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Abstract. Let G be the quasi-split unitary group U(2, 2)k′/k of four variables attached
to a quadratic extension k′/k of number fields. An irreducible decomposition of the
non-cuspidal discrete spectrum of L2-automorphic forms of G is obtained.
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1. Introduction

Let G be a reductive group defined over a number field k. For simplicity we assume
the center of G is anisotropic over k. If we write A for the ring of adeles of k, then the
group of A-points G(A) is a locally compact topological group which contains G(k) as a
discrete subgroup with finite covolume. The right regular representation R of G(A) on
the space of L2-automorphic forms L2(G(k)\G(A));

[R(g)φ](x) := φ(xg), (φ ∈ L2(G(k)\G(A)), g ∈ G(A))

is a primary object in the modern theory of automorphic forms. In particular we are
interested in the “irreducible decomposition” of this R.
We know from the general theory of spectral decomposition that L2(G(k)\G(A)) de-

composes into a direct sum of two G(A)-invariant closed subspaces L2
disc(G) and L

2
cont(G).

L2
disc(G) is a direct sum of irreducible representations of G(A) while L2

cont(G) is a con-
tinuous sum of irreducible G(A)-modules. Nevertheless, Langlands’ spectral theory of
Eisenstein series ([La], [MW]) reduces the study of L2

cont(G) to that of L
2
disc(M) for Levi

subgroupsM of G. Thus, the term “irreducible decomposition of L2(G(k)\G(A))” means
that of L2

disc(G).
For φ ∈ L2(G(k)\G(A)), we define its constant term along a k-parabolic subgroup P

by

φP (g) :=
∫
U(k)\U(A )

φ(ug) du.

Here U is the unipotent radical of P . Then the space L2
0(G(k)\G(A)) of L2-cusp forms on

G(A) is spanned by those φ ∈ L2(G(k)\G(A)) such that φP vanishes almost everywhere
for each proper k-parabolic subgroup P . This is clearly a G(A)-invariant closed subspace
in L2(G(k)\G(A)). Since every φ ∈ L2

0(G(k)\G(A)) is rapidly decreasing, L2
0(G(k)\G(A))

is contained in L2
disc(G).

Classical Fourier expansions for elliptic modular forms suggest that the Whittaker
model for irreducible automorphic representations is a useful tool for the irreducible de-
composition of L2

0(G(k)\G(A)). This idea was carried out by Jacquet and Langlands in
the case G = GL(2), and later extended to the case G = GL(n) by Jacquet, Shalika and
Piatetskii-Shapiro. Their results are quite satisfactory in these cases. But the Whittaker
model cannot capture all the irreducible representations appeared in L2

0(G(k)\G(A)) if
G is not GL(n) or SL(n). Thus the irreducible decomposition of L2

0(G(k)\G(A)) is open
except for the cases G = GL(n), SL(2) and U(2, 1). (It seems that the only hope in this
direction is the theory of twisted endoscopy.)
There is one problem which is accessible with our present knowledge. It is to determine

the irreducible decomposition of the residual discrete spectrum, the orthogonal comple-
ment in L2

disc(G) of L
2
0(G(k)\G(A)), for rank 2 classical groups G. In fact

(1) It was shown by Langlands ([La]) that the residual discrete spectrum is spanned
by certain residues of Eisenstein series on G(k)\G(A).
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(2) Since any Levi factor of k-parabolic subgroups of G is rank one, we know from [Sh]
that the poles of these Eisenstein series are given by those of certain automorphic
L-functions.

(3) Hence if the poles of these automorphic L-functions can be determined, then the
irreducible decomposition of the residual discrete spectrum is reduced to those of
L2

0(M(k)AM (A)\M(A)) for Levi factors M of k-parabolic subgroups of G.

Here AM denotes the split component of the center of M .
In the present paper we shall carry out this in the case of rank 2 quasi-split unitary

group G = U(2, 2)k′/k attached to a quadratic extension k′/k. In this case the automor-
phic L-functions appeared in (2) above, are products of Hecke L-functions, twisted ten-
sor L-functions ([As], [HLR], [G]) and the product L-functions for U(1, 1) × Resk′/kGm.
Their poles are either well-known or can be easily determined (cf. Appendices A, B).
Also the Levi factors appeared in (3) is one of M0 := Resk′/kGm × Resk′/kGm, M1 :=
Resk′/kGL(2) and M2 := Resk′/kGm × U(1, 1)k′/k. The irreducible decomposition of
L2

0(M(k)AM (A)\M(A)) for these M can be deduced from [JL] and [LL]. Now the main
result of this paper is stated as follows (Theorem 3.11, Theorem 3.18, Theorem 4.4 and
Theorem 5.5).

Theorem 1.1. The residual spectrum of G = U(2, 2)k′/k is a direct sum of the following
irreducible representations of G(A). Each occurs with multiplicity one.

(1) The one dimensional representations χ ◦ det. Here χ runs over all the characters
of U(1, k)\U(1,A).

(2) The θ-lifts R(VA , χ) of trivial representations of rank 1 unitary groups U(V,A).
Here VA = V ⊗k A and V runs over all 1-dimensional Hermitian space over k′. χ
runs over all characters of A×

k′/k
′× such that χ|A× = ηk′/k. ηk′/k is the quadratic

character corresponding to k′/k by the classfield theory.
(3) The “θ-lifts” of non-trivial 1-dimensional representations of U(1, 1)k′/k(A).
(4) The global Langlands’ quotients of Ind

G(A )
P1(A ) [S(P1)⊗111U1(A ) ]. Here P1 is a parabolic

subgroup of G whose Levi factor is M1. S(P1) = π ⊗ | det |A k′ , where π runs over
the irreducible cuspidal automorphic representations of M1(A) such that
(a) The central character ωπ of π restricted to A× is trivial.
(b) If we write H for the diagonal subgroup GL(2)k of M1 � Resk′/kGL(2), then∫

H(k)Z(H,A )\H(A )
f(h) dh �= 0

holds for some f in the automorphic realization of π.

(5) The global Langlands’ quotients of Ind
G(A )
P2(A ) [S(P2, ηk′/k)⊗111U2(A ) ] and Ind

G(A )
P2(A ) [S(P2,111)⊗

111U2(A ) ], where P2 is a parabolic subgroup of G whose Levi factor is M2. S(P2, ηk′/k)
runs over all the irreducible cuspidal representations of M2(A) which satisfies the
following conditions. S(P2, ηk′/k) is written as χ| |A k′ ⊗ τ according to M2(A) �
A×
k′ × U(1, 1)k′/k(A), where
(a) χ|A× = ηk′/k.
(b) τ is the θ-lift of its central character ωτ from U(1)k′/k(A) under the Weil

representation ωψ,χ−1 (see B.1).
Also S(P2,111) runs over the irreducible cuspidal representations of M2(A) of the
form χ| |1/2

A k′
⊗ τ such that χ|A× = 111 and L(s, τ × χ) does not vanish at s = 1/2.
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The residual spectrum of GL(n) was obtained by Moeglin and Waldspurger ([MW2]).
Also the same kind of results for G = Sp(2) was obtained independently by H. Kim and
the author ([Ki]). Note that the condition (b) in (4) is equivalent to certain functorial
properties of π (see [HLR], [Y] and [Fl]).
We now explain the organization of this paper. In section 2, we collect some notations

and review the basic tools in Langlands’ spectral theory of Eisenstein series from [MW].
In section 3 we determine the contributions of cuspidal Eisenstein series from the Borel
subgroup P0 to the residual spectrum. This will need a detailed calculation of L

2-inner
product of these Eisenstein series (see 3.2). Once the inner product is calculated (Theorem
3.4), we proceed to the irreducible decomposition. In this step the results of Kudla, Sweet,
S. T. Lee and C. Zhu on the irreducible decomposition of certain degenerate principal
series representations of U(n, n) will be used ([KSw], [Le] and [LeZ]). We review these
in 3.3.1. Finally we use the arguments of [KRS] §2 to have the statements (1) and (2)
in Theorem 1.1. The statement (3) is easily proved by a local Langlands’ classification
argument.
In section 4 and 5, we determine the contributions of cuspidal Eisenstein series from

the Siegel parabolic subgroup P1 and from the non-Siegel maximal parabolic subgroup
P2 respectively. The main problem in these cases is to determine the poles of certain
automorphic L-functions. In the Siegel parabolic case, the twisted tensor L-function
appears while the product L-function of U(1, 1) × Resk′/kGm appears in the non-Siegel
parabolic case. The poles of these L-functions will be determined in Appendices A, B.
Once the poles are determined, the statements (4) and (5) in Theorem 1.1 can be easily
deduced from local Langlands’ classification arguments.
The author heartfully thanks to T. Ikeda for many helpful discussions on theta liftings

and L-functions, and also for introducing him the results of Kudla and Sweet. He also
thanks to Prof. T. Oda and Prof. H. Shimizu for constant encouragement. T. Uzawa
explained him some interesting motivations for studying distinguished representations.
Thanks are also due to the referee for some important comments. Finally he thanks to
K. Fujiwara, T. Takahashi and K. Hiraga for stimulating discussions.

2. Preliminary

2.1. Notations and conventions.

2.1.1. Let k′/k be a quadratic extension of number fields. We write Γ for the Galois
group Gal(k′/k) and σ for its generator. Wk denotes the Weil group of k.
We write A for the adele ring of k and write A∞ and Af for its infinite and finite

component respectively. | |A denotes the idele norm of A×. A place of k is conventionally
denoted by v. For each place v of k, we write kv for the completion of k at v and | |v for
the v-adic norm. In particular if v is finite, we let Ov be the maximal compact subring of
kv, pv be the maximal ideal in Ov and #v be a generator of pv. Also we write qv for the
cardinality of the residue field of kv.
We write Ak′ for the adele ring of k

′. The idele norm of A×
k′ is written by | |A k′ . We

conventionally write a place of k′ by w. The notations k′w ⊃ Ow ⊃ pw � #w are defined
similarly as in the case of k. The following conventions on places of k and k′ will be
convenient. If a place v is inert in k′ then the place of k′ lying over v will be denoted by
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w. If v splits in k′ then the places of k′ lying over v will be denoted by w1 and w2. We
often write k′v for the semisimple algebra k

′ ⊗k kv over kv.

2.1.2. We need some notations about the group G̃ := Resk′/kGL(4). The k-automorphism

on G̃, which is determined by the action of σ on GL(4, k′), is denoted by σ̃. We fix a
k′-group isomorphism

G̃k′
∼−→ GL(4)k′ ×GL(4)k′,

so that the action of σ on G̃ is transported to

σ : GL(4)k′ ×GL(4)k′ � (g1, g2) −→ (σ(g2), σ(g1)) ∈ GL(4)k′ ×GL(4)k′,

and that σ̃ is transported to

σ̃ : GL(4)k′ ×GL(4)k′ � (g1, g2) −→ (g2, g1) ∈ GL(4)k′ ×GL(4)k′.

2.1.3. We define an automorphism θ2 of G̃k′ by

θ2 : GL(4)k′ ×GL(4)k′ � (g1, g2) −→ (IntJ2(
tg−1

1 ), IntJ2(
tg−1

2 )) ∈ GL(4)k′ ×GL(4)k′,

where

J2 :=

(
0002 1112

−1−1−12 0002

)
.

This clearly commutes with σ and hence is a k-automorphism of G̃. Then our group
G := U(2, 2)k′/k is defined by G := {g ∈ G̃ ; θ2 ◦ σ̃(g) = g}. Note that Gk′ = {(g, θ2(g)) ∈
GL(4)k′×GL(4)k′} � GL(4)k′. Fix a minimal k-parabolic subgroup P0 and its Levi factor
M0 of G so that

P0,k′ :=





∗ ∗
0 ∗

∗ ∗
∗ ∗

0 ∗ 0
∗ ∗

 ,


∗ ∗
0 ∗

∗ ∗
∗ ∗

0 ∗ 0
∗ ∗


 ∈ Gk′

 ,

M0,k′ :=

d((x1, y1), (x2, y2)) :=




x1

x2 0
0 y−1

1

y−1
2

 ,


y1

y2 0
0 x−1

1

x−1
2


 ∈ Gk′

 .

The unipotent radical of P0 is denoted by U0. We write an element of M0 as d(x1, x2) :=
diag(x1, x2, σ̃(x1)

−1, σ̃(x2)
−1) (xi ∈ Resk′/kGm, i = 1, 2). Then the k-split component

A0 of the center of M0 is given by A0 := {d(x1, x2) ; x1, x2 ∈ Gm,k}. We write Gv

for the algebraic group over kv given by the scalar extension Gv := G ⊗k kv. Then
Gv � U(2, 2)k′w/kv if v is inert in k

′ and Gv � GL(4)kv if v splits in k
′. Also we fix a good

maximal compact subgroup K =
∏

vKv of G(A) as

Kv =



G(kv) ∩GL(4,Ow), if v � ∞ and v is inert in k′,
GL(4,Ov), if v � ∞ and v splits in k′,
U(4) ∩G(R) � U(2) × U(2), if v = R and v is inert in k′,
O(4), if v = R and v splits in k′,
U(4) ∩G(C) = U(4), if v = C.

Then we have the Iwasawa decomposition G(A) = P0(A)K. We write K∞ for
∏

v|∞Kv ⊂
G(A∞).
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We choose a basis {e1, e2} of X∗(A0), the character group of A0, so that ej(d(x1, x2))
= xj (j = 1, 2). Let {e∨1 , e∨2 } be its dual basis of X∗(A0), the group of one-parameter
subgroups of A0: e

∨
1 (x) = d(x, 1), e∨2 (x) = d(1, x). Name the P0-positive roots of A0 as

R+(P0, A0) = {α1 := e1 − e2, α2 := 2e2, β1 := e1 + e2, β2 := 2e1},
then ∆(P0, A0) := {α1, α2} is the set of simple roots.
2.1.4. Fix a k-splitting of Gk′ as (P0,k′,M0,k′, {Xα}α), where

Xα1 :=



0 1
0 0 0
0 0 0

0 0

 ,


0 0
0 0 0
0 0 0

−1 0


, Xα2 :=


 0 0 0

0 1

0 0

 ,

 0 0 0
0 1

0 0




Xα′
1
:= σ̃(Xα1).

Here

α1(d((x1, y1), (x2, y2))) = x1x
−1
2 , α2(d((x1, y1), (x2, y2))) = x2y2,

α′
1(d((x1, y1), (x2, y2))) = y1y

−1
2

are the simple roots ofM0,k′ in P0,k′. The dual group Ĝ of G = U(2, 2)k′/k equals GL(4,C).
We fix a splitting (P̂0, M̂0, {Xα∨}α∨) of Ĝ to be objects of the form of the first components
of P0,k′, M0,k′, {Xα}α. This distinguished splitting is stable under the Γ-action σ(g) :=

θ2(g). Now the L-group
LG for G is given by LG := Ĝ�θ2 Wk, where Wk acts through Γ

by σ(g) := θ2(g).

2.1.5. The k-parabolic subgroups of G which contain the minimal parabolic subgroup P0

is called standard parabolic subgroups. They contain a complete system of representatives
of G(k)-conjugacy classes of k-parabolic subgroups. Each standard parabolic subgroup
P has a unique Levi component M which contains M0. Then the set of simple roots
∆(M ∩ P0, A0) of A0 in M ∩ P0 is a subset of ∆(P0, A0). This gives a bijection between
the standard parabolic subgroups of G and the subsets of ∆(P0, A0). Thus we have
two proper standard parabolic subgroups Pi = MiUi (i = 1, 2) other than P0, where Pi

corresponds to {αi} ⊂ ∆(P0, A0) under the above bijection. We also adopt analogous

notations for parabolic subgroups of Ĝ which contain P̂0. Then the L-group of Pi =MiUi

(i = 1, 2) is given by P̂i �θ2 Wk. Here P̂i = M̂iÛi is such that

∆(P̂0 ∩ M̂i, M̂0) =

{α∨
1 , α

′∨
1 }, if i = 1

{α∨
2 }, if i = 2.

2.1.6. For a standard parabolic subgroup P =MU , we write AM for the k-split compo-
nent of the center of M . We fix a k-isomorphism ΨM : GdimAM

m
∼→
k
AM and write AM(R)+

for the image of the composit

(R×
+)

dimAM ↪→ GdimAM
m (A∞)

ΨM→ AM(A∞).

Here the first injection is the diagonal embedding into GdimAM
m (A∞) =

∏
v|∞ GdimAM

m (kv).
As usual we have real vector spaces aM := Hom(X∗(M)k,R) and a∗

M := X∗(M)k ⊗ZR
dual to each other. Here X∗(M)k denotes the k-rational character group of M . We
write a0 and a∗

0 for aM0 and a∗
M0
respectively. aM is always identified with the subspace

{λ ∈ a0 ; 〈α, λ〉 = 0 for α ∈ ∆(P0 ∩M,A0)} of a0. On the other hand, the restriction
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map X∗(M)k � χ → χ|M0 ∈ X∗(M0)k gives a natural embedding a∗
M ↪→ a∗

0. The Harish-
Chandra map HM :M(A)→ aM is defined by

〈HM(m), χ〉 = log |χ(m)|A , for any χ ∈ X∗(M)k.

We write the kernel of this map as M(A)1. Then we have a direct product decomposition
M(A) =M(A)1 ×AM(R)+. HM is often considered as a map from G(A) by the Iwasawa
decomposition fixed above:

HM : G(A) � g = umk −→ HM(m) ∈ aM , (u ∈ U(A), m ∈M(A), k ∈ K).(2.1)

The Weyl group of A0 in G is denoted by W . It acts on a0 and a∗
0. We write wi for

the simple reflection attached to the simple root αi (i = 1, 2) and w− for the longest
element w1w2w1w2 = w2w1w2w1. We also have the Weyl group W (AM) of AM in G
which acts on aM . The inner product on a∗

0 for which {e1, e2} is a ortho-normal basis
is W -invariant. This determines a W (AM)-invariant inner product on each a∗

M . We fix
these inner products throughout the paper.
Finally we normalize various measures as in [Ar].

2.1.7. Notations about automorphic forms. In the rest of this paper, we freely use the
notations introduced in [MW] II. We briefly review them.
Fix a standard parabolic subgroup P =MU . We write the space of automorphic forms

on U(A)M(k)\G(A) as A(U(A)M(k)\G(A)). A(M(k)\M(A)) denotes the space of auto-
morphic forms on M(k)\M(A). The space of cusp forms on U(A)M(k)\G(A) is written
as A0(U(A)M(k)\G(A)). A0(M(k)\M(A)) is the space of cusp forms on M(k)\M(A).
Next let π be a cuspidal automorphic representation. We write A(M(k)\M(A))π for

the π-isotypic subspace in A0(M(k)\M(A)), and A(U(A)M(k)\G(A))π for the space of
functions φ ∈ A(U(A)M(k)\G(A)) such that

φk(m) := e〈−ρP ,HM (m)〉φ(mk), (m ∈M(A) )

belongs to A(M(k)\M(A))π for any k ∈ K.
Each λ ∈ a∗

M,C := a∗
M ⊗R C is identified with the quasi-character

M(A) � m −→ exp〈λ,HM(m)〉 ∈ C×

of M(A) trivial on M(A)1. Recall that two automorphic subrepresentations π and τ of
M(A) are equivalent if there exists λ ∈ a∗

M,C such that τ � π ⊗ λ. We call a pair (M,P),
where P is an equivalence class of cuspidal automorphic representations of M(A), a
cuspidal datum.
Fix a cuspidal datum (M,P) for the rest of this section. Recall the space of Paley-

Wiener sections P(M,P). For each φ ∈ P(M,P), its Fourier transform F (φ) was defined.

2.1.8. Notations about Eisenstein series. For each π ∈ P, we write ωπ for its central
character and define Reπ ∈ a∗

M , Imπ ∈ P by

Reπ :M(A) � m −→ |ωπ(m)|A ∈ R×
+, Imπ := (Reπ)−1 ⊗ π.

We also write −π for the contragredient of π and π for the complex conjugate of π. We
have a hermitian pairing between φ ∈ A(U(A)M(k)\G(A))π and φ′ ∈ A(U(A)M(k)\G(A))−π

given by

〈φ, φ′〉 :=
∫
K

∫
M(A )1

φ(m1k)φ′(m1k) dm1dk.

Notice that if π ∈ P then −π ∈ P.
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For φ : P → A(U(A)M(k)\G(A)) with φ(π) ∈ A(U(A)M(k)\G(A))π (π ∈ P), the
Eisenstein series attached to φ is defined by

E(φ, π)(g) :=
∑

γ∈P (k)\G(k)

φ(π)(γg), g ∈ G(A).

This converges absolutely on

C+
P (P) := {π ∈ P ; 〈Reπ − ρP , α

∨〉 > 0, for all α ∈ R+(AM , P )}.
Take w ∈ W such that w(M) is again a Levi factor of a standard parabolic subgroup

containingM0. In U(2, 2) case this means w(M) =M . We have the intertwining operator

(M(w, π)φπ)(g) :=
∫
Uw(A )

φπ(ẇ
−1ug) du,

where φπ ∈ A(U(A)M(k)\G(A))π, Uw := U0 ∩ w(U−) and ẇ is a representative of w in
the normalizer of A0(k) in G(k). This converges absolutely on

C+
P (P, w) :=

{
π ∈ P

∣∣∣∣∣ 〈Reπ − ρP , α
∨〉 > 0

(
for all α ∈ R+(AM , P )

such that wα /∈ R+(AM , P )

)}
.

2.1.9. Constant terms of Eisenstein series. For a standard parabolic subgroup P =MU
of G, we have the Weyl group WM ⊂ W of M . Let P ′ = M ′U ′ be another standard
parabolic subgroup. Set

WM :=

w ∈W

∣∣∣∣∣∣∣
i) w is of minimal length in the coset wWM ,
ii) w(M) is again a Levi component of a standard
parabolic containing M0.

 ,

WM,M ′ := {w ∈WM | w(M) ⊂M ′}.
Now let E(φ, π)(g) be as in 2.1.8. Then the constant term of E(φ, π) along the parabolic
subgroup P ′ =M ′U ′ is given by

EP ′(φ, π)(m) =
∑

w∈WM,M′
EM ′(

M(w, π)φ(π), wπ
)
(m), (m ∈M ′(A))

where

EM ′(
M(w, π)φ(π), wπ

)
(g) :=

∑
γ∈(wPw−1∩M ′)(k)\M ′(k)

M(w, π)φ(π)(γg).

2.1.10. Eisenstein pseudo-series. For each φ ∈ P(M,P), we define

θφ(g) :=
∑

γ∈P (k)\G(k)

F (φ)(γg), (g ∈ G(A)).

Then the sum on the right hand side converges absolutely and uniformly on any compact
subsets of G(A). θφ is in L2(G(k)\G(A)), and

{θφ |φ ∈ P(M,P), (M,P) runs over all cuspidal data.}
spans a dense subspace of L2(G(k)\G(A)).
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2.1.11. The inner product formula. Let (M,P) and (M ′,P′) be two cuspidal data. Set

W (P,P′) := {w ∈WM,M ′ ; w(M,P) = (M ′,P′)}.

Two data (M,P) and (M ′,P′) are said to be equivalent if the set W (P,P′) is non-empty.
The following theorem is [MW] Théorème II.2.1.

Theorem 2.1. Let (M,P) and (M ′,P′) be as above. Then for φ ∈ P(M,P) and φ′ ∈
P(M ′,P′), the hermitian inner product of θφ and θφ′ is given by

〈θφ, θφ′〉L2(G(k)\G(A ))

=

(
1

2π
√−1

)dimaM ∫
π∈P,Reπ=λ0

∑
w∈W (P,P′)

〈M(w, π)φ(π), φ′(−wπ)〉 dπ.(2.2)

Here the hermitian pairing in the integrand is that of 2.1.8 and λ0 ∈ Re(C+
P (P)).

We write E for the set of equivalence classes of cuspidal data for G. For each equivalence
class X ∈ E, L2(G(k)\G(A))X denotes the closed span of θφ’s (φ ∈ P(M,P), (M,P) ∈
X) in L2(G(k)\G(A)). Then as a corollary of Theorem 2.1, we have the direct sum
decomposition

L2(G(k)\G(A)) = ⊕
X∈E

L2(G(k)\G(A))X.(2.3)

3. The contributions of cuspidal data attached to P0

To decompose the non-cuspidal spectrum of G, we first decompose the inner product
(2.2) in Theorem 2.1. From (2.3), it is enough to analyze 〈θφ, θφ′〉L2(G(k)\G(A )) for φ and φ

′

belonging to the same equivalence class of cuspidal data. We say that a cuspidal datum
(M,P) is attached to a standard parabolic subgroup P if M is the Levi factor of P . EP

denotes the set of equivalence classes of cuspidal data attached to P . In this section, we
study 〈θφ, θφ′〉L2(G(k)\G(A )) for φ, φ

′ belonging to cuspidal data attached to P0.

