled to GR. This result may be suggesting that, at least on the backgrounds with

some symmetries, the gravitational wave in the most general scalar-tensor theory is more well-behaved

compared to the scalar field wave, in the sense that it is protected against the shock formation.

Notation. Before starting our discussion, we summarize the notations used throughout this paper. We

consider a four-dimensional spacetime with a metric gab and two scalar fields φI with I = 1, 2. Following

[18], partial derivatives of gab and φI with respect to xa are denoted as

gab,c ≡
∂gab
∂xc

, φI,a ≡
∂φI

∂xa
, (1)

while the covariant derivative of φI and its scalar product are denoted as

φI|a ≡ ∇aφ
I , XIJ ≡ −1

2
φI|aφ

J |a, (2)

3 There are certain theories for which N identically vanishes and the transport equation becomes linear, in which case

the theory is called exceptional or linearly degenerate [46]. For example, GR coupled to a canonical scalar field is an

exceptional theory, hence the gravitational wave and scalar field wave in this theory are guaranteed to be free from the

shock formation.
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where XIJ is symmetric in I and J . We use a strike “ | ” also as a separator in (anti-)symmetrization

unless it causes ambiguity. For example, [I|JK,L|M ] stands for anti-symmetrization of I and M . Partial

derivatives of a function Aa...b(g, ∂g, ∂2g, φI , ∂φI , ∂2φI) are expressed as

Aa...b;cd ≡ ∂Aa...b

∂gcd
, Aa...b;cd,e ≡ ∂Aa...b

∂gcd,e
, Aa...b;cd,ef ≡ ∂Aa...b

∂gcd,ef
,

Aa...b;I ≡
∂Aa...b

∂φI
, Aa...b;cI ≡

∂Aa...b

∂φI,c
, Aa...b;cdI ≡

∂Aa...b

∂φI,cd
,

and partial derivatives of a function A(φI , XJK) are expressed as

A,I ≡
∂A

∂φI
, A,IJ ≡

1

2

(
∂A

∂XIJ
+

∂A

∂XJI

)
. (3)

In the equations of motion and the Lagrangian, we use the generalized Kronecker delta defined by

δa1...anb1...bn
≡ n! δa1[b1

. . . δanbn], δIKJL ≡ 2δI[Jδ
K
L]. (4)

Repeated indices are summed over a = 0, 1, 2, 3 and I = 1, 2. We also use various indices summarized in

Table I for the analysis in sections III and IV, since we need to decompose the spacetime according to

the wave propagation surface and also the background symmetry directions. See also the definitions in

each section for more details.

TABLE I: Indices used in this work.

a, b, c, d, . . ., q, r, s, t Four-dimensional indices for xa=0,1,2,3

µ, ν, . . . Three-dimensional indices for xµ=1,2,3 on the hypersurface Σ at x0 = 0

α, β, . . .
Two-dimensional spatial indices for xα=2,3 in section III,

and for angular directions in section IV C 2

i, j Two-dimensional spatial indices of the null basis in section III B 2

A,B, . . . Two-dimensional indices for xA = τ, χ in section IV C 2

I, J, . . .
Scalar field indices of the bi-Horndeski theory φI=1,2 ;

used also as generic indices (e.g. in Eq. (48))

II. CONSTRUCTION OF THE BI-HORNDESKI THEORY

We summarize the method to construct the most general scalar-tensor theory with two scalar fields

whose Euler-Lagrange equations are up to second order in the derivatives. We will closely follow the

method of Ref. [18] for the single scalar field case, hence the procedure below reduces to [18] once the

number of the scalar field is reduced from two to one. In this section, we show how this method can be

generalized into the two scalar field case.

A. Assumptions and construction strategy

The problem we consider is defined as follows. We consider a generally-covariant theory described

by a Lagrangian scalar density L, which is a function of a metric gab, two scalar fields φI=1,2, and their
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derivatives of arbitrary order. Hence L in our problem is given by

L = L
(
gab , gab,c , gab,cd , . . . , φ

I , φI,a , φ
I
,ab , . . .

)
. (5)

We also demand that the equations of motion derived as the Euler-Lagrange equations for L are given

by derivatives of the field variables up to second order:

0 =
δL
δgab

=
√
−g Gab

(
gcd , gcd,e , gcd,ef , φ

J , φJ,c , φ
J
,cd

)
, (6)

0 =
δL
δφI

=
√
−g EI

(
gab , gab,c , gab,cd , φ

J , φJ,a , φ
J
,ab

)
. (7)

Then the problem we try to solve is to construct the most general Lagrangian L (5) that fulfills the

requirements (6) and (7).

In the single scalar field case, such a theory was constructed by Horndeski [18]. The construction

procedure is divided into the following two steps:

Step 1. Construct the most general equations of motion that obey the identity following from the

general covariance of the theory.

Step 2. Construct the Lagrangian that generates the equations of motion obtained in Step 1.

In this work, we employ the same construction strategy, generalizing it for the two scalar field case.

B. Construction of the most general equations of motion

To accomplish Step 1 in the above, we utilize the identity following from the general covariance of

the theory. Since the theory we consider is generally covariant, the action must be invariant under a

coordinate transformation xa → xa + ξa, that is,

0 = δ

∫
d4xL = 2

∫
d4x
√
−g
(
∇bGab −

1

2
EI∇aφI

)
ξa. (8)

Since this equation must be satisfied for any ξa, it implies an identity given by

∇bGab =
1

2
EI∇aφI . (9)

This equation is a generalization of the contracted Bianchi identity in GR, ∇aGab = 0 for the Einstein

tensor Gab ≡ Rab − 1
2Rgab.

Identity (9) constraints the structure of Gab and EI in the following two ways. First, it forbids ∇bGab to

depend on the third derivatives of the fields, because the right-hand side is manifestly up to second order

in derivatives. Since ∇bGab may have such third derivative terms in general as we can see from Eq. (6),

this property gives a nontrivial constraint on Gab. Second, identity (9) demands that the divergence

∇bGab is proportional to a gradient of scalar field ∇aφI and the components in any other directions must

vanish. This property gives further constraints on the structure of Gab. Hence, it is useful to subdivide

Step 1 of the construction procedure into the following two steps:

Step 1–a. Construct the most general two-tensor Gab of the form of Eq. (6) whose divergence is up to

second order in derivatives.

Step 1–b. Require that ∇bGab is proportional to ∇aφI , to restrict further the form of Gab.

Below, we will follow these steps to construct the most general Gab.
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Step 1–a. The most general tensor whose divergence is second order in derivatives

Step 1–a of the construction is based on the property that ∇bGab must be free from third derivatives

of gab and φI , which may be expressed as

∂∇bGab

∂gcd,efg
= 0,

∂∇bGab

∂φI,cde
= 0. (10)

Applying the chain rule to the derivatives of Gab and EI , which are given by Eqs. (6) and (7), we can

show that the above condition is equivalent to

Gab;cd,ef + Gae;cd,fb + Gaf ;cd,be = 0, Gab;cdI + Gac;dbI + Gad;bc
I = 0. (11)

Adding to this one, we have another type of symmetry in the indices that follows from the fact that L
behaves as a scalar density [50, 51]

Gab;cd,ef + Gab;ce,fd + Gab;cf,de = 0. (12)

We also have obvious symmetries such as Gab;cdI = Gba;cd
I = Gab;dcI . Then, combining (11) and (12), we

can show that Gab;cd,ef and Gab;cdI are symmetric under swapping of the sets of two indices:

Gab;cd,ef = Gcd;ab,ef = Gef ;cd,ab, Gab;cdI = Gcd;ab
I . (13)

Due to this symmetry and the property (11), in four-dimensional spacetime a derivative of Gab with

respect to gcd,ef and φIcd identically vanishes once it has nine or more tensor indices. It is because one of

the indices appears three times at least in that case, and then the property (11) or (12) asserts that the

derivative must vanish. This fact implies the following identities:

∂

∂gcd,ef

∂

∂gij,kl
Gab = 0, (14)

∂

∂gcd,ef

∂

∂φI,ij

∂

∂φJ,kl
Gab = 0, (15)

∂

∂φI,cd

∂

∂φJ,ef

∂

∂φK,ij

∂

∂φL,kl
Gab = 0. (16)

Identities (14)–(16) can be integrated to give Gab as follows. First, integrating Eq. (14) yields4

Gab = ξ̃abcdefgcd,ef + ξ̃ab = ξabcdefRcdef + ξab, (17)

where ξabcdef and ξab are functions of gab, gab,c, φ
I , φI,a, φ

I
,ab that have the symmetries same as Eqs. (11)–

(13), that is, they are symmetric with respect to swapping of sets of two indices and vanish if three

indices are symmetrized. Substituting Eq. (17) into Eq. (15), and integrating it, we obtain

Gab = ξabcdefghI Rcdefφ
I
|gh + ξabcdefRcdef + ξab, (18)

where ξabcdefgh and ξabcdefghI are functions of gab, gab,c, φ
I , φI,a, while ξab is a function of gab, gab,c, φ

I , φI,a,

φI,ab. It can be also seen that all the ξ tensors have the symmetries of Eqs. (11)–(13). Repeating the

same procedure for Eq. (16), we find

Gab = ξabcdefghI Rcdefφ
I
|gh + ξabcdefghIJK φI|cdφ

J
|efφ

K
|gh + ξabcdefRcdef + ξabcdefIJ φI|cdφ

J
|ef + ξabcdI φI|cd + ξab, (19)

4 The second equality of Eq. (17) can be shown using the identity ξ̃abcdefgcd,ef = 2
3
ξ̃abcdefRecdf + ξ̄ab for some tensor ξ̄ab,

which follows from the definition of the Riemann tensor and the fact that ξ̃abcdef has the symmetries of Eqs. (11)–(13).
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where all of the above ξ tensors are composed of gab, gab,c, φ
I , φI,a, and have the symmetries of Eqs. (11)–

(13).

The tensor (19) contains the ξ tensors, which appeared as integration constants in the above derivation.

They are functions of gab, gab,c, φ
I , φI,a, and have the symmetries of Eqs. (11)–(13). The next task to

accomplish Step 1–a is to construct those ξ tensors with the most generality, using which we can find

the explicit form of the most general two-tensor Gab with the desired properties.

To construct such ξ tensors, we can use φI|a, gab, and the totally antisymmetric tensor εabcd as the

building blocks. For the simplest ξ tensor, ξab, it is easy to find the most general form of it:

ξab = a(φI , XJK)gab + bIJ(φI , XJK)φI|aφJ |b, (20)

where a(φI , XJK) and bIJ(φI , XJK) are arbitrary functions of φI and XJK satisfying bIJ = bJI . Here, we

have used the assumption that the number of the scalar fields is two for the first time in the derivation.5

The explicit forms of ξabcdI , ξabcdef , ξabcdefIJ , ξabcdefgh, and ξabcdefghI for the bi-scalar case are given in

appendix A 1. Substituting all the ξ tensors into Eq. (19) and rearranging it, we arrive at the most

general tensor Gab that remains to be second order in derivatives after taking a gradient:

Gab = Aδab +BIJφ
I|aφJ|b + CIδ

ac
bdφ

I|d
|c +DIJKδ

ace
bdf φ

I
|cφ

J |dφ
K|f
|e + EIJKLMδ

aceg
bdfhφ

I
|cφ

J |dφK|eφ
L|fφ

M |h
|g

+ FIJKLMδ
aceg
bdfh

(
εcepqφ

I|pφJ |qφK|dφL|f + φI|cφ
J
|eε

dfpqφK|pφ
L
|q

)
φ
M |h
|g +GIJδ

ace
bdf φ

I|d
|c φ

J |f
|e

+HIJKLδ
aceg
bdfhφ

I
|cφ

J |dφ
K|f
|e φ

L|h
|g + IδacebdfR

df
ce + JIJδ

aceg
bdfhφ

I
|cφ

J |dR fh
eg +KIδ

aceg
bdfhφ

I|d
|c R

fh
eg

+ LIJKδ
aceg
bdfhφ

I|d
|c φ

J |f
|e φ

K|h
|g , (21)

where A,BIJ , CI , DIJK , EIJKLM , FIJKLM , GIJ , HIJKL, I, JIJ ,KI , and LIJK are arbitrary functions of

φI and XIJ satisfying

BIJ = BJI , DIJK = DJIK , EIJKLM = −EKJILM = −EILKJM = EJILKM ,

GIJ = GJI , HIJKL = HJIKL = HIJLK , FIJKLM = −FJIKLM = −FIJLKM = FJILKM ,

JIJ = JJI , LIJK = LJIK = LIKJ . (22)

Step 1–b. Imposing ∇bGab ∝ ∇aφI

Step 1–b of the construction procedure is to demand that the tensor (21) obeys Eq. (9), that is, the

divergence ∇bGab calculated from Eq. (21) becomes proportional to the gradient of the scalar field ∇aφI .
This condition is not satisfied in general, and to satisfy it the arbitrary functions in (21) must be related

with each other in a certain way. We will find constraints on the form of Gab in this manner below.

Strategy to find the constraints from Eq. (9) is to calculate ∇bGab from Eq. (21) first, and then to

project it onto vectors orthogonal to EI∇aφI next. Such projected components must vanish if ∇bGab is

proportional to ∇aφI , which become the constraints to be imposed. What we do below is to find those

constraints starting from Eq. (21).

From Eq. (21), ∇bGab is calculated as

∇bGab = QIφI|a + αIJδ
ace
bdf φ

I|d
|c φ

J |lR bf
el + βIJδ

ace
bdf φ

I
|lφ

J |lbR df
ce + γIJKLδ

ace
bdf φ

K
|l φ

L|lbφI|cφ
J |mR df

em

5 If the number of the scalar fields were greater than two, we would have for example the term such as

cIJKL
(
εacdeφI|cφ

J
|dφ

K
|eφ

L|b + εbcdeφI|cφ
J
|dφ

K
|eφ

L|a
)

in ξab, where cIJKL is arbitrary functions of φI and XIJ , and totally

anti-symmetric in I, J and K.
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+ εIJKδ
acel
dfhmφ

K|d
|c φ

I|f
|e φ

J |gR hm
gl + µIδ

ac
bdR

bd
cl φI|l + νIJKLδ

ace
bdf φ

K
|l φ

L|lbφ
I|d
|c φ

J |f
|e

+ ωIJKδ
ac
bdφ

J
|lφ

K|lbφ
I|d
|c + ξIJφ

I|lφ
J |a
|l + ζI[JK]δ

ac
bdφ

I
|cφ

J |lφK|mR bd
lm + ιIJKδ

aceg
bdfhφ

J
|lφ

K|lbφ
I|d
|c R

fh
eg

+ 2ηI[J |K|L]δ
ace
bfhφ

I
|cφ

J |gφ
K|f
|e φL|lR bh

gl + (λIJKLM − λILMJK) δacbdφ
L
|eφ

M |ebφI|cφ
J |fφ

K|d
|f

+ σIJKLMNδ
acg
bfhφ

M
|l φ

N |lbφI|cφ
J |eφ

K|f
|e φ

L|h
|g +

3

2
τIJKLMδ

aceg
bdfhφ

L|lφ
M |b
|l φ

I|d
|c φ

J |f
|e φ

K|h
|g

+ 2FIJKLM

(
εbdfhφ

I|aφJ |gφK|dφL|f + εacegφI|cφ
J
|eφ

K
|b φ

L
|h

)
φM |lR bh

gl

+ 4εbdfh

(
FIJKLMφ

I|aφJ |g
)|b

φK|dφL|fφ
M |h
|g + 4εaceg

(
FIJKLMφ

I
|cφ

J
|eφ

K
|b φ

L
|h

)|b
φ
M |h
|g , (23)

where the coefficients αIJ , βIJ , . . . are functions of φI , XJK made from the arbitrary functions in Eq. (21).

Their expressions and also the definitions of QI are given in appendices A 2 and A 3, respectively.

As the next step, we need to project (23) to vectors orthogonal to ∇aφI , and find necessary and

sufficient conditions on the coefficient functions to make them vanishing for any configuration of the

scalar fields φI and the spacetime curvature Rabcd. For this purpose, we classify the terms in (23) according

to the numbers of φ
I|a
|b and Rabcd appearing in those terms. For example, the terms of highest power in

φ
I|a
|b and Rabcd are given by

∇bGab = εIJKδ
acel
dfhkφ

K |d
|cφ

I |f
|eφ

J |gR hk
gl + ιIJKδ

aceg
bdfhφ

J
|lφ

K |lbφI
|d
|cR

fh
eg + · · · , (24)

where the ellipses denote the terms with less numbers of φ
I|a
|b or Rabcd. Then, we can extract the coefficient

of φA,mnφ
B
,opgqr,st out of this expression by taking its derivative with respect to φA,mnφ

B
,opgqr,st as(

∇bGab
)

;mn
A

;op
B

;qr,st = 2ε(A|J |B)δ
acel
dfhkδ

(m
c gn)dδ(o

e g
p)f
(
φJ |(qgr)kδ

(s
l g

t)h + gh(qδ
r)
l φ

J |(sgt)k
)

+ 2ιIJKδ
aceg
bdfh

(
δKA δ

I
Bφ

J |(mgn)bδ(o
c g

p)d + δIAδ
K
B φ

J |(ogp)bδ(m
c gn)d

)
δ(q
e g

r)hδ(s
g g

t)f ,
(25)

where the terms in the ellipses of Eq. (24) drop out by this operation. Equation (25) must vanish when

contracted with a vector Ya such that Yaφ
I|a = 0, because Eq. (9) implies that

Ya

(
∇bGab

)
;mn
A

;op
B

;qr,st = Ya

(1

2
EIφI|a

)
;mn
A

;op
B

;qr,st =
1

2
Yaφ

I|aEI ;mn
A

;op
B

;qr,st = 0. (26)

Thus, we obtain a constraint equation given by

2ε(A|J |B)Yaδ
acel
dfhkδ

(m
c gn)dδ(o

e g
p)f
(
φJ |(qgr)kδ

(s
l g

t)h + gh(qδ
r)
l φ

J |(sgt)k
)

+ 2ιIJKYaδ
aceg
bdfh

(
δKA δ

I
Bφ

J |(mgn)bδ(o
c g

p)d + δIAδ
K
B φ

J |(ogp)bδ(m
c gn)d

)
δ(q
e g

r)hδ(s
g g

t)f = 0. (27)

This constraint has eight free indices (m,n, o, p, q, r, s, t), and its any components must vanish. To find

the conditions on εAJB and ιIJK from it, we first look at the trace part by contracting with gmngopgqr:

− 8ε(A|J |B)φ
J(sY t) + 8ι(A|J |B)φ

J(sY t) = −8ε(A|J |B)φ
J(sY t) = 0, (28)

where we have used ι(A|J |B) = 0 that follows from the definition (A7). This equation must be satisfied

for any φJ |a, and therefore it is necessary to impose ε(A|J |B) (= εAJB) = 0. Then, we can plug it back

in to Eq. (27) to obtain an equation on ιIJK . It turns out that this equation implies ιIJK = 0, as we

can confirm as follows. Let us project Eq. (27) with εAJB = 0 imposed to the basis vectors Y a, Ỹ a, φI|a

(I = 1, 2) such that

YaY
a = ỸaỸ

a = 1, YaỸ
a = 0, Yaφ

I|a = Ỹaφ
I|a = 0. (29)
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Contracting Eq. (27) with ZmWnVoφ
C
|pφ

D
|qφ

E
|rφ

F
|sφ

G
|t , where Za,W a, V a are either Y a or Ỹ a, we find

0 = 4ιAJBδ
ac
bdYaV

b
(
ZcW

d +WcZ
d
)
XJC

(
X(D|(FXG)|E) −XDEXFG

)
. (30)

We may focus on the ιAJBX
JC part of this equation, and it must vanish identically for any XJC . Then

we can see that ιAJB = 0 must be imposed.

