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1. Introduction

Langlands correspondence is one of the most fundamental leading principle in the mod-

ern theory of automorphic forms. It predicts, for a global field k, the existence of a fine

correspondence between the set of automorphic representations of GL(n)k and the set of

isomorphism classes of n-dimensional representations of the hypothetical Langlands group

Lk of k. Its generalizations to the automorphic representations of the general reductive

groups is of particular importance, since they are also inevitable to establish the original

(i.e. GL(n)) Langlands correspondence.

The multiplicity one theorem for GL(n)k reduced us to describe the correspondence

only for the set of automorphic representations. But for the general reductive groups, we

have to propose a recipe to deduce the multiplicity in the automorphic spectrum of each

isomorphism classes of automorphic representations from its corresponding representa-

tion of Lk (or rather its Langlands parameter). By constructing the theory of endoscopy,

Langlands obtained this type of conjectural recipe for the tempered automorphic repre-

sentations [K, §12]. Then Arthur extended it to the case of non-tempered automorphic

representations [A].

I feel that there is also a realistic program to establish these conjectures at least for

some classical groups, by means of comparisons of Arthur-Selberg trace formulae in the

setting of twisted endoscopy. In the course of this program, one needs to establish certain

relationship between the representation theory of reductive groups over a local field and

certain automorphic L and ε-factors. Let F be a local field and G a connected reductive
1
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quasisplit group over F . If an irreducible smooth representation π of G(F ) is generic,

i.e. if it admits a Whittaker model, then Shahidi defined some of its corresponding

automorphic L and ε-factors, and obtained the desired relationships [Sh]. Thus we might

ask if we can extend his results to the representations which are not generic. The generic

packet conjecture is a key part of this question.

Conjecturally the set Πtemp(G(F )) of isomorphism classes of irreducible tempered rep-

resentations of G(F ) should be partitioned into a disjoint union of finite subsets Πϕ, called

L-packets parametrized by the so-called Langlands parameters ϕ for GF . The elements

of Πϕ should share the same L and ε-factors which can be directly defined from ϕ. Thus

to extend Shahidi’s definition of Euler factors, it is sufficient to find a generic element in

each Πϕ. This is exactly the assertion of the generic packet conjecture.

Not so many is known about this conjecture. From now on, we assume that F is

non-archimedean since the archimedean case was established by Vogan [V]. Then before

discussing the generic packet conjecture, we must assume that the tempered L-packets

are defined and satisfy some reasonable properties. At present, this is the case only when

G is SL(n) and U(3). If a tempered L-packet Πϕ of G is a lift of an L-packet ΠϕH

of an endoscopic group H of G, i.e. Πϕ is and endoscopic L-packet, Shahidi reduced

the generic packet conjecture for Πϕ to that for ΠϕH [Sh, §9]. Gelbart-Rogawski-Soudry
obtained a beautiful description of the endoscopic L-packets of U(3) in terms of theta

liftings, and deduced the conjecture for them [GRS]. More recently, Friedberg-Gelbart-

Jacquet-Rogawski established the generic packet conjecture for any L-packets of U(3) by

means of the relative trace formulae [FGJR]. Their result also includes the global counter

part of the conjecture. In fact, the relative trace formula proposed by Jacquet is a very

promising tool which might be used to obtain some deep informations (e.g. properties of

ε-functions) necessary in the Arthur-Langlands program.

In this report we shall examine an extended version of the Shahidi’s approach. His

method relies on the relationship between the genericity of a representation π and the

asymptotic behavior of the distribution character Θπ around the unit [Rd2], [MW]. Our

result is a twisted analogue of this relationship (under some restriction on the residual

characteristic). Then we look at the situation where many classical groups are realized as

twisted endoscopic groups of GL(n) [A2, §9]. Suppose that G is such a classical group.

Then, assuming the existence of suitable twisted endoscopic lifting from G to GL(n), a

twisted version of Shahidi’s argument allows us to deduce the generic packet conjecture.