As in [MW] V.2.1, we rewrite (2.2) as follows. For X ∈ EP , define

PX :=
⊕

(M,P)∈X
P(M,P), θφ′ :=

∑
(M,P)∈X

θφ′
(M,P)

,

where φ′ = (φ′
(M,P))(M,P)∈X ∈ PX. Take (M,P) ∈ X and write

A(φ, φ′)(π) :=
∑

(M ′,P)∈X
〈 ∑
w∈W (P,P′)

M(w, π)φ(π), φ′
(M,P′)(−wπ)〉,

where φ ∈ P(M,P) and φ
′ ∈ PX. From now on we consider

〈θφ, θφ′〉L2(G(k)\G(A )) =

(
1

2π
√−1

)dim aM ∫
π∈P,Reπ=λ0

A(φ, φ′)(π) dπ(3.1)

instead of (2.2).



10 TAKUYA KON-NO

3.1. Singular hyperplanes. Let the notations be as above. For a subset S ⊂ P, its
vector part S0 is defined to be {λ ∈ a∗

M,C | λ ⊗ S ⊂ S}. A subset S ⊂ P is called an
affine subspace with vector part defined over R if

(1) Re(S) is an affine subspace in a∗
M whose vector part is Re(S0),

(2) S̃0 := Re(S0)⊗R C ⊂ a∗
M,C equals S0.

An affine hyperplane with vector part defined over R is an affine subspace S with vector
part defined over R, such that codima∗

M
Re(S0) = 1. It is known that the singularity set

of A(φ, φ′)(π) is a union of affine hyperplanes with vector part defined over R. We write
Sh

(M,P) for the set of these singular hyperplanes of A(φ, φ
′) (φ ∈ P(M,P), φ

′ ∈ PX). In the

following, we give a list of elements in Sh
(M0,P) which intersect the positive chamber.

Each π ∈ P is decomposed into a restricted tensor product
⊗

v πv, where πv is a smooth
irreducible representation of M(kv) if v is finite and of (LieM(kv) ⊗R C,M(kv) ∩Kv) if
v is archimedean. We write Pv for the set of local representations πv, which appear as
the v-component of some π ∈ P. By replacing | |A with | |v in 2.1.6, we have the local
Harish-Chandra map HM :M(kv)→ aM . This gives local analogues Reπv, Imπv, C

+
P (Pv)

and C+
P (Pv, w) of Reπ, Imπ, C

+
P (P) and C

+
P (P, w), respectively.

We may assume the Eulerian decomposition

M(w, π)φ(π) =
⊗
v

M(w, πv)φv(πv) (π ∈ C+
P (P, ω)).(3.2)

Here φv(πv) is contained in the space Ind
G(kv)
P (kv)[πv ⊗ 111U(kv)] and

(
M(w, πv)φv(πv)

)
(g) :=

∫
Uw(kv)

φv(πv)(ẇ
−1ng) dn (g ∈ G(kv))

for πv ∈ C+
P (Pv, w) (cf. [Sh3]).

3.1.1. Analytic behavior of local intertwining operators. For the rest of this section, our
cuspidal data (M,P) are always attached to P0. Since WM0 = W , we have to study
M(w, πv)φv(πv) for all w ∈W . We write π ∈ P in the form

π = µ1 ⊗ µ2 :M0(A) � d(x1, x2) −→ µ1(x1)µ2(x2) ∈ C×,

where µi =
⊗

w µi,w (i = 1, 2) are quasi-characters of A
×
k′/k

′×. We fix a non-trivial additive
character ψv of kv at each v. In particular we set

ψv(x) =

ψR(x) := exp(2π
√−1x) if v = R,

ψC (x) := ψR ◦ TrC/R(x) if v = C.

Now the normalization factor r(w, πv) for M(w, πv) is given as follows (cf. [KS] §§2–3,
[Ar2] §3).
(1) The case of the simple reflection w1. In this case (U0)

∧
w1
= Û0 ∩ M̂1 and G̃α1,D =

Resk′v/kvSL(2) in the notation of [KS] §2. Thus

r(w1, πv) :=
L(0, πv, rw1)

L(1, πv, rw1)ε(0, πv, rw1, ψv)
,
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where

L(s, πv, rw1) :=

Lk′(s, µ1,wµ
−1
2,w) if v is inert in k′,

Lk′(s, µ1,w1µ
−1
2,w1
)Lk′(s, µ1,w2µ

−1
2,w2
) if v splits in k′,

ε(s, πv, rw1, ψv) :=

λ(k′w/kv, ψv)εk′(s, µ1,wµ
−1
2,w, ψv ◦ Trk′w/kv) if v is inert in k′,

εk′(s, µ1,w1µ
−1
2,w1

, ψv)εk′(s, µ1,w2µ
−1
2,w2

, ψv) if v splits in k′.

(2) The case of the simple reflection w2. We have (U0)
∧
w2

= Û0 ∩ M̂2 and G̃α2,D =
SL(2)k. Hence by [KS] §2,

r(w2, πv) :=
L(0, πv, rw2)

L(1, πv, rw2)ε(0, πv, rw2, ψv)
,

where

L(s, πv, rw2) :=

Lk(s, µ2,w|k×v ) if v is inert in k′,
Lk(s, µ2,w1µ2,w2) if v splits in k′,

ε(s, πv, rw2, ψv) :=

εk(s, µ2,w|k×v , ψv) if v is inert in k′,
εk(s, µ2,w1µ2,w2, ψv) if v splits in k′.

(3) The case of general w ∈W . Each w ∈ W can be written as a product of simple
reflections wi (i = 1, 2). We take such an expression w = wi1wi2 · · ·wik (0 ≤ k ≤ 4),
which is reduced. Then the normalization factor is given by

r(w, πv) = r(wi1 , wi2 · · ·wikπv)r(wi2, wi3 · · ·wikπv) · · · r(wik , πv).

This does not depend on the choice of the reduced expression of w.
For w ∈ W , write inv(w) for the set of positive roots α ∈ R+(P0, A0) such that wα /∈

R+(P0, A0). Then the analytic behavior of the local operators M(w, πv) is stated as
follows.

Lemma 3.1. (1) M(w, πv)φv(πv), r(w, πv) are holomorphic and non-zero at πv ∈ Pv

such that 〈Reπv, α∨〉 > 0 for any α ∈ inv(w).
(2) The normalized intertwining operator N(w, πv) := r(w, πv)

−1M(w, πv) is unitary at
πv ∈ Pv with 〈Reπv, α∨〉 = 0 for any α ∈ inv(w).
Proof. (i) The holomorphy of M(w, πv)φv(πv) was proved in [BW] IV 4.3, 4.5 if v is
archimedean and in [loc. cit] XI 2.6 if v is non-archimedean. The statement for r(w, πv)
is clear from its definition.
(ii) This is a special case of [Ar2] Theorem 2.1 when v is archimedean, and of [KS]

Theorem 3.1 when v is non-archimedean.

3.1.2. Analytic behavior of global intertwining operators. We go back to the global situa-
tion and define

r(w, π) :=
∏
v

r(w, πv), N(w, π) := r(w, π)−1M(w, π).

For π = µ1 ⊗ µ2 ∈ P and α ∈ R+(P0, A0), define a quasi-character α
∨(π) by

α∨
1 (π) := µ1µ

−1
2 , α∨

2 (π) := µ2|A× , β∨
1 (π) := µ1(µ2 ◦ σ̃), β∨

2 (π) := µ1|A× .



12 TAKUYA KON-NO

Lemma 3.2. (1) N(w, π)φ(π) is holomorphic at π ∈ P with 〈Reπ, α∨〉 > 0 for any
α ∈ inv(w).
(2) r(w, π) has simple poles at π ∈ P with

α∨(π) =

| |A k′ if α = α1 or β1,

| |A if α = α2 or β2,

for some α ∈ inv(w), and is holomorphic at other π ∈ P with 〈Reπ, α∨〉 > 0.
Proof. (i) For each P and φ ∈ P(M0,P), we take a finite set S of places of k, so that
if v /∈ S then πv ∈ Pv is unramified and φv(πv) equals φ

0
πv
, the Kv-fixed vector in

Ind
G(kv)
P0(kv)[πv ⊗ 111N0(kv)] with φ0

πv
(1) = 1. Then the Gindikin-Karpelevich formula ([La2] p.

45) gives

M(w, πv)φv(πv) =M(w, πv)φ
0
πv
= r(w, πv)φ

0
πv

at v /∈ S,

and hence

M(w, π)φ(π) =
⊗
v∈S

r(w, πv)N(w, πv)φv(πv)⊗
⊗
v/∈S

r(w, πv)φ
0
πv

= r(w, π)
⊗
v∈S

N(w, πv)φv(πv)⊗
⊗
v/∈S

φ0
πv

N(w, π)φ(π) =
⊗
v∈S

N(w, πv)φv(πv)⊗
⊗
v/∈S

φ0
πv
.

Now the assertion follows from Lemma 3.1.
(ii) This is clear from the definition of r(w, π) and fundamental properties of Hecke

L-functions.

3.1.3. Singular hyperplanes. We write Sh,+
(M,P) for the set of elements in Sh

(M,P), which
intersect the closure of the “positive chamber”

{π ∈ P ; 〈Reπ, α∨〉 > 0, for any α ∈ R+(P,AM)}.
Then from Lemma 3.2, we have

Sh,+
(M0,P) =


S1 := { π ∈ P ; α∨

1 (π) = | |A k′ . }
S2 := { π ∈ P ; α∨

2 (π) = | |A . }
S3 := { π ∈ P ; β∨

1 (π) = | |A k′ . }
S4 := { π ∈ P ; β∨

2 (π) = | |A . }

 .

3.2. Decomposition of the scalar product.

3.2.1. Notations. Recall some general notations from [MW] V.2.1. Let P = MU be a
standard parabolic subgroup. Take X ∈ EP and (M,P) ∈ X. S+

(M,P) denotes the set of

intersections of elements in Sh,+
(M,P). For S ∈ S+

(M,P), we define its origin o(S) ∈ a∗
M to be

Re(S)∩ (Re(S0))⊥. Here ( )⊥ denotes the orthogonal complement in a∗
M with respect to

the fixed W (AM)-invariant inner product. We write dSπ for the Lebesgue measure on S
defined by the W (AM)-invariant metric on a∗

M . Recall that z(S) ∈ Re(S) is general but
near o(S) if for any S′ ∈ S+

(M,P) properly contained in S,

(1) z(S) /∈ Re(S′)
(2) If Re(S′) intersects the ball of radius ||z(S) − o(S)|| with the center o(S), then

o(S) is contained in Re(S′).
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3.2.2. The first step. Going back to the situation X ∈ EP0 , (M0,P) ∈ X, we have (cf.
Figure 1):

S+
(M0,P) =



P (codima∗0Re(S) = 0)
S1, S2, S3, S4 (codima∗0Re(S) = 1)
S1,2 := S1 ∩ S2, S2,4 := S2 ∩ S4,
S2,3 := S2 ∩ S3, S1,3 := S1 ∩ S3,
S1,4 := S1 ∩ S4 (codima∗0Re(S) = 2)


.(3.3)

o(P) = 0

o(S1) = α1, o(S2) =
α2

2
, o(S3) = β1, o(S4) =

β2

2
o(Si,j) = Re(Si,j), (1 ≤ i < j ≤ 4).

(3.4)

✻

✲
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Re(S2)
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❅
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❅
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❅
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❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅
Re(S3)

Re(S4)

α1

α2

β1

o(S3)
= Re(S2,3) = Re(S2,4)

β2

Re(S1,3)

o(S2)

o(S1)
= S1,4

Re(S1,2)

o(S4)

Re(C+
P0
(P))

Figure 1. Re(S) (S ∈ S+
(M0,P)).



14 TAKUYA KON-NO

Recall that λ0 ∈ a∗
0 in the formula (3.1) is contained in Re(C

+
P0
(P)). We denote E0 for

the set {S1,S2,S3,S4}. Fix a path Γ from λ0 to o(P) as in Figure 2. This is general in
the sense of [MW] V.1.5. We put yS := Re(S) ∩ Γ for S ∈ E0.

✻

✲
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❅❅❘
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�
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�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

Re(S1)

Re(S2)

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅
Re(S3)

Re(S4)

α1

α2

β1

β2

✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦ λ0
yS1

yS2

yS4

yS3

Figure 2. The path Γ.

The first step to decompose the scalar product is to move the integration axis from
Reπ = λ0 to Reπ = 0. But before doing this, we must estimate the integrands to apply
the residue theorem. For each w ∈W we write

Aw(φ, φ
′)(π) := 〈M(w, π)φ(π), φ′(−wπ)〉 = r(w, π)〈N(w, π)φ(π), φ′(−wπ)〉.

r(w, π) is decomposed into a product of the form

r(w, π) = (ε(0, χ1) · · · ε(0, χp))
−1L(0, χ1) · · ·L(0, χp)

L(1, χ1) · · ·L(1, χp)
,

where L(s, χi) are some Hecke L-functions and ε(s, χi) are their root numbers. We write
L∞(s, χ) and Lfin(s, χ) for the infinite and finite factor of L(s, χ) respectively. Since
ε(s, χi) are certain exponential functions in s, they are bounded in every vertical strips.
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It is well-known that Lfin(s, χi) are of the order of a polynomial in Im(s) in any vertical
strip. Also a classical calculation shows that Lfin(s+1, χi)

−1 is of the order of a polynomial
in log(Im(s)) in the region Re(s) > −δ for some sufficiently small positive δ. For these
facts see [Ay]. Finally we use the Stirling’s formula to see that L∞(s, χi)/L∞(s + 1, χi)
are slowly increasing as Im(s) tends to infinity in every vertical strips in Re(s) ≥ 0. Now
we recall that we have taken φ and φ′ to be of Paley-Wiener type, so that they decrease
rapidly as Im(s) goes to infinity. Summing up, the term Aw(φ, φ

′)(π) tends to 0 as Im(s)
goes to infinity, uniformly in each vertical strip. Thus we can apply the usual residue
theorem to them.
Applying this to the integrand A(φ, φ′)(π) when it gets across each element of E0, we

obtain

〈θφ, θφ′〉L2(G(k)\G(A )) =

(
1

2π
√−1

)2 ∫
π∈P,Reπ=0

A(φ, φ′)(π) dπ

+
1

2π
√−1

∫
π∈S1,Reπ=yS1

ResPS1
A(φ, φ′)(π) dS1π

+
1

2π
√−1

∫
π∈S2,Reπ=yS2

ResPS2
A(φ, φ′)(π) dS2π

+
1

2π
√−1

∫
π∈S3,Reπ=yS3

ResPS3
A(φ, φ′)(π) dS3π

+
1

2π
√−1

∫
π∈S4,Reπ=yS4

ResPS4
A(φ, φ′)(π) dS4π.

(3.5)

Here ResPSA(φ, φ
′) denotes the residue of A(φ, φ′) along S, which is a meromorphic

function on S.

3.2.3. Calculation of the residues. To carry out the second step, we must first calculate
the residues ResPSA(φ, φ

′)(π) appeared in (3.5). We write Lk(s) and εk(s) for the Dedekind
zeta function and its root number of k, and Lk′(s) and εk′(s) for those of k

′. ck and ck′
denote the residues

ck := Ress=1
Lk(s)

Lk(s+ 1)εk(s)
, ck′ := Ress=1

Lk′(s)

Lk′(s+ 1)εk′(s)
.

Then the residues are calculated as:

Proposition 3.3. The residues ResPSA(φ, φ
′)(π) are calculated as follows (π ∈ S).

ResPS1
A(φ, φ′)(π) =

√
2ck′

[
〈N(w1, π)φ(π), φ

′(−w1π)〉
+ 〈M(w2, w1π)N(w1, π)φ(π), φ

′(−w2w1π)〉(i)

+ 〈M(w1w2, w1π)N(w1, π)φ(π), φ
′(−w1w2w1π)〉

+ 〈M(w2w1w2, w1π)N(w1, π)φ(π), φ
′(−w−π)〉

]
.

ResPS2
A(φ, φ′)(π) = ck

[
〈N(w2, π)φ(π), φ

′(−w2π)〉(ii)

+ 〈M(w1, w2π)N(w2, π)φ(π), φ
′(−w1w2π)〉

+ 〈M(w2w1, w2π)N(w2, π)φ(π), φ
′(−w2w1w2π)〉

+ 〈M(w1w2w1, w2π)N(w2, π)φ(π), φ
′(−w−π)〉

]
.

ResPS3
A(φ, φ′)(π)(iii)



16 TAKUYA KON-NO

=
√
2ck′

[
〈N(w1, w2π)M(w2, π)φ(π), φ

′(−w1w2π)〉
+ 〈M(w2, w1w2π)N(w1, w2π)M(w2, π)φ(π), φ

′(−w2w1w2π)〉
+ 〈N(w1, w2w1π)M(w2w1, π)φ(π), φ

′(−w1w2w1π)〉
+ 〈M(w1w2, w1w2π)N(w1, w2π)M(w2, π)φ(π), φ

′(−w−π)〉
]
.

ResPS4
A(φ, φ′)(π)(iv)

= ck
[
〈N(w2, w1π)M(w1, π)φ(π), φ

′(−w2w1π)〉
+ 〈N(w2, w1w2π)M(w1w2, π)φ(π), φ

′(−w2w1w2π)〉
+ 〈M(w1, w2w1π)N(w2, w1π)M(w1, π)φ(π), φ

′(−w1w2w1π)〉
+ 〈M(w2w1, w2w1π)N(w2, w1π)M(w1, π)φ(π), φ

′(−w−π)〉
]
.

Proof. The proof is straightforward and will be omitted. Note that

dSi
π

dα∨(π)
=

‖α‖
〈α, α∨〉 =


1√
2
if α is a short root,

1 if α is a long root.

3.2.4. The second step. In the second step, we move the integration axis Reπ = yS in the
right hand side of (3.5) to Reπ = z(S), where z(S) is general but near o(S) in the sense
of 3.2.1. Then we take the limit as z(S) tends to o(S).

(1) Contributions from ResPS1
A(φ, φ′)(π). We begin with the second term in the

right hand side of (3.5). We take z(S1) to be o(S1) and apply the residue theorem to
have

1

2π
√−1

∫
π∈S1,Reπ=yS1

ResPS1
A(φ, φ′)(π) dS1π

=
1

2π
√−1

∫
π∈S1,Reπ=o(S1)

ResPS1
A(φ, φ′)(π) dS1π

+ResS1
S1,2
ResPS1

A(φ, φ′)(S1,2) + Res
S1
S1,3
ResPS1

A(φ, φ′)(S1,3).

(3.6)

We shall study each terms in the right hand side.
(1-i) The first term: We have to check the well-definedness of

1

2π
√−1

∫
π∈S1,Reπ=o(S1)

ResPS1
A(φ, φ′)(π) dS1π

when S1,4 = S1 ∩ S4 is non-empty. In this case S1,4 = µ1 ⊗ µ2 satisfies µ1µ
−1
2 = | |A k′ ,

µ1|A× = | |A and in particular σ(µ1)µ2 = α∨
1 (w2w1π) = 111. We know from Proposition 3.3

(i) that

1√
2ck′

ResPS1
A(φ, φ′)(π)

=〈N(w1, π)φ(π), φ
′(−w1π)〉+ r(w2w1w2, w1π)〈N(w−, π)φ(π), φ′(−w−π)〉

+ r(w2, w1π)
[
〈N(w2w1, π)φ(π), φ

′(−w2w1π)〉

+ 〈M(w1, w2w1π)N(w2w1, π)φ(π), φ
′(−w1w2w1π)〉

]
.

(3.7)
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First consider

r(w2w1w2, w1π) =
(
r(w2, w1w2w1π)r(w2, w1π)

)
· r(w1, w2w1π).

The simple zero of the first term kills the simple pole of the second term. Hence the first
two terms on the right hand side of (3.7) is well-defined at S1,4. As for the rest terms,
we know from [KS] Proposition 6.3 that M(w1, w2w1S1,4) = (−1)Id. Thus inside [ ] has
a simple zero at π ∈ S1,4, which kills the simple pole of r(w2, w1π). The well-definedness
is proved.
(1-ii) The second term: We calculate the residue ResS1

S1,2
ResPS1

A(φ, φ′)(π). The terms

〈N(w1, π)φ(π), φ
′(−w1π)〉, 〈M(w2, w1π)N(w1, π)φ(π), φ

′(−w2w1π)〉
〈M(w1w2, w1π)N(w1, π)φ(π), φ(−w1w2w1π)〉

are holomorphic at S1,2, while

ResS1
S1,2

〈M(w2w1w2, w1π)N(w1, π)φ(π), φ
′(−w−π)〉

=
dS1π

dα∨
1 (π)

ck〈N(w2, w1w2w1S1,2)M(w1w2, w1S1,2)N(w1, S1,2)φ(S1,2), φ
′(−w−S1,2)〉

=
√
2ck〈N(w2, w1w2w1S1,2)M(w1w2, w1S1,2)N(w1, S1,2)φ(S1,2), φ

′(−w−S1,2)〉.
Hence we have

ResS1
S1,2
ResPS1

A(φ, φ′)(S1,2)(3.8)

= 2ckck′〈N(w2, w1w2w1S1,2)M(w1w2, w1S1,2)N(w1,S1,2)φ(S1,2), φ
′(−w−S1,2)〉.

(1-iii) The third term: We calculate the residue ResS1
S1,3
ResPS1

A(φ, φ′)(π). Among the
terms on the right hand side of Proposition 3.3 (i),

〈N(w1, π)φ(π), φ
′(−w1π)〉, 〈M(w2, w1π)N(w1, π)φ(π), φ

′(−w2w1π)〉
are holomorphic. As for the rest two terms, we have the following two possibilities. Note
that writing S1,3 = µ1 ⊗ µ2, we have µ2σ(µ2) = µ2 ◦ Nk′/k = 111.

Case 1. µ2|A× = ηk′/k.
In this case, noting M(w2, w1w2w1S1,3) = Id by [KS] Proposition 6.3, we have

(3.9) ResS1
S1,3

〈M(w1w2, w1π)N(w1, π)φ(π), φ
′(−w1w2w1π)〉

=
√
2ck′〈N(w1, w2w1S1,3)M(w2, w1S1,3)N(w1, S1,3)φ(S1,3), φ

′(−w−S1,3)〉,
and

ResS1
S1,3

〈M(w2w1w2, w1π)N(w1, π)φ(π), φ
′(−w−π)〉

=
√
2ck′〈N(w1, w2w1S1,3)M(w2, w1S1,3)N(w1, S1,3)φ(S1,3), φ

′(−w−S1,3)〉
(3.10)

Case 2. µ2|A× is trivial.

The formula (3.9) still holds. But in this case, M(w2, w1w2w1S1,3) = (−1)Id by [KS]
Proposition 6.3. Thus the formula (3.10) must be multiplied by −1.
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In both cases, we take summations of the two terms and have

ResS1
S1,3
ResPS1

A(φ, φ′)(π)

=


4c2k′〈N(w1, w2w1S1,3)M(w2, w1S1,3)N(w1, S1,3)φ(S1,3), φ

′(−w−S1,3)〉
if µ2|A× = ηk′/k,

0 if µ2|A× is trivial.

(3.11)

(2) Contributions from ResPS2
A(φ, φ′)(π). Next comes the third term in the right

hand side of (3.5). We take z(S2) to be o(S2) and apply the residue theorem to see

(3.12)
1

2π
√−1

∫
π∈S2,Reπ=yS2

ResPS2
A(φ, φ′)(π) dS2π

=
1

2π
√−1

∫
π∈S2,Reπ=o(S2)

ResPS2
A(φ, φ′)(π) dS2π +Res

S2
S2,3
ResPS2

A(φ, φ′)(π)

+ ResS2
S2,4
ResPS2

A(φ, φ′)(π)

We study each terms on the right hand side in turn. The first term has no problem.
(2-i) The second term: We calculate the residue ResS2

S2,3
ResPS2

A(φ, φ′)(π). First note
that S2,3 = µ1 ⊗ µ2 satisfies µ2|A× = | |A , µ1σ(µ2) = | |A× and hence σ(µ1µ

−1
2 ) =

α∨
1 (w2w1w2π) is trivial. Among the terms in the right hand side of Proposition 3.3 (ii),

〈N(w2, π)φ(π), φ
′(−w2π)〉 is holomorphic at S2,3, and

ResS2
S2,3

〈M(w1, w2π)N(w2, π)φ(π), φ
′(−w1w2π)〉

= 2ck′
dS2π

dβ∨
1 (π)

〈N(w1w2, S2,3)φ(S2,3), φ
′(−w1w2S2,3)〉

= 2ck′〈N(w1w2, S2,3), φ
′(−w1w2S2,3)〉.