Applying this procedure to any other second derivative terms in Eq. (23) one by one from higher to

lower power ones, we find

αIJ = −2βJI , γIJKL = −4ηI[J |L|K], αAI

[
δI(CX

−1
D)B − δIBX−1

CD

]
= 4

(
η(CD)AB − η(C|BA|D)

)
,

εIJK = ιIJK = ωIJK = λ(IJ)KLM − λ(I|LM |J)K = µI = ζI[JK] = ξIJ = τIJKLM = FIJKLM = 0,
(31)

νACDBX
−1
EF − νAB(E|CX

−1
|F )D − 2σ(EF )CADB = 0, νB[A|K|C] = σEF [CA]DB = 0, (32)

must be imposed, where X−1
IJ is the inverse matrix of XIJ . Expressions in terms of the functions

appearing in Eq. (21), the constraints (31) are expressed as

BIJ = −2 (F + 2W),I,J +A,IJ + 2D(I|K|J),LX
KL − 16EK(I|MN |J),LX

KLXMN − 8
(
JK(I,J),L − JKL,I,J

)
XKL,

CI = −2 (F + 2W),I + 2
(
DJKI + 8JJ [K,I]

)
XJK − 8EJKLMIX

JKXLM ,

FIJKLM = 0, GIJ = 2JIJ − 2K(I,J) + 4JK(I,J)LX
KL, HIJKL = 2JIJ,KL,

K[I,J ] = −2JK[I,J ]LX
KL, KI,JK = KJ,IK , LIJK =

2

3
K(I,JK), I =

1

2
F +W, (33)

where W = W(φI), and F = F(φI , XJK) is a function satisfying F,IJ = GIJ , which can be integrated

as

F =

∫
GIJ dX

IJ =

∫ (
2JIJ − 2KI,J + 4JKI,JLX

KL
)
dXIJ . (34)

The conditions ζI[JK] = ωIJK = λ(IJ)KLM − λ(I|LM |J)K = 0 in Eq. (31) imply

DI[JK] = −4JI[J,K] + 8ELMI[JK]X
LM , (35)

DI(JK) =
1

2
CJ,IK +GJK,I +

(
−DLMJ,IK + 4H[I|LJK,|M ]

)
XLM + 8E(J |ILM |K)X

LM + 4ELMNOJ,IKX
LMXNO,

(36)

0 =
1

2
DIJK,LM −

1

2
D(I|LM,|J)K +HIJKM,L −H(I|LMK,|J)

− 2
(
EML(IJ)K − EK(IJ)LM

)
− 4

(
ENO(IJ)K,LM − ENO(I|LM,|J)K

)
XNO, (37)

and Eq. (32) implies

GI[J,K]L = 0, HIJK[L,M ]N = 0, G(IJ,KL) = 3HL(IJK) + 2HLM(IJ,KN)X
MN − 2K(I,JK),L . (38)

Among these, GI[J,K]L = 0 implies F,IJ,KL = F,KL,IJ , which is nothing but the integrability condition

that guarantees the integral (34) to exist.
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C. Properties of the most general equations of motion

Imposing the constraints (33) to Eq. (21), we finally obtain the most general second-order field

equations of the bi-scalar-tensor theory Gab = 0, where

Gab = Aδab +
[
−2F,I − 4W,I + 2

(
DJKI + 8JJ [K,I]

)
XJK − 8EJKLMIX

JKXLM
]
δacbdφ

I|d
|c

+
(
−2F,I,J − 4W,I,J +A,IJ + 2DIKJ,LX

KL − 16EKIMNJ,LX
KLXMN − 16JK[I,L],JX

KL
)
φ(I|aφ

J)
|b

+DIJKδ
ace
bdf φ

I
|cφ

J |dφ
K|f
|e + EIJKLMδ

aceg
bdfhφ

I
|cφ

J |dφK|eφ
L|fφ

M |h
|g +

(
1

2
F +W

)
δacebdfR

df
ce + F,IJδacebdf φ

I|d
|c φ

J |f
|e

+ JIJδ
aceg
bdfhφ

I
|cφ

J |dR fh
eg + 2JIJ,KLδ

aceg
bdfhφ

I
|cφ

J |dφ
K|f
|e φ

L|h
|g +KIδ

aceg
bdfhφ

I|d
|c R

fh
eg +

2

3
KI,JKδ

aceg
bdfhφ

I|d
|c φ

J |f
|e φ

K|h
|g .

(39)

Note that one can eliminate W(φI) from the above equation by redefining F → F̂(φI , XJK) = F + 2W.

We can see that Eqs. (36)–(38) do not reduce the number of the arbitrary functions, because these are

the relations between derivatives of the functions, and then they do not affect the structure of the field

equations (39) directly. From (9), the scalar-field equations of motion are found as

0 = EI = 2QI + δceglbdhm

(
−γJIKLφK|bφJ|cφ

L|d
|e R hm

gl +
2

3
σJIKLMNφ

J
|cφ

M |bφ
K|d
|e φ

L|h
|g φ

N |m
|l

)
. (40)

We can confirm these equations reduce to that for the single scalar field derived by [18] once the number

of the scalar fields is reduced from two to one [30].

In [29], cosmological perturbations was studied in the multi-field DBI galileon theories [21–28], and

as a result it was noticed that the double-dual Riemann term

L =
√
−g δIJδKLδacegbdfhφ

I
|aφ

J |bφK|c φ
L|dR fh

eg (41)

is not included in the generalized multi-Galileon theory [20]. We can check that this term is actually

contained in our theory. It is straightforward to derive the field equations from Eq. (41):

Eab(L) = 4gl(aδ
b)ceg
ldfh X

I[Iφ
J ]
|c φ

J |dR fh
eg + 8gl(aδ

b)ceg
ldfh δI[JδK]Lφ

I
|cφ

J |dφ
K|f
|e φ

L|h
|g . (42)

This is reproduced by setting JIJ = 2 (δIJδKL − δIKδJL)XKL in our field equations. It can be generalized

further, since JIJ can be an arbitrary function of φI and XIJ in our theory. In addition, the EIJKLM

term in the equations of motion (39) is another new term which was not incorporated in the generalized

multi-Galileon theory nor in the Horndeski theory, since this term identically vanishes when the number

of the scalar fields is reduced from two to one.

To conclude, by our construction we successfully reproduced the terms missing in the candidate of

the most general theory proposed earlier [20] and also found an additional new term.

D. Construction of Lagrangian and challenges thereof

As mentioned in section II A, Step 2 of the construction procedure is to construct the Lagrangian

from which the most general equations of motion (39) is obtained as its Euler-Lagrange equations. This

would be accomplished by “integrating” the equations of motion following the inverse of the calculus of
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variation. Unfortunately there are no systematic ways to do it in general, and it is difficult particularly

for complicated equations of motion such as Eqs. (39) and (40). Below, we introduce our attempt to

construct the Lagrangian based on the strategy for [18] in the single scalar field case.

In the single scalar field case, the expression of the Lagrangian was guessed from the trace of the

equations of motion, and the correct expression was found based on it. Motivated by this fact, we

examine the trace of the equations of motion (39) in the two scalar field case. It turns out that the terms

appearing in the trace can be classified according to their tensorial structure as

L1 =
√
−gM (1)

Iφ
I|c
|c , (43a)

L2 =
√
−g
(
M (2)δcedfR

df
ce + 2M

(2)
,IJδ

ce
dfφ

I|d
|c φ

J |f
|e

)
, (43b)

L3 =
√
−gM (3)

IJKδ
ce
dfφ

I
|cφ

J |dφ
K|f
|e , (43c)

L4 =
√
−g
(
M

(4)
I δcegdfhφI

|d
|cR

fh
eg +

2

3
M

(4)
I,JKδ

ceg
dfhφ

I|d
|c φ

J |f
|e φ

K|h
|g

)
, (43d)

L5 =
√
−g
(
M

(5)
IJ δ

ceg
dfhφ

I
|cφ

J |dR fh
eg + 2M

(5)
IJ,KLδ

ceg
dfhφ

I
|cφ

J |dφ
K|f
|e φ

L|h
|g

)
, (43e)

L6 =
√
−gM (6), (43f)

L7 =
√
−gM (7)

IJKLMδ
ceg
dfhφ

I
|cφ

J |dφK|eφ
L|fφ

M |h
|g , (43g)

where M (1),M (2),M
(3)
IJK ,M

(4)
I ,M

(5)
IJ ,M

(6), and M
(7)
IJKLM are arbitrary functions of φI and XIJ satisfying

M
(3)
IJK = M

(3)
JIK , M

(5)
IJ = M

(5)
JI , M

(7)
IJKLM = −M (7)

KJILM = −M (7)
ILKJM = M

(7)
JILKM , (44)

M
(1)
[I,J ]K = M

(2)
,I[J,K]L = M

(3)
IJ [K,L]M = M

(4)
[I,J ]K = M

(4)
I,J [K,L]M = M

(5)
IJ,K[L,M ]N = M

(7)
IJKL[M,N ]O = 0. (45)

The condition (45) is crucial to keep the equations of motion second order in derivatives; the Euler-

Lagrange equations derived from (43) contains higher derivative terms such as ∇a∇b∇cφI multiplied by

derivatives of M (1,...,7), and they can be eliminated only when (45) is imposed.

The Euler-Lagrange equations for the Lagrangian densities (43) (listed in appendix A 4) must repro-

duce the most general equations of motion (39) if (43) defines the most general theory for two scalar

fields. Comparing Eq. (39) with equations in appendix A 4 term by term, we find it is the case if

A = M
(1)
I,JX

IJ + 4M
(2)
,I,JX

IJ − 2M
(3)
IJK,LX

IJXKL − 8
(
M

(5)
IJ,K,L −M

(5)
IL,J,K

)
XIJXKL

+
1

2
M (6) + 8M

(7)
IJKLM,NX

IJXKLXMN , (46a)

DIJK = −1

2
M

(1)
(I,J)K − 4M

(2)
,(I,J)K +

3

2
M

(3)
(IJK) +

(
M

(3)
L(IJ),MK +M

(3)
(I|LM,|J)K −M

(3)
IJL,KM

)
XLM

− 2M
(4)
K,I,J + 2

(
2M

(5)
K(I,J) −M

(5)
IJ,K

)
+ 4

(
2M

(5)
L(I,J),MK −M

(5)
IJ,L,MK

)
XLM

+ 12M
(7)
IJ(KLM)X

LM + 8M
(7)
IJNLM,OKX

LMXNO, (46b)

EIJKLM =
1

8

(
δPQIK δ

RS
JL + δPQJL δ

RS
IK

)[
−1

2
M

(3)
PRQ,SM − 4M

(5)
PR,Q,SM +M

(7)
PRQSM +M

(7)
PRMSQ

+M
(7)
PRQMS −

(
M

(7)
PRQSN,OM − 2M

(7)
PRNSQ,OM − 2M

(7)
PNQSO,RM

)
XNO

]
, (46c)

F + 2W = M (2) − 2M
(2)
,IJX

IJ − 2M
(4)
I,JX

IJ + 2M
(5)
IJ X

IJ + 4M
(5)
IK,JLX

IJXKL, (46d)

JIJ = −1

2
M

(2)
,IJ −M

(4)
(I,J) +M

(5)
IJ +

(
2M

(5)
K(I,J)L −M

(5)
IJ,KL

)
XKL, (46e)
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KI = −M (4)
J,KIX

JK . (46f)

In addition, comparing the φ(I |aφJ)
|b and δacbdφ

I |d
|c terms, we see that the following two conditions must

be satisfied:

− 2 (F + 2W),I,J +A,IJ + 2DK(IJ),LX
KL + 16EKMN(IJ),LX

KLXMN − 8
(
JK(I,J),L − JKL,I,J

)
XKL

= M
(1)
(I,J) + 2M

(2)
,I,J −

(
M

(3)
IJK,L + 2M

(3)
KL(I,J) − 2M

(3)
K(IJ),L

)
XKL − 4

(
M

(5)
IJ,KL +M

(5)
KL,IJ − 2M

(5)
IK,JL

)
XKL

+
1

2
M

(6)
,IJ + 8

(
M

(7)
MNKL(I,J) − 2M

(7)
MN(KI)J,L +M

(7)
MN(IJ)K,L

)
XKLXMN , (47a)

− 2 (F + 2W),K + 2
(
DIJK + 8JI[J,K]

)
XIJ − 8EIJLMKX

IJXLM

= −M (1)
I,JKX

IJ − 2
(
M

(2)
,K + 2M

(2)
I,JKX

IJ
)

+ 3M
(3)
(IJK)X

IJ + 2M
(3)
IJM,LKX

ILXJM . (47b)

If we could solve these equations for M (1,...,7) to express them in terms of the arbitrary functions A, . . . ,KI

appearing in (39), then the Lagrangian density would be given by a summation of L1,...,7 of Eq. (43). In

the single scalar field case, the first step was to integrate the equation corresponding to Eq. (46f), hence

this equation would be the starting point even in our two scalar field case. It have not been achieved

yet, however, and also it should be kept in mind that the terms we considered (M (1), . . . ,M (7)) may be

insufficient to construct the true Lagrangian. In the single scalar field case, the terms corresponding to

Eq. (43) happened to be enough to reproduce the most general equations of motion. However, there is

no guarantee that they are enough also in the two scalar field case. Albeit these difficulties, we believe

that above results are useful to build the Lagrangian for the most general theory.

III. WAVE PROPAGATION IN THE BI-HORNDESKI THEORY

In section II, we have successfully constructed the most general equations of motion in the bi-Horndeski

theory. Although we still lack the Lagrangian that gives those equations, some physical properties of the

theory can be studied using only the equations of motion. An example is the classical dynamics of wave

in those theories, which is governed by the equations of motion and does not depend on the Lagrangian

directly.

Wave propagation is one of the most basic physical process ongoing in a theory. It governs the

dynamics of small fluctuations in the theory, and also the causal structure will be implemented in accord

with the maximum propagation speed. Motivated by these facts, as a first investigation on the physical

properties of the bi-Horndeski theory, we study the maximum propagation speed in this theory and

examine the causal structure based upon it.

A. Method of characteristics

As a preparation, let us briefly review the method of characteristics for a generic equation of motion.

This method is particularly useful when we study the maximum speed of propagation. Suppose that a

vector of dynamical variables vI obeys field equations

EI(v, ∂v, ∂
2v) = 0. (48)
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To describe the time evolution based on this equation, we introduce a three-dimensional hypersurface Σ

and a coordinate system (xa) = (x0, xµ), where Σ is at x0 = 0 and xµ lies on Σ. We use the notation

that Latin indices (a, b, . . .) denote all the four dimensions and Greek indices (µ, ν, . . .) denote only the

three dimensions on Σ. Now let us assume that EI is linear in ∂2
0v, which is the case in the bi-Horndeski

theory. Then Eq. (48) is expressed as

∂EI
∂vJ,00

vJ,00 + · · · = 0, (49)

where the ellipses denote terms up to first order in derivatives with respect to x0. Equation (49) can be

solved to determine vJ,00 in terms of quantities with lower-order x0 derivatives as long as the coefficients

of the vJ,00 term, ∂EI/∂vJ,00, is invertible as a matrix acting on the vector vJ . If it is not invertible, on

the other hand, the value of vJ,00 cannot be fixed by Eq. (49), and particularly vJ,00 can be discontinuous

there. We call Σ a characteristic surface in such a case.

A characteristic surface Σ can be interpreted as a wavefront in the high frequency limit, and also it

defines the maximum propagation speed in the theory and thus Σ becomes a boundary of causal domain.

These properties can be seen as follows [40] (see also [42, 43]). Suppose that we have discontinuity in

vI,00 across Σ, while va and va,0 are continuous there. Then this surface must be characteristic, because

otherwise vI,00 cannot be discontinuous as we argued above. It implies that the discontinuity propagates

on the characteristic surface Σ. Then, interpreting the discontinuity as wave in high-frequency limit, we

may regard Σ as the wavefront for the high-frequency wave.