Although our method works only in the case G = U(3) at the moment, where the result

is already known, it should apply more wider class of groups once the twisted endoscopic

lift is established. On the other hand, since our approach uses the Lie algebra and the

exponential map, the restriction on the residual characteristic is inevitable.

2. Degenerate Whittaker models and their twisted analogue
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2.1. Degenerate Whittaker models. Let F be a non-archimedean local field of char-

acteristic zero. We write O, p, and | | for the ring of integers of F , its unique maximal

ideal and the normalized absolute value on F . Fix a non-trivial additive character ψ of

F . Throughout, C1 denotes the group of complex numbers of absolute value 1.

We consider a connected reductive F -group G. Write g for its Lie algebra and fix

a non-degenerate Ad(G)-invariant symmetric bilinear form B( , ) on g(F ) ⊗F g(F ). To

define the space of degenerate Whittaker vectors, we need the data (N, φ) where N is a

nilpotent element in g(F ) and φ is a cocharacter of G defined over F such that

Ad(φ(t))N = t−2N, ∀t ∈ Gm.

We write gN for the centralizer of N in g and let

g = gN ⊕m

be a decomposition which is Ad(φ(Gm))-stable. We have the graduation

g =
⊕
i∈Z

gi, gi = {X ∈ g |Ad(φ(t))X = tiX, ∀t ∈ Gm}.

We write gN
i := gi ∩ gN , mi := m ∩ gi, etc. We have the unipotent subgroup V whose Lie

algebra is given by gN
1 ⊕∑

i≥2 gi and a character χN of V (F ) defined by

χN : V (F ) � expX −→ ψ(B(N,X)) ∈ C×.

The restriction to m(F ) of the alternating formBN(X, Y ) := B(N, [X, Y ]) is non-degenerate.

If m1 �= {0}, then we define HN to be the Heisenberg group m1(F )× C1 attached to the

symplectic space (m1(F ), BN). If this is not the case, set HN = C1. We write ρN for

the unique irreducible representation of HN on which the subgroup C1 acts by idC1 . Let

U be the unipotent subgroup of G with the Lie algebra
∑

i≥1 gi. Then we have the

homomorphism

pN : U(F ) � exp
(∑

i≥1

Xi

) −→ (Xm
1 , ψ(B(N,X2))) ∈ HN .

Here Xm
1 is the m-component of X1 under the decomposition g = gN ⊕m.

Now let (π,E) be an irreducible admissible representation of G(F ). We put

E(V, χN ) := Span{π(v)ξ − χN(v)ξ | v ∈ V (F ), ξ ∈ E}, EV,χN
:= E/E(V, χN).

Obviously, U(F ) acts on EV,χN
by some copy of ρN ◦pN . The space of degenerate Whittaker

vectors WN,φ(π) for π is defined to be

WN,φ(π) := HomU(F )(ρN ◦ pN , EV,χN
).

If N is regular, this is the space of ordinary χN -Whittaker vectors.
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2.2. A twisted analogue of [MW]. We begin with a review of the result of [MW].

Let (π,E) be an irreducible admissible representation of G(F ). The distribution Θπ :

C∞
c (G(F )) � f → trπ(f) ∈ C, where

π(f)ξ :=

∫
G(F )

f(x)π(x)ξ dx, ξ ∈ E

is a well-defined distribution called the character of π. On a suitable neighborhood of

0 in g(F ), the exponential map exp is well-defined and is an injection into G(F ). Then

a theorem of Harish-Chandra asserts that, on some neighborhood Uπ of 0 in g(F ), the

distribution Θπ ◦ exp is well-defined and admits an expansion:

Θπ(f) =
∑

O∈N (g(F ))

cO(π)µO(f̂ ◦ exp), ∀f ∈ C∞
c (exp(Uπ)).

HereN (g(F )) denotes the set of nilpotent Ad(G(F ))-orbits in g(F ), and µO is an invariant

measure on O ∈ N (g(F )). Also f̂ ◦ exp is the Fourier transform

f̂ ◦ exp(X) :=

∫
g(F )

f(expY )ψ(B(X, Y )) dY.