As for the rest two terms, we have

ResS2
S2,3

[
〈M(w2w1, w2π)N(w2, π)φ(π), φ

′(−w2w1w2π)〉

+ 〈M(w1w2w1, w2π)N(w2, π)φ(π), φ
′(−w−π)〉

]
=2ck′ lim

π→S2,3

π∈S2

[
r(w2, w1w2π)

(
M(w1, w2w1w2π) + Id

)]
× 〈N(w2w1w2, S2,3)φ(S2,3), φ

′(−w−S2,3)〉.
From [KS] Proposition 6.3, M(w1, w2w1w2π) + Id has a simple zero at S2,3, which kills
the simple pole of r(w2, w1w2π). Thus the limit exists. Summing up, we have

ResS2
S2,3
ResPS2

A(φ, φ′)(π)

=2ckck′
[
〈N(w1w2, S2,3)φ(S2,3), φ

′(−w1w2S2,3)〉
+ lim

π→S2,3

π∈S2

[r(w2, w1w2π)
(
M(w1, w2w1w2π) + Id

)
]

× 〈N(w2w1w2, S2,3)φ(S2,3), φ
′(−w−S2,3)〉

]

(3.13)
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(2-ii) The third term: Calculate the residue ResS2
S2,4
ResPS2

A(φ, φ′)(π). S2,4 = µ1 ⊗ µ2

satisfies µ1|A× = µ2|A× = | |A . Since the case µ1 = µ2 has already been treated in (2-i),
we assume µ1 �= µ2. Then

ResS2
S2,4

〈N(w2, π)φ(π), φ
′(−w2π)〉 = 0

ResS2
S2,4

〈M(w1, w2π)N(w2, π)φ(π), φ
′(−w1w2π)〉 = 0

ResS2
S2,4

〈M(w2w1, w2π)N(w2, π)φ(π), φ
′(−w2w1w2π)〉

= ck〈N(w2, w1w2S2,4)M(w1, w2S2,4)N(w2, S2,4)φ(S2,4), φ
′(−w2w1w2S2,4)〉

ResS2
S2,4

〈M(w1w2w1, w2π)N(w2, π)φ(π), φ
′(−w−π)〉

= ck〈M(w1, w2w1w2S2,4)N(w2, w1w2S2,4)M(w1, w2S2,4)N(w2, S2,4)φ(S2,4),

φ′(−w−S2,4)〉.
Hence

ResS2
S2,4
ResPS2

A(φ, φ′)(π)

= c2k〈N(w2, w1w2S2,4)M(w1, w2S2,4)N(w2, S2,4)φ(S2,4), φ
′(−w2w1w2S2,4)〉

+ c2k〈M(w1, w2w1w2S2,4)N(w2, w1w2S2,4)M(w1, w2S2,4)N(w2, S2,4)φ(S2,4),

φ′(−w−S2,4)〉.

(3.14)

(3) Contributions from ResPS3
A(φ, φ′)(π). We choose z(S3) to be any point on the

segment tying yS3 and o(S3) but not to be o(S3). We use the principal value integration
theorem, at first formally, to have

1

2π
√−1

∫
π∈S3,Reπ=yS3

ResPS3
A(φ, φ′)(π) dS3π

=
1

4π
√−1

∫
π∈S3,Reπ=z(S3)

[
ResPS3

A(φ, φ′)(π) + ResPS3
A(φ, φ′)(w1π)

]
dS3π

+
1

2
ResS3

S2,3
ResPS3

A(φ, φ′)(π).

(3.15)

(3-i) The first term: First we need to check the limit

lim
z(S3)→o(S3)

∫
π∈S3,Reπ=z(S3)

1

2

[
ResPS3

A(φ, φ′)(π) + ResPS3
A(φ, φ′)(w1π)

]
dS3π(3.16)

exists. From Proposition 3.3 (iii), we know that

ResPS3
A(φ, φ′)(π) + ResPS3

A(φ, φ′)(w1π)

=
√
2ck′

[
〈N(w1, w2π)

(
M(w2, π)φ(π) +M(w2w1, w1π)φ(w1π)

)
, φ′(−w1w2π)〉(I)

+ 〈N(w1, w2w1π)
(
M(w2, w1π)φ(w1π) +M(w2w1, π)φ(π)

)
, φ′(−w1w2w1π)〉(II)

+
(
〈M(w2, w1w2π)N(w1, w2π)M(w2, π)φ(π), φ

′(−w2w1w2π)〉
(III)

+ 〈M(w1w2, w1w2w1π)N(w1, w2w1π)M(w2, w1π)φ(w1π), φ
′(−w2w1w2π)〉

)
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+
(
〈M(w1w2, w1w2π)N(w1, w2π)M(w2, π)φ(π), φ

′(−w−π)〉
(IV)

+ 〈M(w2, w1w2w1π)N(w1, w2w1π)M(w2, w1π)φ(w1π), φ
′(−w−π)〉

)]
As for (I), we have

M(w2, π)φ(π)+M(w2w1, w1π)φ(w1π)

=r(w2, π)N(w2, π)
[
φ(π) +M(w1, w1π)φ(w1π)

]
.

Since α1(S2,3) = 111, we see from [KS] Proposition 6.3 that φ(S2,3)+M(w1, w1S2,3)φ(S2,3) =
0. This kills the simple pole of r(w2, π) and (I) is well-defined at S2,3. (II) can be treated
in the same manner. The terms (III) and (IV) must be handled together. (III) becomes〈(

r(w2, w1w2π)r(w2, π)N(w2w1w2, π)φ(π) + r(w1w2, w1w2w1π)r(w2, w1π)

N(w−, w1π)φ(w1π)
)
, φ′(−w2w1w2π)

〉
=
〈
r(w2, w1w2π)r(w2, π)N(w2w1w2, π)

(
φ(π) +M(w1, w1π)φ(w1π)

)
,

φ′(−w2w1w2π)
〉
,

while (IV) becomes〈
r(w1w2, w1w2π)r(w2, π)N(w−, π)φ(π)

+ r(w2, w1w2w1π)r(w2, w1π)N(w2w1w2, w1π)φ(w1π), φ
′(−w−π)

〉
〈
M(w1, w2w1w2π)r(w2, w1w2π)r(w2, π)N(w2w1w2, π)

×
(
φ(π) +M(w1, w1π)φ(w1π)

)
, φ′(−w−π)

〉
We now apply Proposition 6.3 of [KS] toM(w1, w1π) and toM(w1, w2w1w2π) to see that
(III)+(IV) is well-defined at S2,3. Thus the limit (3.16) exists.

(3-ii) The second term: We calculate the half of the residue ResS3
S2,3
ResPS3

A(φ, φ′)(π).
Among those terms appeared in the right hand side of Proposition 3.3 (iii), the first two
have the residue

ResS3
S2,3

[
〈N(w1, w2π)M(w2, π)φ(π), φ

′(−w1w2π)〉
+ 〈N(w1, w2w1π)M(w2w1, π)φ(π), φ

′(−w1w2w1π)〉
]

=
dS3π

dα∨
2 (π)

ck
[
〈N(w1w2, S2,3)φ(S2,3), φ

′(−w1w2S2,3)〉

− 〈N(w1w2, w1S2,3)M(w1, S2,3)φ(S2,3), φ
′(−w1w2S2,3)〉

]
=− 2

√
2ck〈N(w1w2, S2,3)φ(S2,3), φ

′(−w1w2S2,3)〉
Here we have used w1S2,3 = S2,3 and M(w1, S2,3) = (−1)Id (Proposition 6.3 in [KS]).
As for the rest two terms, we have

ResS3
S2,3

[
〈M(w2, w1w2π)N(w1, w2π)M(w2, π)φ(π), φ

′(−w2w1w2π)〉
+ 〈M(w1w2, w1w2π)N(w1, w2π)M(w2, π)φ(π), φ

′(−w−π)〉
]
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=ResS3
S2,3

r(w2, w1w2π)r(w2, π)
[
〈N(w2w1w2, π)φ(π), φ

′(−w2w1w2π)〉
+ 〈M(w1, w2w1w2π)N(w2w1w2, π)φ(π), φ

′(−w−π)〉
]

=
dS3π

dα∨
2 (π)

ck lim
π→S2,3

π∈S3

[
r(w2, w1w2π)

(
M(w1, w2w1w2π) + Id

)]

× 〈N(w2w1w2, S2,3)φ(S2,3), φ
′(−w−S2,3)〉

=2
√
2ck lim

π→S2,3

π∈S2

[
r(w2, w1w2π)

(
M(w1, w2w1w2π) + Id

)]

× 〈N(w2w1w2, S2,3)φ(S2,3), φ
′(−w−S2,3)〉.

Note that M(w1, w2w1w2S2,3) = (−1)Id by [KS] Proposition 6.3, hence the limit in the
above formula exists. Also we have used

lim
π→S2,3

π∈S3

( ) = 2 lim
π→S2,3

π∈S2

( ).

Now we conclude

1

2
ResS3

S2,3
ResPS3

A(φ, φ′)(π)

=− 2ckck′
[
lim

π→S2,3

π∈S2

[
r(w2, w1w2π)

(
M(w1, w2w1w2π) + Id

)]

× 〈N(w2w1w2, S2,3)φ(S2,3), φ
′(−w−S2,3)〉

+ 〈N(w1w2, S2,3)φ(S2,3), φ
′(−w1w2S2,3)〉

]
(3.17)

(4) Contributions from ResPS4
A(φ, φ′)(π). z(S4) is chosen to be o(S4). From

Cauchy’s integration theorem, we have

1

2π
√−1

∫
π∈S4,Reπ=yS4

ResPS4
A(φ, φ′)(π) dS4π

=
1

2π
√−1

∫
π∈S4,Reπ=o(S4)

ResPS4
A(φ, φ′)(π) dS4π.

(3.18)

3.2.5. The final form of the inner product formula. Now we compile the formulae (3.6),
(3.19), (3.20), (3.12), (3.13), (3.21), (3.15), (3.17) and (3.18) and apply them to (3.5).

Theorem 3.4. Take X ∈ EP0 and (M0,P) ∈ X. Then the L2-inner product of θφ (φ ∈
P(M0,P)) and θφ′ (φ′ ∈ PX) is given by

〈θφ, θφ′〉L2(G(k)\G(A )) =

(
1

2π
√−1

)2 ∫
π∈P,Reπ=0

A(φ, φ′)(π) dπ

+
1

2π
√−1

∫
π∈S1,Reπ=o(S1)

ResPS1
A(φ, φ′)(π) dS1π
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+
1

2π
√−1

∫
π∈S2,Reπ=o(S2)

ResPS2
A(φ, φ′)(π) dS2π

+ lim
z(S3)→o(S3)

1

2π
√−1

∫
π∈S3,Reπ=z(S3)

1

2

∑
w=1,w1

ResPS3
A(φ, φ′)(wπ) dS3π

+
1

2π
√−1

∫
π∈S4,Reπ=o(S4)

ResPS4
A(φ, φ′)(π) dS4π

+ 2ckck′〈N(w2, w1w2w1S1,2)M(w1w2, w1S1,2)N(w1, S1,2)φ(S1,2), φ
′(−w−S1,2)〉

(3.19)

+ 4c2k′〈N(w1, w2w1S1,3)M(w2, w1S1,3)N(w1, S1,3)φ(S1,3), φ
′(−w−S1,3)〉

(3.20)

+ 4c2k′
[
〈N(w2, w1w2S2,4)M(w1, w2S2,4)N(w2, S2,4)φ(S2,4), φ

′(−w2w1w2S2,4)〉
(3.21)

+ 〈M(w1, w2w1w2S2,4)N(w2, w1w2S2,4)M(w1, w2S2,4)N(w2, S2,4)φ(S2,4),

φ′(−w−S2,4)〉
]
.

Here in the term (3.21), S2,4 �= S2,3.

3.3. The residual spectrum from P0. In this subsection, we describe the contributions
of cuspidal data attached to P0 to the residual spectrum. Only the terms (3.19), (3.20)
and (3.21) contribute to the residual discrete spectrum. To determine these contributions,
we shall study the images of intertwining operators appearing in these terms. We need
some results from [KSw] and [LeZ].

3.3.1. Review of the results of Kudla, Sweet, Lee and Zhu. Their results describe the
complete irreducible decomposition of certain degenerate principal series representations
of U(n, n) (inert case) and GL(2n) (split case) over a local field. Though our review
concentrates on the case n = 2, their results cover the general rank case.

(1) The non-archimedean inert case. Take a non-archimedean place v of k which
is inert in k′, and let w be the place of k′ lying over v. For each character χv : k

′×
w → C1

and s ∈ C, we write I(s, χv) for the degenerate principal series representation;

I(s, χv) := Ind
G(kv)
P1(kv)[(χv ◦ det)| det |sw ⊗ 111U1(kv)].

Proposition 3.5 (Theorem 1.1 in [KSw]). (1) I(s, χv) is reducible if and only if χv ◦
Nk′w/kv is trivial.
(2) If χv|k×v = 111, then the points of reducibility are s0 = −1, 0, 1.
(3) If χv|k×v = ηk′w/kv , then the points of reducibility are s0 = −1/2, 1/2.
Here ηk′w/kv is the quadratic character of k×v corresponding to k′w/kv by the classfield theory.

To describe the irreducible constituents of I(s, χv) at its reducible points, we need
oscillator representations for unitary dual pairs. We write a reducible point s0 = (m−2)/2
where m equals one of m = 0, 1, 2, 3, 4. We first consider the case m �= 0. The m-
dimensional non-degenerate Hermitian spaces (V, 〈 , 〉V ) over k′w are classified as follows.
(1) When m = 1, there are, up to equivalence, two possibilities

V1,i := k′w, 〈x, y〉V1,i
:= xQiσ̃(y), (i = 1, 2),

where Q1 = 1 and Q2 = γ ∈ k×v −Nk′w/kv(k
′×
w).
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(2) When m = 2, there are two possibilities up to equivalence

V2,i := k′⊕2
w , 〈x, y〉V2,i

:= xQiσ̃(
ty), (i = 1, 2),

where

Q1 :=

(
0 1
1 0

)
, Q2 :=

(
γ 0
0 −1

)
.

γ is same as in (1).
(3) If 3 ≤ m ≤ 4, then there are two possibilities Vm,1 and Vm,2, where

Vm,i :=

V1,i ⊕ V2,1 if m = 3,

V2,i ⊕ V2,1 if m = 4.
, (i = 1, 2).

We write U(Vm,i) for the unitary group over kv attached to (Vm,i, 〈 , 〉Vm,i
). (W, ( , )W )

denotes the anti-Hermitian space attached to Gv;

W := k′⊕4
w , (x, y)W := xJ2σ̃(

ty).

Then we have the symplectic space(
Wm,i := W ⊗k′w Vm,i, 〈 , 〉W := Trk′w/kv

(
( , )W ⊗ σ̃(〈 , 〉Vm,i

)
))
,

and write Sp(Wm,i) for its symplectic group. Gv × U(Vm,i) is a dual reductive pair in
Sp(Wm,i).
Fix a non-trivial character ψv : kv → C1. Then we have the metaplectic group

1 −→ C1 −→ Mp(Wm,i)v −→ Sp(Wm,i, kv) −→ 1,

and its oscillator representation ωψv . We identify Mp(Wm,i)v with Sp(Wm,i, kv)× C1 as
a set. The multiplication law is given by

(g1, ε1)(g2, ε2) = (g1g2, ε1ε2cv(g1, g2)), (gi ∈ Sp(Wm,i, kv), εi ∈ C1)

where cv(g1, g2) is the metaplectic two cocycle calculated in [P].
Note that our χv satisfies χv|k×v = ηmk′w/kv

. Then from [Ku] Theorem 3.1, we have the
splitting

ιχv : G(kv)× U(Vm,i, kv) −→Mp(Wm,i)v

attached to χv. Hence we can define the auxiliary oscillator representation ω′
ψv,χv

of
G(kv)×U(Vm,i, kv) by ω

′
ψv,χv

:= ωψv ◦ιχv . For simplicity, we twist the action of U(Vm,i, kv)

by the character (χv ◦det)−1 and obtain the oscillator representation ωψv,χv . Some explicit
formulae for its Schrödinger model S(V ⊕2

m,i) are given by

ωψv,χv

((A 0002

0002 σ̃(tA−1)

))
Φ(x) = χv(detA)| detA|m/2

w Φ(xA), (A ∈ GL(2, k′w))(3.22)

ωψv,χv

((1112 B
0002 1112

))
Φ(x) = ψv(tr(〈x, x〉Vm,i

B))Φ(x), (B ∈ Her2(k′w/kv))(3.23)

ωψv,χv

((0002 −1−1−12

1112 0002

))
Φ(x) =

1

γ2
m,i

∫
V ⊕2

m,i

Φ(y)ψv(Trk′w/kv(tr〈x, y〉Vm,i
)) dy.(3.24)

ωψv,χv(h)Φ(x) = Φ(h
−1x), (h ∈ H(kv))(3.25)
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Here, 〈x, y〉Vm,i
denotes the matrix(〈x1, y1〉Vm,i

〈x1, y2〉Vm,i

〈x2, y1〉Vm,i
〈x2, y2〉Vm,i

)
, for x = (x1, x2), y = (y1, y2) ∈ V ⊕2

m,i ,

and the measure in (3.24) is chosen to be self-dual with respect to the pairing tr〈 , 〉Vm,i
.

Her2(k
′
w/kv) denotes the space of 2× 2 Hermitian matrices over k′w, and γ2

m,i is the usual
Weil constant for Trk′w/kv(〈 , 〉Vm,i

) with respect to ψv (cf. [P]).
Now we write R(Vm,i, χv) for the image of the map

S(V ⊕2
m,i) � Φ −→

(
g → ωψv,χv(g)Φ(0)

)
∈ I(s0, χv)

(recall that s0 = (m − 2)/2). Then Rallis’s coinvariant theorem ([Ra] Theorem II.1.1)
extended to the general case in [MVW] Chapter 3-IV Théorème 7 asserts that

R(Vm,i, χv) � (ωψv,χv)U(Vm,i,kv), (the U(Vm,i, kv)-coinvariant space).

Next we consider the case m = 0. U(1)k′/k denotes the unitary group

U(1)k′/k := {g ∈ Resk′/kGm ; σ̃(g)
−1 = g}.

Then we have the k-homomorphism det : G → U(1)k′/k. When m = 0, χv satisfies
χv|k×v = 111. This allows us to define a character χ′

v of U(1, kv)k′/k by χ
′
v(xσ̃(x)

−1) := χv(x).

(Note that every u ∈ U(1, kv)k′/k can be written in the form xσ̃(x)−1 for some x ∈ k′×w
by Hilbert 90.) We write χG

v for the 1-dimensional representation χ′
v ◦ det of G(kv). We

define R(0, χv) := χG
v .

Proposition 3.6 (Theorem 1.2 and Proposition 5.8 in [KSw]). (1) The representa-
tion R(V4,1, χv) equals I(1, χv) and R(V4,2, χv) is the unique irreducible submodule of
I(1, χv). The image of the normalized intertwining operator N(w2w1w2, (χv ◦det)| det |w)
equals R(0, χv) and its kernel equals R(V4,2, χv).
(2) R(V1,1, χv) and R(V1,2, χv) are two inequivalent irreducible submodules of I(−1/2, χv).
R(V3,1, χv) and R(V3,2, χv) are two distinct maximal submodules of I(1/2, χv). The nor-
malized operator N(w2w1w2, (χv ◦ det)| det |1/2w ) induces isomorphisms

R(V3,i, χv)
/
(R(V3,1, χv) ∩ R(V3,2, χv))

∼−→ R(V1,i, χv), (i = 1, 2).

(2) The non-archimedean split case. Let v be a finite place of k which splits in k′,
and let w1, w2 be the places of k

′ lying over v. Then Gv = GL(4)kv and

M1,v =

{(
A 0002

0002 D

)∣∣∣∣∣ A, D ∈ GL(2)kv

}
, U1,v =

{(
1112 B
0002 1112

)∣∣∣∣∣ B ∈ M2

}
.

For each character χv = χw1 ⊗ χw2 of k
′
v and s ∈ C, define

I(s, χv) := Ind
G(kv)
P1(kv)[

(
(χw1 ◦ det)| det |sv ⊗ (χ−1

w2
◦ det)| det |−s

v

)
⊗ 111U1(kv)].

Then we have

Proposition 3.7 (Theorem 1.3 in [KSw]). (1) I(s, χv) is reducible if and only if χv ◦
Nk′v/kv = χw1χw2 = 111 and s = s0 with s0 ∈ {−1,−1/2, 0, 1/2, 1}.
(2) I(s, χv) in (1) at its reducible point s = s0 has a unique irreducible submodule A,

and the quotient I(s0, χv)
/
A is also irreducible. Moreover the irreducible quotient of
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I(1/2, χv) (I(1, χv) resp.) and the irreducible submodule of I(−1/2, χv) (I(−1, χv) resp.)
are both isomorphic to

Ind
G(kv)
P(3,1)(kv)[

(
(χw1 ◦ det)⊗ χ−1

w2

)
⊗ 111U(3,1)(kv)], (χw1 ◦ det resp.).

Here P(3,1) = M(3,1)U(3,1) is the standard parabolic subgroup of Gv such that M(3,1) �
GL(3)× Gm.
(3) Above irreducible representations are related to the Weil representation as follows.
Write s0 = (m−2)/2 with m ∈ {0, 1, . . . , 4}, and consider the dual reductive pair Gv×Hv

with Hv := GL(m)kv . We can construct an oscillator representation ωψv,χv of G(kv) ×
H(kv), for which explicit formulae for its Schrödinger model S(k⊕4m

v ) are given by

ωψv,χv

((A 0002

0002 D

))
Φ(x, y) = χw1(det(AD))| det(AD)|m/2

v Φ(xA, ytD−1), (A,D ∈ GL(2, kv))

(3.26)

ωψv,χv

((1112 B
0002 1112

))
Φ(x, y) = ψv(xB

ty)Φ(x, y), (B ∈ M2(kv))(3.27)

ωψv,χv

(( 0002 1112

−1−1−12 0002

))
Φ(x, y) =

∫
k⊕2m

v

Φ(u, v)ψv(u
tx+ vty) dudv(3.28)

ωψv,χv(h)Φ(x, y) = Φ(h
−1(x, y)), (h ∈ H(kv)).(3.29)

We write R(Vm, χv) for the image of the map

S(k⊕4m
v ) � Φ −→

(
g → ωψv,χv(g)Φ(0)

)
∈ I(m−2

2
, χv).

Then

(1) R(V3, χv) = I(1/2, χv) and R(V4, χv) = I(1, χv).
(2) R(V1, χv) is the unique irreducible submodule of I(−1/2, χv).
(3) R(0, χv) defined to be χw1 ◦ det is the unique irreducible submodule of I(−1, χv).

(5) These irreducible constituents are related by the normalized intertwining operators as
follows.

R(V1, χv) = ImN
(
w2w1w2, (χw1 ◦ det)| det |1/2v )⊗ (χ−1

w2
◦ det)| det |−1/2

v )
)
,

R(0, χv) = ImN
(
w2w1w2, (χw1 ◦ det)| det |v)⊗ (χ−1

w2
◦ det)| det |−1

v )
)
.

(3) The archimedean inert case. The situation is k′w/kv = C/R. For each character
χv of C× and s ∈ C, we construct I(s, χv) as in the non-archimedean case. We may assume
that χv is of the form χv(z) = (z/z)

ν/2 (ν ∈ Z).

Proposition 3.8 (Theorem 6.2 in [Le]). The reducible points of I(s, χv) are s0 ∈ ν/2+
Z.

Next we describe the irreducible constituents of I(s, χv) at its reducible points s0. For
our purpose, it is sufficient to do this at

s0 =

−1/2, 1/2 if ν /∈ 2Z
−1, 0, 1 if ν ∈ 2Z.

We again write these s0 as (m − 2)/2 (m = 0, 1, 2, 3, 4). For m �= 0 we classify the m-
dimensional Hermitian spaces Vm,i (i = 1, 2) just as in the non-archimedean inert case (by
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replacing γ with −1). For each Vm,i we have the oscillator representation (ωψv,χv ,S(V ⊕2
m,i))

of the dual pair (G(kv), U(Vm,i, kv)) as in the non-archimedean case.
Let Vm,i = V +

m,i ⊕ V −
m,i be the direct sum decomposition such that TrC/R(〈 , 〉m,i) is

positive (negative resp.) definite (as a 2× 2 symmetric matrix !) on V +
m,i (V

−
m,i resp.). We

define an inner product 〈 , 〉+m,i on Vm,i by

〈x, y〉+m,i :=


〈x, y〉m,i if x, y ∈ V +

m,i,

−〈x, y〉m,i if x, y ∈ V −
m,i,

0 if x ∈ V +
m,i and y ∈ V −

m,i.

Using this we define the Gaussian function on V ⊕2
m,i by

Φ0
Vm,i
(x) := exp(−πtr〈x, x〉+m,i) ∈ S(V ⊕2

m,i).

Then the resulting space

S0(V ⊕2
m,i) := {Φ0

Vm,i
(x)P (x) |P (x) is a polynomial.}

of “standard functions” with respect to ψv is the underlying (gv, Kv) × (u(Vm,i)C , Km,i)-
bimodule of ωψv,χv . Here u(Vm,i)C is the complexified Lie algebra of U(Vm,i,R) and Km,i

is a certain maximal compact subgroup of U(Vm,i,R).

