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Abstract

We explicitly describe the spectral decomposition of the right regular representation of
GSp(4, A) on the automorphic spectrum L2(GSp(4, F )R×

+\GSp(4, A)).

1 The problem
Let F be a number field, and write A = AF for its ring of adeles. F∞ denotes the direct product
of the completions of F at the archimedean places of F , while Af stands for the ring of finite
adeles. | |A denotes the idele norm on the idele group A×

F = A× of F . For each place v of F ,
we write Fv for the completion of F at v and | |v for the module of Fv.

We fix, once for all, an algebraic closure F̄ of F and take any algebraic extension of F
inside this. The Weil group of F̄ /F is denoted by WF [Tat79]. At each place v of F , we also
fix an algebraic closure F̄v of Fv and a commutative diagram

F̄ −−−→ F̄vx x
F −−−→ Fv

This specifies a homomorphism WF → WFv , where WFv denotes the Weil group of F̄v/Fv.
As in the other articles in this volume, we consider the group G = GSp(4):

G(R) = {g ∈ GL(4, R) | ν(g) := gAd(J)tg ∈ R×}, J =

Ç
02 12

−12 02

å
.

Here ν : G → Gm denotes the similitude norm. Note that this definition makes sense not only
over F but also its ring of integers OF (or any commutative ring).
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The group G(A) of adelic points of G is a locally compact unimodular group containing the
group G(F ) of F -points as a discrete subgroup. The center Z of G is isomorphic to Gm. We
write AG for the image of R×

+ diagonally embedded into F×
∞ ⊂ A× ≅ Z(A). We fix invariant

measures dg and da on G(A) and AG, respectively, so that we have a G(A)-invariant measure
on G(F )AG\G(A). The total measure of this quotient space is known to be finite [God63].

We seek for an “irreducible decomposition” of the unitary representation R = RG of G(A)
on the space

L(G) :=

®
φ : G(A) → C

measurable

∣∣∣∣∣ (i) φ(γag) = φ(g), γ ∈ G(F ), a ∈ AG

(ii)
∫
G(F )AG\G(A) |φ(g)|2 dg < +∞

´
defined by Ä

R(g)φ
ä
(x) := φ(xg), g ∈ G(A), φ ∈ L(G).

Since the derived group Sp(4) of the G is not anisotropic, R is not completely reducible. Yet,
by aid of Langlands’ spectral theory of Eisenstein series [Lan76], [MW94], we can describe
the continuous spectrum by means of the completely reducible (i.e., discrete) part of the similar
unitary representations RM of proper Levi subgroups M ⊂ G. Along the way, we also obtain
some part (the residual discrete spectrum) of the discrete part of R. Our objective in this note
is to give a very explicit account of this description.

2 Cuspidal spectrum
Let P = MU ⊂ G be a parabolic subgroup, where M is a Levi component and U the unipo-
tent radical. The quotient U(F )\U(A) is compact, so that, for any measurable function φ on
U(F )\G(A), we can consider its constant term

φP (g) :=
∫

U(F )\U(A)
φ(ug) du, g ∈ G(A).

We say φ ∈ L(G) is cuspidal if φP vanishes almost everywhere on G(A) for any proper
parabolic subgroup P ( G. Cuspidal functions in L(G) form a closed G(A)-invariant sub-
space which we denote by Lcusp(G).

As usual, we take a Borel subgroup B0 = T0U0 to be

T0 =

m0(a1, a2; ν) :=

á
a1

a2

νa−1
1

νa−1
2

ë ∣∣∣∣∣∣∣∣∣∣
ai, ν ∈ Gm

 ,

U0 :=


á

1 a d ab + c
0 1 c b

1 0
−a 1

ë ∣∣∣∣∣∣∣∣∣∣
a, b, c, d ∈ Ga

 .

Let K =
∏

v Kv ⊂ G(A) be a T0-good maximal compact subgroup. That is,

• At archimedean v, the Lie algebra kv of Kv is orthogonal to the Lie algebra av,0 of the
R-split component of T0(Fv) under the Killing form.
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• At non-archimedean v, Kv is the stabilizer of a special point in the appartment associated
to T0 in the Bruhat-Tits building of G(Fv).

• At all but a finite number of non-archimedean v, Kv = G(Ov), where Ov is the maximal
compact subring (integer ring) of Fv.

We write K∞ :=
∏

v|∞ Kv for the infinite (archimedean) component of K. The pay-off of this
choice is that we have an Iwasawa decomposition G(A) = P (A)K for any parabolic subgroup
P ⊂ G containing T0. We use this later.

Using K, we also introduce the Hecke algebra H(G(A)) of G(A), i.e., the convolution
algebra of compactly supported both sides K-finite functions on G(A).

Proposition 2.1 ([Lan76] Cor. to Lem.3.1). The convolution operatorsÄ
R(f)φ

ä
(x) :=

∫
G(A)

f(g)φ(xg) dg, f ∈ H(G(A))

on Lcusp(G) are compact.

Since H(G(A)) contains a sequence which approximates the Dirac distribution at the iden-
tity, we can deduce the following from this.

Theorem 2.2 (Piatetsky-Shapiro). The restriction Rcusp of R to Lcusp(G) decomposes into a
Hilbert direct sum of irreducible unitary representations of G(A), in which each isomorphism
class of irreducible unitary representations of G(A) occurs with finite multiplicity.

Lcusp(G) ≅
⊕

π∈Π(G(A))

π⊕mcusp(π), mcusp(π) ∈ N.

Here, Π(G(A)) denotes the set of isomorphism classes of irreducible unitary representations of
G(A).

Remark 2.3 (On cusp forms). (i) Recall that a function φ on G(A) is called a cusp form if

• φ(γag) = φ(g), γ ∈ G(F ), a ∈ AG, g ∈ G(A);

• φ is right K-finite: dim span{(g 7→ φ(gk)) | k ∈ K} < ∞;

• φ is Z(G(F∞))-finite: dim span{R(X)φ |X ∈ Z(G(F∞))} < ∞;

• φ is slowly increasing on G(A);

• φP = 0 for any proper parabolic subgroup P ( G.

Here Z(G(F∞)) denotes the Ad(G(F∞))-invariant part of the universal enveloping algebra of
the complexified Lie algebra g∞ of G(F∞). We write Acusp(G) for the space of cusp forms on
G(A). Then Acusp(G) is a dense subspace of Lcusp(G) in the L2-topology.
(ii) Acusp(G) is not a unitary representation of G(A) but a (g∞,K∞) × G(Af )-module. More-
over, for each K-type κ (i.e., an isomorphism class of irreducible unitary representations of K)
and a C-algebra homomorphism χ : Z(G(F∞)) → C, the space Acusp(G)κ,χ of φ ∈ Acusp(G)
which transform under K by κ and under Z(G(F∞)) by χ is finite dimensional.
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Thanks to a fundamental result of Harish-Chandra, we often identify each π ∈ Π(G(A))
with its associated (unitarizable) (g∞,K∞) × G(Af )-module.