Now let us consider time evolution from an initial time slice σ, and focus on a finite part σ0 on

it (see Fig. 2). In the region enclosed by σ0 and the characteristic surface emanating from its edge,

the time evolution will be uniquely specified by the initial data on σ0. It is because we can solve the

equations of motion (49) to fix the time evolution in such a region by taking x0-constant surface that is

not characteristic (say Σ′ in the figure). On the other hand, the solution outside this region cannot be

fixed only by the initial data on σ0, because disturbances outside σ0 can propagate in this outer region

along characteristic surfaces. In this sense, the boundary of the causal domain for σ0 is given by the

characteristic surface emanating from its edge. In other words, the maximum propagation speed in a

theory is determined by characteristic surfaces.

FIG. 2: Initial time slice σ and the causal domain for the region σ0. In the green shaded region enclosed by σ0

and the characteristic surface Σ from its edge (green dashed line), the solution is uniquely fixed by the initial data

on σ0 by solving the field equations using non-characteristic surfaces (say Σ′ represented by the red dot-dashed

curve).

To express the coefficient matrix
(
∂EI/∂vJ,00

)
covariantly, we introduce a normal vector of Σ, ξa ≡
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(dx0)a, with which we can express the equation to determine characteristic surfaces as

P (x, ξ) · r ≡ ξsξt
∂EI
∂vJ,st

rJ = 0. (50)

Σ is characteristic if Eq. (50) has a nontrivial solution rJ , which is realized when detP (ξ) = 0. The

eigenvector rJ for a vanishing eigenvalue of P corresponds to a mode propagating on Σ. P is called the

principal symbol of the field equation (49), and detP (ξ) = 0 is called the characteristic equation. In this

essay we call also P · r = 0 a characteristic equation, which should be understood in the above sense.

B. Wave propagation in the bi-Horndeski theory

Based on the the method of characteristics introduced above, we analyze the wave propagation and

causal structure in the bi-Horndeski theory in this section. The first step is to express the equations of

motion (39), (40) in the form of Eq. (49), which are given as6

Gµν(L) = Aµν,ρσgρσ,00 + BµνI φI ,00 + Cµν , EI = ÃµνI gµν,00 + B̃IJφJ,00 + C̃I , (51)

where Aµν,ρσ,BµνI and Cµν in the metric equation Gµν are given by

Aµν,ρσ = − (F + 2W) gp(µδ
ν)0(ρ
pmf g

σ)fg0m − 2JIJg
p(µδ

ν)c0(ρ
pdmf g

σ)fg0mφI|cφ
J |d − 2KIg

p(µδ
ν)c0(ρ
pdmf g

σ)fg0mφ
I|d
|c ,

(52)

BµνI = B̃Ig
l(µδ

ν)0
lm g0m +DJKIg

l(µδ
ν)c0
ldm g

0mφJ|cφ
K|d + EJKLMIg

l(µδ
ν)ce0
ldfm g

0mφJ|cφ
K|dφL|eφ

M |f + 2F,IJgl(µδν)c0
ldm g

0mφ
J |d
|c

+ 4JJK,LIg
l(µδ

ν)ce0
ldfm g

0mφJ|cφ
K|dφ

L|f
|e +KIg

l(µδ
ν)0ce
lmdf g

0mRce
df + 2KI,JKg

l(µδ
ν)ce0
ldfm g

0mφ
J |d
|c φ

K|f
|e ,

(53)

Cµν = Cµν
(
gρσ, gρσ,0, gρσ,κ, gρσ,κ0, gρσ,κλ, φI , φI ,0, φI ,ρ, φI ,0ρ, φI ,ρσ

)
. (54)

B̃I in Eq. (53) is defined as

B̃I ≡ −2F,I −W,I + 2
(
DJKI + 8JJ [K,I]

)
XJK − 8EJKLMIX

JKXLM . (55)

Expressions of ÃµνI , B̃IJ , C̃I of the scalar equation in (51) are rather lengthy, as shown in appendix B 1.

Using the expressions above, the equations of motion are written as P · v,00 = S, where

P =

(
Aµν,ρσ BµνJ
ÃρσI B̃IJ

)
, v =

(
gρσ

φJ

)
, S =

(
Cµν

C̃I

)
. (56)

Then the characteristics are found by solving

P · r = 0, (57)

where r = (rab, rJ) is a vector made of a symmetric tensor rab and a vector of scalars with two compo-

nents rJ . The characteristic equation is given by detP = 0, and eigenvectors for vanishing eigenvalues

correspond to the modes propagating on the characteristic surface Σ, as we argued in section III A.

6 It turns out that, in the bi-Horndeski theory, the (00) and (0µ) components of the gravitational equations do not contain

second derivatives of the dynamical variables with respect to x0, and only the (µν) components have them. It can be

confirmed also that g00,00 and g0µ,00 do not appear in those equations and also in the scalar field equations. Hence, it

suffices to look at the (µν) components of field equations in which only gρσ,00 appears.
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The integrability conditions for equations of motion, Eq. (135) we discuss later in section V, guarantee

that the matrix P is symmetric, i.e.,

Aµν,ρσ = Aρσ,µν , BµνI = ÃµνI , B̃IJ = B̃JI . (58)

The integrability conditions have not been imposed to the field equations (39), (40), and then the principal

symbol P defined by Eq. (57) does not have the symmetry (58) in general. We proceed without imposing

these conditions in the analysis below, and we leave the full analysis with these conditions for future

work. In the next section, we find that some properties of the causal structure in this theory can be read

out despite this restriction.

1. Black hole horizon and causal edge

In GR, a null surface is always a characteristic surface and hence it gives a boundary of causal domain.

This property may be lost in the bi-Horndeski theory. Particularly, a Killing horizon, a null hypersurface

at which the spacetime is locally stationary, may not be a characteristic surface in this theory, which

means that the black hole region defined based on the metric may not be an event horizon, because there

may be superluminal modes that enables communication beyond the horizon in the metric.

In this section, as a first application of the formalism developed in the previous section, we clarify

conditions for a null hypersurface to be characteristic. We will find that, for a Killing horizon to become

a boundary of causal domain, the scalar fields must obey the symmetry of the background spacetime.

null surface

FIG. 3: Coordinates adapted to

a null hypersurface.

Null hypersurface. Let us check if a null hypersurface is characteristic

in the bi-Horndeski theory. It is guaranteed to be so in GR, while it is

nontrivial in the bi-Horndeski theory due to the modifications made to

the theory. We assume that a x0 = constant surface Σ is null, which is

expressed in terms of the metric components as

g00 = 0, g0α = 0, g11 = 0, g1α = 0, (59)

hence only g01, g01 remain nonzero, where x1 is the null coordinate lying on

Σ and xα (α = 2, 3) are the other spatial coordinates along Σ (see Fig. 3).

Under the conditions (59), we can evaluate P of Eq. (57) and show that some of its components vanishes:

A11,11 = A11,1α = A1α,11 = 0, (60)

while any other component remain nonzero. Hence, the characteristic equation (57) has the following

structure on the null hypersurface:

0 = P · r =


A11,11 2A11,1γ A11,γδ B11

J

A1α,11 2A1α,1γ A1α,γδ B1α
J

Aαβ,11 2Aαβ,1γ Aαβ,γδ BαβJ
Ã11
I 2Ã1γ

I ÃγδI B̃IJ



r11

r1γ

rγδ

rJ

 =


0 0 A11,γδ B11

J

0 −A11,αγ A1α,γδ B1α
J

A11,αβ 2Aαβ,1γ Aαβ,γδ BαβJ
Ã11
I 2Ã1γ

I ÃγδI B̃IJ



r11

r1γ

rγδ

rJ

 . (61)

Even after imposing Eq. (60), P is invertible unless some of the remaining components happen to vanish,

hence a null hypersurface is not characteristic in general. It implies that the scalar field wave and

gravitational wave typically propagate at subluminal or superluminal speed in the bi-Horndeski theory.
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Killing horizon with additional conditions. Since a null hypersurface is not characteristic in general,

next let us examine what happens if more conditions are imposed upon it. One important example of

such a null hypersurface is the Killing horizon, which is a null hypersurface aligned to the symmetry

direction of the spacetime. For example, black hole horizons in stationary spacetimes are Killing horizons.

Since a Killing horizon is aligned to the spacetime symmetry direction, the derivatives of the metric in

that direction vanish:

∂1gαβ = 0, ∂2
1gαβ = 0, ∂1∂γgαβ = 0, (62)

which implies that the following components of the Riemann tensor vanish on the null surface Σ:

R1αβγ = R1α1β = 0. (63)

In Gauss-Bonnet and Lovelock theories of gravity, it was confirmed that a Killing horizon becomes

characteristic once these conditions are imposed [42, 43]. In the Horndeski-type theory, however, it was

noticed that these conditions are insufficient and some additional conditions on the scalar field must be

imposed to make the Killing horizon characteristic [44].

What happens in the bi-Horndeski theory is similar to that for the Horndeski theory. By explicit

calculations, we can show that the conditions (62) make some terms with curvature tensors in P vanishing.

Even when this occurs, however, no components in P vanish completely and hence the Killing horizon

Σ will not be characteristic in general.

In Ref. [44], it was noticed that a Killing horizon in the Horndeski theory becomes characteristic if

the scalar field satisfies certain conditions. We consider generalizations of these conditions7 given by

∂1φI = 0, ∂2
1φI = 0, ∂1∂αφI = 0. (64)

A physical interpretation of these conditions are that the scalar fields share the symmetry of the back-

ground metric on the Killing horizon. With these conditions imposed, we can check that the components

of P vanish except for

A11,αβ = Aαβ,11 = −2A1α,1β

= (g01)2
[
(F + 2W) gαβ − 2JIJ

(
2XIJgαβ + φI |αφJ |β

)
+ 2KI

(
φ
I|σ
|σ g

αβ − φI|αβ
)]
, (65a)

B11
I = (g01)2

[
−B̃I + 2DJKIX

JK − 8EJKLMIX
JKXML − 2F,IJφJ |γ|γ

− 4JJK,LIδ
γê

δf̂
φJ|γφ

K|δφ
L|f̂
|ê − 2KI,JKδ

γê

δf̂
φ
J |δ
|γ φ

K|f̂
|ê − 2KIRγδ

γδ

]
, (65b)

Ã11
I = 2(g01)2

[(
DIJK − 8JJ [K,I] − 8ELKJIMX

LM
)
XJK −DIJKX

JK − 8ELJKIMX
JLXKM

− 2JIL,JKδ
γê

δf̂
φJ|γφ

L|δφ
K|f̂
|ê + 2I,I − 2

(
JIJ −K(I,J) + 2JK(I,J)LX

KL
)
φ
J |β
|β

−KJ,IKδ
γê

δf̂
φ
J |δ
|γ φ

K|f̂
|ê −KIRγδ

γδ

]
. (65c)

7 In some class of scalar-tensor theories, these conditions on scalar fields are automatically satisfied if spacetime is station-

ary [52, 53].
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Then, the characteristic equation (57) simplifies in this case to

0 = P · r =


0 0 A11,γδ B11

J

0 −A11,αγ 0 0

A11,αβ 0 0 0

Ã11
I 0 0 0



r11

r1γ

rγδ

rJ

 . (66)

The principal symbol P is degenerate, and it gives d conditions in total on an eigenvector r with vanishing

eigenvalue. Then the eigenvector will have 1
2d(d− 1) + 2− d = 1

2d(d− 3) + 2 degrees of freedom, which

coincides with the number of physical degrees of freedom of the bi-scalar-tensor theory. Therefore, the

additional conditions (64) on the scalar fields guarantee the Killing horizon Σ to be characteristic for

all of the physical modes. In more physical terms, we have found the sufficient condition for the Killing

horizon becomes an event horizon, and the conditions were that the gradients of scalar fields are aligned

to the symmetry direction of the background spacetime. A trivial background with flat spacetime and

constant scalar fields satisfies the above condition, hence the gravitational wave and the scalar field wave

propagate at the light speed on such a trivial background.

2. Wave propagation on plane wave solution

We focused on the properties of the Killing horizon and event horizon in the above, and in this

section let us focus on a more general background solution and the causal structure realized therein. It

is desirable to do this analysis in the bi-Horndeski theory, but unfortunately it is not straightforward

to do it at this moment since no explicit solutions have been constructed in this theory. We can still

make progress by focusing on some theories included in the bi-Horndeski theory for which some solutions

are known. A particularly important theory of this sort is the (single-scalar) Horndeski theory that is

invariant when the scalar field is shifted by a constant, which is called the shift-symmetric Horndeski

theory. In this theory, we have an exact solution describing a composite of plane wave of scalar field

and gravitational waves propagating in the same direction [45]. We will study the propagation of linear,

small amplitude wave on this background in this section.

For this purpose, we employ a covariant formalism developed for the Lovelock theories of gravity in

Ref. [43], which is equivalent to an analysis in the harmonic gauge. Using this formalism, we will find

that, on the plane wave solution, we can define effective metrics that differ from the physical metric

and characteristic surfaces are given by null hypersurfaces with respect to the effective metrics. Later in

section IV C 1, we will study shock formation phenomena on the plane wave solution later in section IV C 1

based on the results in this section.

Shift-symmetric Horndeski theory. Let us first introduce the subset of the bi-Horndeski theory we

focus on in the following part of this essay. We assume that the theory has a single scalar field, and also

that the theory is invariant under a constant shift of the scalar field φ→ φ+ c. Then, the most general

theory whose equations of motion is up to second order in derivatives is given by the Horndeski theory

with its arbitrary functions K,G3,4,5 depending only on X ≡ −1
2φ|aφ

|a but not explicitly on φ. Hence
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the Lagrangian of the theory we consider is given by L =
∑5

n=2 Ln, where

L2 = K(X), L3 = −G3(X)�φ, L4 = G4(X)R+G4X(X)δb1b2a1a2φ
|a1
|b1φ

|a2
|b2 ,

L5 = G5(X)Gabφ
|ab − 1

6
G5X(X)δb1b2b3a1a2a3φ

|a1
|b1φ

|a2
|b2φ

|a3
|b3 .

(67)

The metric equations Gab = 0 and the scalar field equation Eφ = 0 in this theory can be derived from

this Lagrangian, and also they can be reproduced from the equations of the bi-Horndeski theory by

reducing the number of the scalar field from two to one. For convenience of our analysis, we define the

“trace-reversed” metric equations of motion G̃ab = 0 by

G̃ab ≡ Gab −
1

2
Gcc gab. (68)

Later, we will see that this formulation is useful particularly when we examine GR.

From these equations of motion, we can derive the characteristic equation (57) as we did around

Eqs. (51), or equivalently by taking derivatives of the equations of motion with respect to the second

derivatives of the variables ξsξtgqr,st and ξsξtφ,st as we did in Eq. (50). We summarize the explicit

expressions of these derivatives in appendix B 2. Using them, the principal symbol P̃ based on the

trace-reversed metric equation (68) and the scalar equation is constructed as

P̃ (x, ξ) · r =

((
P̃ (x, ξ) · r

)
ab(

P̃ (x, ξ) · r
)
φ

)
= ξsξt

(
∂G̃ab
∂gqr,st

∂G̃ab
∂φ,st

∂Eφ
∂gqr,st

∂Eφ
∂φ,st

)(
rqr

rφ

)
, (69)

and the characteristic equation is given by P̃ (x, ξ) · r = 0 using this expression.

Gauge symmetry and physical modes. Since we are now studying a scalar-tensor theory that

is covariant, we have gauge invariance that leads to non-dynamical gauge modes besides the physical

propagating modes. One way to remove such non-dynamical modes from the analysis is to introduce

a time coordinate and look only at the spatial components of the equations of motion, as we did in

section III B. Below, we show how to study the physical modes based on our covariant formalism.

For this purpose it is useful to notice that, as we can confirm using the expressions in appendix B 2,

the mode r =
(
ξ(aXb), 0

)
for any vector Xa is annihilated identically by acting P̃ (x, ξ), that is,

P̃ (x, ξ) · r = ξsξt

(
∂G̃ab
∂gqr,st

ξ(qXr)
∂Eφ
∂gqr,st

ξ(qXr)

)
=

(
0

0

)
. (70)

This property originates from the Bianchi identity (9), which becomes ∇aGab = 1
2φ|bEφ in this theory,

and the fact that the left-hand side of this identity cannot not have third derivatives since Eφ is up to

second order in derivatives. This property (70) implies that P̃ · r is invariant under the transformation

rab → rab + ξ(aXb), (71)

as manifested by Eq. (70). Hence, we can regard r =
(
ξ(aXb), 0

)
as the gauge mode that does not affect

the characteristic equation (50).

One way to eliminate the gauge mode from consideration is to impose the following condition or r:

ξarab −
1

2
ξbr

a
a = 0. (72)
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We call this the transverse condition. Identity (70) implies that the gravitational part of the principal

symbol is transverse:

ξa
(
P̃ · r

)
ab −

1

2
ξb
(
P̃ · r

)
a
a = 0. (73)

Hence, P̃ can be regarded as a map acting on transverse tensors. Below, we consider the space of the

physical modes r satisfying the transverse condition (72), and examine the characteristic equation.

Characteristic surfaces in GR. Before studying the wave propagation in the Horndeski theory, let

us see how the above formalism works in the GR, which is reproduced by setting K = G3,5 = 0 and

G4 constant in (67). The characteristic equation P̃ · r = 0 in this case becomes, as we can obtain from

Eq. (B15),

− 1

2
G4

(
ξ2rab − 2ξcr

c
(aξb) + ξaξbr

c
c

)
= 0. (74)

When ξ is not null, this equation implies rab = ξ(aXb) for some vector Xa. This r is pure gauge and

does not correspond to a physical propagating mode. When ξ is null (ξ2 = 0), Eq. (74) is satisfied for

r obeying the transverse condition (72). Also, the gauge mode rab = ξ(aXb) is transverse as well when

ξ2 = 0. Hence, the number of physical modes will be two: among the ten components of rab, four of

them are constrained by the transverse condition (72), and in the remainder four components correspond

to the gauge mode rab = ξ(aXb). The remaining two components propagate on Σ that is null, and they

correspond to the usual gravitational wave in GR.