Of course the coefficients cO(π) depends on the choice of measures. We shall adopt

the following convention on this choice. The measure dX on g(F ) is chosen to be self-

dual with respect to ψ ◦ B. By means of BN , we identify the tangent space TNO of

O ∈ N (g(F )) at N ∈ O with g(F )/gN(F ) � m(F ). We fix the measure self-dual with

respect to ψ ◦ BN on this. Then it determines the invariant measure µO on O. Also fix

an invariant measure dx on G(F ) such that the Jacobian of exp around 0 with respect to

dX and dx has absolute value 1.

Finally we write O ≥ O′ (O, O′ ∈ N (g(F ))) if O′ is contained in the closure (with

respect to the p-adic topology) of O. This is a partial order on N (g(F )). Set

NB(π) := {O ∈ N (g(F )) | cO(π) �= 0},
NWh(π) := {O ∈ N (g(F )) |WN,φ(π) �= 0, ∃φ}.

We write N•(π)max for the set of maximal elements in N•(π) with respect to the partial

order defined above (• assigns B or Wh).

Theorem 2.1 ([MW] I.16, 17). Suppose that the residual characteristic of F is odd. Then

(i) NB(π)
max = NWh(π)

max.

(ii) For O ∈ NWh(π)
max and φ as in the definition of WN,φ(π), we have dimWN,φ(π) =

cO(π).

If G is split and NB(π) contains an regular nilpotent orbit, this is due to Rodier [Rd2].

The contribution of Mœglin-Waldspurger is the construction of WN,φ(π) when N is not

even unipotent. The same construction in the case of finite F was found independently

by Kawanaka [Ka].
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Now we turn to the twisted analogue of this result. Let θ be an F -automorphism of

finite order % of G. We suppose that (π,E) is θ-stable, that is, θ(π) := π◦θ−1 is isomorphic

to π. By choosing an intertwiner π(θ) : θ(π)
∼→ π satisfying π(θ)� = idE, we extend π

to an irreducible representation of G(F ) � 〈θ〉. If we take B( , ), N and φ above to be

θ-invariant, then the resulting space WN,φ(π) is π(θ)-stable.

We need Clozel’s result on the asymptotic behavior of twisted character [C]. Recall

Harish-Chandra’s descent for twisted invariant distributions, i.e. distributions invariant

under the θ-conjugacy:

Adθ(g)x := gxθ(g)−1, g, x ∈ G(F ).

Writing g(θ) := (1− θ)g ⊂ g, set Ωθ := Adθ(G(F ))G
θ′(F ) where

Gθ′(F ) := {g ∈ Gθ(F ) | det(Ad(g) ◦ θ − 1|g(θ)) �= 0}.
There exists a surjective linear map

C∞
c (G(F )×Gθ ′(F )) � α(g,m) −→ ϕ(x) ∈ C∞

c (Ωθ)

such that∫
G(F )

∫
Gθ(F )

α(g,m)Φ(Adθ(g)m) dmdg =

∫
G(F )

ϕ(x)Φ(x) dx, ∀Φ ∈ C∞
c (G(F )).

Dual to this is a map of distributions

D(Ωθ) � T −→ τ ∈ D(G(F )×Gθ ′(F ))

given by 〈τ, α〉 := 〈T, ϕ〉. Though the map α → ϕ is not injective,

ϕθ(m) :=

∫
G(F )

α(g,m) dg ∈ C∞
c (Gθ ′(F ))

is well-defined.

Lemma 2.2. For any Adθ(G(F ))-invariant T ∈ D(Ωθ), there exists an Ad(Gθ(F ))-

invariant distribution σT ∈ D(Gθ ′(F )) such that

〈T, ϕ〉 = 〈σT , ϕ
θ〉, ∀α ∈ C∞

c (G(F )×Gθ ′(F )).

The twisted character of π, a twisted invariant distribution, is defined by

Θπ,θ(f) := tr(π(f) ◦ π(θ)), f ∈ C∞
c (G(F )).