Proposition 3.9 (Theorems 4.2 and 5.9 in [LeZ]). Assume that the character χv is
such that χv|R× = sgnm (m = 0, . . . , 4).
(1) If we write R(Vm,i, χv) for the image of the map

S0(V ⊕2
m,i) � Φ −→ (g → ωψv,χv(g)Φ(0)) ∈ I(m−2

2
, χv),

then this map induces an isomorphism S0(V ⊕2
m,i)(u(Vm,i)C ,Km,i)

∼−→ R(Vm,i, χv).
(2) R(V4,1, χv) equals I(1, χv) and R(V4,2, χv) is an irreducible submodule. The kernel of
the normalized intertwining operator

N(w2w1w2, (χv ◦ det)| det |C ) : I(1, χv) −→ I(−1, χv)

equals R(V4,2, χv) and its image is χG
v . Here χG

v is defined similarly as in the non-
archimedean case.
(3) R(V3,i, χv) (i = 1, 2) are two distinct maximal submodules of I(1/2, χv). R(V1,i, χv)
(i = 1, 2) are two inequivalent irreducible submodules of I(−1/2, χv). The normalized

intertwining operator N(w2w1w2, (χv ◦ det)| det |1/2C ) induces isomorphisms

R(V3,i, χv)
/
(R(V3,1, χv) ∩ R(V3,1, χv))

∼−→ R(V1,i, χv), (i = 1, 2).

(2) Archimedean split case. In this case we have G(kv) = GL(4,R) or GL(4,C).
For each character χv = χw1 ⊗ χw2 of (k

′
v)

× and s ∈ C, we define I(s, χv) as in the
non-archimedean case. Then the following is essentially a classical result of E. M. Stein.

Proposition 3.10 (Lemma 2.4 in [V]). (1) I(s, χv) is irreducible unless χw1χw2 = 111.
(2) If χw1χw2 = 111, then it is reducible at s = s0 with s0 ∈ {−1,−1/2, 1/2, 1}. The unique
irreducible submodule of I(−1/2, χv) and the unique irreducible quotient of I(1/2, χv) are

both isomorphic to Ind
G(kv)
P(3,1)(kv)[

(
(χw1 ◦ det)⊗ χ−1

w2

)
⊗111U(3,1)(kv)]. Here P(3,1) is as in Propo-

sition 3.7. An isomorphism between them is given by N(w2w1w2, (χw1 ◦ det)| det |1/2v ⊗
(χ−1

w2
◦ det)| det |−1/2

v ).
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(3) We adopt those notations of Proposition 3.7 on Weil representations. Then R(V3, χv) =

I(1/2, χv) and R(1, χv) = Ind
G(kv)
P(3,1)(kv)[

(
(χw1 ◦ det)⊗ χ−1

w2

)
⊗ 111U(3,1)(kv)].

3.3.2. The contributions of (3.19) and (3.20). Let VA = (Vv)v be a collection of 1-
dimensional Hermitian spaces Vv over k′v at each v. We fix a non-trivial character
ψ =

⊗
v ψv of A/k. For each character χ =

⊗
v χv of A×

k′/k
′× such that χ|A× = ηk′/k,

we can construct a collection of irreducible representations R(Vv, χv) of G(kv) using ψ.
Moreover R(Vv, χv) is unramified at almost all v and hence we have a smooth irreducible
representation R(VA , χ) :=

⊗
v R(Vv, χv) of G(A).

Theorem 3.11. (1) The contribution of (3.19) in Theorem 3.4 to the residual spectrum
is multiplicity free and consists of one dimensional representations χG = χ′ ◦ det. Here
χ′ : U(1,A)k′/k → C1 is defined by χ′(xσ̃(x)−1) := χ(x), where χ runs over characters of

A×
k′/k

′× such that χ|A× = 111.
(2) The contribution of (3.20) in Theorem 3.4 is multiplicity free and consists of R(VA , χ),
where VA =

⊗
v Vv is obtained from one dimensional Hermitian space V over k′ by Vv =

V ⊗k kv, and χ is a character of A×
k′/k

′× such that χ|A× = ηk′/k.

The proof of this will occupy the following three subsubsections. We begin with some
review from [KRS].

3.3.3. Lemmas on coinvariant. We still fix the nontrivial character ψ of 3.3.2. For brevity
we write

m(A) :=

(
A 0002

0002 σ(tA−1)

)
(a ∈ Resk′/kGL(2)), u(B) :=

(
1112 B
0002 1112

)
(B ∈ Her2(k′/k)),

and

w :=

(
0002 1112

−1−1−12 0002

)
.

(1) The non-archimedean case. First take a non-archimedean v which is inert in
k′. For each β ∈ Her2(k′w/kv) we have a character of U1(kv) defined by

ψβ : U1(kv) � u(B) −→ ψv(tr(Bβ)) ∈ C1.

For each smooth representation V of G(kv), we define its twisted coinvariant space by

VU1,β := V
/
Span{u.ξ − ψβ(u)ξ | ξ ∈ V, u ∈ U1(kv)}.

Now recall the Hermitian space Vv = V1,i (i = 1, 2) and the oscillator representation
(ωψv,χv ,S(V ⊕2

v )) of G(kv)× U(Vv, kv). For β as above, we set

Ωβ(Vv) := {x ∈ V ⊕2
v ; 〈x, x〉Vv = β}.

Lemma 3.12 (Lemma 1.3 in [KRS]). (1) The canonical projection S(V ⊕2
v ) � S(V ⊕2

v )U1,β

factors through the “restriction to Ωβ(Vv)” map S(V ⊕2
v ) � S(Ωβ(Vv)).

(2) In particular if detβ �= 0, then Ωβ(Vv) consists of a single U(Vv, kv)-orbit and the
projection S(V ⊕2

v ) � (S(V ⊕2
v )U1,β)U(Vv ,kv) is given by

Φ −→
∫
Ωβ(Vv)

Φ(x) dβx.

Here dβx is the unique (up to a factor) U(Vv, kv)-invariant measure.

Proof. (1) is merely a combination of the explicit formula (3.23) and [BZ] Lemma 2.33.
As for (2), the first assertion is clear and the second follows from the first and (1).
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The corresponding result at split v is almost trivial and will be omitted.
(2) The archimedean case. Again we treat the inert case only. Thus k′w/kv = C/R.

As in the non-archimedean case, we have a character ψβ of U1(R) for each β ∈ Her2(C/R).
We write dψβ : Lie(U1(R))C → C for its differential. Ωβ(Vv) is defined similarly as in the
non-archimedean case. Again recall the Hermitian space Vv = V1,i (i = 1, 2) and the
(gv, Kv)× (u(Vv)C , KVv)-module (ωψv,χv ,S0(V ⊕2

v )) and R(Vv, χv). We write S0(V ⊕2
v )∗β for

the space of U(Vv,R)-invariant tempered distributions T satisfying

T (dωψv,χv(X)Φ) = dψβ(X)T (Φ), ∀X ∈ Lie(U1(R)).

Also the space of linear functionals L on R(VV , χv) which satisfies

L(X.Φ) = dψβ(X) · L(Φ), ∀X ∈ Lie(U1(R))

is denoted by R(Vv, χv)
∗
β. Then

Lemma 3.13 (Proposition 1.7 and Corollary 1.8 in [KRS]). (1) If Ωβ(Vv) is empty,
then both (S0(V ⊕2

v )∗β)
U(Vv ,R) and R(Vv, χv)

∗
β are {0}.

(2) If Ωβ(Vv) is not empty, then (S0(V ⊕2
v )β)

U(Vv,R) is spanned by the orbital integral

Φ −→
∫
Ωβ(Vv)

Φ(x) dβx.

Consequently dimR(Vv, χv)
∗
β = 1.

Proof. The proof in the symplectic case was given in [Ra2] Lemma 4.2. The unitary case
can be treated similarly using [LeZ].

3.3.4. Generalized Whittaker models for R(VA , χ). Here we review some facts about the
generalized Whittaker models from [KRS] §2.
Every character of U1(A)/U1(k) is of the form

ψβ : U1(A) � u(B) −→ ψ(tr(Bβ)) ∈ C1,

for some β ∈ Her2(k′/k). We restrict ourselves to those ψβ with detβ �= 0. Then the space
of generalized Whittaker functionals for an irreducible smooth representation (π, Vπ) of
G(A) is defined by

Wβ(π) :=

{
L : Vπ → C
linear map

∣∣∣∣∣ (i) L(π(u)f ) = ψβ(u)L(f), ∀u ∈ U1(Af)
(ii)L(dπ(X)f) = dψβ(X)L(f), ∀X ∈ LieU1(A∞)

}
Now we suppose that (π, Vπ) is an automorphic subrepresentation. For each f ∈ Vπ,

we define its β-th Fourier coefficient as

Wβ(f)(g) :=
∫
U1(k)\U1(A )

f(ug)ψβ(u) du,

and a Whittaker functional Wβ ∈ Wβ(π) by

Vπ � f −→Wβ(f)(1) ∈ C.

Let VA =
⊗

v Vv and R(VA , χ) =
⊗

v R(Vv, χv) be as in 3.3.2.

Lemma 3.14 (Lemma 2.5 in [KRS]). If an intertwining map D from R(VA , χ) to the
space of L2-automorphic forms L2(G(k)\G(A)) satisfies

Wβ ◦D = 0, ∀β ∈ Her2(k′/k) with det β �= 0,
then D is zero.
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Proof. We write π =
⊗

v πv for the representation of G(A) on R(VA , χ). Take a finite place
v which is unramified or split in k′. We write Ok′v for the integral closure of Ov in k

′
v.

Let O(Vv) := {β ∈ Her2(k′v/kv) | detβ �= 0, β = 〈x, x〉Vv (∃x ∈ V ⊕2
v )}. Take a Schwartz

function h on Her2(k
′
v/kv) such that its Fourier transform

ĥ(b) :=
∫
Her2(k′v/kv)

h(B)ψv(tr(Bb)) dB

is the characteristic function of O(Vv)∩M2(Ok′v). We write fh for the function on U1(kv)
given by fh(u(b)) := h(b). Then from the definition of R(Vv, χv), we have

πv(fh)ϕv(w) =
∫
Her2(k′v/kv)

ϕv(wu(b))h(b) db

choosing Φv ∈ S(V ⊕2
v ) which projects to ϕv,

=
∫
Her2(k′v/kv)

ωψv,χv(wu(b))Φv(0)h(b) db

from (3.24) or (3.28),

=
∫
Her2(k′v/kv)

1

γ(Trk′v/kv(〈 , 〉Vv))
2

∫
V ⊕2

v

h(b)ψv(tr(b〈x, x〉Vv)) dbΦv(x) dx

=
1

γ(Trk′v/kv(〈 , 〉Vv))
2

∫
x∈V ⊕2

v
〈x,x〉Vv∈O(Vv)∩M 2 (Ok′v )

Φv(x) dx.

Thus we can choose Φv so that this does not vanish.
Now using this specific Φv, we construct Φ =

⊗
v′ �=v Φv′ ⊗ Φv ∈ S(V ⊕2

A ) and write
ϕ =

⊗
v′ �=v ϕv′ ⊗ ϕv for its image in R(VA , χ). Then using the Fourier expansion on

U1(k)\U1(A), one has

R(fh)D(ϕ)(g) =
∫
U1(kv)

D(ϕ)(gu)fh(u) du

=
∫
U1(kv)

∑
β∈Her2(k′/k)

(Wβ ◦D)(ϕ)(gu)fh(u) du

If we take gv = 1, then this equals

=
∫
Her2(k′w/kv)

∑
β∈Her2(k′/k)

ψv(tr(bβ))h(b) db (Wβ ◦D)(ϕ)(g)

=
∑

β∈Her2(k′/k)

ĥ(β)(Wβ ◦D)(ϕ)(g).

This is zero from our hypothesis. Since this means D(π(fh)ϕ) restricted to the dense
subsetG(k)

∏
v′ �=v G(kv′) of G(A) identically vanishes, D(π(fh)ϕ) is forced to be identically

zero. But our choice of ϕ asserts π(fh)ϕ �= 0. That is, D has non-trivial kernel. Hence
D = 0 because R(VA , χ) is irreducible.

HomG(A )(R(VA , χ), L
2(G(k)\G(A))) denotes the space of G(Af)×(g∞, K∞)-equivariant

maps from R(VA , χ) to the space of smooth K∞-finite vectors in L2(G(k)\G(A)).
Proposition 3.15 (Theorem 2.2 in [KRS]). Assume VA comes from a Hermitian space
V over k′, i.e. VA = V ⊗k A. Then dimHomG(A )(R(VA , χ), L

2(G(k)\G(A))) ≤ 1.
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Proof. Take two elements A, B ∈ HomG(A )(R(VA , χ), L
2(G(k)\G(A))) and set Aβ :=

Wβ ◦A (Bβ :=Wβ ◦B resp.) for β ∈ Her2(k′/k). Also set O(V ) := {β ∈ Her2(k′/k) ; β =
〈ξ, ξ〉V , ∃ξ ∈ V }. If Aβ is not zero, then by applying Lemma 3.12 and Lemma 3.13 to
Aβ|R(Vv ,χv) and to Bβ|R(Vv ,χv), we see that β ∈ O(V ) and there exists a constant cβ such
that Bβ = cβAβ. Moreover since

Aβ(π(m(a))Φ) =Wβ(R(m(a))A(Φ))

=Wtaβσ̃(a)(A(Φ)) = Ataβσ̃(a)(Φ),

for a ∈ GL(2, k′) and O(V ) is a single GL(2, k′) orbit, we know that c = cβ is independent
of β. Thus if we set D := B − cA, we have Wβ ◦ D = 0 for any β ∈ Her2(k

′/k) with
detβ �= 0. Now we apply Lemma 3.14 to finish the proof.
Lemma 3.16 (Proposition 2.6 in [KRS]). Suppose that there is no Hermitian space V
over k′ such that VA = V ⊗k A, then HomG(A )(R(VA , χ), L

2(G(k)\G(A))) = 0.
Proof. Take a intertwining map D : R(VA , χ)→ L2(G(k)\G(A)) and consider Wβ ◦D for
β ∈ Her2(k′/k). Then by Lemma 3.12 and Lemma 3.13, at every v it is necessary that
Ωβ(Vv) is not empty for Wβ ◦ D restricted to R(Vv, χv) to be non-zero. But this means
that the Hermitian space (V = k′, 〈x, y〉V := xβσ̃(y)) over k′ satisfies VA = V ⊗k A, which
contradicts our assumption. Thus Wβ ◦D = 0 for any β ∈ Her2(k′/k) must holds. Now
the lemma follows from Lemma 3.14.

3.3.5. The proof of Theorem 3.11. First note that we can choose a character χ of A×
k′/k

′×

such that

S1,2 = χ| |3/2A k′ ⊗ χ| |1/2A k′ , χ|A× = 111, (S1,3 = χ| |A k′ ⊗ χ, χ|A× = ηk′/k resp.)

The contribution to be calculated is the image ImN(w−,S1,2) (ImN(w−,S1,3) resp.). But
since w− = (w2w1w2)w1 and

ImN(w1,S1,2) = Ind
G(A )
P1(A ) [(χ ◦ det)| det |A k′ ⊗ 111U1(A ) ],

(ImN(w1,S1,3) = Ind
G(A )
P1(A ) [(χ ◦ det)| det |1/2A k′ ⊗ 111U1(A ) ] resp.)

the statement (1) follows immediately from Proposition 3.5 (2), Proposition 3.6 (2),
Proposition 3.7, Proposition 3.9, Proposition 3.10.
To prove (2), we have to determine the irreducible constituents of

N(w2w1w2, χ⊗ χ| |A k′ )
(
Ind

G(A )
P1(A ) [(χ ◦ det)| det |1/2Ak′

⊗ 111U1(A ) ]
)
.

A local component of this consists of at most two irreducible representations R(V1,i, χv)
(i = 1, 2) by Proposition 3.5 (2) (3), Proposition 3.6 (2), Proposition 3.7, Proposition 3.9
and Proposition 3.10. Thus the irreducible constituents are contained inR(VA , χ)

∣∣∣∣∣∣∣
(i) VA is a collection of one-dimensional Hermitian
space Vv over kv at each v,
(ii) χ is such that χ|A× = ηk′/k.


But we know from Lemma 3.16 that R(VA , χ) with VA does not come from a global V
must be excluded. Also Proposition 3.15 assures that the multiplicity of R(VA , χ) is at
most 1.
Finally we need to check that R(VA , χ) with VA = V ⊗k A for some V over k′ really

contributes to the residual spectrum (cf. [KRS] Proposition 3.3). For such a Hermitian
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space V , we write its unitary group U(V ). We can construct the global oscillator rep-
resentation (ωψ,χ,S0(V ⊕2

A )) of G(A)× U(V,A) (see 3.3.7 below). Using this we have the
usual theta kernel

θχ(g, h; Φ) :=
∑
ξ∈V

ωψ,χ(g, h)Φ(ξ), (g ∈ G(A), h ∈ U(V,A)).

Since V is always anisotropic, the theta integral

Iχ(g,Φ) :=
∫
U(V,k)\U(V,A )

θχ(g, h; Φ) dh

is well-defined. Moreover the map Iχ : S0(V ⊕2
A
)→ L2(G(k)\G(A)) is non-zero (calculate

the ψβ-Fourier coefficients) and factors R(VA , χ). This completes the proof of Theorem
3.11. (q.e.d.)

3.3.6. The contributions of (3.21)—the result. The contribution of the term (3.21) is
relatively easy to describe. First we prove the following.

Lemma 3.17. Decompose S2,4 into a restricted tensor product
⊗

v(S2,4)v. Then the
images

Im[N(w2, w1w2(S2,4)v)M(w1, w2(S2,4)v)N(w2, (S2,4)v)]

Im[M(w1, w2w1w2(S2,4)v)N(w2, w1w2(S2,4)v)M(w1, w2(S2,4)v)N(w2, (S2,4)v)]

coincide to each other and are irreducible.

Proof. We write S2,4 as χ1| |1/2A k′
⊗ χ2| |1/2A k′

where χi (i = 1, 2) are distinct characters of

A×
k′/k

′× such that χi|A× = 111.
The case of inert v.
We take a inert place v of k. Then (S2,4)v := χ1,v| |1/2w ⊗ χ2,v| |1/2w and hence

r(w2, (S2,4)v) =
Lk(1, χv,2|k×v )

Lk(2, χv,2|k×v )εk(1, χv,2|k×v , ψv)

r(w2, w1w2(S2,4)v) =
Lk(1, χv,1|k×v )

Lk(2, χv,1|k×v )εk(1, χv,1|k×v , ψv)

are both defined and non-zero. Thus we may replace N(w, •) by M(w, •) and study the
images

ImM(w2w1w2, (S2,4)v), ImM(w−, (S2,4)v).

But since (πv, Vπv) := Ind
M1(kv)
(P0∩M1)(kv)[(S2,4)v ⊗ 111(U0∩M1)(kv)] is essentially tempered, irre-

ducible and M(w1, (S2,4)v) : Vπv → Vπv is an isomorphism, we know that the above

images are both isomorphic to the Langlands’ quotient of Ind
G(kv)
P1(kv)[πv ⊗ 111U1(kv)].

The case of split v.
At a split v, (S2,4)v is of the form

χ1,w1 | |1/2v ⊗ χ2,w1 | |1/2v ⊗ χ−1
1,w2

| |−1/2
v ⊗ χ−1

2,w2
| |−1/2

v ,

where χ1,v = χ1,w1 ⊗ χ1,w2, χ2,v = χ2,w1 ⊗ χ2,w2, and hence

r(w2, (S2,4)v) =
Lk(1, χ2,w1χ2,w2)

Lk(2, χ2,w1χ2,w2)εk(1, χ2,w1χ2,w2, ψv)

r(w2, w1w2(S2,4)v) =
Lk((1, χ1,w1χ1,w2))

Lk((2, χ1,w1χ1,w2))εk(1, χ1,w1χ1,w2), ψv)
.
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These again allow us to replace the normalized intertwining operators by the unnormal-
ized ones. Thus we study

ImM(w2w1w
′
1w2, (S2,4)v), ImM(w−, (S2,4)v),

where w′
1 denotes the simple reflection of Gv � GL(4)kv attached to the simple root α

′
1

(see 2.1.4). Again notice that M1,v � GL(2)kv × GL(2)kv , we see both of the images

are the Langlands’ quotient of Ind
G(kv)
P1(kv)[πv ⊗ 111U1(kv)] where πv := Ind

M1(kv)
(P0∩M1)(kv)[(S2,4)v ⊗

111(U0∩M1)(kv)].

We may call the resulting irreducible representation

ImN(w2w1w2, S2,4) = ImN(w−, S2,4)

the global Langlands’ quotient of Ind
G(A )
P0(A ) [S2,4 ⊗ 111U0(A ) ].

Theorem 3.18. The contribution of the term (3.21) in Theorem 3.4 to the residual spec-
trum is multiplicity free and consists of irreducible representations corresponding to non-
trivial one-dimensional representations of U(1, 1)k′/k by the theta correspondence.

Write H for the group U(1, 1)k′/k defined by

H :=

{
h ∈ Resk′/kGL(2)

∣∣∣∣∣h
(
0 1
1 0

)
σ̃(th) =

(
0 1
1 0

)}
.

All we have to show is that the irreducible representation

ImN(w2w1w2, S2,4) = ImN(w−, S2,4)

of G(A) corresponding to the one dimensional representation (χ1χ
−1
2 )

H := (χ1χ
−1
2 )

′ ◦ det,
where (χ1χ2)

′ is defined similarly as in Theorem 3.11. To do this we calculate the constant
terms of theta series on G(A)×H(A) (cf. [Ra]).

3.3.7. Constant terms of theta series. (1) Global oscillator representations for G(A)×
H(A). We begin with a short review of theta series on G(A)×H(A). As in the local case
(3.3.1), we consider G×H as a dual reductive pair in Sp(W). Here the Hermitian space
Vm,i is replaced by (

V := k′⊕2
, 〈 , 〉V :=

(
0 1
1 0

))
.

As in [I] §1, we have the global metaplectic group Mp(WA ) of Sp(WA ). This is a re-
stricted direct product of Mp(Wv) with respect to their appropriate compact subgroups
Kv divided by the central subgroup {(εv)v ∈ ⊕

v C1 ;
∏

v εv = 1}. The group Sp(W, k) is
naturally considered as a closed subgroup of Mp(W). Also for a character ψ of A/k, we
have the oscillator representation ωψ of Mp(WA ) associated to it.

Recall that our S2,4 was written in the form χ1| |1/2A k′ ⊗ χ2| |1/2A k′ . χi (i = 1, 2) are two

distinct characters of A×
k′/k

′× whose restriction to A× are trivial. Using this χ1 we can
construct a system of local splittings (cf. [Ku] Theorem 3.1);

ιχ1,v : G(kv)×H(kv) −→Mp(W)v.

Then from explicit formulae (3.22), (3.23), (3.24), (3.25) and (3.26), (3.27), (3.28), (3.29)
we see that ιχ1,v(Kv) ⊂ Kv at almost all v. This allows us to construct a global splitting

ιχ1 : G(A)×H(A) � (g, h)→ (ιχ1,v(gv, hv))v ∈Mp(W)A .
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It follows from the product formula for the Weil constant that ιχ1(G(k) × H(k)) ⊂
Sp(W, k). As in the local case we have the auxiliary oscillator representation ω′

ψ,χ1
:=

ωψ ◦ ιχ1 and twist the H(A)-action by the character χ1 ◦ det to obtain the final oscillator
representation (ωψ,χ1 ,S(V ⊕2

A
)).

Explicit formulae for (ωψ,χ1,S(V ⊕2
A )) are given by

ωψ,χ1(m(A))Φ(x) = χ1(detA)| detA|A k′Φ(xA), (A ∈ GL(2,Ak′))(3.30)

ωψ,χ1(u(B))Φ(x) = ψ(tr(〈x, x〉VB))Φ(x), (B ∈ Her2(Ak′/A))(3.31)

ωψ,χ1(w) =
∫
V ⊕2
A

Φ(y)ψ(Trk′/k(tr〈x, y〉V )) dy(3.32)

ωψ,χ1(h)Φ(x) = Φ(h
−1x), (h ∈ H(A)).(3.33)

If we replace S(V ⊕2
v ) with S0(V ⊕2

v ) defined in 3.3.1 at each archimedean v, then we have
the underlying [G(Af ) × (g(A∞)C , K∞)] × [H(Af) × (h(A∞)C , KH

∞)]-bimodule S0(V ⊕2
A
).

Now for Φ ∈ S0(V ⊕2
A ), define the theta series attached to it by

θΦ(g, h) :=
∑

ξ∈V ⊕2
k

ωψ,χ1(g, h)Φ(ξ).

This is a slowly increasing smooth K∞×KH
∞-finite function on G(k)\G(A)×H(k)\H(A).

(3) Calculation of the constant term. At this point we identify V ⊕2 with M2(k
′),

on which G (H resp.) acts by right (left resp.) translation. We fix a point x1 ∈ V ⊕2 as

x1 :=

(
0 0
0 1

)
.