Characteristic surfaces on the plane wave solution. Now let us apply the above covariant formal-

ism to the plane wave solution in the shift-symmetric Horndeski theory [45]. This solution is based on

the ansatz adapted to the plane wave of metric and scalar field:

ds2 = F (u, x, y)du2 + 2dudv + dx2 + dy2, φ = φ(u). (75)

Constant-u lines are null in this ansatz, and the gravitational and scalar field waves are propagating in

that direction. To describe this solution, we introduce a null basis `a, na and mi
a with i = x, y satisfying

`a = (du)a, `ana = 1, miamj
a = δij , `2 = n2 = `amia = namia = 0. (76)

In this frame, the non-vanishing components of the Riemann tensor are given by

Ruiuj = −1

2
F,ij , Ruu = −1

2
∆F, (77)

where F,ij ≡ ∂2F/∂xi∂xj and ∆F ≡ F,ii. Adding to that, the derivatives of φ are proportional to `

(φ|a = φ′(u)`a, φ|ab = φ′′(u)`a`b) and hence X = −1
2φ|aφ

|a becomes zero. These properties drastically

simplify the equations of motion, and it turns out that they are satisfied if K(0) = 0 and F (u, x, y) obeys

∆F = −KX(0)

G4(0)
φ′2 ≡ −κφ′2, (78)

while φ = φ(u) remains arbitrary. For our study, we consider a solution of Eq. (78) given by

F = −1

4
κφ′2

(
x2 + y2

)
+ aij(u)xixj , (79)
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where aij(u) is a symmetric traceless matrix.

Now let us take the plane wave solution (75) with (79) imposed as the background solution and consider

propagation of wave upon it. The maximum propagation speed can be found from the characteristic

surface Σ, which is fixed by solving the characteristic equation P̃ (x, ξ) · r = 0 using Eq. (69). This is

an eigenvalue problem where the matrix P̃ depends on the normal vector ξ of Σ. For an appropriately

chosen ξ, an eigenvalue of P̃ becomes zero and there will be a nontrivial eigenvector r corresponding to

the vanishing eigenvalue.

In the basis (76), we may expand r = (rab, rφ) in general as

r = (rab, rφ) =
(
2`(aXb) + 2n(aYb) + (r̂ij + α δij)miamjb, rφ

)
, (80)

where Xa and Y a are arbitrary vectors and r̂ij is a symmetric traceless tensor. The first term in rab,

`(aXb), corresponds to the aforementioned gauge mode. By plugging (80) into the characteristic equation

and solving it for ξ, it turns out that nontrivial solution is obtained only when Y a = α = 0 (see [54] for

more details). Then, imposing further the transverse condition (72), we find that the physical modes are

described by

r = (rab, rφ) =
(
2r`n`(anb) + r̂ijmiamjb, rφ

)
, (81)

and the nontrivial components of the characteristic equation reduce to

0 =


(
P̃ · r

)
`n(

P̃ · r
)
ij(

P̃ · r
)
φ

 =

−
G4
2 ξ2r`n +

(
−1

2G3Xφ
′2 +G4Xφ

′′) (ξ · `)2rφ

−G4
2 ξ2 r̂ij − G4X

2 φ′2(ξ · `)2r̂ij

−KXξ
2rφ +

(
KXXφ

′2 − 2G3Xφ
′′ −G4X∆F

)
(ξ · `)2rφ

 , (82)

where G5 does not appear in the above expression although it appears in P̃ on the general background,

as shown in appendix B 2. The `n component of this equation just fixes r`n in terms of rφ. The other

components can be solved by the following two ways. First way is to impose the following on ξ and r:

− G4

2
ξ2r̂ij −

G4X

2
φ′2(ξ · `)2r̂ij = 0, (r`n, r̂ij , rφ) = (0, r̂ij , 0). (83)

Another way is to impose

−KXξ
2rφ +

(
KXXφ

′2 − 2G3Xφ
′′ −G4X∆F

)
(ξ · `)2rφ = 0, (r`n, r̂ij , rφ) = (r̃`n, 0, rφ), (84)

where

r̃`n =
2KX

G4

−1
2G3Xφ

′2 +G4Xφ
′′

KXXφ′2 − 2G3Xφ′′ −G4X∆F
rφ. (85)

The first solution (83) has two modes because r̂ij is a traceless symmetric tensor. We call the first

solution (83) and the second one (84) the tensor and scalar modes, respectively.

The characteristic surfaces Σ, or the wave propagation surfaces for these modes, are obtained as

surfaces normal to ξa that obey the first equations in Eqs. (83) and (84). These equations can be

equivalently expressed as

0 =
(
gab + ω `a`b

)
ξaξb ≡ Gabω ξaξb, ω =


G4X
G4

φ′2 (tensor)

−
(
KXX
KX

+ G4X
G4

)
φ′2 + 2G3X

KX
φ′′ (scalar)

, (86)
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where we used Eq. (78) to simplify ω for the scalar mode. Hence, a characteristic surface Σ is obtained as

a surface whose normal is null with respect to Gabω , and in this sense Gabω can be regarded as the inverse

effective metric for the tensor and scalar modes. We can also construct the effective metrics for tangent

vectors of Σ as

Gωab = gab − ω`a`b, (87)

which is shifted from the physical metric gab by an additional term −ω`a`b.

The light cone, i.e., the characteristic cone for matter field minimally coupled to the physical metric

gab such as the maxwell fields, is defined based on gab. From the effective metric (87), we can see that

the tensor and scalar modes in this setup propagate differently. The characteristic cones for the tensor

and scalar modes do not coincide with each other in general, while they always do along `, because ` is

null with respect to Gabω for any ω. Therefore, the characteristic surfaces form nested cones that touch

with each other along `, as shown in Fig. 4. We can see also that ω vanishes when φ′ = φ′′ = 0, and then

all the modes propagate at the speed of light. This situation is realized not only on the flat background

but also on the purely gravitational plane wave background, for which φ is constant but F = aij(u)xixj

is nontrivial. The effect of nontrivial F appears only in the physical metric and spacetime curvature, but

not in the deviation of the effective metrics from the physical one.

FIG. 4: A schematic of characteristic cones for waves on the plane wave solution at F (u, x, y) = 0, where −u and

v are taken toward the future direction. The null cone with respect to the physical metric (75) is given by solid

black line, and the characteristic cones obtained from the effective metrics (87) are shown by green dashed curve

and red dot-dashed curve for ω > 0 and ω < 0, respectively. All the cones are aligned in the direction parallel to `a

and they split in other directions if ω 6= 0, hence the characteristic surfaces form a nested set of cones in general.

As long as ω in Eqs. (87) is finite, propagation speeds of waves are finite and we can define causality

as usual, despite the propagation may become superluminal if ω > 0. The only difference from the

canonical scalar field coupled to GR is that the causality is not defined with respect to the light cone but

to the largest characteristic cone, which is realized for the largest ω. Since the effective metrics (87) are

always Lorentzian, the hyperbolicity of the field equation is maintained and the initial value problem is

guaranteed to be well-posed.
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IV. SHOCK FORMATION IN THE HORNDESKI THEORY

The target of the previous section was the maximum propagation speed of the wave in the most general

scalar-tensor theory, and we used the method of characteristics to study it. This analysis clarified the

structure of the wave propagation surface and also the causality implemented in this theory, but it did

not tell us much about what happens in the dynamics inside the characteristic cones. This raises a

natural question to ask: what happens to the waves as they propagates?

In GR and also for the canonical scalar field, the answer is simple: the characteristic surfaces are always

null, and correspondingly the gravitational wave and the scalar field wave in those theories propagate at

the speed of light. In more general theories, however, it is no more true and generically the propagation

speeds of waves depend on the background and also their own amplitudes. This property results in the

waveform distortion and shock formation, as we can see a simple example in the time evolution based

on Burgers’ equation (see Fig. 1). The aim of this section is to examine if a similar shock formation

phenomenon could occur in the scalar-tensor theory.

For this purpose, we focus on the propagation of discontinuity in second derivatives of the scalar field

and also the metric. This method enables us to study the nonlinear effects in the wave propagation, such

as the waveform distortion and shock formation, in a relatively simple manner. This method was applied

to Lovelock theories of gravity in [34], and it was found that the gravitational wave suffers from shock

formation due to the deviation of this theory from GR. The Horndeski theory has a structure similar

to Lovelock theories, hence in principle a similar phenomenon could take place even in the Horndeski

theory. Below, we examine this possibility using the formalism of [34].

We first review the formalism of shock formation for a generic equation of motion in section IV A,

following Ref. [34]. We will apply this formalism to the shift-symmetric Horndeski theory, and examine

conditions to avoid the shock formation for a subclass of this theory without specifying the background

solution in section IV B. In more general cases, we have to specify the background solution to make

progress. We do it in sections IV C 1 and IV C 2 using the plane wave solution and also the solutions

that have certain symmetries, respectively. The latter includes simple background solutions such as the

FRW universe and also the spherically symmetric solutions. For these background solutions, we will find

that the gravitational wave is always free from shock formation, while the scalar field wave suffers from

it generically.

A. Formalism for shock formation

In this section, we introduce a formalism to treat the propagation of discontinuity in second derivatives

based on a generic equation of motion (48). This formalism was introduced in Ref. [46] for relativistic

fluids and was employed by Ref. [34] to analyze shock formation process in Lovelock theories. We

reproduce a part of their formulation to get our analysis oriented and to fix the notation.

We will employ the coordinates (xa) = (x0, xµ) introduced in section III A, where a characteristic

surface Σ lies on x0 = 0. We assume that the equation of motion has the following structure:

PIJ(v,µν , v,0 , v,µ , v , x)vJ,00 + bI(v,0µ , v,µν , v,0 , v,µ , v , x) = 0. (88)

Here we assumed that PIJ is independent of v,0µ, which is the case in the Horndeski theory. On the

characteristic surface Σ, detP = 0 is satisfied and hence there is an eigenvector of P with vanishing



27

eigenvalue:

rIPIJ = PIJrJ = 0, (89)

where we assumed that PIJ is symmetric in its indices, hence the left and right eigenvectors of P

coincide with each other. This symmetry is guaranteed if the equations of motion (88) is derived from a

Lagrangian, hence it holds even in the Horndeski theory.

Now let us consider time evolution from an initial time slice that intersects with x0 = 0, and assume

that the dynamical variable v has a discontinuity in its second derivative with respect to x0 at the locus

of x0 = 0 on the initial time slice (see Fig. 5). The discontinuity propagates on Σ, and the solution on

the past side of Σ will not be influenced by the discontinuity. Hence, we may regard the wave of the

discontinuity to propagate into the “background solution”, which is a solution (before introducing the

discontinuity) of the equation of motion.

Since the discontinuous part of (88) is given by PIJ [vJ,00] = 0, where the quantity with square brackets

denotes its discontinuous part, comparing with Eq. (89) we find that [vI,00] must be proportional to an

eigenvector rI and hence

[vI,00] = Π(xµ) rI , (90)

where Π(xi) is the proportional factor, which may be regarded as the amplitude of the discontinuity.

Below, we focus on the time evolution of this amplitude Π.

The evolution equation of Π can be constructed by firstly taking x0 derivative of the equation of

motion (88), acting rI on it to remove third derivatives with respect to x0, and finally picking up

discontinuous part of the resultant equation. With some calculations, we can show that this operation

results in

KµΠ,µ +MΠ +N Π2 = 0, (91)

where

Kµ = rIrJ
∂bI
∂vJ,0µ

(92)

M = rI

{
∂bI
∂vJ,0µ

rJ,µ +

(
∂PIJ
∂vK,µν

vK,0µν +
∂PIJ
∂vK,µ

vK,0µ +
∂PIJ
∂vK

vK,0 +
∂PIJ
∂x0

+
∂bI
∂vJ,0

)
rJ + 2

∂PIJ
∂vK,0

(
v(J |,00

)−
r|K)

}
(93)

N = rIrJrK
∂PIJ
∂vK,0

, (94)

and (vJ,00)− ≡ limx0→−0 vJ,00. The coefficients in Eq. (91) depend only on the field values at x0 →
−0, that is, the background solution on the past side of the characteristic surface. The discontinuity

propagates along the integral curve generated by Kµ, which can be found by integrating

dxµ

ds
= Kµ(xν), (95)

where we have introduced a parameter s along the integral curve xµ = xµ(s) and set s = 0 at the initial

time slice. Then, denoting Π̇ ≡ dΠ(s)/ds, Eq. (91) may be written as

Π̇ +MΠ +N Π2 = 0. (96)
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An equation equivalent to Eq. (96) is obtained also for propagation of weakly-nonlinear high frequency

waves, whose frequency is sufficiently large compared to the background time dependence [34, 46, 55–57].

As we can see from the following analysis, the coefficient of the nonlinear term N plays a key role in

the shock formation process. Time evolution of the amplitude Π(s) is described by the general solution

of Eq. (96), which is given by

Π(s) =
Π(0)e−Φ(s)

1 + Π(0)
∫ s

0 N (s′)e−Φ(s′)ds′
, (97)

where Φ(s) ≡
∫ s

0 M(s′)ds′. When N = 0, Π(s) remain finite unless M(s) diverges. Since M(s) is

determined only by information of the background solution and the characteristic surface, divergence of

M occurs only when the background solution or Σ is not regular.8 When N 6= 0, Π(s) diverges even

when the background is regular and Φ(s) remains finite, since the denominator of (97) may vanish as s

increases from zero, particularly for sufficiently large initial amplitude Π(0).

At the moment when Π(s) diverges, the second derivatives on the future side become infinite hence the

first derivatives become discontinuous at Σ. We call it a shock formation in this work. This phenomenon

originates from the nonlinear effect due to nonzero N as we observed above, and also it can be shown

that it occurs when two different characteristic surfaces collide with each other in time evolution [31–34].

See also [46] for more details on this shock formation process.

FIG. 5: Propagation of discontinuity in second derivatives of the metric and scalar field, where red curves

show profile of difference between the “background solution” without discontinuity and the solution to which the

discontinuity is added. Solution in the future region of Σ (shaded region) is influenced by the discontinuity, while

that in the past region is not. The discontinuity propagates on Σ, and its amplitude Π(s) evolves as it propagates.

When N 6= 0, Π(s) and hence the second derivatives of fields generically diverge at finite s, which corresponds to

a shock formation.

B. Shock formation in the shift-symmetric Horndeski theory

As shown in the previous section, shock formation in second derivatives may occur when N defined

by Eq. (94) does not vanish. In the following, we examine properties of N and shock formation process

8 Divergence of Φ(s) happens when characteristic curves on Σ form a caustic on it by crossing with each other, where the

amplitude of wave may diverge due to the focusing effect. To distinguish it from the shock generated by nonlinear effect

associated with nonzero N , sometimes this type of shock formation is called a linear shock [46].
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in the shift-symmetric Horndeski theory. We first show the expression of N in this theory on general

background, and then examine sufficient conditions for N = 0 for a subclass of this theory.

Expression of N on general background. As shown in Eq. (94), the coefficient of the nonlinear

term N is given by a derivative of the principal symbol of the field equation. In the shift-symmetric

Horndeski theory, it is given by

N =

(
ref

∂

∂gef,0
+ rφ

∂

∂φ,0

){(
rab rφ

)( ∂Gab
∂gcd,00

∂Gab
∂φ,00

∂Eφ
∂gcd,00

∂Eφ
∂φ,00

)(
rcd

rφ

)}
, (98)

where we have taken ξa = (dx0)a and expressed ξcξd
∂

∂gab,cd
≡ ∂

∂gab,00
and ξcξd

∂
∂φ,cd

≡ ∂
∂φ,00

. The derivatives

with respect to gef,0 and φ,0 act only on the components of the two-by-two matrix in Eq. (98). Calculating

the terms in this expression, it turns out that that the following relation holds:

ref
∂2Eφ

∂gef,0∂φ,00
=

∂2Gab
∂φ,0∂φ,00

rab =
∂2Eφ

∂φ,0∂gcd,00
rcd , ref

∂2Gab
∂gef,0∂φ,00

rab = ref
∂2Eφ

∂gef,0∂gcd,00
rcd =

∂2Gab
∂φ,0∂gcd,00

rabrcd .

(99)

Using it, N is expressed as

N = rabrcdref
∂

∂gef

∂Gab
∂gcd,00

+ rφ
3 ∂

∂φ,0

∂Eφ
∂φ,00

+ 3

(
rφref

∂

∂gef,0

∂Gab
∂φ,00

rab + rφ
2ref

∂

∂gef,0

∂Eφ
∂φ,00

)
, (100)

where the explicit expressions of the terms of (100) are shown in appendix C 1. This N does not vanish

in general, hence the shock formation occurs generically in this theory, while there are some special cases

where N = 0, as we see some examples below.

Sufficient conditions for N = 0. In this section, let us examine sufficient conditions for N to vanish.

Among the theories incorporated in the shift-symmetric Horndeski theory, we find that the k-essence [47]

coupled to GR emerges as the special theory where the scalar sector decouples from the metric sector,

and also that the scalar field version of the DBI model [48] turns out to be the unique nontrivial theory

to make N = 0 on the general background.

For the k-essence coupled to GR (G3 = G5 = 0, G4 = const. with general K(X)), non-vanishing parts

of the (trace-reversed) principal symbol can be obtained from expressions in appendix B 2 as

ξsξt
∂Eφ
∂φ,st

= −KX

(
gab − KXX

KX
φ|aφ|b

)
ξaξb, ξsξtrqr

∂G̃ab
∂gqr,st

=
G4

2

(
−ξ2rab + 2ξcr

c
(aξb) − r

c
cξaξb

)
. (101)

There are no terms that mix the scalar and metric parts, and in this sense the scalar part decouples from

the metric part in this analysis. Characteristic surfaces can be found by equating these expressions with

zero and solving for ξ.