We apply Lem.2.2 to have an invariant distribution ϑπ on Gθ ′(F ) such that

Θπ,θ(ϕ) = ϑπ(ϕ
θ), ∀ϕ ∈ C∞

c (Ωθ).

Theorem 2.3 ([C] Th.3). Write N (gθ(F )) for the set of nilpotent Ad(Gθ(F ))-orbits in

gθ(F ). Then there exist a neighborhood Uπ,θ of 0 in gθ(F ) and complex numbers cO,θ(π),

(O ∈ N (gθ(F ))) such that

Θπ,θ(ϕ) =
∑

O∈N (gθ(F ))

cO,θ(π)µ̂O(ϕ
θ ◦ exp)
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holds for any ϕ ∈ C∞
c (Ωθ) with supp(ϕθ ◦ exp) ⊂ Uπ,θ.

Similarly as in the ordinary case, we put

NB,θ(π) := {O ∈ N (gθ(F )) | cO,θ(π) �= 0},
NWh,θ(π) := {O ∈ N (gθ(F )) | tr(π(θ)|WN,φ(π)) �= 0, ∃φ}.

Now we can state:

Theorem 2.4. Suppose that % is prime to the residual characteristic of F , which we as-

sumed to be odd.

(1) NB,θ(π)
max coincides with NWh,θ(π)

max.

(2) Let O ∈ NB,θ(π)
max. Then for any choice of N ∈ O and φ, we have tr(π(θ)|WN,φ(π)) =

cO,θ(π).

3. Twisted endoscopy implies the generic packet conjecture

3.1. Twisted endoscopy problems to be considered. We first review some basic

facts on twisted endoscopy [KS].

Let k be a number field. We write LG = Ĝ � Wk for the L-group of a connected

reductive k-group G. Langlands conjecture says that the automorphic representations of

G(Ak) should be parametrized by the Ĝ-conjugacy classes of suitable homomorphisms

ϕ : Lk → LG, called the Langlands parameters. Endoscopy is aimed at the study of those

automorphic representations whose Langlands parameters have the image contained in the

fixed part LG
Lθ of LG under certain semisimple automorphism Lθ. Ordinary endoscopy

deals with the case Lθ ∈ Int(Ĝ) and twisted endoscopy handles the general case.

Since the Langlands parameters are considered up to Ĝ-conjugation, we may assume

that Lθ is of the form

Lθ(g � w) = θ̂(g)a(w)� w, g ∈ Ĝ, w ∈Wk,

where θ̂ is a semisimple automorphism of Ĝ and a(w) is a Z(Ĝ)-valued 1-cocycle on

Wk. In this case, we say that the twisted endoscopy problem is associated to (G, θ, a),

where θ is an k-automorphism of G whose outer class is dual to θ̂ and a is the class of

a in H1(Wk, Z(Ĝ)). The class of a in H1(Wk, Z(Ĝ))/ ker
1(Wk, Z(Ĝ)) corresponds to an

automorphic character ω of G(k)\G(Ak) by Langlands’ correspondence for tori. Here

ker1(Wk, Z(Ĝ)) := ker[H1(Wk, Z(Ĝ))→
∏

v

H1(Wkv , Z(Ĝ))].

Then according to the Langlands conjecture, the twisted endoscopy for (G, θ, a) should

describe the automorphic representations or an L- or Arthur packets Π of G(Ak) which

satisfies ω ⊗ θ(Π) = Π. There is also an evident local counter part to this.

Now we return to the case of local F and let E be either a quadratic extension of F

or F itself. We consider the twisted endoscopy problem associated to (L, θ,111), where
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L := ResE/FGL(n), θ is the automorphism of L defined by

θ(g) := Ad
(



1

−1
. . .

(−1)n−1




)
(σ̃(tg−1)).

Here σ̃ is the F -automorphism of L attached to the generator σ of Gal(E/F ). The group

G defined by

G :=



quasisplit U(n) if E �= F ,

Sp(m) if E = F and n = 2m+ 1,

SO(m,m) if E = F and n = 2m

is the “principal” endoscopic group of (L, θ,111).