The determination of the multiplicity mcusp(π) in Th.2.2 seems to be a difficult problem.
As for some efforts made in this direction, we refer the reader to David Whitehouse’s article in
this volume. In what follows, we concentrate on the spectral decomposition of the orthogonal
complement of Lcusp(G).

3 Decomposition via the cuspidal data

3.1 Cuspidal spectrum for Levi subgroups
Among the parabolic subgroups, we need only the standard parabolic subgroups (with respect
to B0), i.e., the parabolic subgroups containing B0. There are the following two such subgroups
Pi = MiUi, (i = 1, 2) other than B0 and G itself:

M1 =

m1(t, g) :=

á
t

a b
ν/t

c d

ë ∣∣∣∣∣∣∣∣∣∣
t ∈ Gm, ν = det g

g =

Ç
a b
c d

å
∈ GL(2)

 ,

U1 =


á

1 y′ s y
0 1 y 0

1 0
−y′ 1

ë ∣∣∣∣∣∣∣∣∣∣
y, y′, s ∈ Ga

 ,

M2 =

®
m2(g, ν) :=

Ç
g 02

02 νtg−1

å ∣∣∣∣∣ g ∈ GL(2)
ν ∈ Gm

´
,

U2 =

®Ç
12 S
02 12

å ∣∣∣∣∣ S = tS ∈ M2

´
.

We can also consider the spaces L(M) ⊃ Lcusp(M) for any proper (standard) Levi subgroup
M . The cuspidal multiplicities mcusp(π), (π ∈ Π(M(A))) are well-known. In fact, we can
write π ∈ Π(M(A)) as

ω1 ⊗ ω2 ⊗ ω(m0(t1, t2; ν)) = ω1(t1)ω2(t2)ω(ν), if M = T0;
ω ⊗ τ(m1(t, g)) = ω(t)τ(g), if M = M1; (3.1)
τ ⊗ ω(m2(g; ν)) = ω(ν)τ(g), if M = M2,

where ω1, ω2, ω ∈ Π(A×) (unitary characters of A×) and τ ∈ Π(GL(2, A)). Since we have, for
example mcusp(ω ⊗ τ) = mcusp(ω)mcusp(τ) in the case M = M1, it suffices to know mcusp(π)
for π ∈ Π(A×) or Π(GL(2, A)).

Theorem 3.1. (i) For both A× and GL(2, A), mcusp(π) ≤ 1.
(ii) (Classfield theory in the sense of Langlands [Mil06]) There exists a functorial bijection
between

Π(A×/F×) = {ω ∈ Π(A×) |mcusp(ω| |λA) ̸= 0, ∃λ ∈ C}
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and the set Homcont(WF , C×) of continuous homomorphisms from WF to C×.
(iii) (Converse theorem for GL(2) [JL70]) Suppose that the central character of π ∈ Π(GL(2, A))
restricted to R×

+ ⊂ A× = Z(GL(2))(A) is trivial. Then mcusp(π) = 1 if and only if the follow-
ing conditions are satisfied for any ω ∈ Π(A×/F×).

• The standard L and ε-functions L(s, π × ω), ε(s, π × ω) are entire;

• The functional equation L(s, π × ω) = ε(s, π × ω)L(1 − s, π∨ × ω−1) holds;

• L(s, π × ω) is bounded on any region of the form |ℜs| ≤ C.

3.2 Poincaré series
Take a standard parabolic subgroup P = MU ⊂ G. Writing X∗(M)F for the group of F -
rational characters of M , we set

M(A)1 := {m ∈ M(A) | |χ(m)|A = 1, ∀χ ∈ X∗(M)F}.

Then we have the direct product decomposition M(A) = AM × M(A)1. For a unitary repre-
sentation π of M(A), we may twist its “AM -component” as follows.

(B0) For λ = (λ1, λ2) ∈ aG,∗
0,C := C2, set πλ := eλ ⊗ π where

eλ(m0(t1, t2; ν)) := |t1|λ1
A |t2|λ2

A |ν|−(λ1+λ2)/2
A .

(P1) For λ ∈ aG,∗
M1,C := C define πλ as above, where eλ(m1(t, g)) := |t|λA| det g|−λ/2

A .

(P2) For λ ∈ aG,∗
M2,C := C, define πλ as above with eλ(m2(g; ν)) := | det g|λA|ν|−λ

A .

For π ∈ Π(M(A)), we write Acusp(M)π for the π-isotypic subspace in the (m∞,K∞ ∩
M(F∞))×M(Af )-module Acusp(M) 1. Of course, this is not zero if and only if mcusp(π) > 0.
For λ ∈ aG,∗

M,C as above, we set Acusp(M)πλ
:= eλAcusp(M)π. Then we consider the K-finite

induction
Acusp(P\G)πλ

:= indK
K∩P (A) Acusp(M)πλ+ρP

,

where

ρP :=


(2, 1) if P = B0,
2 if P = P1,
3/2 if P = P2

is the square root of the modular character of P (A). This is the space of functions φ : G(A) →
C satisfying the conditions:

(i) φ(uγag) = eλ+ρP (a)φ(g), (u ∈ U(A), γ ∈ M(F ), a ∈ AM , g ∈ G(A));

(ii) φ is right K-finite (see Rem.2.3);
1The notation Acusp(M)π cannot be replaced with A(M)π in general, because the representation π can con-

tribute also to the non-cuspidal spectrum. Such an example does exist. See [GGJ02].
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(iii) M(A) ∋ m 7→ φ(mk) ∈ C belongs to Acusp(M)πλ+ρP
for any k ∈ K.

We regard this as a (g∞,K∞)×G(Af )-module (IG
P (πλ),Acusp(P\G)πλ

) under the right trans-
lation action IG

P (πλ). For any finite set F of K-types, the union Acusp(P\G)F
πλ

of the κ-isotypic
subspaces in Acusp(P\G)πλ

, (κ ∈ F) form a vector bundle (of finite rank) Acusp(P\G)F
πλ

→
λ ∈ aG,∗

M,C by Rem.2.3 (ii). We view Acusp(P\G)πλ
as a union of these vector bundles, and

consider a special type of sections for this.
The Paley-Wiener theorem asserts that the image of C∞((−r, r)) under the Fourier trans-

form
f̂(x) :=

∫
R

f(y)exyi dy

consists of the entire functions f̂ ∈ Cω(C) satisfying

• f̂ ∈ L2(R);

• There exists C > 0 such that |f̂(z)| ≤ Cer|z|, z ∈ C.