The metric part in (101) is the same as that of GR, which was already discussed at Eq. (74). The

result was that there are two physical modes of the form r = (rab, rφ) = (rab, 0) for which ξ is null. For

the scalar part, we can see that the characteristic equation is given by(
gab − KXX

KX
φ|aφ|b

)
ξaξb = 0, (102)

where the expression in the parenthesis can be regarded as the effective metric for the scalar mode. A

surface whose normal ξ satisfies this equation is characteristic, and the eigenvector is simply given by

r = (rab, rφ) = (0, rφ).
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Let us evaluate N for these modes next. For the k-essence coupled to GR, only (C11) contributes

among the terms appearing in N , hence

N = rφ
3 ∂

∂φ,0

∂E2
φ

∂φ,00
= 3φ|0KXXξ

2 − (φ|0)3KXXX , (103)

where φ|0 = ξaφ
|a. For the tensor modes, this N vanishes identically, and hence the shock formation

does not occur. For the scalar mode, normalizing rφ = 1 and using (102), we find

N =

(
φ|0
)3

KX

(
3KXX

2 −KXKXXX

)
. (104)

The condition N = 0 to avoid the shock formation is equivalent to 3KXX
2 −KXKXXX = 0 (assuming

φ|0 6= 0), which may be viewed as a differential equation of K(X). A trivial solution is K ∝ X, which

corresponds to a canonical scalar field. The general solution other than this one is given by

K = −λ
√
c±X + Λ, (105)

where λ, c,Λ are constants. This is the Lagrangian of the scalar DBI model. Hence, among the theories

described by the k-essence coupled to GR, the scalar DBI model (105) is singled out as the nontrivial

theory free from the shock formation.

This behavior is the same as that of plane-symmetric simple wave solutions for probe scalar field

studied by Refs. [35, 36], where the scalar DBI model turned out to be the theory free from caustics

formation.9 As discussed above, the scalar and metric part decouples in our setup if G3,5(X) and non-

constant part of G4(X) are set to zero. Having this decoupling, it seems natural that the result obtained

from our setup coincides with those for the probe scalar field, although the metric sector is taken into

account in our setup.

For more general theories, it seems difficult to find characteristics and eigenvectors since the scalar

and metric parts do not decouple in the characteristic equation. However, we can still find a sufficient

condition to realize N = 0,10 that is to set

φ|0 = Γ0
αβ = 0 (106)

on Σ. As we can see from the expressions in appendix C 1, all the terms appearing in N vanish identically

once this condition is imposed.

Γ0
ab is proportional to extrinsic curvature on Σ, that is essentially the derivative in the normal direction

of the induced metric on Σ, ∂0gµν . Hence, the metric and also the scalar field are locally constant in

the x0 direction. It seems that the shock formation is suppressed when the background has this local

homogeneity. The flat spacetime with constant φ, and also the Killing horizon with φ|0 = 0 imposed

additionally are examples in which the condition (106) is satisfied and then the shock formation is

suppressed.

9 See [49] for earlier discussions on exceptional theories for a scalar field on flat spacetime, in which the canonical scalar

and the scalar DBI were found to be exceptional, that is, N vanishes identically and the shock formation does not occur

for them. Also the DBI model for a probe vector field is shown to be exceptional [58].
10 It is sufficient that Γ0

αβ vanishes, since Γ0
ab is always contracted with ξa′ξb′ and a generalized Kronecker delta in N (see

appendix C 1), and due to this structure Γ0
00 and Γ0

0α are eliminated and only Γ0
αβ is left in N .
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C. Examples of shock formation

To study the properties of shock formation for more general choices of Gn(X) on generic background,

we need to look into explicit examples of background solutions and study wave propagation on them.

Such a study using explicit background solutions is the main subject of this section.

The first example is the plane wave solution, for which we follow the analysis of Ref. [34] for shock

formation on the plane wave solution in Lovelock theories. We introduce coordinates adapted to geodesics

in this setup, and examine shock formation using them. We find that the tensor modes or the gravitational

wave does not suffer from the shock formation, while the scalar field wave forms a shock in general.

Another example of the background is the dynamical solutions that are symmetric in the two-

dimensional angular directions. Some simple solutions appearing in the studies on cosmology and as-

trophysics, such as the FRW solutions and spherically-symmetric dynamical star (see Fig. 6) fall into

this class of solutions, for example. On this background, we again find that the gravitational wave is

protected from the shock formation, while the scalar field wave is generically not. We also show an

example of nontrivial theory for which even the scalar field wave, not only the gravitational wave, is

protected against the shock formation on the FRW universe background.

1. Shock formation on plane wave solution

As the first example, let us examine the shock formation on the plane wave background, for which we

studied the propagation of perturbations in section III B 2. We first introduce the coordinates adapted

to the wave propagation direction, and then derive the transport equation (96) to check if the amplitude

Π(s) of the discontinuity diverges or not.

Characteristic surfaces on the plane wave background is given by null hypersurfaces with respect to

effective metric (87), which can be transformed as

Gωµνdx
µdxν = (F − ω)du2 + 2dudv + dx2 + dy2 = Fdu2 + 2dudv′ + dx2 + dy2, (107)

where we introduced a new coordinate v′ ≡ v − 1
2ω u. For simplicity, we consider plane-fronted wave

propagating from a surface u = v′ = 0, and focus on the propagation in the (negative) u direction,

which is opposite from the direction of `a in Fig. 4. Such wave propagates along the null geodesics of

the effective metric (107), which can be found by solving the geodesic equation for the effective metric
d2

dλ2
xa + Γabc

dxb

dλ
dxc

dλ = 0. Its components are given by

ü = 0, v̈′ +
1

2
u̇ (u̇F,u + 2ẋαF,xα) = 0, ẍα − 1

2
u̇ F,xα = 0, (108)

where xα = x, y and a dot denotes a derivative with respect to the affine parameter λ. The first of these

implies that we may take u = λ. Below, for simplicity we consider a background given by

φ(u) = φ′ u, F = −κ
2
φ′2
(
x2 + y2

)
+A

(
x2 − y2

)
, (109)

where φ′ and A are constants. It corresponds to setting axx = −ayy = A and axy = 0 in Eq. (79), and

making the gradient of the scalar field constant. Then the last of Eq. (108) can be solved by

xα = ηα cosh
(√

Aαλ
) (

Ax = A− 1

4
κφ′2, Ay = −A− 1

4
κφ′2

)
, (110)
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where ηI is the initial position xI of a geodesic at λ = 0. Assuming κ > 0,11 it is guaranteed that one

of Ax and Ay becomes negative at least for any choice of A. We proceed with assuming A < 0 (hence

Ax < 0 at least) below. Then the second of Eq. (108) can be integrated as

v′ = −1

4

∑
α=x,y

(ηα)2 sinh
(
2
√
Aαλ

)
. (111)

Introducing the coordinates adapted to the geodesics by

ηα =
xα

cosh
(√
Aαλ

) , x0 = v − 1

2
ω u+

1

4

∑
α=x,y

√
Aα (ηα)2 sinh

(
2
√
Aαu

)
, (112)

the physical metric (75) becomes

ds2 = ωdu2 + 2dudx0 +
∑
α=x,y

cosh2
(√

Aαu
)

(dηα)2 . (113)

The characteristic surface is at x0 = 0, and its normal is given by ξ = dx0. This metric becomes singular

at u = ± π
2
√
−Aα

for Aα < 0, which corresponds to a caustic of the null geodesics. The only nonzero

components of Γ0
αβ on x0 = 0 are

Γ0
αα = −1

2

√
Aα sinh

(
2
√
Aαu

)
(no sum on α). (114)

N on the plane wave solution can be obtained by plugging the background solution (109), (113),

(114) into the general expression (100), whose expressions are given in appendix C 1. We summarize the

explicit formula obtained from this procedure in appendix C 2.

For the tensor mode (83), the only term that could contribute to N is the pure metric term (C3):

N = rabrcdref
∂

∂gef,0

∂G5
ab

∂gcd,00
=
φ|0

4
XG5Xδ

bb1b2b3
aa1a2a3ξ

aξbr
a1
b1
ra2b2 r

a3
b3
. (115)

This term becomes zero because X = 0 for the plane wave solution and also δbb1b2b3aa1a2a3ξ
aξbr

a1
b1
ra2b2 r

a3
b3

vanishes identically if Eq. (83) is plugged in. Hence, N vanishes for the tensor modes on the plane wave

background, or in other words gravitational wave on this background does not suffer from the shock

formation.

For the scalar mode (84), N is given by

N = C+ t+(u) + C− t−(u) + C0, (116)

where

t±(u) ≡
√
Ax tanh

(√
Axu

)
±
√
Ay tanh

(√
Ayu

)
, (117)

and C±,0 are constants given by

C+ = φ′2
{
− 1

2G4
(2G3XG4X +KXG5X) +

2KXXG3X

KX
−G3XX

}
(118)

C− = −2AG5X (119)

11 κ = KX(0)/G4(0) is defined by Eq. (78), and it will be positive if we require KX(0), G4(0) > 0, which is the stability

conditions for the canonical scalar field minimally coupled to GR.
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C0 = φ′3
{

3

G4

(
−G3X

2 −KXG4XX +KXXG4X

)
+

3KXX
2

KX
−KXXX

}
. (120)

We have also taken the normalization rφ = 1. For a generic choice of K and G3,4,5, N defined by Eq. (116)

becomes nonzero and hence the shock formation occur within finite time, as we showed in section IV A.

Actually, in this case we can show more than that, since we know the detailed structure of the

characteristic surface Σ and the properties of N . From the background metric (113), we can evaluate

the entire part of the transport equation (96), not only the coefficient N of the nonlinear term. Based

on the full transport equation, we can give an estimate on the time at which the shock formation occurs.

Leaving the details to appendix C 3, let us just summarize the main results below. Since N defined by

(116) diverges at u = −π
2
√
−Ax

≡ u∗, it can be shown that Π(u) diverges at |u| < |u∗| even if the initial

amplitude of the discontinuity Π(0) is arbitrarily small, and the moment of the shock formation u = u0 is

roughly estimated as u0/u∗ ∼ 1−
(
π(C++C−)

2KX
Π(0)

)2
for small enough Π(0). Hence, the shock formation

occurs for arbitrarily small initial amplitude Π(0) on this background, and the shock formation time

becomes earlier for larger Π(0).

2. Shock formation on dynamical solutions with symmetries

We now focus on another type of dynamical background, for which the two-dimensional angular part of

the spacetime is maximally symmetric. For example, the FRW universe, and also spherically-symmetric

dynamical solutions fall into this class of background. We will see that the conditions for shock formation

can be derived without making much assumptions on the free parameters (K(X), Gn(X)) of the theory.

Two-dimensionally maximally-symmetric dynamical solutions. Dynamical solutions with metric

whose two-dimensional spatial part is maximally symmetric can be expressed in general as

ds2 = f(τ, χ)
(
−dτ2 + dχ2

)
+ ρ2(τ, χ)γαβdx

αdxβ ≡ fηABdxAdxB + ρ2γαβdx
αdxβ, φ = φ(τ, χ), (121)

where xA = τ, χ, and γαβ is the metric of the two-dimensional subspace with constant curvature k = 0,±1

spanned by xα. We also assumed that the scalar field shares the symmetry of the spacetime. Due to the

symmetry, components of the curvature tensor vanish except for

RA1A2
B1B2

=

(
∂2
τ − ∂2

χ

)
log f

2f
δA1A2
B1B2

≡ R1δ
A1A2
B1B2

, RA1α2
B1β2

≡ R2
A1
B2
δα2
β2
, Rα1α2

β1β2
=
k f + ρ2

,τ − ρ2
,χ

fρ2
≡ R3δ

α1α2
β1β2

,

(122)

where R2
A
B is a two-dimensional tensor defined by Eq. (C35). Also, the components of φ|ab other than

φ|AB and φ|αβ vanish, as shown in Eq. (C36). These properties simplifies the evaluation of N drastically.

Below, we focus on wave whose wavefront shares the symmetry with the background spacetime, that

is, we assume that the wavefront is given by a χ-constant surface and ξµ has only τ, χ components. For

example, plane wave in the flat FRW universe, and spherically-symmetric wavefront around a spherically-

symmetric dynamical star fulfill this assumption (see Fig. 6).

Gravitational wave. Characteristic surfaces on the background (121) can be found by solving the

characteristic equation (57) following the procedure of section III B. To accomplish it for the gravitational

wave, we focus on the vector r given by

r = (rab, rφ) = (r
(T)
ab , 0), (123)
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(a) FRW universe (b) Spherically-symmetric solution

FIG. 6: Examples of two-dimensionally maximally-symmetric dynamical solutions and wave propagation therein.

Panel (a) shows a flat FRW universe and wave with plane-symmetric wavefront, and panel (b) shows a spherically-

symmetric background and spherically-symmetric wavefront. The ansatz (121) can describe more general solutions

than these examples.

where r
(T)
ab is a traceless tensor which has components only in the angular directions, that is, r

(T)
AB = 0. By

explicit calculations, we can check that this vector actually solves the characteristic equation as follows.

The scalar and mixed parts of P̃ · r vanish for this r, hence only the metric part shown in appendix B 2

remains nontrivial and is given by

ξsξtr
(T)
qr

∂G̃4b
a

∂gqr,st
= −1

2
(G4 − 2XG4X) ξ2r(T)b

a +
1

2
G4X δ

B1B2
A1A2

ξA1ξB1φ
|A2φ|B2

r(T)b
a, (124)

ξsξtr
(T)
qr

∂G̃5b
a

∂gqr,st
= −1

2
XG5X δ

B1B2
A1A2

ξA1ξB1φ
|A2

|B2
r(T)b

a. (125)

From these expressions, we find that the characteristic equation P̃ · r = 0 is satisfied if{
(G4 − 2XG4X) δBA − δ

BB1
AA1

(
G4Xφ

|A1φ|B1
−XG5Xφ

|A1

|B1

)}
ξAξB = 0, (126)

where the expression in the curly brackets is the effective metric for gravitational wave on the back-

ground (121).12

Let us check if shock could form for gravitational wave (123) by evaluating N . The only term that

could be nonzero is rabrcdref
∂

∂gef,0

∂G5ab
∂gcd,00

in Eq. (C3), which is proportional to δbb1b2b3aa1a2a3ξ
aξbr

(T)a1
b1 r

(T)a2
b2 r

(T)a3
b3 .

However, r(T) is a traceless tensor living in the two-dimensional angular part of the spacetime, and then

Eq. (C3) identically vanishes since it involves three r(T) tensors contracted with a single generalized

Kronecker delta. Hence, N is zero and shock formation does not occur for gravitational wave on the

background (121).

Scalar field wave. Next, we study wave that involves the scalar field and examine if it suffers from the

shock formation. The first step is to find the characteristic surface and the eigenmode corresponding to

the scalar field wave. On the background (121) and for the wavefront that inherits the symmetry of the

background, we may assume that the eigenvector r has the same symmetry and is given by

r = (rab, rφ), rAB = rη ηAB +
2rγ
ξ2
ξAξB, rAα = 0, rαβ = rγ γαβ, (127)

12 This effective metric for gravitational wave coincides with that of [59], though G5 was not taken into account in their

analysis. Also, the propagation speed obtained from (126) coincides with that derived in [17] when the background

solution is set to the FRW universe.
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where rφ, rη and rγ are functions of τ, χ. The term involving ξAξB is the gauge part added so that r

satisfies the transverse condition (72).

For the ansatz (127), we may parameterize the eigenvector by (rη, rγ , rφ), and then we can solve the

characteristic equation (57) to fix the characteristic surface with normal ξa and the eigenvector (rη, rγ , rφ).

Once they are found, the propagation speed of the scalar mode will be given by cS = |ξτ/ξχ|. It turns out

that the physical eigenvector is uniquely fixed by this process, although its expression typically becomes

lengthy and not illuminating. Below, we show an example for which we can obtain relatively compact

expressions for it.

Scalar field wave propagation in the FRW universe. An example is when the background is given

by the FRW universe described by

f = ρ2 = a(τ)2, φ = φ(τ), (128)

where τ in this case is the conformal time from which a standard time coordinate may be defined by

dt = a(τ)dτ . We will use the Hubble parameter in terms of t, H(t) ≡ a,t/a, and also the notation

φ̇ ≡ φ,t and X = φ̇2/2 below. tt and χχ components of the background equation of motion (B4) give the

modified Friedmann equations

−K+2XKX +6HXφ̇G3X−6H2
(
G4 − 4XG4X + 4X2G4XX

)
+2H3Xφ̇ (5G5X + 2XG5XX) = 0, (129)

E ≡ K + 2
(
3H2 + 2Ḣ

)
(G4 − 2XG4X)− 4H

(
H2 + Ḣ

)
Xφ̇G5X

− 2φ̈
[
XG3X + 2Hφ̇ (G4X + 2XG4XX) +H2X (3G5X + 2XG5XX)

]
= 0. (130)

Properties of the background solution (128) and its perturbations are studied by Ref. [17]. Particularly,

propagation speed of the scalar mode is given by cS =
√
FS/GS , where

Σ ≡ XE,X +
1

2
HE,H , Θ ≡ −1

6
E,H , FS ≡

1

a

d

dt

( a
Θ
G2
T

)
−FT , GS ≡

Σ

Θ2
G2
T + 3GT . (131)

This cs coincides with the propagation speed obtained from the eigenvalue obtained above once the

Friedmann equations (129), (130) are imposed.

Expressions of the propagation speed and the eigenvector r become lengthy in general. One exception

is the case discussed in section IV B, where G3,4,5 are constants while K(X) is kept general. In this case

it follows that

(rab, rφ) = (0, rφ), c2S =
KX

KX + 2XKXX
, (132)

and also we can check that N = 0 is achieved by the scalar DBI model coupled to GR, as we discussed

in section IV B. Another case that gives relatively simple cS and r is when

K = −λ
√

1 + cX, G4 = a4

√
1 + c̃ X, G3,5 = 0, (133)

where λ, c, a4, c̃ are constants that satisfies c 6= c̃.13 In this case, using the Friedmann equations (129),

(130) we can simplify the propagation speed and the eigenvector as

cS
2 = 1 + cX, (rη, rγ , rφ) ∝

(
c̃ (1 + cX)3/4

c φ̇
,

c̃ φ̇

(1 + cX)1/4
,

√
6a4

λ
(1 + c̃ X)1/4

)
, (134)

13 When c = c̃, FS and GS vanish and then the quadratic Lagrangian for scalar perturbation shown in [17] vanishes identically,

which indicates that the theory is in the strong coupling regime.