For any δ ∈ L, we write Lδ,θ for the group of fixed points in L under Ad(δ) ◦ θ. δ ∈ L

is said to be θ-semisimple if Ad(δ) ◦ θ induces a semisimple automorphism of Lder. A θ-

semisimple δ ∈ L is θ-regular if the identity component L0
δ,θ of Lδ,θ is a torus, and strongly

θ-regular if Lδ,θ is abelian. We write Lθ,sr(F ) for the set of strongly θ-regular elements in

L(F ). At each δ ∈ Lθ,sr(F ) we define the θ-orbital integral by

Oδ,θ(f) :=

∫
Lδ,θ(F )\L(F )

f(g−1δθ(g))
dg

dt
.

Two strongly θ-regular δ, δ′ ∈ L(F ) is stably θ-conjugate if they are θ-conjugate in L(F ).

We define the stable θ-orbital integral at δ ∈ Lθ,sr(F ) by

SOδ,θ(f) :=
∑

δ′ stably θ-conj. to δ
mod. θ-conj.

Oδ,θ(f).

In [KS] I, Kottwitz and Shelstad constructed the norm map, which we denote by NL/G,

from the set of stable θ-conjugacy classes in Lθ,sr(F ) to that of strongly regular stable

conjugacy classes in G(F ). Also they defined a function ∆L/G(γ, δ) on Gsr(F )× Lθ,sr(F )

called the transfer factor. Of course their construction applies to the most general setting.

In our case, we know that

∆L/G(γ, δ) =


1 if γ ∈ NL/G(δ),

0 otherwise.

To define the endoscopic lifting, we need the following conjecture.

Conjecture 3.1 (Transfer conjecture). For f ∈ C∞
c (L(F )), there exists fG ∈ C∞

c (G(F ))

such that

SOγ(f
G) =

∑
δ

∆L/G(γ, δ)Oδ,θ(f).

Here δ runs over the θ-conjugacy classes whose norm contains γ.
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As opposed to the ordinary (i.e. θ = id) case, we do not have the precise notion of

stable distributions in the twisted case. But we assume this in the following. We also have

to postulate the existence of discrete L-packets. An irreducible admissible representation

π of G(F ) is square integrable if it appears discretely in Harish-Chandra’s Plancherel

formula for G(F ). The set of isomorphism classes of such representations is denoted by

Πdisc(G(F )).

Conjecture 3.2. (1) Πdisc(G(F )) is partitioned into a disjoint union of finite sets of

representations Πϕ called (discrete) L-packets:

Πdisc(G(F )) =
∐

ϕ∈Φdisc(G(F ))

Πϕ.

(2) There exists a function δ(1, •) : Πϕ → C× such that

Θϕ :=
∑
π∈Πϕ

δ(1, π)Θπ

is a stable distribution.

An irreducible admissible representation of G is tempered if it contributes non-trivially

to the Plancherel formula. Let P = MU be a F -parabolic subgroup of G and τ ∈
Πdisc(M(F )). Then the induced representation ind

G(F )
P (F )[τ ⊗ 111U(F )] is a direct sum of irre-

ducible tempered representations of G(F ):

ind
G(F )
P (F )[τ ⊗ 111U(F )] �

�τ⊕
i=1

πi(τ).

Moreover, any irreducible tempered representation of G(F ) is obtained in this way for

some (M, τ) unique up to G(F )-conjugation. Regarding this, we define a tempered L-

packet by

Πϕ :=
∐

τ∈ΠM
ϕ

{πi(τ) | 1 ≤ i ≤ %τ},

where ΠM
ϕ is a discrete L-packet of M . By putting δ(1, πi(τ)) := δ(1, τ), Conj.3.2 with

Πdisc(G(F )) replaced by the set Πtemp(G(F )) of the isomorphism classes of irreducible

tempered representations of G(F ) follows.

Finally we say that an irreducible admissible θ-stable representation π of L(F ) is θ-

discrete if it is tempered and is not induced from a θ-stable tempered representation of a

proper Levi subgroup. Note that each θ-discrete representation of L(F ) is generic.