Lemma 3.19. If we set FΦ(h)(g) :=
∑

ζ∈Z(M1,k) ωψ,χ1(ζg, h)Φ(x1) for Φ ∈ S(V ⊕2
A ), then

the constant term of θΦ along P0 ⊂ G is given by

θΦ(g, h)P0 = ωψ,χ1(g, h)Φ(0) +
∑

γ∈B−
H

(k)\H(k)

FΦ(γh)(g)

+
∑

γ∈B−
H

(k)\H(k)

∫
U

M1
0 (A )

FΦ(γh)(w
−1
1 ug) du

(3.34)

Here B−
H denotes the Borel subgroup of H consisting of lower triangular elements.

Proof. We follow Rallis’s argument appeared in the proof of Theorem I.1.1 in [Ra]. First
we calculate the constant term along P1:

θΦ(g, h)P1 =
∫
U1(k)\U1(A )

∑
ξ∈V ⊕2

k

ωψ,χ1(ug, h)Φ(ξ) du

=
∫
Her2(k′/k)\Her2(A k′ /A )

∑
ξ∈V ⊕2

k

ωψ,χ1(u(B))Φ(ξ) dB

=
∑

ξ∈V ⊕2
k

ωψ,χ1(g, h)Φ(ξ)
∫
Her2(k′/k)\Her2(A k′ /A )

ψ(tr(〈ξ, ξ〉VB)) dB

=
∑

ξ∈V ⊕2
k

〈ξ,ξ〉V =0

ωψ,χ1(g, h)Φ(ξ).
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Next set X0 := {ξ ∈ V ⊕2
k | 〈ξ, ξ〉V = 0}. Then there are two M1(k)×H(k)-orbits in X0;

X0,0 := {0}, X0,1 := {(ξ, η) ∈ X0 | dim Span{ξ, η} = 1}.

The element x1 above is a representative of X0,1. If we write S1 for the stabilizer of x1 in
M1(k)×H(k), then

θΦ(g, h)P1 = ωψ,χ1(g, h)Φ(0) +
∑

(δ,γ)∈S1\H(k)×M1(k)

ωψ,χ1(δg, γh)Φ(x1).

Next we proceed to

θΦ(g, h)P0 :=
∫
U

M1
0 (k)\UM1

0 (A )
θΦ(ug, h)P1 du,

where PM1
0 =M0U

M1
0 is the intersection of P0 and M1. Note that

S1 =

{(
m

((x y
0 σ̃(a)−1

))
,

(
a 0
b σ̃(a)−1

))
∈M1(k)×H(k)

}
.

This combined with the Bruhat decomposition yields

θΦ(g, h)P1 =ωψ,χ1(g, h)Φ(0) +
∑

γ∈B−
H (k)\H(k)

∑
δ∈P (M1)(k)\M1(k)

ωψ,χ1(δg, γh)Φ(x1)

where P (M1) :=

{
m

((x y
0 1

))
∈M1

}
,

=
∑

γ∈B−
H(k)\H(k)

[
ωψ,χ1(g, h)Φ(0) +

∑
ζ∈Z(M1,k)

ωψ,χ1(ζg, γh)Φ(x1)

+
∑

ζ∈Z(M1,k)

∑
ε∈UM1

0 (k)

ωψ,χ1(w
−1
1 ζεg, γh)Φ(x1)

]
.

On the other hand,

∫
U

M1
0 (k)\UM1

0 (A )

(
ωψ,χ1(ug, h)Φ(0) +

∑
ζ∈Z(M1,k)

ωψ,χ1(ζug, γh)Φ(x1)
)
du

=ωψ,χ1(g, h)Φ(0) +
∑

ζ∈Z(M1,k)

ωψ,χ1(ζg, γh)Φ(x1),∫
U

M1
0 (k)\UM1

0 (A )

∑
ζ∈Z(M1,k)

∑
ε∈UM1

0 (k)

ωψ,χ1(w
−1
1 ζεug, γh)Φ(x1) du

=
∫
U

M1
0 (A )

∑
ζ∈Z(M1,k)

ωψ,χ1(ζw
−1
1 ug, γh)Φ(x1) du.

Hence the lemma follows.
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3.3.8. Proof of Theorem 3.18. For s ∈ C, define

FΦ(h, s)(g) :=
∫
A
×
k′
ωψ,χ1(g, h)Φ(ax1)χ1χ

−1
2 (a)|a|sA k′

da×, Φ ∈ S0(V ⊕2
A
).

Since the main part of the integral is Lk′(s, χ1χ
−1
2 ) and χ1 �= χ2, this converges absolutely

for Re(s) >> 0 and extended to an entire function on s. Moreover it satisfies

FΦ

((t 0
∗ σ̃(t)−1

)
h, s)(g) = σ̃(χ−1

1 χ2)(t)|t|−s
A k′

FΦ(h, s)(g),

FΦ(h, s)
(
m

((x ∗
0 y

))
g
)
= χ1(x)χ2(y)|x|Ak′ |y|1−s

Ak′
FΦ(h, s)(g).

That is, FΦ(h, s)(g) is a holomorphic section of A(B
−
H(A)\H(A))σ̃(χ−1

1 χ2)| |−s−1/2
Ak′

and of

A(P0(A)\M1(A))(χ1| |1/2
A
k′

⊗χ2| |3/2−s
A
k′

)
. Recall that

(1) The Eisenstein series

E(FΦ, h; s)(g) :=
∑

γ∈B−
H

(k)\H(k)

FΦ(γh, s)(g)

on H(k)\H(A) converges absolutely for Re(s) > 1 and meromorphically continued
to the whole plane.

(2) It has a simple pole at s = 1 and its residue there spans the one dimensional
representation (χ1χ

−1
2 )

H .

Write Θχ1,P0 for the space of functions on M0(k)\M0(A) × H(k)\H(A) spanned by
θΦ(g, h)P0 (Φ ∈ S0(V ⊕2

A )). We consider the integral∫
Z(M1,k)\Z(M1,A )

[ ∑
γ∈B−

H
(k)\H(k)

FΦ(γh)(zg)

+
∑

γ∈B−
H

(k)\H(k)

∫
U

M1
0 (A )

FΦ(γh)(w
−1
1 uzg) du

]
χ1χ

−1
2 (z)|z|sA k′

dz.
(3.35)

If Re(s) > 1, then∑
γ∈B−

H(k)\H(k)

∫
Z(M1,k)\Z(M1,A )

FΦ(γh)(zg)χ1χ
−1
2 (z)|z|sA k′

dz

=
∑

γ∈B−
H(k)\H(k)

∫
A
×
k′ /k

′×

∑
ζ∈Z(M1,k)

ωψ,χ1(ζg, h)Φ(ax1)χ1χ
−1
2 (a)|a|sA k′

da×

=
∑

γ∈B−
H

(k)\H(k)

FΦ(γh, s)(g) = E(FΦ, h; s)(g)

∑
γ∈B−

H
(k)\H(k)

∫
U

M1
0 (A )

∫
Z(M1,k)\Z(M1,A )

FΦ(γh)(w
−1
1 uzg) dz du

=
∑

γ∈B−
H

(k)\H(k)

∫
U

M1
0 (A )

FΦ(γh, s)(w
−1
1 ug) du

=
∑

γ∈B−
H

(k)\H(k)

MM1(w1, χ1| |1/2A k′
⊗ χ2| |3/2−s

A k′
)FΦ(γh, s)(g)
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=E(MM1(w1, χ1| |1/2A k′
⊗ χ2| |3/2−s

A k′
)FΦ, h; s)(g)

are absolutely convergent and are equal to∫
Z(M1,k)\Z(M1,A )

∑
γ∈B−

H
(k)\H(k)

FΦ(γh)(zg)χ1χ
−1
2 (z)|z|sA k′

dz,

∫
Z(M1,k)\Z(M1,A )

∑
γ∈B−

H
(k)\H(k)

∫
U

M1
0 (A )

FΦ(γh)(w
−1
1 uzg) du χ1χ

−1
2 (z)|z|sA k′

dz

respectively. Thus (3.35) is well-defined for Re(s) > 1 and meromorphically continued to
define an intertwining operator

A(s) : Θχ1,P0 � θΦ(g, h)P0

−→ E(FΦ, h; s)(g) + E(MM1(w1, χ1| |1/2A k′
⊗ χ2| |3/2−s

A k′
)FΦ, h; s)(g) ∈ A(H(k)\H(A)),

for s ∈ C.
From (2) above, we know that A(s) has a simple pole at s = 1, and the image of the

residue Ress=1A(s) is the constant term of the automorphic representation corresponding
to (χ1χ

−1
2 )

H by the Howe duality. But as a function on G(k)\G(A), ImRess=1A(s) is still
of the form

φ(g) +M(w1, χ1| |1/2A k′
⊗ χ2| |1/2A k′

)φ(g)

for some φ ∈ A(P0(A)\M1(A))(χ1| |1/2
A
k′

⊗χ2| |1/2
A
k′

)
. This is precisely the constant term of the

global Langlands’ quotient of Ind
G(A )
P0(A ) [S2,4 ⊗ 111U0(A ) ] and we have done. (q.e.d.)

4. The contributions of cuspidal data attached to P1

In this section we describe the contribution of cuspidal data attached to the Siegel
parabolic subgroup P1 =M1U1 to the residual spectrum.

4.1. Singular hyperplanes. We retain the notations defined at the beginning of the
previous section. In particular we take X ∈ EP1 and (M1,P) ∈ X. For φ ∈ P(M1,P) and
φ′ ∈ PX we consider

〈θφ, θφ′〉L2(G(k)\G(A )) =
1

2π
√−1

∫
π∈P,Reπ=λ0

A(φ, φ′)(π) dπ,

where
A(φ, φ′) =

∑
(M1,P′)∈X

〈 ∑
w∈W (P,P′)

M(w, π)φ(π), φ′(−wπ)
〉
.

In the Siegel parabolic case WM1 consists of 1 and w(P1) := w2w1w2, hence the singular
hyperplanes for A(φ, φ′)(π) are those of M(w(P1), π)φ(π).

4.1.1. Analytic behavior of the local intertwining operator. Take π =
⊗

v πv ∈ P. We
begin with the review of the normalization factor for M(w(P1), πv) ([Sh]). Recall that
our M1,v is isomorphic to Resk′v/kvGL(2). We have the following two cases.
(1) At inert v. Let w|v be as before and write Γv := Gal(k′w/kv). We identify the

generator of Γv with σ. Just as in the global case, one has LGv = Ĝ �θ2 Wkv , where the

Weil group Wkv acts on Ĝ through Γv by σ = θ2. Hence we have the L-isomorphism

LM1 �
(
A 0002

0002 D

)
� w

∼−→ (A, tD−1)� w ∈ L(Resk′w/kvGL(2)),(4.1)
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and identify LM1 with
L(Resk′w/kvGL(2)) by this.

In the notation of [Sh], we have (U1)w(P1) = U1. The adjoint representation rw(P1) of
LM1 on Lie((U1)

∧
w(P1)) � M2(C) is given by

rw(P1)|M̂1
= St2 ⊗ St2, rw(P1)(1� σ)(v1 ⊗ v2) = v2 ⊗ v1,(4.2)

where St2 denotes the standard representation of GL(2,C). The L-function attached to πv
and rw(P1) is the twisted tensor L-function LAsai(s, πv) ([As], [HLR]). The normalization
factor r(w(P1), πv) for M(w(P1), πv) is defined by

r(w(P1), πv) :=
LAsai(0, πv)

LAsai(1, πv)εAsai(0, πv, ψv)
.

(2) At split v. Let w1, w2|v be as before and write

πv = πw1 ⊗ πw2 :M1(kv) �
(
A 0002

0002 D

)
−→ πw1(A)⊗ πw2(

tD−1) ∈ GL(Vπv).

The normalization factor in this case is well-known and given by

r(w(P1), πv) :=
L(0, πw1 × πw2)

L(1, πw1 × πw2)ε(0, πw1 × πw2 , ψv)
,

where L(s, πw1 ×πw2) and ε(s, πw1 ×πw2 , ψv) are the Rankin product L-factor and its root
number for πw1 and πw2 defined in [Ja].

Lemma 4.1. The local normalized intertwining operator N(w(P1), πv) := r(w(P1), πv)
−1

M(w(P1), πv) is holomorphic on the closed positive chamber {πv ∈ Pv ; 〈Reπv, β∨
1 〉 ≥ 0}.

(Note that β1 is the only positive root of AM1 in P1.)

Proof. At splitting v, this was proved in [MW2]. Hence we assume v is inert in k′. When πv
is essentially tempered, this follows from [Ar2] Theorem 2.1 if v is archimedean and from
Proposition 7.2 in [Sh] if v is finite. Thus we may assume that πv is in the complementary
series. Then πv is of the form

πv = Ind
M1(kv)
(P0∩M1)(kv)[(µw| |λ/2w ⊗ µw| |−λ/2

w )⊗ 111(U0∩M1)(kv)],

where µw is a quasi-character of k
′×
w and 0 < λ < 1. From 3.1.1, M(w(P1), πv) and its

normalization factor can be written as

M(w(P1), πv) =M(w2, σ̃(µ
−1
w )| |λ/2w ⊗ µw| |λ/2w )M(w1, µw| |λ/2w ⊗ σ̃(µ−1

w )| |λ/2w )

M(w2, µw| |λ/2w ⊗ µw| |−λ/2
w ),

r(w(P1), πv) = r(w2, σ̃(µ
−1
w )| |λ/2w ⊗ µw| |λ/2w )r(w1, µw| |λ/2w ⊗ σ̃(µ−1

w )| |λ/2w )

r(w2, µw| |λ/2w ⊗ µw| |−λ/2
w ).

Since 〈Reπv, β∨
1 〉 ≥ 0 is equivalent to Reµw ≥ 0, both of
r(w2, σ̃(µ

−1
w )| |λ/2w ⊗ µw| |λ/2w )−1M(w2, σ̃(µ

−1
w )| |λ/2w ⊗ µw| |λ/2w )

r(w1, µw| |λ/2w ⊗ σ̃(µ−1
w )| |λ/2w )−1M(w1, µw| |λ/2w ⊗ σ̃(µ−1

w )| |λ/2w )

are holomorphic on the region 〈Reπv, β∨
1 〉 ≥ 0. On the other hand, it follows from [Sh]

Corollary 7.6 that both r(w2, µw| |λ/2w ⊗µw| |−λ/2
w ) and M(w2, µw| |λ/2w ⊗µw| |−λ/2

w ) have a
simple pole at µw = | |λ/2w , and are holomorphic and non-zero at other πv in our positive
cone.
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4.1.2. Analytic behavior of the global intertwining operator. As in §3, we set
r(w(P1), π) :=

∏
v

r(w(P1), πv), N(w(P1), π) := r(w(P1), π)
−1M(w(P1), π).

Then the following proposition will be proved in Appendix A.

Proposition 4.2. For an irreducible representation π of GL(2,Ak′), we write its central
character ωπ. We write H for the diagonal subgroup GL(2)k of Resk′/kGL(2). Then the
only pole of r(w(P1), π) in the region 〈Reπ, β∨

1 〉 ≥ 0 occurs at

S(P1) :=

{
π ∈ P

∣∣∣∣∣ (i) ωπ|A× = | |2
A
,

(ii)
∫
H(k)Z(H,A )\H(A ) f(h)| det(h)|−1

A
dh �= 0

}
,

and it is simple.

4.1.3. Singular hyperplanes. From Proposition 4.2, we have Sh,+
(M1,P) = {S(P1)}.

4.2. Decomposition of the scalar product. In this case S+
(M1,P) = {P, S(P1)} and

we set o(P) := 0.

Theorem 4.3. For φ ∈ P(M1,P) and φ′ ∈ PX, we have

〈θφ, θφ′〉L2(G(k)\G(A )) =
1

2π
√−1

∫
π∈P,Reπ=0

A(φ, φ′)(π) dπ

+ c1〈N(w(P1), S(P1))φ(S(P1)), φ
′(−w(P1)S(P1))〉

(4.3)

for some non-zero constant c1.

Proof. Since our P1 is a maximal parabolic subgroup, we can apply Lemma 101 in [HC].
This allows us to apply the usual residue theorem to A(φ, φ′), and the assertion is obvi-
ous.

4.3. The residual spectrum from P1. By Theorem 4.3, it is enough to determine the
image

ImN(w(P1), S(P1)) =
⊗
v

ImN(w(P1), S(P1)v).

If S(P1)v is essentially tempered, then ImN(w(P1), S(P1)v) is irreducible by the Lang-
lands’ classification. Next we handle S(P1)v in the complementary series. Then its
exponent is of the form| |(1+λ)/2

w ⊗ | |(1−λ)/2
w , (0 < λ < 1) if v is inert,

| |(1+λ)/2
v ⊗ | |(1−λ)/2

v ⊗ | |−(1+µ)/2
v ⊗ | |−(1−µ)/2

v , (0 < λ, µ < 1) if v splits.

In both cases this is regular and

ImN(w(P1), S(P1)v) = Ind
G(kv)
P1(kv)[S(P1)v ⊗ 111U1(kv)]

is irreducible. We call the irreducible representation ImN(w(P1), S(P1)) the global Lang-

lands’ quotient of Ind
G(A )
P1(A ) [S(P1)⊗ 111U1(A ) ]. Then our conclusion is

Theorem 4.4. The contribution of the cuspidal data attached to P1 to the residual dis-

crete spectrum is multiplicity free and consists of the global Langlands’ quotients of Ind
G(A )
P1(A ) [S(P1)⊗

111U1(A ) ], where S(P1) were defined in Proposition 4.2.
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5. The contributions of cuspidal data attached to P2

In this section we study the contributions of cuspidal data attached to the non-Siegel
maximal parabolic subgroup P2 to the residual spectrum. For this purpose, it is more
convenient to redefine our group G = U(2, 2)k′/k by replacing J2 in 2.1.3 with

J2 :=

 0
0 1
1 0

0 −1
−1 0 0

 .

Then the Borel subgroup P0 consists of upper triangular elements in G and the Cartan
subgroup M0 consists of elements of the form d(x1, x2) := diag(x1, x2, σ̃(x

−1
2 ), σ̃(x

−1
1 )).

Also P2 =M2U2 and P̂2 = M̂2Û2 becomes

M2 =


 x

A
σ̃(x−1)


∣∣∣∣∣∣∣
x ∈ Resk′/kGm,
A ∈ U(1, 1)k′/k.

 , U2 =


 1 ∗ ∗

1112 ∗
1

 ∈ G


M̂2 =


 x

A
y


∣∣∣∣∣∣∣
x, y ∈ Gm(C),
A ∈ GL(2,C).

 , Û2 =


 1 ∗ ∗

1112 ∗
1

 ∈ Ĝ

 .

Here the group U(1, 1)k′/k is defined by

U(1, 1)k′/k := {g ∈ Resk′/kGL(2) ; gJ1σ̃(
tg) = J1}, where J1 :=

(
0 1
−1 0

)
.

We conventionally write G2 for this group.

5.1. Singular hyperplanes. We take X ∈ EP2, (M2,P) ∈ X and consider

〈θφ, θφ′〉L2(G(k)\G(A )) =
1

2π
√−1

∫
π∈P,Reπ=λ0

A(φ, φ′)(π) dπ,

where

A(φ, φ′)(π) :=
∑

(M2,P′)∈X
〈 ∑
w∈W (P,P′)

M(w, π)φ(π), φ′(−wπ)〉

for φ ∈ P(M2,P), φ
′ ∈ PX. Since WM2 consists of 1 and w(P2) := w1w2w1, the analytic

behavior of A(φ, φ′)(π) is determined by that of M(w(P2), π).

5.1.1. Analytic behavior of the local intertwining operator. Take π =
⊗

v πv ∈ P and
consider M(w(P2), π)φ(π) =

⊗
v M(w(P2), πv)φv(πv). We first recall the normalization

factor r(w(P2), πv) defined in [Sh]. We write π ∈ P as χ⊗ τ , where χ is a quasi-character
of A×

k′/k
′× and τ is an irreducible cuspidal automorphic representation of G2(A).

(1) At inert v. Let w|v be as before and Γv be as in 4.1.1. We use the isomorphism

LM2 �
 x

A
y

 � w
∼−→ [(x, y−1)× A]� w ∈ L(Resk′/kGm ×G2)
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to identify these L-groups. Then the adjoint representation rw(P2) of
LM2 on Lie(U2)

∧
w(P2)

=

LieÛ2 decomposes into the direct sum rw(P2),1 ⊕ rw(P2),2, where

rw(P2),1|M̂2
= [(St1 ⊗ 111)⊗ S̃t2]⊕ [(111⊗ St1)⊗ St2], rw(P2),1(σ)(v1 ⊕ v2) = v2 ⊕ v1,

rw(P2),2|M̂2
= (St1 ⊗ St1)⊗ 111, rw(P2),2(σ)((v1 ⊗ v2)⊗ u) = (v2 ⊗ v1)⊗ u

Here St1 denotes the standard representation of Gm(C) and S̃t2 is the contragredient of
St2. The L-factor attached to πv = χv ⊗ τv and rw(P2),1 is the product L-factor of τv ×χv;

L(s, πv, rw(P2),1) = L(s, τv × χv).

The L-factor attached to πv and rw(P2),2 is simply Lk(s, χv|k×v ). Thus from [Sh] §7, we
have

r(w(P2), πv) =
L(0, τv × χv)

L(1, τv × χv)ε(0, τv × χv, ψv)

Lk(0, χv|k×v )
Lk(1, χv|k×v )εk(0, χv|k×v , ψv)

.

(2) At splitting v. Again let w1, w2|v be as before. We identifyM2,v with (Gm×Gm)×
GL(2) by

M2 �
 x

A
y

 ∼−→ (x, y−1)× A ∈ (Gm × Gm)×GL(2).

Accordingly πv = χv ⊗ τv is written as (χw1 ⊗ χw2)⊗ τv. The normalization factor in this
case is well-known and is given by

r(w(P2), πv) =
L(0, πv, rw(P2),1)

L(1, πv, rw(P2),1)ε(0, πv, rw(P2),1, ψv)

L(0, πv, rw(P2),2)

L(1, πv, rw(P2),2)ε(0, πv, rw(P2),2, ψv)
,

where, writing τ̃v for the contragredient of τv,

L(s, πv, rw(P2),1) = L(s, τ̃v ⊗ χw1)L(s, τv ⊗ χw2)

ε(s, πv, rw(P2),1, ψv) = ε(s, τ̃v ⊗ χw1 , ψv)ε(s, τv ⊗ χw2 , ψv)

L(s, πv, rw(P2),2) = Lk(s, χw1χw2), ε(s, πv, rw(P2),2, ψv) = εk(s, χw1χw2, ψv).

Lemma 5.1. The normalized operator N(w(P2), πv) := r(w(P2), πv)
−1M(w(P2), πv) is

holomorphic on the region 〈Reπ, β∨
2 〉 ≥ 0. (Note that β2 is the only positive root of AM2

in P2.)

Proof. If v splits in k′, then this was proved in [MW2]. Hence we assume v is inert in k′

and let w|v. First assume πv is essentially tempered. Archimedean case is a special case of
Theorem 2.1 in [Ar2]. Non-archimedean case follows immediately from [Sh] Proposition
7.2 (b). Next comes πv with τv in the complementary series. Then τv is of the form

τv = Ind
G2(kv)
B2(kv)[νv ⊗ | |λ/2w ⊗ 111N2(kv)] (0 < λ < 1),

where νv is a character of k
′×
w such that νv|k×v = 111. B2 = T2N2 is the Borel subgroup

consisting of upper triangular elements in G2. It follows from

L(s, πv, rw(P2),1) = L(s− λ/2, χvν
−1
v )L(s + λ/2, σ̃(χv)νv)

that r(w(P2), πv) has its only pole in the region 〈Reπv, β∨
2 〉 ≥ 0 at χv = νv| |λ/2w and it is

simple. On the other hand, we apply Corollary 7.6 of [Sh] to M(w1, w2w1πv) and note

M(w(P2), πv) =M(w1, w2w1πv)M(w2, w1πv)M(w1, πv)
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to see that M(w(P2), πv) has its only pole in the positive region at χv = νv| |λ/2w and it is
simple. The lemma is proved.

5.1.2. Analytic behavior of the global intertwining operator. For π ∈ P, we define

r(w(P2), π) :=
∏
v

r(w(P2), πv), N(w(P2), π) := r(w(P2), π)
−1M(w(P2), π).

Then the following proposition will be proved in Appendix B.

Proposition 5.2. Here again, we write π ∈ P as χ ⊗ τ . The central character of τ is
denoted by ωτ . For each character µ of U(1,A)k′/k, we write Θ(ξ, ψ)µ for the theta-lifts of
µ to G2(A) under the Weil representation ωψ,ξ of G2(A)× U(1,A)k′/k. (See Appendix B
for more details.) Then the only poles of M(w(P2), π) in the region 〈Reπ, β∨

2 〉 ≥ 0 locate
at

S(P2, ηk′/k) := {π = χ⊗ τ ∈ P ; χ|A× = | |2
A
ηk′/k, τ = Θ(χ

−1| |A k′ , ψ)ωτ}
S(P2,111) := {π = χ⊗ τ ∈ P ; χ|A× = | |A , L(0, τ × χ) �= 0},

and they are simple. Here in the definition of S(P2, ηk′/k), ψ has been chosen so that τv
is generic with respect to it.