36

and we can check that N identically vanishes even in this case. It can be confirmed by direct calculations

that other choices of G4 such as G4 ∝ (1 +X)−1/2 typically result in N 6= 0. Hence, it seems that the

choice (133) is special among other choices of K(X) and G4(X) in the sense that it leads to a cosmological

solution free from shock formation.

For more general choices of the arbitrary functions K(X), G3,4,5(X), the expressions of the propa-

gation speed and the eigenvector become more lengthy and complicated. We can still make progress in

such a case by evaluating those expressions and N with the aid of computer algebra. In general, we can

confirm that N becomes nonzero hence the scalar field wave suffers from the shock formation.

V. OUTLOOK

The main results and implications obtained in this essay are summarized in section I A. In this section,

let us conclude this essay with comments on open questions and possible future directions of the study.

Let us categorize them according to the three main topics addressed in this essay.

• Construction of the bi-Horndeski theory (section II)

Construction of Lagrangian using integrability conditions. In this essay, we have successfully

constructed the most general equations of motion compatible with the covariance of the theory, while

we are still missing the Lagrangian that gives rise those equations as its Euler-Lagrange equations. We

can study the classical dynamics in this theory using only the equations of motion, as we exemplified

in sections III and IV, but it is better to have the Lagrangian at hand, particularly when we consider

quantum effects in this theory or when we apply it to studies in the cosmology context (see e.g.

Ref. [17]).

One of the conditions we have not used in our construction was the integrability condition that

guarantees the existence of the Lagrangian

δ
√
−g Gab(x)

δgcd(y)
− δ
√
−g Gcd(y)

δgab(x)
=
δ
√
−g Gab(x)

δφI(y)
− δ
√
−g EI(y)

δgab(x)
=
δ
√
−g EI(x)

δφJ(y)
− δ
√
−g EJ(y)

δφI(x)
= 0, (135)

where δ/δA denotes variation with respect to a field A. Explicit formula obtained from this condition

can be derived following [60], and it is summarized in [54]. In the single scalar field case, the Lagrangian

was constructed without using these conditions. In the multi-scalar field case, however, they may

restrict the form of the equations of motion, and then some clues to the construction of the Lagrangian

may be obtained from them. Such a trial employing the integrability conditions will be one of the

future tasks.

Construction of Lagrangian using simple solutions/ansatz. A possible approach toward con-

struction of the Lagrangian may be to focus on simpler solutions and construct the Lagrangian that

generates them. For example, we could take the mini-superspace approach where we focus only on

the FRW-type solutions. The solutions with some symmetries we studied in section IV C 2 may be

useful as well. The equations of motion and also the candidate Lagrangian are simplified for these

simpler solutions, hence it may be fruitful to examine these subclass of the general solutions first

before trying the construction for the general solutions. Also, these simpler solutions can be useful
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also for applications of this theory to various problems in the context of astrophysics and cosmology,

such as studies on cosmological solutions or black hole solutions realized in this theory.

Another possible approach is to introduce ansatz for the Lagrangian and try to find the correct

choice of the parameters in the ansatz by comparing the field equations (39) to the Euler-Lagrange

equations obtained from the ansatz. The approach taken in section II D is one example of this

approach, where we have used the trace of the field equations as the ansatz. There are some theories

with multiple scalar fields proposed by different methods (see e.g. [61–63]), and it would be fruitful

to examine those theories to see if we can extract any hints for the correct form of the most general

Lagrangian.

• Wave propagation in the bi-Horndeski theory (section III)

Phenomenology of super/subluminal propagations. In section III we formulated the method

of characteristics for the gravitational wave and scalar field wave in the most-general scalar tensor

theory. Using them, we can study the conditions for those waves to propagate at super/subluminal

speeds. It would be fruitful to study the phenomenology of those super/subluminal propagation of

the waves. When the waves propagate subluminally, they can be emitted as Cherenkov radiation

from rapidly-moving particles. Such Cherenkov radiation could be used to constrain the theory ob-

servationally [64]. On the other hand, superluminal propagation of waves could be an obstacle for

the UV completion of a low-energy effective theory [65], although there are some subtleties about

it [66, 67]. In [59], anomalous propagation speed of the gravitational wave and its importance in the

future multi-messenger gravitational wave astronomy was investigated. It deserves to re-examine these

issues for the general scalar-tensor theories based on the formalism given in this essay. Also, it may be

interesting to study the implications of the new terms in the equations of motion of the bi-Horndeski

theory, which was discussed in section II C, in the light of the phenomenology of super/subluminal

propagations.

Black hole horizon and causal structure of spacetime. In section III B 1, we showed that a

Killing horizon, a null hypersurface at which the spacetime is locally stationary, is not a causal edge

in general in the bi-Horndeski theory. We found also that a superluminal propagation across the

horizon is shut off if the scalar fields share the Killing symmetry on the horizon. This property may

be regarded as a natural generalization of that found for scalar-tensor theories with a non-minimally

coupled scalar field studied in Ref. [44]. In [68] the causal structure in Einstein-aether and Hořava–

Lifshitz theories were studied, and it was noticed that the universal horizon, which acts as the causal

edge for any mode, is orthogonal to the background vector field in those theories. This property seems

similar to that found in this work, if the gradient of the background scalar field is identified as such

a vector field. It is tempting to conjecture that the property of this kind is universal in gravitational

theories with additional degrees of freedom, that is, a Killing horizon becomes an event horizon in

any theory if the fields are aligned to the background symmetry direction. It would be interesting to

pursue such a possibility and examine its implications.

Extensions to more general theories. In this essay, we focused on the (bi-)Horndeski theory,

which is the most general covariant theory whose Euler-Lagrange equations are up to second order

in derivatives. Rather recently, some scalar-tensor theories that encompass the Horndeski theory as
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their subclass were proposed in the single scalar field case. In these theories, the Euler-Lagrange

equations contain higher-derivative terms, unlikely to the Horndeski theory, while the number of the

degrees of freedom is unchanged (one plus two from the scalar field and graviton) due to nontrivial

constraints built in those theories. A theory in this class was first introduced in [69–71], where the new

theory was related to the Horndeski theory by disformal transformation. This theory was dubbed the

beyond-Horndeski theory, and later on it was extended further to incorporate higher order terms in

Lagrangian without re-introducing the ghost instability [72–83]. There are similar extended theories

involving vector degrees of freedom and also derivatives of spacetime curvature [84, 85], which have

been attracting wide interest recently. It would be interesting to check if the formalism used in this

essay could be extended for these theories. The subtleties are that the equations of motion contain

higher order derivatives, and also that nontrivial constraints are present in those theories. The second-

order formalism in this essay must be generalized to incorporate them, or it might be helpful to use

the first-order formalism employed in [86] for nonlinear massive gravity theory, which has a nontrivial

constraint built in the theory.

• Shock formation in the Horndeski theory (section IV)

Gravitational wave and shock formation. In any example studied in this essay, the propagation

modes corresponding to gravitational wave were always free from shock formation. If this feature

persists on any background solution, we may conclude that the gravitational wave in this class of theory

is more well-behaved compared to the scalar field, which typically suffers from shock formation. On the

other hand, if we could find some background solutions or nontrivial shape of wavefront for which shock

formation occurs even for gravitational wave, it might give interesting implications to gravitational

wave observations which was realized recently by LIGO [5]. Such studies on shock formation in

gravitational wave with nontrivial wavefront on nontrivial background would be interesting.

In this essay, we analyzed the shock formation only in the shift-symmetric Horndeski theory for

simplicity. It is straightforward to extend it to more general theories including the bi-Horndeski theory.

One of the problems in this approach is that not so many solutions have been constructed in these

theories, and then we lack the background solutions to use in the analysis. Hence it may be better first

to look at simpler theories, such as the generalized multi-Galileon theory [20], and seek for background

solutions which can be used for the analysis.

In Lovelock theories of gravity in higher dimensions, it was shown that the shock formation occurs

in gravitational wave [34]. In this theory, the Lagrangian and the equation of motion contain products

of the spacetime curvature tensors, and also the gravitational wave have more degrees of freedom

compared to the four-dimensional case. These ingredients might have been the source of the shock

formation in this theory, because the shock formation is caused by nonlinear self interaction of the

wave. In the bi-Horndeski theory in four dimensions, it seems that these ingredients are missing, and

maybe it implies that shock formation does not occur even in this theory and also in other multi-field

scalar field theories related to it. It would be interesting to examine this expectation.

Time evolution after shock formation. When a shock forms, derivatives of fields diverge there

and the theory would break down unless higher-order corrections to the theory ameliorate the singular

behavior, or unless we accept such a field configuration as a weak solution of the theory. Also, a shock

formation would correspond to a naked singularity formation unless it is covered by an event horizon
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or resolved by corrections to the theory, as argued in [34, 36]. It would be interesting to study time

evolution after shock formation by taking higher-order corrections into account or by regarding a

shock as a weak solution, as we usually do in dynamical simulations of compressible fluids.

To treat a shock as a weak solution in the theory, we need use the junction conditions to impose

at the shock surface, which correspond to the Rankine-Hugoniot conditions for shock waves in usual

fluids. Such junction conditions have been derived and applied in the Horndeski theory [87, 88]. Using

them, it may be possible to simulate a shock formation and time evolution after that starting from

smooth initial data. It may be fruitful to conduct such numerical or analytical analysis on phenomena

that involve shock formation and to examine their implications in, e.g., dynamical phenomena in

astrophysics such as binary star motion or gravitational collapse of matter field.

Nonlinear time evolution with shock formations. As discussed above, the phenomena discussed

in this work could be important in time evolution that involves nonlinear dynamics of gravity and

scalar fields. In this work, we focused only on the evolution of weak discontinuity, and found that its

shock formation is controlled by the parameter N (94), which is given by a derivative of the principal

symbol P of the equations of motion. The importance and implications of this quantity in the full

nonlinear dynamics within scalar-tensor theories should be investigated further. Such a study may

provide some insights that help us when we apply the scalar-tensor theories to various problems in

physics, including those in astrophysics and cosmology.
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Appendix A: Formulae for construction of the bi-Horndeski theory

1. The ξ tensors

We summarize the explicit forms of the ξ tensors introduced in section II B to construct the most

general equations of motion. As described in section II B, the ξ tensors are constructed by taking the

products and linear combinations of φI |a, gab and εabcd so that the resultant ξ tensors have the symmetries

of Eqs. (11)–(13). We need to find all such ξ tensors to construct the most general second-order tensor

whose divergence remains of second order. In doing so, we find that not all of the ξ tensors give nontrivial

contributions to Eq. (19), because there are some degeneracies and the identical terms appear from more

than one ξ tensor. The ξ tensors that give nontrivial contributions to Eq. (19) are summarized as

ξabcdI = aI

(
gacgbd + gadgbc − 2gabgcd

)
+ bIJK

[
gacφJ |bφK|d + gadφJ |bφK|c + gbdφJ |aφK|c + gbcφJ |aφK|d − 2

(
gabφJ |cφK|d + gcdφJ |aφK|b

)]
+ cIJKLM

(
φJ |aφK|cφL|bφM |d + φJ |aφK|dφL|bφM |c − 2φJ |aφK|bφL|cφM |d

)
+ dIJKLM

(
φJ |aφK|cεbdefφL|eφ

M
|f + φJ |aφK|dεbcefφL|eφ

M
|f

)
, (A1)

ξabcdef = âIJ

(
εIaceεJ bdf + εI bceεJadf + εIadeεJ bcf + εI bdeεJacf

)
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+ b̂ ggh

(
εacegεbdfh + εbcegεadfh + εadegεbcfh + εbdegεacfh + εacfgεbdeh + εbcfgεadeh + εadfgεbceh + εbdfgεaceh

)
,

(A2)

ξabcdefIJ = âIJKL

(
εKaceεLbdf + εKbceεLadf + εKadeεLbcf + εKbdeεLacf

)
+ b̂IJ ggh

(
εacegεbdfh + εbcegεadfh + εadegεbcfh + εbdegεacfh + εacfgεbdeh + εbcfgεadeh + εadfgεbceh + εbdfgεaceh

)
,

(A3)

ξabcdefgh = â
(
εacegεbdfh + εbcegεadfh + εadegεbcfh + εbdegεacfh + εacfgεbdeh + εbcfgεadeh + εadfgεbceh + εbdfgεaceh

)
,

(A4)

where aI , bIJK , cIJKLM , dIJKLM , â, âIJ , âIJKL, b̂ and b̂IJ are arbitrary functions of φI and XJK

satisfying

bIJK = bIKJ , cIJKLM = cIKJLM = cIJKML = cILMJK , dIJKLM = −dIKJLM = −dIJKML = dILMJK ,

(A5)

âIJ = âJI , âIJKL = âIJLK . (A6)

We have also defined εIabc = εabcdφI|d.

2. Coefficient functions of ∇bGab

By direct calculations, the coefficients appearing in ∇bGab (23) can be derived and expressed in terms

of the coefficients of Gab (21) as

αIJ = GIJ − 2JIJ + 2KI,J − 2HKLIJX
KL, βIJ = −I,IJ + JIJ −KJ,I + 2JKL,IJX

KL,

γIJKL = −2JIJ,KL +HIKJL, εIJK = K(I,K)J −
3

2
LKIJ ,

µI =
1

2
CI + 2I,I −

(
DJKI + 8JJ [K,I]

)
XJK + 4EJKLMIX

JKXLM ,

νIJKL = −GIJ,KL + 3HK(IJL) + 2HMNIJ,KLX
MN − 3LLIJ,K ,

ωIJK = −CI,JK + 2DJ(IK) − 2GIK,J + 2
(
DLMI,JK − 4H[J |LIK,|M ]

)
XLM

− 16E(I|JLM |K)X
LM − 8ELMNOI,JKX

LMXNO,

ξIJ = −A,IJ +BIJ − CJ,I − 4DK[I|J,|L]X
KL − 8EKLMNJ,IX

KLXMN + 16EKIMNJ,LX
KLXMN ,

ζIJK = −1

2
DIJK − 2JIJ,K + 4ELMIJKX

LM , ηIJKL =
1

2
HIJKL,

λIJKLM =
1

2
DIJK,LM +HIJKM,L − 2EMLIJK − 4ENOIJK,LMX

NO,

σIJKLMN = HIJKL,MN −HIMNL,JK , τIJKLM = −L[I|JK,L|M ], ιIJK = −K[I,K]J . (A7)

3. Explicit form of QI

The explicit form of QI appearing in Eq. (23) and also in the scalar field equations of motion (40) is

given by

QI ≡ Q(A)
I +Q(B)

I +Q(C)
I +Q(D)

I +Q(E)
I +Q(G)

I +Q(H)
I +Q(I)

I +Q(J)
I +Q(K)

I +Q(L)
I , (A8)
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where

Q(A)
I = A,I , (A9)

Q(B)
I = −2BIJ,KX

JK −BIJ,KLφK|c φ
L|cbφJ|b +BIJφ

J
|b
|b, (A10)

Q(C)
I = CJ,Iφ

J
|c
|c, (A11)

Q(D)
I = DJKL,Iδ

ce
dfφ

J
|cφ

K |dφL|e
|f + 2DIJK,LX

JLφK|c
|c +DIJK,Lφ

J |cφK|cdφ
L|d

+DIJK,LMδ
ce
bfφ

L
|dφ

M |dbφJ|cφ
K
|e
|f −DIJKδ

ce
bfφ

J
|c
|bφK|e

|f − 1

2
DIJKδ

ce
bfφ

J
|cφ

K |lR bf
el , (A12)

Q(E)
I = EJKLMN,Iδ

ceg
dfhφ

J
|cφ

K |dφL|eφ
M |fφN|g

|h − 2ELJKIM,Nδ
ceg
dfhφ

L
|cφ

J |dφK|eφ
N |fφM|g

|h

− 2ELJKIM,NOδ
ceg
bfhφ

N
|l φ

O |lbφL|cφ
K
|eφ

J |fφM|g
|h + 4ELJKIMδ

ceg
bfhφ

L
|c
|bφK|eφ

J |fφM|g
|h

+ ELJKIMδ
ceg
bfhφ

L
|cφ

K
|eφ

J |fφM |lR bh
gl , (A13)

Q(G)
I = GJK,Iδ

ce
dfφ

J
|c
|dφK|e

|f , (A14)

Q(H)
I = HJKLM,Iδ

ceg
dfhφ

J
|cφ

K |dφL|e
|fφM|g

|h −HIJKLδ
ceg
bfhφ

J
|c
|bφK|e

|fφL|g
|h

+ 2HIJKL,MX
JMδegfhφ

K
|e
|fφL|g

|h + 2HIJKL,Mδ
cg
fhφ

J
|cφ

M |eφK|e
|fφL|g

|h

−HIJKLδ
ceg
bfhφ

J
|cφ

K
|e
|fφL|lR bh

gl +HIJKL,MNδ
ceg
bfhφ

M
|l φ

N |lbφJ|cφ
K
|e
|fφL|g

|h, (A15)

Q(I)
I = I,Iδ

ce
dfR

df
ce , (A16)

Q(J)
I = JJK,Iδ

ceg
dfhφ

J
|cφ

K |dR fh
eg + 2JIJ,KX

JKδegfhR
fh

eg + 2JIJ,Kδ
cg
fhφ

J
|cφ

K |eR fh
eg

+ JIJ,KLδ
ceg
bfhφ

K
|dφ

L|dbφJ|cR
fh

eg − JIJδcegbfhφ
J
|c
|bR fh

eg , (A17)

Q(K)
I = KJ,Iδ

ceg
dfhφ

J
|c
|dR fh

eg − 1

2
KJ,IKδ

cegl
dfhmφ

K
|c
|dφJ|e

|fR hm
gl − 1

8
KIδ

cegl
dfhmR

df
ce R hm

gl , (A18)

Q(L)
I = LJKL,Iδ

ceg
dfhφ

J
|c
|dφK|e

|fφL|g
|h − 1

4
LLJK,IMδ

cegl
dfhmφ

M
|c
|dφL|e

|fφJ|g
|hφK|l

|m. (A19)

These expressions appear also in the (re-organized) scalar field equations in Eq. (51) and used to derive

the principal symbol P in section III B.

