学籍番号	氏名

複素関数論 小テスト [2018年度前期 水曜 2 限] 第8回 (6/13)

1. 次の関数を与えられた点 $z=z_0$ の周りで最初の第 3 項目までテイラー展開し、級数の収束半径を述べよ。

(a)
$$\cos 2z^2$$
, $z_0 = 0$

(b)
$$\frac{1}{1-z^4}$$
, $z_0 = 0$

(c)
$$\cos \pi z$$
, $z_0 = \frac{1}{2}$

(d)
$$\operatorname{Ln} z$$
, $z_0 = i$

- 2. 下記の手順に従って、誤差関数 $\frac{\sqrt{\pi}}{2}$ erf $z \equiv \int_0^z e^{-t^2} dt$ を z = 0 の周りで最初の第 3 項目まで テイラー展開せよ。また、その収束半径を述べよ。
 - (※ 得られた式に z=1 を代入した値は、正しい値と相対誤差 3% で一致する。 $\operatorname{sqrt}(\operatorname{pi})/2\operatorname{erf}(1)$ と google 検索すると真値を確認可能。)
 - (a) e^{-t^2} を t=0 の周りで最初の第3項目までテイラー展開する。
 - (b) 得られた展開式をtについて積分 $(\int_0^z dt)$ し、 $\frac{\sqrt{\pi}}{2}$ erf $z \equiv \int_0^z e^{-t^2} dt$ の展開形を得る。
 - (c) 収束半径は積分する前の関数 e^{-t^2} の収束半径と同じだが、その大きさはどれだけか。