Remark 5.3. If we exchange ψ in the definition of S(P2, ηk′/k), then τ changes to another
irreducible cuspidal representation in the same global L-packet (cf. [LL]).

5.1.3. Singular hyperplanes. From Proposition 5.2, we have

Sh,+
(M2,P) := {S(P2, ηk′/k), S(P2,111)}.

5.2. Decomposition of the scalar product. We have S+
X = {P, S(P2, ηk′/k), S(P2,111)}

and set o(P) := 0. Then the following is proved in the same manner as Theorem 4.3.

Theorem 5.4. For φ ∈ P(M2,P) and φ′ ∈ PX, we have

〈θφ, θφ′〉L2(G(k)\G(A )) =
1

2π
√−1

∫
π∈P,Reπ=0

A(φ, φ′)(π) dπ

+ c2〈N(w(P2),S(P2, ηk′/k))φ(S(P2, ηk′/k)), φ
′(−w(P2)S(P2, ηk′/k))〉

+ c′2〈N(w(P2),S(P2,111))φ(S(P2,111)), φ
′(−w(P2)S(P2,111))〉

(5.1)

for some non-zero constants c2 and c′2.

5.3. The residual spectrum from P2. By Theorem 5.4, it is enough to determine the
images

ImN(w(P2), S(P2, ηk′/k)) =
⊗
v

ImN(w(P2), S(P2, ηk′/k)v)

ImN(w(P2), S(P2,111)) =
⊗
v

ImN(w(P2), S(P2,111)v).

(1) ImN(w(P2), S(P2, ηk′/k)v). IfS(P2, ηk′/k)v is essentially tempered, then ImN(w(P2),
S(P2, ηk′/k)v) is irreducible by the Langlands’ classification. Next we handleS(P2, ηk′/k)v =
χv ⊗ τv with τv in the complementary series. Then its exponent is of the form| |w ⊗ | |λ/2w , (0 < λ < 1) if v is inert,

| |v ⊗ | |µ/2v ⊗ | |−µ/2
v ⊗ | |−1

v , (0 < µ < 1) if v splits.

In both cases this is regular and hence ImN(w(P2), S(P2, ηk′/k)v) is irreducible.
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(2) ImN(w(P2), S(P2,111)v). Again the tempered case is cared by the Langlands’ classi-
fication. In the non-tempered case, the exponent of S(P2,111)v is of the form| |1/2w ⊗ | |λ/2w , (0 < λ < 1) if v is inert,

| |1/2v ⊗ | |µ/2v ⊗ | |−µ/2
v ⊗ | |−1/2

v , (0 < µ < 1) if v splits.

Again this is regular and hence ImN(w(P2), S(P2,111)v) = Ind
G(kv)
P2(kv)[S(P2,111)v ⊗ 111U2(kv)] is

irreducible.
The resulting irreducible representations ImN(w(P2), S(P2, ηk′/k)) and ImN(w(P2),

S(P2,111)) will be called the global Langlands’ quotients of Ind
G(A )
P2(A ) [S(P2, ηk′/k) ⊗ 111U2(A ) ]

and Ind
G(A )
P2(A ) [S(P2,111)⊗ 111U2(A ) ] respectively.

Theorem 5.5. The contribution of cuspidal data attached to P2 to the residual discrete
spectrum is multiplicity free and consists of the global Langlands’ quotients defined above

of Ind
G(A )
P2(A ) [S(P2, ηk′/k) ⊗ 111U2(A ) ] and Ind

G(A )
P2(A ) [S(P2,111) ⊗ 111U2(A ) ], where S(P2, ηk′/k) and

S(P2,111) are as in Proposition 5.2.

Appendix A. Poles of the twisted tensor L-function

In this appendix we determine the poles of the twisted tensor L-function in the half
plane Re(s) > 0 and prove Proposition 4.2 as a corollary. In fact this is little more than
Satz 3.13 in [HLR]. We begin with the integral representation of LAsai(s, π).

A.1. The zeta integral.

A.1.1. The zeta integral Z(f,Φ, s) and its unfolding. Let k′/k and Γ be as before. We
write G1 for Resk′/kGL(2) and H for the k-subgroup GL(2)k of G1. We fix a Borel
subgroup B = TN consisting of upper triangular elements, together with the Levi factor
T consisting of diagonal elements in G1. Set BH := B∩H , TH = T ∩H and NH := N∩H .
For Φ ∈ S(A⊕2) and a quasi-character ω of A×/k× we define a meromorphic section

fΦ(ω, s; h) for Ind
H(A )
BH (A ) [(| |(s−1)/2

A
⊗ | |(1−s)/2

A
ω−1)⊗ 111NH(A ) ] as

fΦ(ω, s; h) := | det(h)|s/2
A

∫
A×
Φ([0, t]h)ω(t)|t|s

A
dt×, (h ∈ H(A)).

Using this we define the Eisenstein series

EΦ(ω, s; h) :=
∑

γ∈BH(k)\H(k)

fΦ(ω, s; h), (h ∈ H(A)).

This converges absolutely for Reω +Re(s)" 0 and is meromorphically continued to the
whole s-plane.
Now let π be an irreducible cuspidal automorphic representation of G1(A) and write

ωπ for its central character. We define the Zeta integral Z(f,Φ, s), where f is a cusp form
in the space of π and Φ ∈ S(A⊕2), by

Z(f,Φ, s) :=
∫
H(k)Z(H,A )\H(A )

f(h)EΦ(ωπ, 2s; h) dh.(A.1)

Here Z(H) is the center of H . Since f is rapidly decreasing and EΦ(ωπ, 2s; h) is slowly
increasing, this converges absolutely for Reω+Re(s)" 0 and meromorphically continued
to the whole plane. Also note that the functional equation for Z(f,Φ, s) can be deduced
from that of EΦ(ωπ, 2s; h) as was done in [As].
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The zeta integral (A.1) is decomposed into the direct product of local zeta integrals
as follows (cf. [HLR] pp. 76–77). We fix a non-trivial character ψk′ of Ak′/k

′ such that
ψk′|A× = 111 and take the Whittaker model W(π, ψk′) for π. Then we have the Fourier
expansion on NH(k)\NH(A);

f(h) =
∑

α∈k′×
Wf

((α 0
0 1

)
h
)
, (∃Wf ∈ W(π, ψk′)).

Using this and the definition of EΦ(ωπ, 2s; h), we have

Z(f,Φ, s) =
∫
NH(A )Z(H,A )\H(A )

∑
α∈k×

Wf

((α 0
0 1

)
h
)
fΦ(ωπ, 2s; h) dh.

We note that W (h) :=
∑

α∈k× Wf(

(
α 0
0 1

)
h) is contained in W(π, ψk′). Further we may

assume that W (h) and Φ are of the form

W (h) =
⊗
v

Wv(hv), Wv ∈ W(πv, ψk′,v), Φ(x) =
⊗
v

Φv(xv), Φv ∈ S(k⊕2
v )

(restricted tensor products). Now we have

Z(f,Φ, s) =
∏
v

Zv(Wv,Φv, s),(A.2)

where

Zv(Wv,Φv, s) :=
∫
NH(kv)Z(H,kv)\H(kv)

Wv(h)fΦv(ωπv , 2s; h) dh,

fΦv(ωv, s; h) := | det(h)|s/2v

∫
k×v
Φv([0, t]h)ωv(t)|t|sv dt×

∈ IndH(kv)
BH (kv)[(| |(s−1)/2

v ⊗ ω−1
v | |(1−s)/2

v )⊗ 111NH(kv)].

These local zeta integrals converge absolutely for Re(ωπv) + Re(s) " 0 and are mero-
morphically continued to the whole plane. (A.2) can be considered as a equality of these
meromorphic functions.

A.2. Comparisons of local factors. Here we shall check that Zv(Wv,Φv, s) has the
same poles as those of the L-factor LAsai(s, π) at least in the region 〈Reπ, β∨

1 〉 > 0. We
treat various types of πv separately.

A.2.1. The case of splitting v. Let w1 and w2 be the places of k
′ lying over v. From

our choice of ψk′ we can take a non-trivial character ψv of kv such that ψk′,w1 = ψv and
ψk′,w2 = ψv. We identify G(kv) with GL(2, kv)×GL(2, kv) and write πv as πv = πw1 ⊗πw2

accordingly. Then we may assume Wv = Ww1 ⊗ Ww2 where Ww1 ∈ W(πw1 , ψv) and

Ww2 ∈ W(πw2 , ψv). Noting that W (h)
∼→ W (

(
1 0
0 −1

)
h) gives an isomorphism from

W(πw2 , ψv) to W(πw2 , ψv), we have

Zv(Wv,Φv, s) =
∫
NH(kv)Z(H,kv)\H(kv)

Ww1(h)W
′
w2

((1 0
0 −1

)
h
)
z(| |2sv ωπ, h.Φ)| det(h)|s dh.

Here Ww1 ∈ W(πw1 , ψv), W
′
w2

∈ W(πw2 , ψv), and z(ω,Φ) was defined in the introduction
of [Ja]. Hence from [Ja], we know that

(1) The local integrals Zv(Wv,Φv, s) have LAsai(s, πv) = L(s, πw1×πw2) as their G.C.D.
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(2) (Unramified situation.) We assume that πv = πw1 ⊗ πw2 is unramified, Φv is Φ
0
v,

the characteristic function of Ov ⊕Ov, and ψv is of order 0. Then for the class-1
Whittaker function W 0

v ∈ W(πv, ψk′,v) with W
0
v (1) = 1, we have

Zv(Wv,Φv, s) = L(s, πw1 × πw2).

A.2.2. The case of inert unramified v. Let w be the place of k′ lying over v. We assume
that

(1) k′w/kv is an unramified quadratic extension,
(2) πv is of the form Ind

G1(kv)
B(kv) [(µ⊗ ν) ⊗ 111N(kv)], where µ and ν are unramified quasi-

characters of k′×w ,
(3) Φv equals Φ

0
v (see A.2.1). W

0
v ∈ W(πv, ψk′,v) is the class-1 Whittaker function for

πv;

W 0
v (1) = 1, W 0

v (gk) = W 0
v (g) for ∀k ∈ GL(2,Ow).

Lemma A.1 (Lemma 3.14 in [HLR]). Under these assumptions we have

Zv(W
0
v ,Φ

0
v, s) = LAsai(s, πv).

A.2.3. The case of non-archimedean inert v. Let w|v be as before. It follows from the
well-known integration formula that

Zv(Wv,Φv, s) =
∫
k×v

∫
GL(2,Ov)

Wv

((a 0
0 1

)
k
)
fΦv(ωπv , 2s;

(
a 0
0 1

)
k)|a|−1

v dk da×.

But since

fΦv(ωπv , 2s;

(
a 0
0 1

)
k) = |a|svL(2s, ωπ|k×v )P (qsv, q−s

v )

with P (X, Y ) a polynomial, and Wv(h) is GL(2,Ov)-finite, it is enough to consider

Zv(ϕv,Φv, s) :=
∫
k×v

ϕv(a)|a|s−1
v da×L(2s, ωπ|k×v )P (qsv, q−s

v ).

Here ϕv is in the Kirillov model K(πv, ψk′,v) of πv with respect to ψk′,v.
Recall that the space K(πv, ψk′,v) was calculated by Godement as follows.

(1) If πv = Ind
G1(kv)
B(kv) [(µ⊗ ν)⊗ 111N(kv)], then

K(πv, ψk′,v) =

{f(a)µ(a)|a|1/2w + g(a)ν(a)|a|1/2w | f, g ∈ S(k′w)} if µ �= ν,

{f(a)µ(a)|a|1/2w + g(a)µ(a)ordk′w(a)|a|1/2w | f, g ∈ S(k′w)} if µ = ν.

(2) If πv is a special representation embedded in Ind
G1(kv)
B(kv) [(µ⊗ µ| |−1

w ) ⊗ 111N(kv)] as a
submodule, then

K(πv, ψk′,v) = {f(a)µ(a)|a|1/2w | f ∈ S(k′w)}.
(3) If πv is supercuspidal, then K(πv, ψk′,v) = S(k′×w).
In the case (1), we see

Zv(ϕv,Φv, s) = Lk(s, µ|k×v )Lk(s, νv|k×v )Lk(2s, ωπv |k×v )P ′(qsv, q
−s
v )

for some polynomial P ′(X, Y ), while we have from 3.1.1

LAsai(s, πv) = Lk(s, µ|k×v )Lk(s, ν|k×v )Lk′(s, ωπv).
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But both Lk(2s, ωπv |k×v ) and Lk′(s, ωπv) are holomorphic and non-zero on the region
〈Reπv, β1〉 > 0 and Re(s) > 0. Thus Zv(ϕv,Φv, s) has the same poles as LAsai(s, πv)
has in that positive region.
In the case (2), we have

Zv(ϕv,Φv, s) = Lk(s, µ|k×v )Lk(2s, ωπv |k×v )P ′(qsv, q
−s
v ).

On the other hand the twisted tensor L-factor in this case was calculated in [G] Theorem
5.6;

LAsai(s, πv) = Lk(s, µ|k×v )Lk(s− 1, (µ|k×v )⊗ ηk′w/kv).

Here again, both Lk(2s, ωπv |k×v ) and Lk(s− 1, (µ|k×v )⊗ ηk′w/kv) are holomorphic and non-

zero on the region 〈Reπ, β∨
1 〉 = Re(µ2| |−1

w ) > 0 and Re(s) > 0. Hence Zv(ϕv,Φv, s) and
LAsai(s, πv) have the same poles in this region.
In case (3), the G.C.D. of Zv(ϕv,Φv, s) is Lk(2s, ωπv |k×v ). This is holomorphic on our

positive region. On the other hand [Sh] Proposition 7.2 (a) asserts that LAsai(s, πv) is
also holomorphic in that region.

A.2.4. The case of archimedean ramified v. Since k′w/kv = C/R, we may assume πv =
Ind

G1(kv)
B(kv) [(µ⊗ ν)⊗111N(kv)]. As usual we write ΓR(s) := π−s/2Γ(s/2) and L(s, χ) := ΓR(s+

r +m) for χ = | |r
R
sgnm (r ∈ C, m ∈ {0, 1}). We may assume

fΦv(ωπv , 2s;

(
a 0
0 1

)
k(θ)) = e

√−1nθ|a|sRL(2s, ωπv |R×)P (s),

Wv(

(
a 0
0 1

)
k(θ)) = e

√−1mθWv(

(
a 0
0 1

)
), k(θ) =

(
cos θ sin θ
− sin θ cos θ

)
,

where P (s) is a holomorphic function. Then it is enough to consider

Z(Φw,Φv, s) :=
∫
R×

ϕΦw(a)|a|s−1
R

da× L(2s, ωπv |k×v ),
with

ϕΦw(a) = WΦw

((a 0
0 1

))
, Φw ∈ S(C⊕2),

WΦw(g) := µ(det(g))| det(g)|1/2C

∫
C×
[r(g)Φw](z, z

−1)µν−1(z) dz×.

Here r(g) denotes the Weil representation of GL(2,C) on the linear model S(C2) given
in [JL] Lemma 1.6.
Now one has∫

R×
ϕΦw(a)|a|s−1

R
da×

=
∫
R×

µ(a)|a|sR
∫
C×
Φw

(
[z, z−1]

(
a 0
0 1

))
µν−1(z) dz× da×

=
∫
R×

∫
C×

µ(a)|a|sRΦw(az
−1, z)µ−1ν(z) dz× da×

decomposing C× into R× × (C1/±1),

=
∫
R×

∫
R×

∫
C1/±1

µ(ax−1u−1)|a|sRΦw(ax
−1u−1, xu)ν(xu) du dx× da×
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=
∫
R×

∫
R×

(∫
C1/±1

µ−1ν(u)Φw(au
−1, xu) du

)
µ(a)|a|sRν(x)|x|sR da× dx×

writing Φ′
w(a, x) for the inside of ( ),

=
∫
R×

∫
R×
Φ′
w(a, x)µ(a)|a|sRν(x)|x|sR da× dx×

Since Φ′
w(a, x)’s span a dense subspace of S(R⊕2), the G.C.D. of these integrals is

L(s, µ|k×v )L(s, ν|k×v ). Again noting Lk(2s, ωπv |R×) and Lk′(s, ωπv) are holomorphic on the
region 〈Reπ, β∨

1 〉 > 0 and Re(s) > 0, we conclude that Z(Φw,Φv, s) has the same pole as
LAsai(s, πv) has.

A.3. Poles of the twisted tensor L-function. We now state the main result of this
appendix.

Proposition A.2. Let π be an irreducible unitary cuspidal automorphic representation
of G1(A) and write ωπ for its central character. Then the only possible pole of LAsai(s, π)
in the region

〈Reπ, β∨
1 〉 > 0, Re(s) > 0

locates at s = 1 with ωπ|A× = 111. It is a pole if and only if∫
H(k)Z(H,A )\H(A )

f(h) dh �= 0, ∃f ∈ Vπ(A.3)

holds.

Proof. From A.2, it is sufficient to determine the poles of Z(f,Φ, s) in the positive domain
of the proposition. Then these poles were calculated in [HLR] Satz 3.13.

Corollary A.3 (Proposition 4.2). Let the notations be as above. Then the only pole
of r(w(P1), π) in the region 〈Reπ, β∨

1 〉 ≥ 0 occurs at

S(P1) :=

{
π ∈ A0(G1(k)\G1(A))

∣∣∣∣∣ (i) ωπ|A× = | |2
A
,

(ii)
∫
H(k)Z(H,A )\H(A ) f(h)| det(h)|−1

A
dh �= 0

}
,

and it is simple.

Proof. Recall that

r(w(P1), π) =
LAsai(0, π)

LAsai(1, π)εAsai(0, π)
.

The infinite product εAsai(s, π) =
∏

v εAsai(s, πv, ψv) is in fact a finite product ([Sh] Theo-
rem 3.5 (1)) and each local factor is an exponential function. Thus εAsai(0, π) contributes
nothing to the analytic property of r(w(P1), π). On the other hand LAsai(1, π) does not
vanish in our positive region by Shahidi’s non-vanishing theorem ([Sh3] Theorem 5.1).
Thus the poles of r(w(P1), π) are the same as those of LAsai(0, π), and the corollary
follows from Proposition A.2.

Appendix B. Poles of the product L-function of U(1, 1)× Resk′/kGm

Here we shall determine the poles of the product L-function of G2 × Resk′/kGm and
deduce Proposition 5.2 as a corollary. For this we use the Shimura type integral repre-
sentation (cf. [GJ]), and hence we begin with some review of theta series on G2(A).

B.1. Oscillator representations for U(1, 1)× U(1).
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B.1.1. Preliminary for the local theory. Let F be a local field of characteristic 0. E
denotes a 2-dimensional abelian semisimple algebra over F and let {1, ε} be a basis of E
over F . We may assume that ε2 = −δ ∈ F×. We write σ for the non-trivial involution
of E trivial on F . We write | |F for the modulus of F . If F is non-archimedean we write
OF , pF , #F and qF for the maximal compact subring of F , the maximal ideal in OF , a
generator of pF and the cardinality of the residue field of F , respectively. ηE/F denotes
the quadratic character of F× which corresponds to E/F by the classfield theory.
The group G2 to be considered is defined by

G2 = U(1, 1)E/F := {g ∈ ResE/FGL(2) ; gJ1σ̃(
tg) = J1},

where J1 is as in the beginning of §5. This is attached to the skew-Hermitian space
(V,Φ) = (E⊕2, J1). We define the symplectic space (W,φ) over F by W := ResE/FV
and φ( , ) := TrE/FΦ( , ) and write Sp(W ) for its symplectic group. Of course we have
the natural embedding ι : G2 ↪→ Sp(W ). We fix a Borel pair (B2, T2) of G2 such that
B2 consists of upper triangular elements and T2 consists of d(a) := diag(a, σ̃(a)

−1), (a ∈
ResE/FGm). Then G2 is generated by H := SL(2)F and T2. We take the Borel pair
(BH , TH) to be the intersection of (B2, T2) with H . We choose a suitable symplectic basis
of W and identify Sp(W ) with Sp(2), so that the above embedding ι is given by

ι
((a b

c d

))
=


a 0 2b 0
0 a 0 2bδ
c/2 0 d 0
0 c/2δ 0 d

 ,
((a b

c d

)
∈ H

)

ι(d(x)) =


ξ1 ξ2

−ξ2δ ξ1 0
0

η1 η2δ
−η2 η1

 ,

(
x = ξ1 + ξ2ε ∈ ResE/FGm with

σ̃(x)−1 = η1 + η2ε

)

B.1.2. Splitting of the metaplectic 2-cocycle and local oscillator representations. It is known
that the metaplectic 2-cocycle on Sp(W ) = Sp(2) splits over ι(G2(F )). The explicit split-
ting is calculated in [MVW] Chapter 3.I.4 (see also [Ku] Theorem 3.1). To state the result,
we fix a character ξ of E× such that ξ|F× = ηE/F . We define three 1-cocycles as follows.

(1) Define a 1-cocycle λ1 on H(F ) by

λ1

((a b
c d

))
:=

〈c/2,−δ〉F if c �= 0,
〈d,−δ〉F otherwise,

where 〈 , 〉F denotes the Hilbert symbol for F .
(2) Define a 1-cocycle λ2 on T2(F ) by

λ2(d(x)) :=
γ(NE/F (x))

γ(1)
.

Here γ is the Weil constant (cf. [P]).
(3) Define a 1-cocycle λ3 on G2(F ) for h ∈ H(F ) and d(x) ∈ T2(F ),

λ3(h · d(x)) = λ3(d(x) · h) :=
〈NE/F (x), δ〉F if c �= 0,
1 otherwise.
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Then we define a 1-cocycle λξ on G2(F ) by

λξ(g = h · d(x)) = λξ(d(x) · h) := λ1(h)λ2(d(x))ξ(x)λ3(g), (h ∈ H(F ), d(x) ∈ T2(F )).

This is independent of the decomposition g = h · d(x) and the metaplectic 2-cocycle
c(g1, g2) ([P]) restricted to ι(G2(F )) becomes

c(ι(g1), ι(g2)) =
λξ(g1g2)

λξ(g1)λξ(g2)
.

Thus we have the splitting

ιξ : G2(F ) � g −→ (ι(g), λξ(g)) ∈Mp(W ).

We fix a non-trivial character ψ of F and write ωψ for the oscillator representation
of Mp(W ) associated with ψ. The above splitting gives the oscillator representation
ωψ,ξ := ωψ ◦ ιξ on S(E). We have explicit formulae:

ωψ,ξ(d(a))Φ(x) = ξ(a)|a|1/2E Φ(ax), (a ∈ E×)(B.1)

ωψ,ξ(

(
1 b
0 1

)
)Φ(x) = ψ(bNE/F (x))Φ(x)(B.2)

ωψ,ξ(

(
0 −1
1 0

)
)Φ(x) =

1

γ(2NE/F )

∫
E
Φ(y)ψ(TrE/F (yσ(x))) dy(B.3)

B.1.3. Local Howe duality for U(1, 1) × U(1). Here we assume that E/F is a quadratic
extension of fields. Note that the group U(1)E/F is contained in G2 as its center Z2. Since
Z2(F ) is compact, we can define the local theta integral

PrχΦ(x) :=
∫
Z2(F )

χξ(z)Φ(xz) dz.(B.4)

This defines a projection on S(E) whose image (ωψ,ξ(χ),S(E)χ) is the χ-isotypic subspace
of (ωψ,ξ,S(E)). Then the following lemma was essentially proved in [ST] 1.1.
Lemma B.1. (i) Prχ commutes with ωψ,ξ(g) and hence

(ωψ,ξ,S(E)) =
⊕

χ∈Hom(Z2(F ),C1 )

(ωψ,ξ(χ),S(E)χ).

(ii) Each (ωψ,ξ(χ),S(E)χ) is non-zero and irreducible.
(iii) Suppose F is non-archimedean. If χ �= ξ, then ωψ,ξ(χ) is supercuspidal. If χ = ξ
then ωψ,ξ(χ) is a limit of discrete series representation. Another limit of discrete series
representation in the same L-packet will be obtained by replacing ψ.
(iv) When F = R, (iii) still holds if the term supercuspidal is replaced by discrete series.

Proof. (i) is clear since Z2(F ) is compact. For (ii) we use a classical argument in [ST].
We first consider the non-archimedean case. Take A ∈ HomG2(F )(ωψ,ξ(χ), ωψ,ξ(χ)). Then
from (B.2),

ψ(bNE/F (x))AΦ(x) =ωψ,ξ

(
χ;

(
1 b
0 1

))
AΦ(x) = Aωψ,ξ

(
χ;

(
1 b
0 1

))
Φ(x)

=Aψ(bNE/F (x))Φ(x).
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But since (ωψ,ξ(χ),S(E)) extends to a continuous representation on L2(E), A has a kernel
function K(x, y);

AΦ(x) =
∫
E
K(x, y)Φ(y) dy.

Then we must have∫
E
[ψ(bNE/F (x))− ψ(bNE/F (y))]K(x, y)Φ(y) dy = 0, ∀Φ ∈ S(E).