We apply this to the Fourier transform for the duality between the Lie algebra aG
M of AM/AG

and aG,∗
M . and By extending the resulting Paley-Wiener functions to G(A) by the Langlands

decomposition
G(A) = U(A)AMM(A)1K,

we can define the space P(M,π) of Paley-Wiener sections for Acusp(P\G)πλ
→ λ ∈ aG,∗

M,C. More
precisely, P(M,π) consists of the sections aG,∗

M,C ∋ λ 7→ φλ ∈ Acusp(P\G)F
πλ

for some finite set
of K-types F, whose Fourier transform

φ̂(g) :=
∫

λ∈λ0+iaG,∗
M

φλ(g) dλ =
∫

λ∈λ0+iaG,∗
M

φλ(mk)eλ(a) dλ

(g = uamk, u ∈ U(A), a ∈ AM , m ∈ M(A)1, k ∈ K) is smooth and compactly supported
modulo AG in a ∈ AM . One can easily verify that the series

θφ(g) :=
∑

γ∈P (F )\G(F )

φ̂(γg)

converges absolutely for φ ∈ P(M,π). We write W0 = WG
0 := Norm(T0, G)/T0 for the Weyl

group of T0 in G.

Theorem 3.2. (i) Take a standard parabolic subgroup P = MU ⊂ G and π ∈ Π(M(A))
whose central character ωπ restricted to AM is trivial. Then θφ ∈ L(G) for any φ ∈ P(M,π).
(ii) We write [M,π] for the W0-conjugacy class of pairs (M,π) as in (i). Let L(G)[M,π] be the
closed span of θφ, φ ∈ P(M ′,π′) where (M ′, π′) runs over [M,π]. Then we have a Hilbert direct
sum decompostion

L(G) =
⊕

[M,π]

L(G)[M,π].

Outline of the proof. For the density of
∑

[M,π] {θφ |φ ∈ P(M ′,π′), (M
′, π′) ∈ [M,π]} in L(G),

see [MW94, Th.II.1.12]. This follows from Th.2.2 and the so-called Langlands lemma. That is,
if the “cuspidal components” of the constant terms φP of φ ∈ L(G) are zero for any B0 ⊆ P ⊆
G, then φ = 0. The orthogonality of the summands follows from the inner product formula for
θφ’s (Th.4.3).
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4 L2-inner product of Poincaré series

4.1 Eisenstein series
We write Σ0 for the set of roots of T0 in G. The positive system associated to B0 is denoted by
ΣB0 ⊂ Σ0. Then the set ∆B0 of simple roots in ΣB0 consists of

α1(m0(t1, t2; ν)) := t1/t2, α2(m0(t1, t2; ν)) := t22/ν.

For Pi = MiUi, (i = 1, 2), the set ∆Pi
= {αMi

:= αi|AMi
} of non-trivial restrictions of α ∈ ∆B0

to the center AMi
of Mi is called the set of simple roots of (Pi, AMi

). The corresponding coroots
α∨ ∈ aG

M , (α ∈ ∆M ) are given by

α∨
1 (λ) = λ1 − λ2, α∨

2 (λ) = λ2, λ = (λ1, λ2) ∈ aG,∗
0 ,

α∨
Mi

(λ) := λ, λ ∈ aG,∗
Mi

, (i = 1, 2).

Proposition 4.1 ([Lan76] Lem.4.1). Let (P = MU, π) be as above, and take φ ∈ P(M,π).
(i) For λ ∈ aG,∗

M,C, the (cuspidal) Eisenstein series

EP (φλ, g) :=
∑

γ∈P (F )\G(F )

φλ(γg)

converges absolutely if α∨(ℜλ− ρP ) > 0 for any α ∈ ∆P . Here ℜλ denotes the real part of λ.
(ii) At such sufficiently positive λ ∈ aG,∗

M,C, EP (φλ) is an automorphic form on G(A) (i.e.,
satisfies the first four condtions in Rem.2.3), and satisfies the H(G(A))-equivariance:

EP (IG
P (πλ, f)φλ) = R(f)EP (φλ), f ∈ H(G(A)).

(iii) For sufficiently positive λ0 ∈ aG,∗
M , we have

θφ =
∫

λ∈λ0+iaG,∗
M

EP (φλ) dλ.

The assertions other than the convergence are rather formal and easy to prove.
Now we introduce the intertwining operators. For a standard Levi subgroup M ⊂ G, WM

denotes the set of cosets wWM
0 ⊂ W0 such that w(M) is again a standard Levi subgroup of G.

For our present G = GSp(4), this coincides with the Weyl group W (M) := Norm(M,G)/M
of M in G. If we write ri ∈ W0 for the simple reflection attached to αi ∈ ∆B0 , then we have

W0 = {1, r1, r2, r1r2, r2r1, wM1 := r1r2r1, wM2 := r2r1r2, w0 := r1r2r1r2}

and WMi
= W (Mi) = {1, wMi

}, (i = 1, 2). For w ∈ WM , we write Pw = w(M)Uw ⊂ G for
the standard parabolic subgroup having w(M) as a Levi component. We also fix a representative‹w ∈ Norm(T0, G) for each w ∈ W0.

Proposition 4.2 ([MW94] II.1.6–7). Take a standard parabolic subgroup P = MU and π ∈
Π(M(A)) with ωπ|AM

= 1.
(i) For w ∈ WM and λ ∈ aG,∗

M,C, the integral

M(w, πλ)φ(g) :=
∫
(w(U)∩Uw)\Uw)(A)

φ(‹w−1ug) du
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converges absolutely if α∨(ℜλ − ρP ) > 0, for any α ∈ ∆P .
(ii) At such λ ∈ aG,∗

M,C, this defines an intertwining operator (i.e., a (g∞,K∞) × G(Af )-
homomorphism)

M(w, πλ) : Acusp(P\G)πλ
−→ Acusp(Pw\G)w(πλ),

where w(πλ) := πλ ◦ Ad(‹w)−1.
(iii) For φ ∈ P(M,π), the constant term of EP (φλ) along a standard parabolic subgorup P ′ =
M ′U ′ is given by

EP (φλ)P ′ =
∑

w∈WM
w(M)⊂M ′

EP ′

Pw
(M(w, πλ)φλ),

where EP ′
P (φλ, g) :=

∑
γ∈P (F )\P ′(F ) φλ(γg).

(iv) We have the adjonction formula

〈M(w, πλ)φ, φ′〉 = 〈φ,M(w−1, w(π)−w(λ̄)))φ
′〉

for φ ∈ Acusp(P\G)πλ
, φ′ ∈ Acusp(Pw\G)w(π)−w(λ̄)

. Here, the pairing is defined by

〈φλ, φ
′
−λ̄〉 :=

∫
K

∫
M(F )\M(A)1

φλ(mk)φ′
−λ̄

(mk) dmdk

for φλ ∈ A(P\G)πλ
, φ′

−λ̄ ∈ A(P\G)π−λ̄
.

Note that both M(w, πλ)φ and w(πλ) are independent of the choice of ‹w, since φ ∈ Acusp(P\G)πλ

is left M(F )-invariant.