4. Euler-Lagrange Equations of the candidate Lagrangian

The explicit form of the Euler-Lagrange equations of the candidate Lagrangian L1–L7 defined by

Eq. (43) are given by

Eab (L1) = M
(1)
I,J

(
φI |(aφJ |b) + gabXIJ

)
− 1

2
M

(1)
I,JK

(
gl(bδ

a)ce
ldf φI|cφ

J |dφK|e
|f + 2XIJgl(bδ

a)c
ld φ

K
|c
|d
)
, (A20)

Eab (L2) = 2M
(2)
,I,J

(
φI |(aφJ |b) + 2gabXIJ

)
− 2

(
M

(2)
,I + 2M

(2)
,K,IJX

JK
)
gl(aδ

b)c
ld φ

I
|c
|d

− 1

2
M

(2)
,IJ g

l(aδ
b)ceg
ldfh φ

I
|cφ

J |dR fh
eg +

(
1

2
M (2) −M (2)

,IJX
IJ

)
gl(aδ

b)ce
ldf R

df
ce

−
(
M

(2)
,IJ + 2M

(2)
,IJ,KLX

KL
)
gl(aδ

b)ce
ldf φ

I
|c
|dφJ|e

|f −M (2)
,IJ,KLg

l(aδ
b)ceg
ldfh φ

I
|cφ

J |dφK|e
|fφL|g

|h

− 4M
(2)
,I,JK g

l(aδ
b)ce
ldf φ

I
|cφ

J |dφK|e
|f , (A21)

Eab (L3) = −2M
(3)
IJK,LX

IJXKL gab −M (3)
IJK,L

(
XKLφI |(aφJ |b) + 2XIJφK |(aφL|b) + 2XL(IφJ)|(aφK |b)

)
+

3

2
M

(3)
(IJK)

(
gl(aδ

b)ce
ldf φ

I
|cφ

J |dφK|e
|f + 2XIJ gl(aδ

b)c
ld φ

K
|c
|d
)
− 1

2
M

(3)
IJK,LM gl(aδ

b)ceg
ldfh φ

I
|cφ

J |dφK|eφ
L|fφM|g

|h
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+
(
M

(3)
ILM,JK − 2M

(3)
I[JM ],KL

)
XLM gl(aδ

b)cg
lfh φ

I
|cφ

J |fφK|g
|h + 2M

(3)
IJK,LMX

ILXJK gl(aδ
b)c
ld φ

M
|c
|d,

(A22)

Eab (L4) = −M (4)
I,JKX

IJ gn(aδ
b)egl
nfhmφ

K
|e
|fR hm

gl −M (4)
I,JX

IJ gl(aδ
b)eg
lfh R

fh
eg −M (4)

I,J g
l(aδ

b)ceg
ldfh φ

I
|cφ

J |dR fh
eg

− 2

3

(
M

(4)
I,JK,LMX

IJ +M
(4)
K,LM

)
gn(aδ

b)egl
nfhmφ

K
|e
|fφL|g

|hφM|l
|m − 2M

(4)
I,J,K g

l(aδ
b)ce
ldf φ

J
|cφ

K |dφI|e
|f

− 2
(
M

(4)
I,J +M

(4)
K,IJ,LX

KL
)
gl(aδ

b)ce
ldf φ

I
|c
|dφJ|e

|f − 2M
(4)
I,K(J,L) g

l(aδ
b)ceg
ldfh φ

J
|cφ

L|dφI|e
|fφK|g

|h, (A23)

Eab (L5) =
(
M

(5)
IJ + 2M

(5)
IK,JLX

KL
)
XIJ gl(aδ

b)eg
lfh R

fh
eg

+
[
M

(5)
IJ +

(
2M

(5)
IK,JL −M

(5)
IJ,KL

)
XKL

]
gl(aδ

b)ceg
ldfh φ

I
|cφ

J |dR fh
eg

+ 2
[
M

(5)
IJ +

(
M

(5)
KL,IJ + 4M

(5)
IK,JL

)
XKL + 2M

(5)
MN,KL,IJX

KMXLN
]
gl(aδ

b)ce
ldf φ

I
|c
|dφJ|e

|f

+ 2
[
2M

(5)
IK,JL +

(
2M

(5)
IM,JN,KL −M

(5)
IJ,KL,MN

)
XMN

]
gl(aδ

b)ceg
ldfh φ

I
|cφ

J |dφK|e
|fφL|g

|h

+ 2
[
2M

(5)
KI,J −M

(5)
IJ,K + 2

(
2M

(5)
IL,J,MK −M

(5)
IJ,L,MK

)
XLM

]
gl(aδ

b)ce
ldf φ

I
|cφ

J |dφK|e
|f

− 16M
(5)
I[J,L],KX

IJXKLgab − 4
(
M

(5)
IJ,K,L +M

(5)
KL,I,J − 2M

(5)
IK,J,L

)
XKLφI |(aφJ |b)

− 4M
(5)
IJ,K,LMg

l(aδ
b)ceg
ldfh φ

I
|cφ

J |dφK|eφ
L|fφM|g

|h, (A24)

Eab (L6) =
1

2
M (6)gab +

1

2
M

(6)
,IJφ

I |(aφJ |b), (A25)

Eab (L7) =
(
M

(7)
IJKLM +M

(7)
IJMLK +M

(7)
IJKML

)
gl(aδ

b)ceg
ldfh φ

I
|cφ

J |dφK|eφ
L|fφM|g

|h

+ 4
(
M

(7)
IJKLM +M

(7)
KLMIJ +M

(7)
KLIMJ

)
XIJ gl(aδ

b)ce
ldf φ

K
|c φ

L|dφM|e
|f

+
(
−M (7)

IJKLN,OM + 2M
(7)
IJNLK,OM + 2M

(7)
INKLO,JM

)
XNO gl(aδ

b)ceg
ldfh φ

I
|cφ

J |dφK|eφ
L|fφM|g

|h

+ 8M
(7)
NLIJM,KOX

LMXNO gl(aδ
b)ce
ldf φ

I
|cφ

J |dφK|e
|f + 8M

(7)
IJKLM,NX

IJXKLXMN gab

+ 8
(
M

(7)
IJKLM,N − 2M

(7)
IJ(NK)M,L +M

(7)
IJMNK,L

)
XIJXKLφM |(aφN |b). (A26)

The partial differential equations (46) and (47) on the arbitrary functions M (1,...,7) of the candidate

Lagrangian (43) are obtained by the above equations to the most general equations of motion (39) of the

bi-Horndeski theory.

Appendix B: Formulae for analysis on wave propagation in the bi-Horndeski theory

1. Coefficients of the bi-Horndeski theory field equations

In section III B, the equations of motion of the bi-Horndeski theory (39) and (40) is re-expressed in

the form of Eq. (51) to find the principal symbol P from it by Eq. (56). The coefficients Aµν,ρσ,BµνI , Cµν

of the metric equation Gµν are already given by Eqs. (52)–(54). The coefficients ÃµνI , B̃IJ , C̃I of the scalar

equation are given by

ÃµνI =
(
DIJK − 8JJ [K,I] − 8ELKJIMX

LM
)
δ
c0(µ
dml g

ν)lφJ|cφ
K|dgm0 + 2DIJKX

JKδ
0(µ
ml g

ν)lgm0

+ 2ELJKIMδ
ce0(µ
dfmhg

ν)hφL|cφ
J |dφK|eφ

M |fgm0 + 4JIL,JKg
l(µδ

ν)ce0
ldfh φ

J
|cφ

L|dφ
K|f
|e gh0

− 4I,Ig
d(µδ

ν)0
df g

f0 + 4
(
JIJ −K(I,J) + 2JK(I,J)LX

KL
)
δ
c0(µ
bhf g

ν)fφ
J |b
|c g

h0
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+ 2KJ,IKδ
ce0(µ
dfmhg

ν)hφ
J |d
|c φ

K|f
|e gm0 +KIδ

ce0(µ
dfmhg

ν)hRce
dfgm0, (B1)

B̃IJ = 2BIJg
00 − 2BIK,LJφ

K|0φL|0 + 2CJ,Ig
00 + 4DK[I|J,|L]

(
2XKLg00 + φK|0φL|0

)
+ 2DIKJ,LMδ

c0
bfφ

K
|c φ

L|dφ
M |b
|d gf0 + 2DIKL,MJδ

ce
bfφ

K
|c φ

L|f
|e φM |0gb0 − 4DI(JK)δ

c0
bfφ

K|b
|c gf0

+ 2 (EKLMNJ,I − 2EKLMIJ,N ) δce0dfhφ
K
|c φ

L|dφM|e φ
N |fgh0

− 4EKLMIJ,NOδ
ce0
bfhφ

K
|c φ

L|fφM|e φ
N |lφ

O|b
|l gh0 − 4EKLMIN,OJδ

ceg
bfhφ

K
|c φ

L|fφM|e φ
N |h
|g φO|0gb0

+ 16E(K|LMI|J)δ
ce0
bfhφ

K|b
|c φM|e φ

L|fgh0 + 4GJK,Iδ
c0
df g

f0φ
K|d
|c

+ 8 (JKL,MJ,I − JIK,MJ,L) δce0dfhφ
K
|c φ

L|dφ
M |f
|e gh0 − 12JI(J,KL)δ

ce0
bfhφ

K|b
|c φ

L|f
|e gh0

− 4JKM,LN,IJδ
ceg0
dfhmφ

K
|c φ

M |dφ
L|f
|e φ

N |h
|g gm0 − 8JIK,LM,NJX

KMδeg0fhmg
m0φ

L|f
|e φ

N |h
|g

− 2JKL,IJδ
ceg0
dfhmg

m0φK|c φ
L|dReg

fh

− 2
(
−K(I,J) + JIJ + 2JK(I,J)LX

KL
)
δ0eg
dfhg

0dReg
fh − 2KJ,IKδ

0egl
dfhmg

0dφ
K|f
|e Rgl

hm

+ 4KJ,KL,Iδ
ce0
dfhφ

K|d
|c φ

L|f
|e gh0 − 4

3
KL,JK,IMδ

ceg0
dfhmφ

M |d
|c φ

L|f
|e φ

K|h
|g gm0, (B2)

C̃I = C̃I
(
gρσ, gρσ,0, gρσ,κ, gρσ,κ0, gρσ,κλ, φI , φI ,0, φI ,ρ, φI ,0ρ, φI ,ρσ

)
. (B3)

2. Equations of motion and principal symbol of the shift-symmetric Horndeski theory

Metric equation following from the Lagrangian (67) is given by

Gab =

5∑
n=2

Gnab = 0, (B4)

where

G2b
a = −1

2
KXφ|aφ

|b − 1

2
Kδba (B5)

G3b
a = −1

2
G3X

(
δbb1b2aa1a2φ

|a1
|b1φ

|a2φ|b2 + 2Xδbb1aa1φ
|a1
|b1

)
(B6)

G4b
a =

1

2
(G4X + 2XG4XX) δbb1b2aa1a2φ

|a1
|b1φ

|a2
b2

+
1

2
G4XXδ

bb1b2b3
aa1a2a3φ

|a1
|b1φ

|a2
|b2φ

|a3φ|b3

− 1

4
(G4 − 2XG4X) δbb1b2aa1a2R

a1a2
b1b2

+
1

4
G4Xδ

bb1b2b3
aa1a2a3R

a1a2
b1b2

φ|a3φ|b3 (B7)

G5b
a = −1

6
(G5X +XG5XX) δbb1b2b3aa1a2a3φ

|a1
|b1φ

|a2
|b2φ

|a3
|b3 −

1

4
XG5Xδ

bb1b2b3
aa1a2a3R

a1a2
b1b2

φ
|a3
|b3 . (B8)

The scalar equation of motion is given by

Eφ =
5∑

n=2

Enφ = 0, (B9)

where

E2
φ = −KX�φ+KXXφ|a1φ

|a1
|a2φ

|a2 (B10)

E3
φ = (G3X +XG3XX) δb1b2a1a2φ

|a1
|b1φ

|a2
|b2 +

1

2
G3XXδ

b1b2b3
a1a2a3φ

|a1
|b1φ

|a2
|b2φ

|a3φ|b3 −G3XR
a1
b1
φ|a1φ

b1 (B11)

E4
φ = −1

6
(3G4XX + 4XG4XXX) δb1b2b3a1a2a3φ

|a1
|b1φ

|a2
|b2φ

|a3
|b3 −

1

3
G4XXXδ

b1b2b3b4
a1a2a3a4φ

|a1
|b1φ

|a2
|b2φ

|a3
|b3φ

|a4φ|b4
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− 1

2
(G4X + 2XG4XX) δb1b2b3a1a2a3φ

|a1
|b1R

a2a3
b2b3
− 1

2
G4XXδ

b1b2b3b4
a1a2a3a4φ

|a1
|b1R

a2a3
b2b3

φ|a4φ|b4 (B12)

E5
φ =

1

12
(2G5XX +XG5XXX) δb1b2b3b4a1a2a3a4φ

|a1
|b1φ

|a2
|b2φ

|a3
|b3φ

|a4
|b4

+
1

4
(G5X +XG5XX) δb1b2b3b4a1a2a3a4R

a1a2
b1b2

φ
|a3
|b3φ

|a4
|b4 +

1

16
XG5Xδ

b1b2b3b4
a1a2a3a4R

a1a2
b1b2

Ra3a4b3b4
. (B13)

The above equations hold in any dimensions except for G5
µν and E5

φ, which are simplified by using the

Schouten identities δbb1b2b3b4aa1a2a3a4R
a1a2
b1b2

φ
|a3
|b3φ

|a4φ|b4 = δbb1b2b3b4aa1a2a3a4φ
|a1
|b1φ

|a2
|b2φ

|a3
|b3φ

|a4φ|b4 = 0 that hold only in four

or lower dimensions.

In the main text, we considered the trace-reversed equations of motion defined by deforming the

expressions above following Eq. (68), and then we defined the principal symbol P̃ (69) by taking its

derivatives with respect to ξsξtgqr,st and ξsξtφ,st. We show their expressions below. For the derivation

we use the fact that the Riemann tensor is given by Rabcd = −2g[a|[c,d]|b] + · · · , hence its derivative with

respect to ξsξtgqr,st is
∂R

b1b2
a1a2

∂gqr,st
rqrξsξt = −2r

[b1
[a1
ξa2]ξ

b2].

The pure metric part is given by

ξsξtrqr
∂G̃2b

a

∂gqr,st
= ξsξtrqr

∂G̃3b
a

∂gqr,st
= 0 (B14)

ξsξtrqr
∂G̃4b

a

∂gqr,st
=
G4 − 2XG4X

2

(
δbb1b2aa1a2 − δ

b
aδ
b1b2
a1a2

)
ξa1ξb1r

a2
b2
− G4X

2

(
δbb1b2b3aa1a2a3 −

1

2
δbaδ

b1b2b3
a1a2a3

)
ξa1ξb1r

a2
b2
φ|a3φ|b3

(B15)

ξsξtrqr
∂G̃5b

a

∂gqr,st
=

1

2
XG5X

(
δbb1b2b3aa1a2a3 −

1

2
δbaδ

b1b2b3
a1a2a3

)
ξa1ξb1r

a2
b2
φ
|a3
|b3 , (B16)

and the mixed part between the metric and scalar parts is given by

ξsξtrqr
∂E2

φ

∂gqr,st
= 0 (B17)

ξsξtrqr
∂E3

φ

∂gqr,st
= −1

2
G3X

(
δbb1b2aa1a2ξ

aξbr
b1
a1φ
|a2φ|b2 + 2Xδaa1bb1

ξaξbr
a2
b2

)
(B18)

ξsξtrqr
∂E4

φ

∂gqr,st
= (G4X + 2XG4XX) δbb1b2aa1a2ξ

aξbr
a1
b1
φ
|a2
|b2 +G4XXδ

bb1b2b3
aa1a2a3ξ

aξbr
a1
b1
φ
|a2
|b2φ

|a3φ|b3 (B19)

ξsξtrqr
∂E5

φ

∂gqr,st
= −1

2
(G5X +XG5XX) δbb1b2b3aa1a2a3ξ

aξbr
a1
b1
φ
|a2
|b2φ

|a3
|b3 −

1

4
XG5Xδ

bb1b2b3
aa1a2a3ξ

aξbr
a1
b1
Ra2a3b2b3

. (B20)

Finally, the scalar part is given by (where ξ2 ≡ ξaξa and ξ · φ ≡ ξaφ|a)

ξsξt
∂E2

φ

∂φ,st
= −KXξ

2 +KXX(ξ · φ)2 (B21)

ξsξt
∂E3

φ

∂φ,st
= 2 (G3X +XG3XX) δbb1aa1ξ

aξbφ
|a1
|b1 +G3XXδ

bb1b2
aa1a2ξ

aξbφ
|a1
|b1φ

|a2φ|b2 (B22)

ξsξt
∂E4

φ

∂φ,st
= − (3G4XX + 2XG4XXX) δbb1b2aa1a2ξ

aξbφ
|a1
|b1φ

|a2
|b2 −G4XXXδ

bb1b2b3
aa1a2a3ξ

aξbφ
|a1
|b1φ

|a2
|b2φ

|a3φ|b3

− 1

2
(G4X + 2XG4XX) δbb1b2aa1a2ξ

aξbR
a1a2
b1b2
− 1

2
G4XXδ

bb1b2b3
aa1a2a3ξ

aξbR
a1a2
b1b2

φ|a3φ|b3 (B23)

ξsξt
∂E5

φ

∂φ,st
=

2G5XX +XG5XXX

3
δbb1b2b3aa1a2a3ξ

aξbφ
|a1
|b1φ

|a2
|b2φ

|a3
|b3 +

G5X +XG5XX

2
δbb1b2b3aa1a2a3ξ

aξbφ
|a1
|b1R

a2a3
b2b3

. (B24)
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Expressions with non-contracted indices is obtained just by removing one of rab from the expressions

above.