It follows that K(x, •) = k(x)δx, where δx is the Dirac distribution supported at x and
k(x) is a bounded measurable function; AΦ(x) = k(x)Φ(x). Moreover it follows from
(B.1) that k(xa) = k(x) for any a ∈ E×. Now we have two E×-orbit in E, the open orbit
E× and the closed one {0}. If χ �= ξ, then

PrχΦ(0) =
∫
Z2(F )

χξ(z) dzΦ(0) = 0.

Hence dimHomG2(F )(ωψ,ξ(χ), ωψ,ξ(χ)) = 1 and ωψ,ξ(χ) is irreducible. Next we assume
χ = ξ. Then we apply Rallis’s invariant distribution theorem to have

PrξS(E) � Span{ωψ,ξ(g)δ0}.
Again this asserts that dimHomG2(F )(ωψ,ξ(ξ), ωψ,ξ(ξ)) = 1 and ωψ,ξ(ξ) is irreducible. This
proof is also valid in the archimedean case, but notations will become more complicated.
(iii) and (iv) were proved in [JL].

B.1.4. Local Howe duality for GL(2) × Gm. Next we assume E = F ⊕ F . Then G2 =
GL(2)F and ξ is identified with a character of F

× by ξ(xy−1) := ξ(x, y). Then the explicit
formulae for (ωψ,ξ,S(F⊕2)) become

ωψ,ξ

((a1 0
0 a2

))
Φ(x, y) = ξ(a1a2)|a1a2|1/2F Φ(a1x, a

−1
2 y)(B.5)

ωψ,ξ

((1 b
0 1

))
Φ(x, y) = ψ(bxy)Φ(x, y)(B.6)

ωψ,ξ

(( 0 1
−1 0

))
Φ(x, y) =

∫
E
Φ(u, v)ψ(uy + vx) du dv.(B.7)

Now the following results were proved in [JL].

Lemma B.2. (i) The partial Fourier transform;

F2Φ(x, y) :=
∫
F
Φ(x, u)ψ(yu) du, (Φ ∈ S(E))

gives a G2(F )-equivariant isomorphism

(ωψ,ξ,S(E)) ∼−→ ((ξ ◦ det)| det |1/2F ⊗ R,S(F⊕2)).

Here R denotes the right translation action.
(ii) The map

S(F⊕2) � Φ −→ ξ(det(g))| det(g)|1/2F Φ([0, 1]g) ∈ indG2(F )

B0
2 (F )

[ξ| |1/2F ⊗ 111N2(F )]
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is a G2(F )-equivariant isomorphism. Here B0
2 denotes the subgroup of B2 consisting of

elements of the form

(
x y
0 1

)
. ind

G2(F )

B0
2(F )

assigns the unnormalized induction.

(iii) We define a projector Pr′χ on ind
G2(F )

B0
2 (F )

[ξ| |1/2F ⊗ 111N2(F )] by

Pr′χφ(g) :=
∫
Z2(F )

χ(z)φ(zg) dz.

This is a surjection to Ind
G2(F )
B2(F )[(ξ ⊗ χξ−1)⊗111N2(F )]. Hence the χ-isotypic quotient ωψ,ξ(χ)

of ωψ,ξ is isomorphic to Ind
G2(F )
B2(F )[(ξ ⊗ χξ−1)⊗ 111N2(F )].

B.1.5. The global theory. Now let k′/k be a quadratic extension of number fields. We use
notations defined in 2.1 and in §5. As in the local case we have the skew-Hermitian space
(V,Φ) over k′ and obtain the symplectic space (W,φ) over k by the restriction of scalars.
We again write Sp(W ) for the symplectic group of (W,φ). Fix a non-trivial character
ψ =

⊗
v ψv. As in [I] §1, we can construct the global metaplectic group Mp(W )A and its

oscillator representation (ωψ,S(Ak′)).
We also fix a character ξ =

⊗
v ξv of A×

k′/k
′× whose restriction to A× equals ηk′/k. Then

using the arguments of 3.3.7 (1), we have the global splitting ιξ : G2(A) ↪→ Mp(W )A .
This time we define the oscillator representation ωψ,ξ of G2(A) by ωψ,ξ := ωψ ◦ ιξ. The
explicit formulae are given as follows:

ωψ,ξ(d(a))Φ(x) = ξ(a)|a|1/2A k′Φ(ax), (a ∈ A×
k′)(B.8)

ωψ,ξ(

(
1 b
0 1

)
)Φ(x) = ψ(bNk′/k(x))Φ(x)(B.9)

ωψ,ξ(

(
0 1
−1 0

)
)Φ(x) =

∫
A k′
Φ(y)ψ(Trk′/k(yσ(x))) dy(B.10)

Now we define a tempered distribution, called θ-distribution, on S(Ak′) by

S(Ak′) � Φ −→ θ(Φ) :=
∑
δ∈k′

Φ(δ) ∈ C.

The theta series θΦ(g) attached to Φ ∈ S(Ak′) is defined by θΦ(g) := θ(ωψ,ξ(g)Φ) (g ∈
G2(A)). We write the space of automorphic forms spanned by θΦ’s with Φ ∈ S0(Ak′) as
Θ(ξ, ψ). Here S0(Ak′) is defined similarly as in 3.3.7 (1).
Next we take a character χ =

⊗
v χv of Z2(k)\Z2(A). At inert v we have the projection

Prχv . At split v Prχv can still be defined by (B.4) if x ∈ k′v satisfies Nk′v/kv(x) �= 0.
This defines PrχvΦv(x) (Φv ∈ S(k′v)) at such x, and we define PrχvΦv ∈ S(k′v) to be its
extension to k′v by zero. We now define the global projector Prχ on S(Ak′) by

Prχ : S(Ak′) �
⊗
v

Φv −→
⊗
v

PrχvΦv ∈ S(Ak′).(B.11)

This is clearly well-defined and G2(A)-equivariant. We write S(Ak′)χ for its image and
ωψ,ξ(χ) for the restriction of ωψ,ξ to S(Ak′)χ. On the other hand since Z2(k)\Z2(A) is
compact, the distribution

Φ −→ θχ(Φ) :=
∫
Z2(k)\Z2(A )

χξ(z)θ(Φ(•z)) dz

is also tempered. We define θΦ,χ(g) := θχ(ωψ,ξ(g)Φ) (g ∈ G2(A)). The space of automor-
phic forms spanned by θΦ,χ (Φ ∈ S0(Ak′)) is denoted by Θ(ξ, ψ)χ.
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Proposition B.3. (i) We have the direct sum decomposition

Θ(ξ, ψ) =
⊕

χ∈A(Z2(k)\Z2(A ))
χ is unitary

Θ(ξ, ψ)χ.

(ii) Each Θ(ξ, ψ)χ is an irreducible automorphic representation. Moreover if χ �= ξ, then
Θ(ξ, ψ)χ is cuspidal, while Θ(ξ, ψ)ξ is not cuspidal.

Proof. (i) is clear. The first statement and the cuspidality in (ii) were proved in [ST]
Proposition 4.9. The last statement follows from the fact that θΦ,ξ has the non-trivial
constant term ωψ,ξ(g)Φ(0) along B2.

B.2. The zeta integral—definition and unfolding. Here we fix a irreducible cuspidal
automorphic representation τ =

⊗
v τv of G2(A) and give an integral representation for

L(s, τ × χ).

B.2.1. Classification of τv at inert v. Let w|v be as before. The results of [JL] combined
with [Si] Theorem 2.5.9 and [Sh] Corollary 7.6 gives:

Lemma B.4 (Non-archimedean case). (i) If τv is not supercuspidal, then we can
choose a character ν0 of k′×w and s ∈ C such that τv is a submodule of I(ν0, s) :=

Ind
G2(kv)
B2(kv)[(ν0| |s/2w )⊗ 111N2(kv)].

(ii) I(ν0, s) is irreducible unless ν0|k×v = ηk′w/kv and s = 0 or ν0|k×v = 111, and s ∈ {−1, 1}.
(iii) If ν0|k×v = ηk′w/kv , then I(ν0, 0) is a direct sum of two distinct limit of discrete series
representations.
(iv) If ν0|k×v = 111, then I(ν0, 1) has a unique irreducible submodule, the Steinberg repre-
sentation St(ν0) with the central character ν0. The quotient of I(ν0, 1) by St(ν0) is the
one-dimensional representation νG2

0 defined similarly as in 3.3.1. I(ν0,−1) has νG2
0 as its

unique submodule and the quotient of I(ν0,−1) by it is St(ν0).

The corresponding archimedean results are very well-known and will be omitted (cf.
[JL] Lemma 5.7).

B.2.2. Whittaker models for τv at inert v. Note that in the classification above, finite
dimensional irreducible representations can never be a τv. We begin with the non-
archimedean case. Take a non-trivial character ψv and consider it as a character of
N2(kv). The space of Whittaker functional on τv is defined by

Wψv(τv) := HomN2(kv)(τv|N2(kv), ψv) = (τv)
∗
N2(kv),ψ−1

v
.

From [LL], we know that Wψv(τv) �= 0 with some suitable ψv. For this suitable ψv, we
choose a non-zero Lv ∈ Wψv(τv) and define the Whittaker model of τv with respect to ψv

by
W(τv, ψv) := {W ψv

f (g) := Lv(τv(g)f) | f ∈ Vτv}.
Finally we remark that if τv is in the principal series, Wψv(τv) �= 0 for any ψv.
Next assume k′w/kv = C/R. The non-trivial characters ψv = ψR or ψ

−1
R are considered

as a character of N2(R). Its differential is denoted by dψv. Define

Wψv(τv) :=

 Lv : Vτv → C
linear functional

∣∣∣∣∣∣∣
(i) Lv is continuous with respect to the Schwartz
topology,
(ii) Lv(dτv(X)f) = dψv(X)Lv(f), (X ∈ Lie(N2(R)))

 .

Then againWψv(τv) �= 0 for ψv = ψR or ψ
−1
R
. With this suitable ψv, we choose a non-zero

Lv ∈ Wψv(τv). Extend Lv to a map on a unitary completion (τv, V τv). Then using this
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extended Lv, we define the Whittaker model W(τv, ψv) as in the non-archimedean case.
By the uniqueness of the Whittaker model, this does not depend on the choice of the
unitary completion.

B.2.3. Whittaker models for τ . From above, we can choose a non-trivial character ψ =⊗
v ψv of A/k so that Wψv(τv) �= 0 at any v. Moreover at almost all v, τv is unramified

and ψv is of order 0. At such v we write W
0
v for the element ofW(τv, ψv) such that W

0
v is

right K2,v-invariant and W 0
v (1) = 1. Here K2,v is a suitable maximal compact subgroup

of G2(kv). The global Whittaker model W(τ, ψ) of τ is given by the restricted tensor
product of W(τv, ψv)’s with respect to W 0

v . It was shown by Shalika that W(τ, ψ) is
unique for a fixed ψ.
Our final remark is about the Fourier expansion. For a cusp form ϕ ∈ Vτ we can define

an element of W(τ, ψ) by

W ψ
ϕ (g) :=

∫
N2(k)\N2(A )

ϕ(ng)ψ(n) dn, (g ∈ G2(A)).

If we write ψδ(x) := ψ(δx) for δ ∈ k, then the Fourier expansion on N2(k)\N2(A) reads

ϕ(g) =
∑
δ∈k×

W ψδ

ϕ (g).

B.2.4. The zeta integral and its unfolding. We retain the notations defined above. In par-
ticular fix a character ξ of A×

k′/k
′× such that ξ|A× = ηk′/k. Additionally for each character

χ of A×
k′/k

′×, we choose a holomorphic section Fs(χξ) of A(N2(A)T2(k)\G2(A))χξ| |s
A
k′

(s ∈ C). Then we have the Eisenstein series

E(F (χξ), s)(g) :=
∑

γ∈B2(k)\G2(k)

Fs(χξ; γg)

on G2(A). The properties of E(F (χξ), s) were given in 3.3.8. We choose a non-trivial
character ψ of A/k so that τ has a global Whittaker model with respect to it. Then we
construct the oscillator representation ωψ,ξ and θ-series using this ψ. Now for fixed data
ϕ ∈ Vτ , Φ ∈ S(Ak′) and Fs(χξ), we define the zeta integral by

Z(ϕ, θΦ, χ; s) :=
∫
G2(k)\G2(A )

ϕ(g)θΦ(g)E(F (χξ), s− 1/2)(g) dg.(B.12)

Proposition B.5. Suppose that the data appeared in the definition of the zeta integral
are chosen to be of the form

Φ =
⊗
v

Φv ∈ S(Ak′), Fs(χξ)(g) =
⊗
v

Fs,v(χvξv)(gv), W ψ
ϕ (g) =

⊗
v

Wv(gv).

If we define the local zeta integral Zv(Wv,Φv, χv; s) by∫
K2,v

∫
k′×v

Fs−1/2,v(χvξv)(k)ωψv,ξv(k)Φv(a)Wv(d(a)k)χv(a)|a|s−1/2
k′v da× dk,(B.13)

then

Z(ϕ, θΦ, χ; s) =
∏
v

Zv(Wv,Φv, χv; s).
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Proof. Since the analogous argument in the case of ˜SL(2,A) was given in [GJ], we only
give the formal outline and the convergence argument will be omitted. From the definition
of E(F (χξ), s), we have

Z(ϕ,θΦ, χ; s) =
∫
B2(k)\G2(A )

ϕ(g)θΦ(g)Fs−1/2(χξ; g) dg

=
∫
K2

∫
k′×\A×

k′

∫
k\A

ϕθΦFs−1/2(χξ)
((1 x
0 1

)
d(a)k

)
dx

da×

|a|A k′
dk

=
∫
K2

∫
k′×\A×

k′
Fs−1/2(χξ; k)χξ(a)|a|sA k′

∫
k\A

ϕθΦ

((1 x
0 1

)
d(a)k

)
dx

da×

|a|A k′
dk.

Here K2 is a certain maximal compact subgroup of G2(A). From (B.9), our inner integral
becomes ∫

k\A
ϕθΦ

((1 x
0 1

)
g
)
dx

=
∫
k\A

ϕ
((1 x
0 1

)
g
) ∑
α∈k′×

ψ(xNk′/k(α))ωψ,ξ(g)Φ(α) dx

=
∑

α∈k′×
ωψ,ξ(g)Φ(α)

∫
k\A

ϕ
((1 x
0 1

)
g
)
ψ(xNk′/k(α)) dx.

But notice that∫
k\A

ϕ
((1 x
0 1

)
g
)
ψ(xNk′/k(α)) dx =

∫
k\A

ϕ
((1 Nk′/k(α)

−1x
0 1

)
g
)
ψ(x) dx

=
∫
k\A

ϕ
((α−1 0

0 σ(α)

)(
1 x
0 1

)(
α 0
0 σ(α)−1

)
g
)
ψ(x) dx

= W ψ
ϕ (d(α)g).

Thus we conclude

Z(ϕ, θΦ, χ; s) =
∫
K2

∫
k′×\A×

k′
Fs−1/2(χξ; k)χξ(a)|a|sA k′

× ∑
α∈k′×

ωψ,ξ(d(a)k)Φ(α)W
ψ
ϕ (d(αa)k)

da×

|a|A k′
dk

putting a := αa and using (B.8),

=
∫
K2

∫
A
×
k′
Fs−1/2(χξ; k)ωψ,ξ(k)Φ(a)W

ψ
ϕ (d(a)k)χ(a)|a|s−1/2

A k′
da× dk

=
∏
v

Zv(Wv,Φv, χv; s).

B.3. Comparisons of local factors. Here again we shall see that Zv(Wv,Φv, χv; s)
equals certain quotient of L(s, τv×χv) at almost all v. Then we shall prove that, at every
v in the region Re(s) > 0, the G.C.D. has the same set of poles as L(s, τv × χv) has.
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B.3.1. Unramified calculations. We begin with the inert case, hence k′w/kv be an unram-
ified quadratic extension. Further assume that χv and ξv are unramified, ψv is of order
0, Φv = Φ0

v (the characteristic function of Ow) and Fs,v(χξ) is the spherical vector such
that Fs,v(χξ; k) = 1 for (k ∈ K2,v). The spherical Whittaker function W

0
v was defined in

B.2.3.

Lemma B.6. Under these assumptions we have

Zv(W
0
v ,Φ

0
v, χv; s) =

Lk′(s, χvνv)Lk′(s, χvν
−1
v )

Lk(2s, (χvξv)|k×v )
=

L(s, τv × χv)

Lk(2s, (χvξv)|k×v )
.

Proof.

Zv(W
0
v ,Φ

0
v, χv; s) =

∫
k′w×

Φ0
v(a)W

0
v (d(a))χv(a)|a|s−1/2

w da×

=
∫
Ow∩k′×w

W 0
v (d(a))χv(a)|a|s−1/2

w da×

=
∞∑
n=0

W 0
v (d(#

n
v ))χv(#v)

nq−n(s−1/2)
w .

We need to calculate W 0
v (d(#

n
v )). τv = Ind

G2(kv)
B2(kv)[νv ⊗ 111N2(kv)] is restricted to τv|H(kv) =

Ind
H(kv)
BH (kv)[νv|k×v ⊗ 111NH(kv)], then extends to a representation

τ̂v = Ind
GL(2,kv)
B(kv) [(νv|k×v ⊗ 111)⊗ 111N(kv)]

of GL(2, kv). Here B = TN denotes the upper triangular Borel subgroup of GL(2)kv .
Accordingly W 0

v is restricted to H(kv) and then extended to the spherical Whittaker
function for τ̂v. For this an explicit formula is available (cf. [JL] p. 123);

W 0
v (d(#

n
v )) =W

0
v

((#−n
v 0
0 #−n

v

)(
#2n

v 0
0 1

))
=νv(#v)

n|#v|nv
∫
k×v
ChOv⊕Ov(#

2n
v t, t−1)νv(t) dt

×

=νv(#v)
nq−n

v

2n∑
j=0

νv(#v)
−j =

νv(#v)
n+1 − νv(#v)

−n

νv(#v)− 1 q−n/2
w .

Here ChOv⊕Ov denotes the characteristic function of Ov ⊕Ov. Hence we have

Zv(W
0
v ,Φ

0
v, χv; s) =

1

νv(#v)− 1
∞∑
n=0

(
χvνv(#

n
v )νv(#v)− χvν

−1
v (#n

v )
)
q−ns
w

=
1

νv(#v)− 1
(

νv(#v)

1− χvνv(#v)q−s
w

− 1

1− χvν−1
v (#v)q−s

w

)

=
1 + χv(#v)q

−s
w

(1− χvνv(#v)q−s
w )(1− χvν−1

v (#v)q−s
w )

noting ξv(#v) = ηk′w/kv(#v) = −1,

=
Lk′(s, χvνv)Lk′(s, χvν

−1
v )

Lk(2s, (χvξv)|k×v )
.
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Next comes a split v. Let w1, w2|v be as before. Assume that χv = χw1 ⊗ χw2

and ξv(x, y) = ξv(xy
−1) are unramified, ψv is of order 0, Φv = Φ0

v (the characteristic
function of Ow1 ⊕Ow2) and Fs,v(χvξv) is the spherical vector such that Fs,v(χvξv; k) = 1

for k ∈ K2,v. Further assume that τv is of the form Ind
G2(kv)
B2(kv)[(νw1 ⊗ νw2)⊗111N2(kv)], where

νwi
are unramified characters of k×v . The spherical Whittaker function W

0
v is as in B.2.3.

Lemma B.7. Under these assumptions we have

Zv(W
0
v ,Φ

0
v, χv; s) =

L(s, τv ⊗ χw1)L(s, τ̃v ⊗ χw2)

L(2s, (χvξv)|k×v )
=

L(s, τv × χv)

Lk(2s, (χvξv)|k×v )
.

Proof. In this case G2(kv) = GL(2, kv) and we have from [JL] p. 123 that

W 0
v (d(#

n
v , #

m
v )) = νw1ν

−1
w2
(#−m

v )νw1(#
n+m
v )|#n+m

v |1/2v

×
∫
k×v
ChOv⊕Ov(#

n+m
v t, t−1)νw1νw2(t) dt

×

= νw1(#
n
v )νw2(#

m
v )q

−(n+m)/2
v

n+m∑
j=0

νw1νw2(#v)
−j

=

q−(n+m)/2
v

∑n
j=−m νw1(#v)

jνw2(#v)
j+m−n if m+ n ≥ 0,

0 otherwise

Thus one has

Zv(W
0
v ,Φ

0
v, χv; s) =

∫
k×v

∫
k×v
Φ0
v(a, b)W

0
v (d(a, b))χw1(a)χw2(b)|ab|s−1/2

v da×

=
∞∑
n=0

∞∑
m=0

W 0
v (d(#

n
v , #

m
v ))χw1(#v)

nχw2(#v)
mq−(n+m)(s−1/2)

v

=
∞∑
n=0

∞∑
m=0

n∑
j=−m

νw1(#v)
jνw2(#v)

j−n+mχw1(#v)
nχw2(#v)

mq−(n+m)s
v .

We now use abbreviations

α := νw1(#v), β := νw2(#v), A := χw1(#v)q
−s
v , B := χw2(#v)q

−s
v .

Then

Zv(W
0
v ,Φ

0
v, χv; s) =

∑
n,m≥0

AnBm(αnβm + αn−1βm−1 + · · ·+ α−mβ−n)

=
∑

n,m≥0

AnBmα
n+1βm+1 − α−mβ−n

αβ − 1

=
αβ

αβ − 1
∑

n,m≥0

(Aα)n(Bβ)m − 1

αβ − 1
∑

n,m≥0

(Aβ−1)n(Bα−1)m

=
αβ

(αβ − 1)(1−Aα)(1− Bβ)
− 1

(αβ − 1)(1−Aβ−1)(1− Bα−1)

=
αβ(1− Aβ−1 − Bα−1 + ABα−1β−1)− (1− Aα− Bβ + ABαβ)

(1− Aα)(1− Aβ−1)(1−Bα−1)(1− Bβ)(αβ − 1)
=

1− AB

(1− Aα)(1− Aβ−1)(1−Bα−1)(1− Bβ)



56 TAKUYA KON-NO

=
1− χw1χw1(#v)q

−2s
v

(1− χw1νw1(#v)q−s
v )(1− χw1ν

−1
w2
(#v)q−s

v )(1− χw2ν
−1
w1
(#v)q−s

v )(1− χw2νw2(#v)q−s
v )

=
L(s, τv ⊗ χw1)L(s, τ̃v ⊗ χw2)

L(2s, χvξv|k×v )

B.3.2. Ramified split case. We want to show that the G.C.D. of Zv(Wv,Φv, χv; s) has the
same analytic behavior as that of L(s, τv × χv) in the region Re(s) > 0. At a split v this
is reduced to the corresponding results in [Ja]. The key point is the following lemma.

Lemma B.8. If we set

τ2 := Ind
G2(kv)
B2(kv)[(χw1 ⊗ ωτvχ

−1
w2
)⊗ 111N2(kv)] = Ind

GL(2,kv)
B(kv) [(χw1 ⊗ ω−1

τv
χw2)⊗ 111N(kv)],

then we can choose W2 ∈ W(τ2, ψv) and Φ2 ∈ S(k⊕2
v ) (S0(k⊕2

v ) if v is archimedean) so
that

Zv(Wv,Φv, χv; s) = Ψ(s,Wv,W2,Φ2).

Here the right hand side is the Rankin product local zeta integral defined in [Ja].

Proof. We may assume Re(s)" 0 throughout the proof. From definition, we have

Zv(Wv,Φv, χv; s) =
∫
K2,v

∫
k×v

∫
k×v

Fs−1/2(χvξv; k)ωψv,ξv(k)Φv(a, b)Wv

((a 0
0 b−1

)
k
)

× χw1(a)χw2(b)|ab|s−1/2
v da× db× dk

putting x := ab, y = b−1,

=
∫
K2,v

∫
k×v

∫
k×v

Fs−1/2,v(χvξv; k)ωψv,ξv(k)Φv(xy, y−1)Wv

((xy 0
0 y

)
k
)
χw1(xy)

χ−1
w2
(y)|x|s−1/2

v dx× dy× dk

=
∫
K2,v

∫
k×v

∫
k×v
[ωψv,ξv(k)Φv](xy, y−1)ω−1

τv
χ−1
w1
χw2(y) dy

×Fs−1/2,v(χvξv; k)

Wv

((x 0
0 1

)
k
)
χw1(x)|x|s−1/2

v dx× dk.

Here we note∫
k×v
[ωψv,ξv(k)Φv](xy, y

−1)ω−1
τv
χ−1
w1
χw2(y) dy

×

=
∫
k×v

ωτvχw1χ
−1
w2
(y)[ωψv,ξv(k)Φv](xy, y

−1) dy× = Pr(ωτvχw1χ
−1
w2

)[ωψv,ξv(k)Φv](x, 1)

= ωψv,ξv(k)(Pr(ωτvχw1χ
−1
w2

)Φv)(x, 1),

and hence

Zv(Wv,Φv, χv; s)

=
∫
K2,v

∫
k×v

ωψv,ξv(k)(Pr(ωτvχw1χ
−1
w2

)Φv)(x, 1)Fs−1/2,v(χvξv; k)Wv

((x 0
0 1

)
k
)
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χw1(x)|x|s−1/2
v dx× dk

=
∫
N2(kv)Z2(kv)\G2(kv)

Fs−1/2,v(χvξv; g)ωψv,ξv(g)Pr(ωτvχw1χ
−1
w2

)Φv(1, 1)Wv(g) dg.