4.2 L2-inner product of Poincaré series
Theorem 4.3 ([MW94] II.2.1). Take pairs (P = MU, π), (P ′ = M ′U ′, π′) as above. The inner
product of θφ, θφ′ , (φ ∈ P(M,π), φ

′ ∈ P(M ′,π′)) in L(G) is given by

〈θφ, θφ′〉 =
∫

λ0+iaG,∗
M

A(φ, φ′)(πλ) dλ,

A(φ, φ′)(πλ) :=
∑

w∈WM
w(M)=M ′

〈M(w, πλ)φλ, φ
′
−w(λ̄)〉

if [M,π] = [M ′, π′], and 0 otherwise. Here, λ0 ∈ aG,∗
M is any point satisfying α∨(λ0 − ρP ) > 0

for any α ∈ ∆P . The pairing on the right hand side of the second row is the one defined in
Prop.4.2.

Proof. We note G(F )AG\G(A) ≅ G(F )\G(A)1. Using the integration formula for the decom-
position G(A)1 = U ′(A)AG

M ′M ′(A)1K, we have

〈θφ, θφ′〉 =
∫

G(F )\G(A)1
θφ(g)

∑
γ∈P ′(F )\G(F )

φ̂′(γg) dg =
∫

P ′(F )\G(A)1
θφ(g)φ̂′(g) dg

=
∫
K

∫
M ′(F )\M ′(A)1

∫
AG

M′

∫
U ′(F )\U ′(A)

θφ(uamk) du

× φ̂′(amk)e−2ρP ′ (a) da dmdk

=
∫
K

∫
AG

M′

∫
M ′(F )\M ′(A)1

θφ,P ′(amk)φ̂′(amk) dme−2ρP ′ (a) da dk.
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The constant term θφ,P ′ is calculated by applying the Fourier transform to Prop.4.2 (iii):

θφ,P ′ =
∑

w∈WM
w(M)⊂M ′

∫
λ0+iaG,∗

M

EP ′

Pw
(M(w, πλ)φλ) dλ.

Here λ0 is a sufficiently positive element of aG,∗
M . Putting this and the definition of φ̂′ into the

above, we get

〈θφ, θφ′〉 =
∑

w∈WM
w(M)⊂M ′

∫
K

∫
AG

M′

∫
M ′(F )\M ′(A)1

∫
λ0+iaG,∗

M

EP ′

Pw
(M(w, πλ)φλ, amk) dλ

×
∫

λ′
0+iaG,∗

M′

φ′
λ′(amk) dλ′ dme−2ρP ′ (a) da dk

=
∑

w∈WM
w(M)⊂M ′

∫
K

∫
AG

M′

∫
λ0+iaG,∗

M

∫
λ′
0+iaG,∗

M′

×
∫

M ′(F )\M ′(A)1
EP ′

Pw
(M(w, πλ)φλ, amk)φ′

λ′(amk) dm

dλ′ dλ e−2ρP ′ (a) da dk.

(4.1)

Note that the integral on λ′ is independent of λ′
0 ∈ aG,∗

M ′ by Cauchy’s integration theorem.
Writing ϕ := M(w, πλ)φλ for brevity, the inner integral becomes∫

M ′(F )\M ′(A)1

∑
γ∈Pw(F )\P ′(F )

ϕ(γamk)φ′
λ′(amk) dm

=
∫
(Uw∩M ′)(A)w(M)(F )\M ′(A)1

ϕ(amk)
∫
(Uw∩M ′)(F )\(Uw∩M ′)(A)

φ′
λ′(aumk) du dm

=


∫

M ′(F )\M ′(A)1
ϕ(amk)φ′

λ′(amk) dm if Pw = P ′,

0 otherwise,

since m 7→ φ′
λ′(amk) belongs to eλ′+ρP ′Acusp(M

′)π′ . Thus (4.1) simplifies to

〈θφ, θφ′〉 =
∑

w∈WM
w(M)=M ′

∫
K

∫
M ′(F )\M ′(A)1

∫
AG

M′

∫
λ0+iaG,∗

M

∫
−w(λ0)+iaG,∗

M′

ew(λ)+ρP ′ (a)M(w, πλ)φλ(mk)eλ̄′+ρP ′ (a)φ′
λ′(mk) dλ′ dλ e−2ρP ′ (a) da dmdk

=
∑

w∈WM
w(M)=M ′

∫
K

∫
M ′(F )\M ′(A)1

∫
AG

M′(∫
λ0+iaG,∗

M

∫
−w(λ0)+iaG,∗

M′

M(w, πλ)φλ(mk)φ′
λ′(mk)ew(λ)+λ̄′

(a) dλ′ dλ

)
da dmdk.

(4.2)
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Here we have chosen λ′
0 := −w(λ0) in the term associated to w ∈ WM , w(M) = M ′. If we

put λ1 := (λ + w−1(λ′))/2, λ2 := λ′ − w(λ), then the inside of the brace becomes∫
iaG,∗

M

∫
−2w(λ0)+iaG,∗

M′

M(w, πλ1−w−1(λ2)/2)φλ1−w−1(λ2)/2(mk)

φ′
w(λ1)+λ2/2(mk)e−iℑλ2(a) dλ2 dλ1

putting λ′ := iℑλ2,

=
∫

iaG,∗
M

∫
iaG,∗

M′

M(w, πλ0+λ1−w−1(λ′)/2)φλ0+λ1−w−1(λ′)/2(mk)

× φ′
w(λ1−λ0)+λ′/2(mk) e−λ′

(a) dλ′ dλ1

putting λ := λ0 + λ1 and noting λ0 ∈ aG,∗
M , λ1 ∈ iaG,∗

M ,

=
∫

λ0+iaG,∗
M

∫
iaG,∗

M′

M(w, πλ−w−1(λ′)/2)φλ−w−1(λ′)/2(mk)φ′
−w(λ̄)+λ′/2

(mk)

× e−λ′
(a) dλ′ dλ1.

Here ℑ(·) denotes the imaginary part of (·). Putting this into (4.2) and applying the Fourier
inversion formula, we obtain

〈θφ, θφ′〉 =
∑

w∈WM
w(M)=M ′

∫
K

∫
M ′(F )\M ′(A)1

∫
λ0+iaG,∗

M

M(w, πλ)φλ(mk)φ′
−w(λ̄)

(mk) dλ dmdk

=
∫

λ0+iaG,∗
M

∑
w∈WM

w(M)=M ′

〈M(w, πλ)φλ, φ
′
−w(λ̄)〉 dλ,

as stated.