The other mixed part between the metric and scalar parts, ξsξt
∂G̃ba
∂φ,st

. can be obtained as follows. Since

the equations of motion (B4) and (B9) of the shift-symmetric Horndeski theory are derived from the

Lagrangian (67), they automatically satisfy the integrability conditions (135) as we argued at Eq. (58)

and also at Eq. (89). It implies that the principal symbol P (before trace-reversing) becomes symmetric,

that is,

ξcξd
∂Gab

∂φ,cd
= ξcξd

∂Eφ
∂gab,cd

. (B25)

Using this symmetry, ξsξt
∂G̃ba
∂φ,st

is obtained just by trace-reversing ξcξd
∂Eφ

∂gab,cd
in accord with Eq. (68).

Then, the components of the principal symbol (69) can be obtained by summing the above expressions

over n = 2, 3, 4, 5.

Appendix C: Formulae for analysis on shock formation in the Horndeski theory

1. N of the shift-symmetric Horndeski theory

We summarize the explicit formula of N in the shift-symmetric Horndeski theory discussed in sec-

tion IV B. This quantity is derived by taking derivatives of the principal symbol obtained in section III B

and appendix B 2. In this appendix, we use the coordinate x0 where ξa =
(
dx0
)
a

is a normal of

a x0-constant surface. We also utilize the following formula for derivatives by ξc
∂

∂gab,c
= ∂

∂gab,0
and

ξa
∂

∂φ,a
= ∂

∂φ,0
:

rab
∂Ra1a2b1b2

∂gab,0
= 2Γ0[a1

[b1
r
a2]
b2] ,

∂φ2

∂φ,0
= 2φ|0,

∂X

∂φ,0
= −φ|0, ∂φa

∂φ,0
= δ0

a = ξa,

∂φab
∂φ,0

= −Γ0a
b , rcd

∂φab
∂gcd,0

=
1

2

(
φ|0rab − ξarbcφ|c − ξbracφ|c

)
' 1

2
φ|0rab .

(C1)

The last equality (') holds only when
∂φab
∂gcd,0

is contracted with the generalized Kronecker delta multiplied

by ξaξb, by which the terms involving ξ vanish identically.

We summarize the terms appearing in N (100) in general spacetime below. First, the pure metric

terms proportional to rab
3 are given by

rabrcdref
∂

∂gef,0

∂G2,3,4
ab

∂gcd,00
= 0 (C2)

rabrcdref
∂

∂gef,0

∂G5
ab

∂gcd,00
=
φ|0

4
XG5Xδ

bb1b2b3
aa1a2a3ξ

aξbr
a1
b1
ra2b2 r

a3
b3
. (C3)

Next, the mixed terms proportional to rab
2rφ are given by

rabref
∂

∂gef,0

∂G2,3
ab

∂φ,00
= 0 (C4)

rabref
∂

∂gef,0

∂G4
ab

∂φ,00
=
φ|0

2
(G4X + 2XG4XX) δbb1b2aa1a2ξ

aξbr
a1
b1
ra2b2 +

φ|0

2
G4XXδ

bb1b2b3
aa1a2a3ξ

aξbr
a1
b1
ra2b2 φ

|a3φ|b3 (C5)
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rabref
∂

∂gef,0

∂G5
ab

∂φ,00
= −φ

|0

2
(G5X +XG5XX) δbb1b2b3aa1a2a3ξ

aξbr
a1
b1
ra2b2 φ

|a3
|b3 −

XG5X

2
δbb1b2b3aa1a2a3ξ

aξbr
a1
b1
ra2b2 Γ0a3

b3
,

(C6)

where the overall factor rφ is omitted. The other mixed terms proportional to rabrφ
2 are given by

ref
∂

∂gef,0

∂E2
φ

∂φ,00
= 0 (C7)

ref
∂

∂gef,0

∂E3
φ

∂φ,00
= φ|0 (G3X +XG3XX) δbb1aa1ξ

aξbr
a1
b1

+
φ|0

2
G3XXδ

bb1b2
aa1a2ξ

aξbr
a1
b1
φ|a2φ|b2 (C8)

ref
∂

∂gef,0

∂E4
φ

∂φ,00
= −φ|0ξaξbφ

|a1
|b1 r

a2
b2

{
(3G4XX + 2XG4XXX) δbb1b2aa1a2 +G4XXXδ

bb1b2b3
aa1a2a3φ

|a3φ|b3

}
− (G4X + 2XG4XX) δbb1b2aa1a2ξ

aξbr
a1
b1

Γ0a2
b2
−G4XXδ

bb1b2b3
aa1a2a3ξ

aξbr
a1
b1

Γ0a2
b2
φ|a3φ|b3 (C9)

ref
∂

∂gef,0

∂E5
φ

∂φ,00
=

1

4
(G5X +XG5XX) δbb1b2b3aa1a2a3ξ

aξb

(
φ|0ra1b1R

a2a3
b2b3

+ 4φ
|a1
|b1 Γ0a2

b2
ra3b3

)
+
φ|0

2
(2G5XX +XG5XXX) δbb1b2b3aa1a2a3ξ

aξbφ
|a1
|b1φ

|a2
|b2 r

a3
b3
. (C10)

Last, the pure scalar terms proportional to rφ
3 are given by

∂

∂φ,0

∂E2
φ

∂φ,00
= 3φ|0KXXξ

2 − (φ|0)3KXXX (C11)

∂

∂φ,0

∂E3
φ

∂φ,00
= −φ|0

{
2 (2G3XX +XG3XXX) δbb1aa1ξ

aξbφ
|a1
|b1 +G3XXXδ

bb1b2
aa1a2ξ

aξbφ
|a1
|b1φ

|a2φ|b2

}
− 2 (G3X +XG3XX) δbb1aa1ξ

aξbΓ
0a1
b1
−G3XXδ

bb1b2
aa1a2ξ

aξbΓ
0a1
b1
φ|a2φ|b2 (C12)

∂

∂φ,0

∂E4
φ

∂φ,00
=
φ|0

2
δbb1b2aa1a2ξ

aξb

{
2 (5G4XXX + 2XG4XXXX)φ

|a1
|b1φ

|a2
|b2 + (3G4XX + 2XG4XXX)Ra1a2b1b2

}
+
φ|0

2
δbb1b2b3aa1a2a3ξ

aξbφ
|a1φ|b1

(
2G4XXXXφ

|a2
|b2φ

|a3
|b3 +G4XXXR

a2a3
b2b3

)
+ 2 (3G4XX + 2XG4XXX) δbb1b2aa1a2ξ

aξbφ
|a1
|b1 Γ0a2

b2
+ 2G4XXXδ

bb1b2b3
aa1a2a3ξ

aξbΓ
0a1
b1
φ
|a2
|b2φ

|a3φ|b3

(C13)

∂

∂φ,0

∂E5
φ

∂φ,00
= −δbb1b2b3aa1a2a3ξ

aξb

{
(2G5XX +XG5XXX)φ

|a1
|b1φ

|a2
|b2 Γ0a3

b3
+

1

2
(G5X +XG5XX) Γ0a1

b1
Ra2a3b2b3

+
φ|0

3
(3G5XXX +XG5XXXX)φ

|a1
|b1φ

|a2
|b2φ

|a3
|b3 +

φ|0

2
(2G5XX +XG5XXX)φ

|a1
|b1R

a2a3
b2b3

}
.

(C14)

Then the terms appearing in Eq. (100) are obtained by summing the above expressions over n = 2, 3, 4, 5.

2. N on the plane wave solution

In this appendix, we show the explicit form of N on the plane wave solution, which can be obtained

by plugging the background solution shown in section III B 2 into expressions in appendix C 1. We also

need to use the expressions of the eigenvectors (83), (84) of the tensor and scalar modes to find N for

each mode.
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For the tensor mode r = (r
(T)
ab , 0), the only nontrivial term is (C3), but this term is zero for the plane

wave solution since X = 0. Hence N = 0 for the tensor mode on the plane wave solution.

Let us move on to the scalar mode (84), whose eigenvector is given by

r = (rab, rφ) =
(
2r̃`n`(anb), rφ

)
, r̃`n =

2KX

G4

−1
2G3Xφ

′2 +G4Xφ
′′

KXXφ′2 − 2G3Xφ′′ −G4X∆F
rφ. (C15)

When this eigenvector is contracted with the generalized Kronecker delta multiplied by ξaξ
b, it simplifies

to (by dropping the ξ terms)

rba = r`n

(
`an

b + `bna

)
' ωr`n`a`b. (C16)

Below, we evaluate the terms appearing inN , whose general expression is summarized in appendix C 1,

for the plane wave solution using the eigenvector given by (C15). It is useful to use the following formula

for the evaluation:

`a = (du)a , `a = (∂v)
a =

(
`u, `0

)
= (0, 1) , ξa =

(
dx0
)
a
, ξa = (ξu, ξ0) = (1,−ω), (C17)

` · ξ = g0u = 1, ξ2 = g00 = −ω, na =
ω

2
`a + ξa, n · ξ = −ω

2
, φ|0 = ξaφ

|a = φ′ξ · ` = φ′. (C18)

First, we find that the pure metric terms and also the mixed terms proportional to rab
2rφ identically

vanish:

rabrcdref
∂

∂gef,0

∂G2,3,4,5
ab

∂gcd,00
= rabref

∂

∂gef,0

∂G2,3,4,5
ab

∂φ,00
= 0. (C19)

The other mixed terms proportional to rabrφ
2 are given by

ref
∂

∂gef,0

∂E2,5
φ

∂φ,00
= 0, ref

∂

∂gef,0

∂E3
φ

∂φ,00
= φ′G3Xδ

bb1
aa1ξ

aξbr
a1
b1
, ref

∂

∂gef,0

∂E4
φ

∂φ,00
= −G4Xδ

bβ1b2
aα1a2ξ

aξbΓ
0α1
β1
ra2b2 ,

(C20)

where xα = x, y as we defined in section IV C 1. Last, the pure scalar terms are given by

∂

∂φ,0

∂E2
φ

∂φ,00
= −3ωφ′KXX − φ′3KXXX (C21)

∂

∂φ,0

∂E3
φ

∂φ,00
= −4φ′φ′′G3XXδ

bb1
aa1ξ

aξb`
a1`b1 − 2G3Xδ

bβ1
aα1

ξaξbΓ
0α1
β1
− φ′2G3XXδ

bβ1b2
aα1a2ξ

aξbΓ
0α1
β1
`a2`b2 (C22)

∂

∂φ,0

∂E4
φ

∂φ,00
= −3φ′G4XXδ

bβ1b2
aα1a2ξ

aξbF
,α1

,β1
`a2`b2 + 6G4XXφ

′′δbb1β2aa1α2
ξaξb`

a1`b1Γ0α2
β2

(C23)

∂

∂φ,0

∂E5
φ

∂φ,00
= G5Xδ

bβ1β2b3
aα1α2a3ξ

aξbΓ
0α1
β1
F ,α2

,β2
`a3`b3 . (C24)

Summing up the above terms, we find N for the scalar mode on the plane wave solution to be given

by

N = 3ωrφ
2r̃`n

(
φ′G3Xδ

bb1
aa1ξ

aξb`
a1`b1 −G4Xδ

bβ1b2
aα1a2ξ

aξbΓ
0α1
β1
`a2`b2

)
+ rφ

3
{
−3ωKXXφ

′ −KXXXφ
′3 − 4φ′φ′′G3XXδ

bb1
aa1ξ

aξb`
a1`b1

− 2G3Xδ
bβ1
aα1

ξaξbΓ
0α1
β1

+
(
−φ′2G3X + 6φ′′G4XX

)
δbβ1b2aα1a2ξ

aξbΓ
0α1
β1
`a2`b2

− 3φ′G4XXδ
bβ1b2
aα1a2ξ

aξbF
,α1

,β1
`a2`b2 +G5Xδ

bβ1b2β3
aα1a2α3

ξaξbΓ
0α1
β1
`a2`b2F

,α3

,β3

}
. (C25)

If we further assume φ′′ = 0 and F to be given by Eq. (109), we can introduce the metric (113) adapted

to geodesics, with which we can evaluate Eq. (C25) more explicitly to arrive at Eq. (116) by setting

rφ = 1.
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3. Details of shock formation analysis on the plane wave background

In this appendix, we show the details of the shock formation analysis on the plane wave background

discussed in section IV C 1. For this purpose, we need to derive the full expression of the transport

equation (96). In principle, we can derive it based on the definition (91)–(94), but it is cumbersome.

Since we have already found geodesics and the coordinates adapted to it, as summarized in section IV C 1,

there is an alternative method to derive N and also the other parts of the transport equation. The key

is to assume that the field variables are given by

gab = ḡab +
1

2
(x0)2 Θ(x0) Π

(
u, ηα

)
rab , φ = φ̄+

1

2
(x0)2 Θ(x0) Π

(
u, ηα

)
rφ , (C26)

where ḡab, φ̄ are the background solutions and Θ(x0) is a step function. The above gab, φ correctly give

the discontinuities in their second derivatives at x0 = 0 as prescribed by Eq. (90), although they do not

satisfy the equations of motion in x0 > 0. However, the quantities appearing in the transport equation

depend only on the values of gab, φ for x0 → −0, hence the transport equation (91) is correctly obtained

by evaluating the equation of motion at x0 = 0 using Eq. (C26) and contracting it with r. See [34] for

more details on the construction of the transport equation by this method.

With the aid of computer algebra, we can follow the above procedure to find the transport equation

of Π(u, ηα) as

KΠ,u +MΠ +N Π2 = 0, (C27)

where N is given by Eq. (116), and the other coefficients are given by

K = −2KX , M = −KXt+(u). (C28)

Then, the transport equation takes the form of Eq. (96) once the parameter s along the characteristic

curve is introduced following (95) as

s = − 1

2KX
u . (C29)

We assume A < 0, as we defined below Eq. (110). It implies that Ax < 0 and |Ax| > |Ay|. Then

Eq. (117) becomes

t± =
√
−Ax tan

(
π

2

s

s∗

)
∓
√
Ay tanh

(
π

2

s

s∗

)
, (C30)

where s∗ ≡ π
4KX

√
−Ax

, and also e−Φ appearing in the general solution of Π(s) (97) is calculated as

e−Φ =

{
cos

(
π

2

s

s∗

)
cosh

(
2KX

√
Ays

)}−1/2

, (C31)

which diverges for s→ s∗− like ∝ (s∗ − s)−1. Also, N e−Φ behaves for s→ s∗− as

N e−Φ ' (C+ + C−)
√
−Ax

cosh1/2

(
π
2

√
Ay
−Ax

) (s∗ − s
s∗

)−3/2

≡ N0

(
s∗ − s
s∗

)−3/2

. (C32)

This quantity diverges for s→ s∗−, hence the denominator of Π(s) given by Eq. (97) can be zero at finite

s = s0 (such that 0 < s0 < s∗) no matter how small |Π(0)| is, only if the sign of Π(0) is appropriately
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chosen. Hence, Π(s) can diverge and the shock formation occurs at s = s0 for an arbitrarily small Π(0)

in this example.

Assuming that N e−Φ is well approximated by Eq. (C32), s0 may be estimated as follows. Using

Eq. (C32) the integral in the denominator of (97) is estimated as∫ s

0
N (s′)e−Φ(s′)ds′ ' 2s∗N0

(
s∗ − s
s∗

)−1/2

. (C33)

If this approximation is valid, s0 will be approximated by

s0 '
{

1− (2Π(0)s∗N0)2
}
s∗. (C34)

When C+ = C− = 0 but C0 6= 0, the denominator of (97) does not vanish for 0 < s < s∗ if the

initial amplitude Π(0) is made sufficiently small. Even in this case, if Π(0) is sufficiently large so that

Π(0)C0s = −1 at s < s∗, the denominator vanishes at s < s∗ hence shock formation occur at that s.

In this example, Π(s) diverges at s = s∗ even when N happens to vanish, because N = 0 implies

that Π(s) = Π(0)e−Φ and then it diverges due to e−Φ ∝ (s ∗−s)−1/2 →∞ for s→ s∗−. This divergence

occurs at the caustics of geodesics on Σ due to a focusing effect, and sometime called a linear shock (see

footnote 8).

4. Formulae for the two-dimensionally maximally-symmetric dynamical solutions

Section IV C 2 is dealing with the dynamical background solutions that is symmetric in the two-

dimensional angular directions. Based on the ansatz (121), we can derive the curvature tensor as (122),

where the two-dimensional tensor R2
A
B in it is given by

(
R2

A
B

)
=

1

2f2ρ

(
− (f,τρ,τ + f,χρ,χ − 2fρ,ττ ) −2

(
f,(τρ,χ) − fρ,τχ

)
2
(
f,(τρ,χ) − fρ,τχ

)
f,τρ,τ + f,χρ,χ − 2fρ,χχ

)
. (C35)

Also, the nonzero components of φ|ab are given by

(
φ|AB

)
= − 1

2f

(
f,τφ,τ + f,χφ,χ − 2fφ,ττ 2

(
f,(τφ,χ) − fφ,τχ

)
2
(
f,(τφ,χ) − fφ,τχ

)
f,τφ,τ + f,χφ,χ − 2fφ,χχ

)
, φ|αβ =

ρ

f
(−ρ,τφ,τ + ρ,χφ,χ) γαβ.

(C36)
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