Now we can define the twisted endoscopic lifting which we need.

Conjecture 3.3. There should be a bijection ξ from the set Φdisc(G(F )) of tempered L-

packets of G(F ) to the set Πθ,disc(L(F )) of isomorphism classes of θ-stable irreducible

θ-discrete representations of L(F ), which should be characterized by

Θξ(Π),θ(f) = ΘΠ(f
G),

for any f ∈ C∞
c (L(F )) and fG ∈ C∞

c (G(F )) as in Conj.3.1.
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3.2. TE implies GPC. Now we prove the following.

Theorem 3.4. Suppose the Conj.3.3. Then the generic packet conjecture is valid for G.

Write l := LieL. For h ∈ C∞
c (l(F )) and t ∈ F×, we put ht(X) := h(t−1X), (X ∈ l(F )).

We assume that the support of f ∈ C∞
c (L(F )) is sufficiently small so that there exists

a neighborhood V of 0 in l(F ), on which the exponential map is defined and injective,

satisfying suppf ⊂ exp(V). Then we can consider f◦exp ∈ C∞
c (l(F )). Taking t sufficiently

small, we may define ft ∈ C∞
c (L(F )) by ft ◦ exp := (f ◦ exp)t. Further we might take f

and V so that the transferred function fG satisfies the same condition. We define fG
t in

the same fashion. As in [Sh, Lem.9.7], one can prove:

Lemma 3.5. Let f ∈ C∞
c (L(F )) and fG ∈ C∞

c (G(F )) be as in Conj.3.1. Suppose that

suppf is so small that we can define ft and fG
t for sufficiently small t. Then we have

SOγ(f
G
t2 ) =

∑
δ

∆L/G(γ, δ)Oδ,θ(ft2),

for t ∈ F× small enough.

Prove the theorem. Since ind
G(F )
P (F )[τ ⊗ 111U(F )] is generic if τ is so, we are reduced to the

case of a discrete L-packet Π. Then by Conj.3.3, we have

Θξ(Π),θ(f) =
∑
π∈Π

δ(1, π)Θπ(f
G).

Suppose that suppf is sufficiently small. Then applying the asymptotic expansion (Th.2.3)

to the both side, we have∑
O∈N (lθ(F ))

cO,θ(ξ(Π))µ̂O(f
θ ◦ exp) =

∑
o∈N (g(F ))

∑
π∈Π

co(π) µ̂o(f
G ◦ exp).

Here f θ ∈ C∞
c (Gθ(F )) is the descent of f .

Let o ∈ N (g(F )) and N ∈ o. We say that o is r-regular if the variety BN of Borel

subalgebras of g containing N is r-dimensional. It is a result of Harish-Chandra that

µ̂o(f
G
t2 ◦ exp) = |t|2r

F µ̂o(f
G ◦ exp)

for an r-regular o. The same is true for lθ.

Now recall that ξ(Π) is generic. That is, for any 0-regular nilpotent N and φ as in §2,
we have WN,φ(ξ(Π)) �= 0. Noting the uniqueness of the Whittaker model, we deduce that

tr(ξ(Π)(θ)|WN,φ(ξ(Π))) = 1 and hence cO,θ(ξ(Π)) = 1 for any regular O. Thus in the

equality ∑
O∈N (lθ(F ))

cO,θ(ξ(Π))µ̂O(f
θ
t2 ◦ exp) =

∑
o∈N (g(F ))

∑
π∈Π

co(π) µ̂o(f
G
t2 ◦ exp),

the terms of order 0 in |t|F on the left hand side is not zero. Thus co(π) is not zero at

least one regular o. This combined with Th.2.1 implies the genericity of Π.



10 TAKUYA KONNO

References

[A] J. Arthur, Unipotent automorphic representations: conjectures, in “Orbites unipotentes et
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Math. Zeit 196 (1987) pp. 427–452.

[Rd] Rodier, F., Intgrabilit locale des caractres du groupe GL(n, k) où k est un corps local de carac-
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