5 Analytic behavior of intertwining operators

The inner product formula in Th.4.3 does not yield the spectral decomposition immediately,
because the pairings on the right hand side are not G(A)-invariant. To obtain a G(A)-equivariant
formula, we need to move the integration axis to the unitary axis iaG,∗

M . By the general theory due
to Langlands, the operators M(w, πλ) and the cuspidal Eisenstein series are all meromorphically
continued to the whole aG,∗

M,C, so that we can still use these to describe the resulting formula.
But to obtain eplicit description of the result, we need to know the analytic behavior of these
functions in the “positive half space” of aG,∗

M,C. Here we investigate these analytic properties for
G = GSp(4) using the Langlands-Shahidi theory.
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5.1 Normalization of intertwining operators
Recall that the L-group of G is a direct product LG = “G×WF , where “G = G(C) = GSp(4, C).
The L-groups of standard parabolic subgroups are identified with subgroups of LG as follows.

(See e.g., [Kon] for more details.)
LB0 = LT0 n “U0 = B0(C) × WF ,
LP1 = LM1 n “U1 = P2(C) × WF ,
LP2 = LM2 n “U2 = P1(C) × WF .

Recall the Langlands correspondence for tori of Gm (Th.3.1). Also for a cuspidal automorphic
representation τ of GL(2, A), we write ϕτ : LF → GL(2, C) for its conjectural Langlands
parameter. Here LF is the hypothetical Langlands group of F̄ /F . We need these objects only
to make it easy to memorize the normalization factors for intertwining operators, and do not use
them in any practical computation.

Now take P = MU ⊂ G and π ∈ Π(M(A)) with mcusp(π) ̸= 0 or equivalently Acusp(M)π ̸=
0. Using the above notation, the Langlands parameter ϕπ : LF → LG of π is given as follows.

(B0) Writing π = ω1 ⊗ ω2 ⊗ ω (see (3.1)),

ϕπ = diag(ω1ω2ω, ω1ω, ω, ω2ω) × pWF
.

(P1) Writing π ≅ ω ⊗ τ as in (3.1),

ϕπ =

Ç
ωϕτ 02

02 ωτ
tϕ−1

τ

å
× pWF

.

(P2) Writing π ≅ ω ⊗ τ as in (3.1),

ϕπ =

á
ωωτ

ωaτ ωbτ

ω
ωcτ ωdτ

ë
× pWF

,

where we have written ϕτ =

Ç
aτ bτ

cτ dτ

å
.

Take w ∈ WM . We write û, ûw for the Lie algebra of “U and “Uw, respectively. Associated to
π ∈ Π(M(A)) as above and the adjoint representation ρw : LM → GL(û/w−1(û) ∩ û) is the
automorphic L and ε-functions

L(s, π, ρw) := L(s, ρw ◦ ϕπ), ε(s, π, ρw) := ε(s, ρw ◦ ϕπ),

where the right hand sides are the Artin L and ε-functions associated to ρw ◦ ϕπ. Using these,
we define the Langlands normalization factor for M(w, πλ):

r(w, πλ) :=
L(0, πλ, ρw)

L(1, πλ, ρw)ε(0, πλ, ρw)
.

To be explicit, we have the following list. We write πλ as in §3.2, and abbreviate ρwMi
as ρMi

,
(i = 1, 2). Note that any of the automorphic L-functions involved can be obtained from some
(well-known) integral representation, and we do not need the global Langlands conjecture !
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(B0) For simple reflections si ∈ W0 attached to αi ∈ ∆B0 , we have

L(0, πλ, ρs1) = L(λ1 − λ2, ω1ω
−1
2 ), L(0, πλ, ρs2) = L(λ2, ω2).

For general w ∈ W0, we take a reduced expression w = si1 · · · siℓ by the simple reflec-
tions. Then

L(0, πλ, ρw) =
ℓ∏

j=1

L(0, sij+1
· · · siℓ(πλ), ρsij

).

(P1) We have
L(0, πλ, ρM1) = L(λ, Ad2(τ) × ω),

the adjoint square L-function of τ twisted by ω [GJ78].

(P2) We have
L(0, πλ, ρM2) = L(λ, τ)L(2λ, ωτ ).

5.2 Poles of intertwining operators
First we recall the general results on meromorphic continuation which are valid for general
reductive groups.

Proposition 5.1 ([MW94] IV.1). Take (P = MU, π) as above and φ ∈ P(M,π).
(i) The functions EP (φλ), M(w, πλ), (w ∈ WM ) are meromorphically continued to the whole
aG,∗

M,C.
(ii) The properties Prop.4.1 (ii), Prop.4.2 (ii), (iii) as well as the functional equations

EPw(M(w, πλ)φλ) = EP (φλ), (w ∈ WM),

M(w,w′(π)) ◦ M(w′, π) = M(ww′, π), (w′ ∈ WM , w ∈ Ww′(M))

are valid as identities of meromorphic functions.
(iii) For λ ∈ iaG,∗

M , we have ∥M(w, πλ)φ∥ = ∥φ∥ for any φ ∈ Acusp(P\G)πλ
. Here, the norm

∥ · ∥ is the one associated to the pairing introduced in Prop.4.2.

The assertion (iii) is a consequence of the functional equation (ii) and the adjonction formula
Prop.4.2 (iv).

Now for the present G, any π ∈ Π(M(A)) which appears in the cuspidal spectrum is generic
in the sense that it admits a Whittaker model. For such cuspidal representations, we have the
following consequences of the Langlands-Shahidi theory [Sha90].

Suppose mcusp(π) ̸= 0, so that Acusp(M)π ≅ π (see Th.3.1). We have the restricted tensor
product decompostion π ≅ ⊗

v πv. Fix an associated isomorphism

Φπ : Acusp(P\G)π
∼−→

⊗
v

IG
P (πv),

where IG
P (πv) := ind

G(Fv)
P (Fv) (πv ⊗ 1U(Fv)) denotes the representation of G(Fv) parabolically

induced from πv. By multiplying eλ+ρP (viewed as a function of the AM -component of G(A) =
U(A)M(A)1AMK), this yields Φπλ

: Acusp(P\G)πλ

∼→ ⊗
v IG

P (πv,λ) for any λ ∈ aG,∗
M,C.
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On each IG
P (πv,λ), we have the local intertwining operator

M(‹w, πv,λ)φv(g) :=
∫
(w(U)∩Uw)(Fv)\Uw(Fv)

φ(‹w−1ug) du, φv ∈ IG
P (πv,λ).

This converges absolutely at λ ∈ aG,∗
M,C satisfying α∨(ℜλ) ≫ 0 for any α ∈ ΣP such that

w(α) /∈ ΣPw . Moreover, it extends to a meromorphic function of λ ∈ aG,∗
M,C. Outside its poles, it

defines an intertwining operator

M(‹w, πv,λ) : IG
P (πv,λ) −→ IG

Pw
(w(πv,λ)).

Note that the local operator depends on the representative ‹w of w. By construction, the follow-
ing diagram commutes, for λ ∈ aG,∗

M,C with α∨(ℜλ) ≫ 0, ∀α ∈ ∆P :

A(P\G)πλ

M(w,πλ)−−−−−→ A(Pw\G)w(πλ)

Φπλ

y yΦw(πλ)

⊗
v IG

P (πv,λ)
⊗

v
M(w̃,πv,λ)

−−−−−−−−−→ ⊗
v IG

Pw
(w(πv,λ))

Also, if we fix a non-trivial character ψ =
⊗

v ψv : A/F → C×, we have an Euler product
decompostion of the normalization factor r(w, πλ) =

∏
v r(w, πv,λ, ψv), where

r(w, πv,λ, ψv) :=
L(0, πv,λ, ρw)

L(1, πv,λ, ρw)ε(0, πv,λ, ρw, ψv)
.

Proposition 5.2. (i) The normalized intertwining operator

N(‹w, πv,λ, ψv) := r(w, πv,λ, ψv)
−1M(‹w, πv,λ)

is holomorphic on

CP (w) := {λ ∈ aG,∗
M,C |α∨(ℜλ) ≥ 0, α ∈ ΣP r w−1(ΣPw)}

(ii) At all but finite number of non-archimedean v, IG
P (πv,λ) contains a Kv-fixed vector φ0

πv,λ

with respect to which, the restricted tensor product is taken. For this vector, we have

N(‹w, πv,λ, ψv)φ
0
πv,λ

= φ0
w(πv,λ),

provided that ψv is of order zero and the measure on any unipotent subgroup V ⊂ G is chosen
in such a way that meas (V (Fv) ∩ Kv) = 1.

Outline of the proof. (i) When πv is tempered, this is [Sha90, Th.7.9] valid for any quasisplit
group. A case-by-case verification proves the non-tempered case for the present G.

(ii) This is no other than the Gindikin-Karepelevich formula [Lan71, p.45].
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Now we take φ ∈ P(M,π). We may assume Φπλ
(φλ) is of the form

⊗
v φv,λ, φv,λ ∈ IG

P (πv,λ).
Let S be a finite set of places of F such that φv,λ = φ0

πv,λ
and ψv is of order zero at any v /∈ S.

Then we have

M(‹w, πλ)φλ =Φ−1
w(πλ)

Å⊗
v∈S

r(w, πv,λ, ψv)N(‹w, πv,λ, ψv)φv,λ ⊗
⊗
v/∈S

r(w, πv,λ, ψv)φ
0
w(πv,λ)

ã
=r(w, πλ)Φ

−1
w(πλ)

Å⊗
v∈S

N(‹w, πv,λ, ψv)φv,λ ⊗
⊗
v/∈S

φ0
w(πv,λ)

ã
=r(w, πλ)N(w, πλ)φλ,

where
N(w, πλ)φλ := Φ−1

w(πλ)

Å⊗
v∈S

N(‹w, πv,λ, ψv)φv,λ ⊗
⊗
v/∈S

φ0
w(πv,λ)

ã
.

Also, it follows from Prop.5.2 (i) that the finite tensor product N(w, πλ) of N(w, πv,λ, ψv) is
holomorphic on CP (w) in Prop.5.2. We conclude the following.

Corollary 5.3. The poles of M(w, πλ) in the region CP (w) are exactly those of r(w, πλ).

The poles of r(w, πλ) can be easily computed. Thanks to Shahidi’s non-vanishing theorem
[Sha81, Th.5.1], the denominator of r(w, πλ) does not vanish on CP (w), so that the poles in
question are exactly those of the numerator of r(w, πλ).

Proposition 5.4. (B0) Write π = ω1 ⊗ ω2 ⊗ ω. The poles of M(w, πλ), (w ∈ W0) are

S1 := (ω1 = ω2, λ1 = 1 + λ2), S2 := (ω2 = 1, λ2 = 1),

S3 := (ω1 = ω−1
2 , λ1 = 1 − λ2), S4 := (ω1 = 1, λ1 = 1).

(P1) Write π = ω ⊗ τ . The poles of M(wM1 , πλ) are

SE,θ := ωE/F | |A ⊗ π(θ)| det |−1/2
A ,

where E/F is a quadratic extension and ωE/F denotes the quadratic character of A×/F× asso-
ciated to E/F . Also π(θ) is the dihedral type irreducible cuspidal representation of GL(2, A)
associated to θ ∈ Π(A×

E/E×) [JL70, Prop.12.1]. (In particular, θ does not factor through the
norm NE/F : A×

E → A×.)
(P2) We write π = τ ⊗ ω. The poles of M(wM2 , πλ) are

Sτ,ω := τ | det |1/2
A ⊗ ω| |−1/2

A ,

where τ is an irreducible cuspidal representation of GL(2, A) satisfying ωτ = 1A× and L(1/2, τ) ̸=
0. Also ω ∈ Π(A×/F×).

Outline of the proof. (B0) follows from the description of poles of Hecke L-functions, say
[Wei95]. (P2) immediately follows from [JL70, Th.11.1].

(P1) needs some explanation. First if ω(det)τ ̸≅ τ for any non-trivial ω ∈ Π(A×/F×),
L(s, Ad2(τ)×ω) is entire by [GJ78, Th.9.3]. Next assume ωE/F (det)τ ≅ τ for some quadratic
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extension E/F . Then [GJ78, (3.7), (9.9)] combined with [LL79, Prop.6.5] imply that τ ≅ π(θ)
for some θ ∈ Π(A×

E/E×). We know from [GJ78, pp. 488–489] that

L(s, Ad2(τ) × ω) = LE(s, θσ(θ)−1ω(NE/F ))L(s, ωωE/F ), (5.1)

where σ denotes the generator of the Galois group of E/F . NE/F denotes the norm of E/F .
The second factor on the right hand side has its only pole in the region ℜs ≥ 0 at (ω =
ωE/F , s = 1) and it is simple. In this case, one can verify that the first factor is entire so that the
pole of L(s, Ad2(τ) × ω) at (ω = ωE/F , s = 1) is simple.

Next let us prove that any pole of L(s, Ad2(τ) × ω) in the region ℜs ≥ 0 can be written in
this way (for some other E/F and θ). As in [LL79, §6], we set

G(π(θ)) := {h ∈ GL(2, A) |Ad(h)π1 ≅ π1}, A(π(θ)) := {det g | g ∈ G(π(θ))}.

Writing π(θ) ≅ ⊗
v π(θv), the set of irreducible components of π(θv)|SL(2,Fv) form an L-

packet Ππ(θv) at any place v of F . In the above, π1 is any irreducible cuspidal representa-
tion of SL(2, A) in the global L-packet

⊗
v Ππ(θv). If the first factor in the right hand side

of (5.1) has a pole, θσ(θ)−1 is of order two but non-trivial. This implies [LL79, p. 774]
that A×/F×A(πτ ) ≅ (Z/2Z)⊕2. This admits three different quotients isomorphic to Z/2Z.
Correspondingly, we have three distinct data (E/F, θ), (E ′/F, θ′) and (E ′′/F, θ′′) such that
π(θ) ≅ π(θ′) ≅ π(θ′′). Then, (5.1) becomes

L(s, Ad2(τ) × ω) = L(s, ωωE/F )L(s, ωωE′/F )L(s, ωωE′′/F )

and the assertion follows.

6 Inner product formula

Now we move the integration axis ℜλ = λ0 in Th.4.3 to the unitary axis ℜλ = 0.

6.1 The case P = P1, P2

In this case aG,∗
M,C = C, and the difference∫

λ0+iaG,∗
M

A(φ, φ′)(πλ) dλ −
∫

iaG,∗
M

A(φ, φ′)(πλ) dλ

equals the limit as T → ∞ of the integral over the path
illustrated on the right. By [HC68, Th.101], the intertwining
operator M(w, πλ) for cuspidal πλ is bounded on any region
of the form 0 ≤ ℜλ ≤ C. As φ, φ′ are of Paley-Wiener type
(in particular, rapidly decreasing in the imaginary part of λ),
the contour integrals goes to 0 as T tends to inifinity. Thus
the usual residue theorem yields the following.

6
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➟
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➟
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Proposition 6.1. We write cF := Ress=1 ζF (s)/ζF (2), where Ress=1 (·) denotes the residue at
s = 1 of (·) and ζF (s) is the complete (i.e., including the archimedean factors) Dedekind zeta
function of F .
(i) For φ ∈ P(M1,π), (π = ω ⊗ τ ), φ′ ∈ P[M1,π] :=

⊕
(M1,π′)∈[M1,π] P(M1,π′), we have

〈θφ, θφ′〉 =
∫

iR
A(φ, φ′)(πλ) dλ +

cF LE(1, θσ(θ)−1)

LE(2, θσ(θ)−1)εE(1, θσ(θ)−1)
〈N(wM1 ,SE,θ)φ1, φ

′
1〉.

(ii) For φ ∈ P(M2,π), (π = τ ⊗ ω), φ′ ∈ P[M2,π], we have

〈θφ, θφ′〉 =
∫

iR
A(φ, φ′)(πλ) dλ +

cF L(1/2, τ)√
2L(3/2, τ)ε(1/2, τ)

〈N(wM2 , Sτ,ω)φ1/2, φ
′
1/2〉.

6.2 The case P = B0

In this case, aG,∗
M,C = C2 and the sin-

gularities of A(φ, φ′)(πλ) are as in
the picture on the right. We take
a path from λ0 to 0 as illustrated
by the bold line in the picture. We
write ySj

for the intersection of the
path with ℜSj . First we have to es-
timate the contour integrals. The in-
tegrand is a sum over w ∈ W0 of

r(w, πλ)〈N(w, πλ)φλ, φ
′
−w(λ̄)〉.

The operator N(w, πλ) is a com-
posit of the similar operators on
GL(2), each of which can be writ-
ten in terms of a Fourier transform
(see [Kon, 3.2]), hence is bounded.

¾

/

/

¾

R

/

1α

?

?

2

GR 1

GR 2

GR 3

GR 4

α

λ0

y

G1
y

G2
y

yG4

G3

The normalization factor r(w, πλ) is a product of factors of the form

L(s, ω)

L(s + 1, ω)ε(s, ω)
, ω ∈ Π(A×/F×).

The exponential function ε(s, ω) is bounded on any vertical strip C1 ≤ ℜs ≤ C2. It is well-
known (see e.g., [Ayo]) that the finite component Lfin(s, ω) are of the polynomial order in the
imaginary part ℑs of s, and 1/Lfin(s + 1, ω) is of the polynomial order in log(ℑs) on a region
−ε < ℜs for some ε > 0. Also Striling’s formula asserts that the quotient L∞(s, ω)/L∞(s +
1, ω) of the archimedean components is slowly increasing in ℑs on any vertical strip 0 ≤ ℜs ≤
C. These combined with the fact that φλ is rapidly decreasing in ℑs prove that the contour
integral converges to 0 as the contour tends to infinity2.

2Thus, in any case, we do not need the “cut-off integral” adopted in [Lan76], [MW94] for the present G. The
same is true for any quasisplit group of rank 2.
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Now the residue theorem yields

〈θφ, θφ′〉 =
∫

iaG,∗
0

A(φ, φ′)(πλ) dλ

+
4∑

j=1

∫
ySj

+ia∗j

ResSj
A(φ, φ′)(πλ) dλ,

(6.1)

where

a∗
1 := {(λ, λ) ∈ aG,∗

0 } = aG,∗
M2

, a∗
2 := {(λ, 0) ∈ aG,∗

0 } = aG,∗
M1

,

a∗
3 := {(λ,−λ) ∈ aG,∗

0 } = r2(a
G,∗
M2

), a∗
4 := {(0, λ) ∈ aG,∗

0 } = r1(a
G,∗
M1

),

and ResSj
A(φ, φ′) denotes the residue of A(φ, φ′) along Sj . The first row is a G(A)-invariant

pairing while the terms in the second row are not.
We now move to the picture
on the right. In order to make
the latter to be G(A)-invariant,
we once more move the inte-
gration axis ySj

+ ia∗
j to the

“unitary axis” o(Sj) + ia∗
j of

Sj . The intersections of two
or more singular hyperplanes
are possible singularities of
ResSj

A(φ, φ′)(πλ). The esti-
mation of the contour integrals
still applies to the present sit-
uation. It turns out that the
stas in the picture are the poles.
The circled point is a com-
mon pole of several terms in
ResS2 A(φ, φ′), but they can-
cel
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each other, so that the whole thing is holomorphic there.

Proposition 6.2. For φ ∈ P(T0,π), (π = ω1 ⊗ ω2 ⊗ ω), φ′ ∈ P[T0,π] :=
⊕

(T0,π′)∈[T0,π] P(T0,π′), we
have

〈θφ,θφ′〉 =
∫

iaG,∗
0

A(φ, φ′)(πλ) dλ +
3∑

j=1

∫
o(Sj)+ia∗j

ResSj
A(φ, φ′)(πλ) dλ

+ lim
t→0

∫
o(S4)+ia∗j

1

2

Å
ResS4 A(φ, φ′)(πλ+t) + ResS4 A(φ, φ′)(πλ−t)

ã
dλ

+ c2
F 〈N(s2, wM1(Sω))M(s1s2, s1(Sω))N(s1, Sω)φρB0

, φ′
ρB0

〉
+ c2

F 〈M(s2, wM1(SE,ω))N(s1, s2s1(SE,ω))M(s2, s1(SE,ω))N(s1, SE,ω)φ(1,0), φ
′
(1,0)〉.

Here, we have written Sω := | |2A⊗| |A⊗ω| |−3/2
A and SE,ω := ωE/F | |A⊗ωE/F ⊗ω| |−1/2

A . The
second row represents the principal value of ResS4 A(φ, φ′) at o(S4). Note that o(S4) ̸= SE,ω,
since E runs over the set of (non-trivial) quadratic extensions of F .
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7 Spectral decompostion
Now we can deduce the spectral decomposition of the orthogonal complement of Lcusp(G) in
L(G) from the inner product formulas obtained above.

At any λ whose real part equals 0 ∈ aG,∗
M , or the origin o(S) of a singular hyperplane S,

or a 0-dimensional pole S, the space of (the residue of) the corresponding Eisenstein series are
calculated as follows.

• At 0 ∈ aG,∗
M , the space of cuspidal Eisenstein series EP (IG

P (πλ)), λ ∈ iaG,∗
M .

• At o(S1) = ω1| |1/2
A ⊗ ω1| |−1/2

A ⊗ ω and o(S3) = ω1| |1/2
A ⊗ ω−1

1 | |1/2
A ⊗ ωω1| |−1/2

A =
r2(o(S1)), the space of Siegel Eisenstein series

EP2(I
G
P2

(ω1(det)| det |it ⊗ ω| |−it)), (it ∈ iaG,∗
M2

).

• At o(S2) = ω1 ⊗| |A ⊗ω| |−1/2
A and o(S4) = | |A ⊗ω1 ⊗ω| |−1/2

A = r1(o(S2)), the space
of Klingen Eisenstein series

EP1(I
G
P1

(ω1| |it ⊗ ω(det)| det |−it/2
A )), (it ∈ iaG,∗

M1
).

• At Sω, the one-dimensional representation ω(ν).

• At SE,ω, the unique irreducible quotient JG
P1

(ωE/F | |A ⊗ π(ω(NE/F ))| det |−1/2
A ) of the

parabolically induced representation IG
B0

(ωE/F | |A⊗ωE/F ⊗ω| |−1/2
A ), or of the degenerate

principal series representation IG
P2

(ωE/F (det)| det |1/2
A ⊗ ω| |−1/2

A ).

• At SE,θ (see Prop.6.1), the unique irreducible quotient JG
P1

(ωE/F | |A ⊗π(θ)| det |−1/2
A ) of

IG
P1

(ωE/F | |A ⊗ π(θ)| det |−1/2
A ).

• At Sτ,ω, the unique irreducible quotient JG
P2

(τ | det |1/2
A ⊗ ω| |−1/2

A ) of IG
P2

(τ | det |1/2
A ⊗

ω| |−1/2
A ).

The proof of these result relies on the clasification in the exposition [Kon]. (The archimedean
local theory is fully covered by Vogan’s Langlands classification [Vog84], [KV95].) Combining
these with the result of [Lan76, Ch.7], [MW94, Ch.6], we obtain our final theorem.

Theorem 7.1. We have a direct sum decomposition L(G) = Lcusp(G)⊕Lres(G)⊕Lcont(G) of
unitary representations of G(A) such that:
(1) Lres(G) is a Hilbert direct sum of

(a) One dimensional representation ω ◦ ν, ω ∈ Π(A×/F×);

(b) The unique irreducible quotient JG
P1

(ωE/F | |A ⊗π(ω(NE/F ))| det |−1/2
A ) of the degenerate

principal series representation IG
P2

(ωE/F (det)| det |1/2
A ⊗ ω| |−1/2

A );

(c) The unique irreducible quotient JG
P1

(ωE/F | |A⊗π(θ)| det |−1/2
A ) of IG

P1
(ωE/F | |A⊗π(θ)| det |−1/2

A );

18



(d) The unique irreducible quotient JG
P2

(τ | det |1/2
A ⊗ ω| |−1/2

A ) of IG
P2

(τ | det |1/2
A ⊗ ω| |−1/2

A ).

Here, in (b), (c), E runs over the set of quadratic extensions of F and θ is an element of
Π(A×

E/R×
+E×) which does not pass through the norm NE/F . In (d), τ is an irreducible cuspidal

representation of GL(2, A) such that ωτ = 1A× (i.e., it is selfdual) and L(1/2, τ) ̸= 0. In all
cases, ω runs over Π(A×/R×

+F×).
(2) Lcont(G) is a Hilbert direct sum of continuous sums:

(a)
∫

iaG,∗
M

IG
P (πλ) dλ, for [M,π] as before.

(b)
∫

iR
IG
P1

(ω1| |it ⊗ ω(det)| det |−it/2
A ) dt, ω1, ω ∈ Π(A×/F×).

(c)
∫

iR
IG
P2

(ω1(det)| det |it ⊗ ω| |−it) dt, ω1, ω ∈ Π(A×/F×).

A List of the elliptic Arthur parameters for GSp(4)

An A-parameter for G is a homomorphism φ : LF × SL(2, C) → LG such that φ|LF
is a

tempered Langlands parameter for G. Two A-parameters are equivalent if they are “G-conjugate.
Associated to an A-parameter φ is the S-group Sφ(G), i.e., the group of connected components
of the centralizer Sφ(G) := Cent(φ, “G) of the image of φ in “G. φ is called elliptic if Sφ(G)0 is
contained in the center of “G.

Conjecturally, for each A-parameter φ, we have the associated A-packet Πφ(G), a (possibly
infinite) subset of Π(G(A)). Sφ(G) controls the endoscopy and hence the contribution to L(G)
of the members of Πφ(G) through conjectural “multiplicity pairings”. We refer the reader
[Art89] for the general expectations about these objects. Here we classify the equivalence
classes of elliptic A-parameters for G = GSp(4)F .

By the natural embedding “G ↪→ GL(4, C), we view each A-parameter φ : LF×SL(2, C) →“G × WF as a 4-dimensional representation of LF × SL(2, C). Then this admits an irreducible
decomposition

φ ≅
r⊕

i=1

ϕmi
⊗ ρdi

,

where ϕmi
is some mi-dimensional representation of LF and ρdi

denotes the di-dimensional
irreducible representation of SL(2, C). We call {(mi, di)}1≤i≤r the Jordan block of φ. We can
classify elliptic φ using their Jordan blocks as follows.

Jordan block Labels in Th.7.1 A-parameter Sφ(G) A-packet
{(1, 4)} (1.a) ω ⊗ ρ4 trivial {ω(ν)}
{(2, 2)} (1.c) indWF

WE
(θ) ⊗ ρ2 trivial {JG

P1
((ωE/F ⊗ π(θ))1)}

{(2, 1), (1, 2)} (1.d) ωϕτ ⊕ (ω ⊗ ρ2) Z/2Z Saito-Kurokawa type
{(1, 2), (1, 2)} (1.b) indWF

WE
(ω(NE/F )) ⊗ ρ2 Z/2Z Howe-PS or θ10-type

Here, ω ∈ Π(A×/F×), θ ∈ Π(A×
E/E×) with σ(θ) ̸= θ and ϕτ is the conjectural Langlands

parameter associated to an irreducible cuspidal automorphic representation τ of GL(2, A) sat-
isfying ωτ = 1A× . (We do not impose the condition L(1/2, τ) ̸= 0.)
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