Next we specify the integrand. We may assume Fs−1/2,v(χvξv; g) is of the form

fΦ2(χvξv; g) = χw1ξv(det(g))| det(g)|sv
∫
k×v
Φ2([0, t]g)χw1χw2(t)|t|2sv dt×

= χw1ξv(det(g))| det(g)|svz(| |2sv χw1χw2, g.Φ2),

where Φ2 ∈ S(k⊕2
v ) (∈ S0(k⊕2

v ) if v|∞) and z(ω,Φ) was defined in the introduction of
[Ja]. Moreover if we set

τ ′2 := Ind
GL(2,kv)
B(kv) [(ξv ⊗ ωτvχw1χ

−1
w2
)⊗ 111N(kv)],

then from Lemma B.2 we know ωψv,ξv(ωτvχw1χ
−1
w2
) � τ ′2 and

W ∗(g) := ωψv,ξv(g)Pr(ωτvχw1χ
−1
w2

)Φv(1, 1)

is in the Whittaker model W(τ ′2, ψv) (cf. [JL]). Note that W
∗(g) spans a dense subspace

of W(τ ′2, ψv) as Φv changes. Now the zeta integral becomes

Zv(Wv,Φv, χv; s)

=
∫
N2(kv)Z2(kv)\G2(kv)

Wv(g)W ∗(g)χw1ξv(det(g))z(| |2sv χw1χw2 , g.Φ2)| det(g)|sv dg.

On the other hand, since W ∗(g) runs over the Whittaker functions W ′
2(
(

1 0
0 −1

)
g) (W ′

2 ∈
W(τ ′2, ψv)), W2(g) := χw1ξv(det(g))W

′
2(g) runs over Whittaker functions for

τ2 = (χw1ξv ◦ det)⊗ τ ′2 = Ind
GL(2,kv)
B(kv) [(χw1 ⊗ ω−1

τv
χw2)⊗ 111N(kv)]

with respect to ψv. Hence we conclude

Zv(Wv,Φv, χv; s)

=
∫
N2(kv)Z2(kv)\G2(kv)

Wv(g)W2

((1 0
0 −1

)
g
)
z(| |2sv χw1χw2 , g.Φ2)| det(g)|sv dg

= Ψ(s,Wv,W2,Φ2).

Corollary B.9. The G.C.D. of Zv(Wv,Φv, χv; s) equals

L(s, τv ⊗ χw1)L(s, τ̃v ⊗ χw2) = L(s, τv × χv).

B.3.3. Ramified inert non-archimedean case. Let w|v be as before. We first state the
result.

Proposition B.10. Zv(Wv,Φv, χv; s) has the same poles in the region Re(s) > 0 as

L(s, τv × χv)

L(2s, (χvξv)|k×v )
has.

(1) A key lemma. The proof of the proposition is a case-by-case argument and quite
lengthy. We start with a key lemma which will be commonly used in all cases.
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Lemma B.11. Zv(Wv,Φv, χv; s) has the same set of poles as

H(k, s) :=
∫
k′×w

ωψ,ξ(k)Φ(a)Wv(d(a)k)χv(a)|a|s−1/2
w da×, (k ∈ K2,v)

has.

Proof. Since

Zv(Wv,Φv, χv; s) =
∫
B2(kv)∩K2,v\K2,v

Fs−1/2,v(χvξv; k)H(k, s) dk,

all poles of Zv(Wv,Φv, χv; s) come from those of H(k, s).
Conversely if we set

K2,v(p
n
w) :=

{(
a b
c d

)
∈ K2,v

∣∣∣∣∣ a, d ∈ 1 + pnw
b, c ∈ pnw

}
, K̃2,v(p

n
w) :=

{(
a b
c d

)
∈ K2,v

∣∣∣∣∣ c ∈ pnw

}
,

then we have for sufficiently large n,

(i) K̃2,v(p
n
w) = (B2(kv) ∩K2,v)K2,v(p

n
w)

(ii) H(kl, s) = H(k, s), (∀l ∈ K2,v(p
n
w), k ∈ K2,v).

Thus if we choose

Fs−1/2,v(χvξv; k) =

χvξv(a) if k =
(
a b
c d

)
∈ K̃2,v(p

n
w),

0 otherwise,

then Zv(Wv,Φv, χv; s) becomes∫
B2(kv)∩K̃2,v(pn

w)\K̃2,v(pn
w)
Fs−1/2,v(χvξv; k)H(k, s) dk = c ·H(1, s).

Hence every pole of H(1, s) contributes to that of Zv(Wv,Φv, χv; s).

(2) Whittaker functions for generalized principal series. To prove the proposi-
tion for non-supercuspidal τv, we need explicit formulae for the Whittaker functions for
them. For this we calculate the Whittaker functions for the induced module I(νv) =

Ind
G2(kv)
B2(kv)[νv ⊗ 111N2(kv)], where νv is a quasi-character of k

′×
w .

We define the Whittaker functional on I(νv) by the principal value integral

Wψv(f)(g) :=
∑
n∈Z

∫
pn

v−pn+1
v

f
(
w−1

(
1 x
0 1

)
g
)
ψv(x) dx,

where w =

(
0 1
−1 0

)
. If this is well-defined, then it gives a Whittaker functions at least

for an irreducible quotient of I(νv). We formally have

Wψv(f)(d(a)) =
∑
n∈Z

∫
pn

v−pn+1
v

f
((σ(a)−1 0

0 a

)
w−1

(
1 Nk′w/kv(a)

−1x
0 1

))
ψv(x) dx

= νv(σ(a))
−1|a|1/2w

∑
n∈Z

∫
pn

v−pn+1
v

f
(
w−1

(
1 x
0 1

))
ψv(Nk′w/kv(a)x) dx.

But since

f
(
w−1

(
1 x
0 1

))
= f

((x−1 −1
0 x

)(
1 0
x−1 1

))
= νv(x)

−1|x|−1
v f(1)
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for |x|v " 1, the principal value integral converges if Reνv > −1 (cf. [JL]). Moreover
using the explicit formulae for the Kirillov models on GL(2, kv) (see A.2.3), we see that
the Kirillov functions∑

n∈Z

∫
pn

v−pn+1
v

f
(
w−1

(
1 x
0 1

))
ψv(Nk′w/kv(a)x) dx

are contained in
{f1(Nk′w/kv(a))νv(Nk′w/kv(a)) + f2(Nk′w/kv(a)) | f1, f2 ∈ S(kv)} if νv|k×v �= | |−1

v ,111,

{f1(Nk′w/kv(a))ordv(Nk′w/kv(a)) + f2(Nk′w/kv(a)) | f1, f2 ∈ S(kv)} if νv|k×v = 111,
{f1(Nk′w/kv(a)) | f1 ∈ S(kv)} if νv|k×v = | |−1

v .

Hence Wψv(f)(d(a)) is of the form


(f1(Nk′w/kv(a))νv(a) + f2(Nk′w/kv(a))ν

−1
v (σ(a)))|a|1/2w if νv|k×v �= | |−1

v ,111,

(f1(Nk′w/kv(a))νv(a)ordv(Nk′w/kv(a)) + f2(Nk′w/kv(a))ν
−1
v (σ(a)))|a|1/2w if νv|k×v = 111,

f1(Nk′w/kv(a))ν
−1
v (σ(a))|a|1/2w if νv|k×v = | |−1

v ,

(B.14)

where f1 and f2 are in S(kv).
(3) Proof of Proposition B.10 for non-supercuspidal τv. First consider τv in

the principal or complementary series. It equals some I(νv) with (i) νv is unitary and
νv|k×v �= ηk′w/kv or (ii) νv|k×v = | |λv with 0 < λ < 1. Hence from (B.14), H(1, s) is of the
form ∫

k′w×
Φ1(a)χvνv(a)|a|sw da× +

∫
k′w×

Φ2(a)χv(νv ◦ σ)−1(a)|a|sw da×

if νv|k×v �= 111 and∫
k′w×

Φ1(a)χvνv(a)ordv(Nk′w/kv(a))|a|sw da× +
∫
k′w×

Φ2(a)χv(νv ◦ σ)−1(a)|a|sw da×

if νv|k×v = 111, with Φi ∈ S(kv) (i = 1, 2). In both cases the G.C.D. of H(1, s) is

Lk′(s, χvνv)Lk′(s, χv(νv ◦ σ)−1) which equals L(s, τv × χv).
Next we treat τv in the limit of discrete series. This τv is a direct summand of I(νv)

with νv|k×v = ηk′w/kv . As in the principal case, we have from (B.14) that the G.C.D. of
H(1, s) equals

Lk′(s, χvνv)Lk′(s, χv(νv ◦ σ)−1).

This is holomorphic for Re(s) > 0, while L(s, τv × χv) is also holomorphic in that region
by [Sh] Proposition 7.2 (b).
Finally we care τv in the discrete series. It is a unique irreducible quotient of I(νv) with

νv|k×v = | |−1
v . Hence from (B.14),

H(1, s) =
∫
k′×w

Φ(a)χv(νv ◦ σ)−1(a)|a|sw da×

and their G.C.D. is Lk′(s, χv(νv ◦ σ)−1). This is holomorphic for Re(s) > 0 and again we
use [Sh] Proposition 7.2 (b) to finish the proof. �

(4) Whittaker functions for supercuspidal τv. To obtain an explicit formula for
the Kirillov space of such τv, we use the following variant of the Gel’fand-Kazhdan theory
(cf. [BZ] Chapter III). We freely use the notations and terminologies of [BZ]. In particular
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IndGH denotes the induction functor from Alg(H) to Alg(G) and indGH denotes the finite
induction functor between these categories.

We write the space of characters of N2(kv) as N̂2(kv). Then our ψv allows us to identify

N̂2(kv) with the S-space kv and C∞
c (N2(kv)) with S(N̂2(kv)) (by the Fourier transform).

This gives the category equivalence

Alg(N2(kv))
∼−→

(
S-sheaves/N̂2(kv)

)
.(†)

If E is an S-sheaf on N̂2(kv) corresponding to an object E of Alg(N2(kv)) by the equivalence

(†), then EN2(kv),ψ � Eψ as S(N̂2(kv))-modules for any ψ ∈ N̂2(kv) (cf. [BZ] 5.9, 5.10).

Fix α ∈ k×v − Nk′w/kv(k
′×
w) and set ψ

+ := ψv, ψ
− := ψα

v . Then we have six functors

Φ−
± : Alg(B2(kv)) � E −→ EN2(kv),ψ± ∈ Alg(Z2(kv))

Φ+
± : Alg(Z2(kv)) � ρ −→ ind

B2(kv)
Z2(kv)N2(kv)(ρ⊗ ψ±) ∈ Alg(B2(kv))

Ψ− : Alg(B2(kv)) � E −→ EN2(kv) ∈ Alg(T2(kv))

Ψ+ : Alg(T2(kv)) � µ −→ µ⊗ 111N2(kv) ∈ Alg(B2(kv)).

The main properties of these functors are as follows.

Lemma B.12. (a) All functors are exact.
(b) Ψ− is left adjoint to Ψ+, Φ+

± is left adjoint to Φ−
±.

(c) Φ−
± ◦Ψ+ = 0 and Ψ− ◦ Φ+

± = 0.
(d) The adjonction map i± : id→ Φ−

±Φ
+
±, j : Ψ

−Ψ+ → id are isomorphisms.
(e) We have an exact sequence

0 −→ Φ+
+Φ

−
+ ⊕ Φ+

−Φ
−
− −→ id −→ Ψ+Ψ− −→ 0.

Proof. (a) is clear. (b) to (e) will be proved along the following considerations.

(1) For (π,E) ∈ Alg(B2(kv)), we can take an S-sheaf (N̂2(kv), E) such that E � Ec
as S(N̂2(kv))-modules. Using this isomorphism we transport the B2(kv)-module
structure to Ec. Then

π(n)ϕ(θ) = θ(n)ϕ(θ), (θ ∈ N̂2(kv), n ∈ N2(kv), ϕ ∈ Ec).

(2) Once we have realized (π,E) on Ec, we analyze the B2(kv)-orbits in N̂2(kv). We
have three orbits;

Z := {111N2(kv)}, Y ± := (ψ±)B2(kv).

Let π± := π|Ec(Y ±). Then since the representation of Z2(kv)N2(kv), the stabilizer
of ψ± in B2(kv), on the stalk E(Y ±)ψ± = Eψ± is equivalent to Φ−

±(π)⊗ψ±, we have
from [BZ] 2.23 (b) that

E(N2(kv),111) = π+ ⊕ π−, Φ+
±Φ

−
±(π) = π±.

Thus from (τ → Φ−
±(π)) ∈ HomZ2(kv)(τ,Φ

−
±(π)) we can construct an element of

HomB2(kv)(Φ
+
±(τ), π) by the composition

Φ+
±(τ) −→ [Φ+

±Φ
−
±(π) = π±] ↪→ π.
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(3) Next we construct the inverse HomB2(kv)(Φ
+
±(τ), π) → HomZ2(kv)(τ,Φ

−
±(π)). By

[BZ] 2.23 (a), we have an S-sheaf F ′
± over Y

± such that Φ+
±(τ) � F ′

±,c as S(Y ±)-

modules. We extend this to an S-sheaf F± on N̂2(kv) by F±|Z∪Y ∓ := {0}. Then
F± is the S-sheaf associated to Φ+

±(τ) by the construction of (1). Hence

Φ−
±Φ

+
±(τ) = (Φ

+
±(τ))N2(kv),ψ±

∼→ F±,ψ± = τ.

Also we have Φ−
± ◦ Φ+

∓ = 0. This gives the natural isomorphism i± : id
∼→ Φ−

±Φ
+
±,

and for Φ+
±(τ)→ π we have an element

τ
∼→ Φ−

±Φ
+
±(τ)→ Φ−

±(π)

of HomZ2(kv)(τ,Φ
−
±(π)).

(4) The left adjointness of Ψ− to Ψ+ is obvious. Since F±|Z = {0}, we have Ψ−Φ+
± = 0.

Ψ+(µ)|N2(kv) = 111N2(kv) gives Φ
−
±Ψ

+ = 0. Finally the exact sequence in (e) is given
by

0 −→ E(N2(kv),111) −→ E −→ EN2(kv),111 −→ 0.

Corollary B.13 (Kirillov models for supercuspidal τv). Assume that τv is super-
cuspidal. Then for Wv ∈ W(τv, ψv), Wv(d(a)) is in S(k′×w) as a function of a ∈ k′×w.

Proof. Define π± := Ind
B2(kv)
Z2(kv)N2(kv)(ωτv ⊗ ψ±) and π0

± := ind
B2(kv)
Z2(kv)N2(kv)(ωτv ⊗ ψ±). By

definition we have the natural embedding π0
± ↪→ π±. On the other hand

HomB2(kv)(π
0
±, π±) = HomZ2(kv)N2(kv)(π

0
±|Z2(kv)N2(kv), ωτv ⊗ ψ±)

= (π0
±)

∗
N2(kv),ψ±

is 1-dimensional.
Since τv is supercuspidal, it follows from Lemma B.12 that τv|B2(kv) = Φ+

+Φ
−
+(τv) ⊕

Φ+
−Φ

−
−(τv). But W(τv, ψv) � Wv → Wv|B2(kv) ∈ π+ is non-zero by our assumption (recall

ψv = ψ+), and hence Φ+
+Φ

−
+(τv) = π0

+.
We still have to show Φ+

−Φ
−
−(τv) = {0}. If this is not {0}, then it is a direct sum of

copies of π0
−. But since HomB2(kv)(π

0
−, π+) = 0, Φ

+
−Φ

−
−(τv) go to {0} under the “restriction

to B2(kv)”-functor.

(5) Proof of Proposition B.10 in the supercuspidal case. From Corollary B.13,
the G.C.D. of H(1, s) is 1. On the other hand, from [Sh] Proposition 7.2 (b) we know
that L(s, τv × χv) is also holomorphic on the region Re(s) > 0. (q.e.d)

B.3.4. K-types of the oscillator representation. We now proceed to the archimedean inert
case, k′w/kv = C/R. To calculate Zv(Wv,Φv, χv; s) explicitly, we need to know theK-types
of the oscillator representation ωψv,ξv .
We begin with the explicit formulae for the differential dωψv,ξv . Noting ηC/R = sgn, ξv

can be written as

ξv(z) = (z/z)
k/2, (k ∈ 2Z+ 1).

Write g2,R for the R-Lie algebra of G2(R). It is generated by the elements;

X+ :=

(
0 1
0 0

)
, H :=

(
1 0
0 −1

)
, U :=

(
0 1
−1 0

)
, Z :=

(√−1 0
0

√−1
)
.



62 TAKUYA KON-NO

Lemma B.14. The explicit formulae for the differential of (ωψv,ξv ,S(C)) are given as
follows.

dωψv,ξv(X+)Φ(z = x+
√−1y) = ±2π√−1(x2 + y2)Φ(z), (as ψv = ψ±1

R )

dωψv,ξv(H)Φ(z) = Φ(z) + x
∂

∂x
Φ(z) + y

∂

∂y
Φ(z)

dωψv,ξv(Z)Φ(z) =
√−1kΦ(z)− y

∂

∂x
Φ(z) + x

∂

∂y
Φ(z)

dωψv,ξv(U)Φ(z) = ±
[

1

8π
√−1

(
∂2

∂x2
+

∂2

∂y2

)
Φ(z) + 2π

√−1(x2 + y2)Φ(z)

]
, (as ψv = ψ±1

R
).

Proof. These can be easily deduced from (B.1), (B.2) and (B.3).

Next we change the polarization.

Lemma B.15 (Change of the polarization). Define the partial Fourier transform F2

by

F2Φ(x+
√−1y) =

∫
R

Φ(x+
√−1v)ψv(yv) dv.

Then we have

F2

(
dωψv,ξv(U)Φ

)
(z) = ±

[
1

8π
√−1

(
∂2

∂x2
+

∂2

∂y2

)
F2Φ(z) + 2π

√−1(x2 + y2)F2Φ(z)

](B.15)

F2

(
dωψv,ξv(Z)Φ

)
(z) =

[√−1k ±
(

1

4π
√−1

∂2

∂x∂y
+ 4π

√−1xy
)]

F2Φ(z).(B.16)

Here the signs ± are according to ψv = ψ±1
R .

Proof. The proof is again a simple computation.

The final preliminary is the change of variables u := x + y and v = x − y. Then we
have

∂

∂x
=

∂

∂u
+

∂

∂v
,

∂

∂u
=

∂

∂u
− ∂

∂v
∂2

∂x2
+

∂2

∂y2
= 2

(
∂2

∂u2
+

∂2

∂v2

)
,

∂2

∂x∂y
=

∂2

∂u2
− ∂2

∂v2
.

Hence if we write φ(u, v) := F2Φ(z) ∈ S(R⊕2) and set

Dt :=
1

4π
√−1

∂2

∂t2
+ π

√−1t2, (t = u or v),

then (B.15) and (B.16) become

dωψv,ξv(U)φ(u, v) = ±(Du +Dv)φ(u, v)(B.17)

dωψv,ξv(Z)φ(u, v) =
(√−1k ± (Du −Dv)

)
φ(u, v).(B.18)

We now describe the K2,v-types in ωψv,ξv . First we solve the differential equation

Dtφ(t) =
√−1λφ(t), (λ ∈ R, φ ∈ S(R)).
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Lemma B.16 (cf. [W] Chapt. 5 §6). Dtφ(t) =
√−1λφ(t) has a non-trivial solution

in S(R) (or in L2(R)) if and only if λ ∈ Z≥0 + 1/2. If this is the case, the solution space
is spanned by

φλ(t) = e−πt2Hλ−1/2(
√
2π · t).

Here Hn (n ∈ Z≥0) denotes the classical Hermite function;

Hn(t) = (−1)net2 d
n

dtn
e−t2 .

As usual we identify each irreducible representation of K2,v with a pair of integers;

(m,n) : K2,v � e
√−1ϕ

(
cos θ sin θ
sin θ cos θ

)
−→ e

√−1mθe
√−1nϕ ∈ C1.

Proposition B.17 (K2,v-types of ωψv,ξv). Using the notations defined above, the K2,v-
types of ωψv,ξv are{(m,n) ∈ Z ⊕ Z |m ≡ n (mod 2), k −m < n < k +m} if ψv = ψR,

{(m,n) ∈ Z ⊕ Z |m ≡ n (mod 2), k +m < n < k −m} if ψv = ψ−1
R
.

B.3.5. Zv(Wv,Φv, χv; s) in the principal case. We treat τv in the principal and comple-
mentary series at the same time. We may assume that

τv = Ind
G2(R)
B2(R)[νv ⊗ 111N2(R)], χvξv(z) = |z|σµ

C
(z/z)lµ/2, νv(z) = |z|σν

C
(z/z)lν/2,

where

Re(σµ) = 0, 0 ≤ Re(σν) ≤ 1, lµ, lν ∈ Z.

As before we write S0(C) for the space of standard functions with respect to ψv;

S0(C) := {e−2π(x2+y2)P (x, y) |P is a polynomial function.}.
We may assume Φv ∈ S0(C).

Proposition B.18. Under these assumptions, Zv(Wv,Φv, χv; s) is a linear combination
of functions of the form

(B.19) ΓR(s+ σµ + σν + j1 +
n

2
+ 1)ΓR(s+ σµ − σν + j2 +

n

2
+ 1)

× ΓR(s+ σµ + σν + j1 +
n

2
)ΓR(s+ σµ − σν + j2 +

n

2
)
/
ΓR(2s+ 2σµ + 1)

with j1, j2, n ∈ Z≥0. Moreover the term with j1 = j2 = n = 0 appears if and only if
k = lµ ± lν and lµ is odd.

Assuming the proposition for a moment, we shall prove the following.

Corollary B.19. The G.C.D. of Zv(Wv,Φv, χv; s) has the same set of poles in the region
Re(s) > 0 as

LC (s, χvνv)LC (s, χvν
−1
v )

LR(2s, (χvξv)|R×)
(B.20)

has.
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Proof. Recall from [Sh2] §3 that

LC (s, χvνv) = LC (s, |z|σµ+σν

C
(z/z)(lµ+lν−k)/2) = ΓC

(
s + σµ + σν +

|lµ + lν − k|
2

)
LC (s, χvν

−1
v ) = ΓC

(
s+ σµ − σν +

|lµ − lν − k|
2

)
LR(2s, χvξv|R×) = ΓR

(
s+ σµ +

ε

2

)
,

where ε = 0 or 1 is such that ε ≡ lµ (mod 2). Thus (B.20) has its only pole in the region
Re(s) > 0 at s = σµ − σν with

k = lµ − lν , 0 < σν < 1/2, lν is even.

On the other hand (B.19) in Proposition B.18 has its only pole in the same region at
s = σµ − σν with

j1 = j2 = n = 0.

We apply the last statement of Proposition B.18 to verify that these two conditions are
equivalent.

Proof of Proposition B.18. We may assume that Fs−1/2,v(χvξv) and Wv are of the form

F
(m1)
s−1/2,v

(
χvξv; e

√−1ϕ

(
cos θ sin θ
− sin θ cos θ

))
= e

√−1lµϕe
√−1m1θ, m1 ∈ lµ + 2Z

W (m2)
v

(
e
√−1ϕ

(
cos θ sin θ
− sin θ cos θ

))
= e

√−1lνϕe
√−1m2θ, m2 ∈ lν + 2Z.

Let (n1, n2) be a K2,v-type in ωψv,ξv (cf. Proposition B.17). Using the notations of Lemma
B.16 we set

φn1,n2(x+
√−1y) := φ±n1−n2+k

2

(x+ y)φ±n1+n2−k
2

(x− y) ∈ S0(C)

Φn1,n2(x+
√−1y) := F−1

2 φn1,n2(x+
√−1y),

where the inverse Fourier transform F−1
2 is defined by

F−1
2 φ(x +

√−1y) :=
∫
R

φ(x+
√−1v)ψv(vy) dv.

From Lemma B.16, it is clear that Φn1,n2 is the (n1, n2)-weight vector in ωψv,ξv , and it is
enough to calculate

Zv(W
(m2)
v ,Φn1,n2, χv; s)

=
∫
K2,v

∫
C×

F
(m1)
s−1/2,v(χvξv; k)ωψv,ξv(k)Φn1,n2(a)W

(m2)
v (d(a)k)χv(a)|a|s−1/2

C
da× dk

writing k(θ) :=

(
cos θ sin θ
− sin θ cos θ

)
,

=
∫
R
×
+

∫ 2π

0

∫ π

0
F

(m1)
s−1/2,v(χvξv; d(e

√−1ϕ)k(θ))ωψv,ξv(d(e
√−1ϕ)k(θ))Φn1,n2(a)

W (m2)
v (d(ae

√−1ϕ)k(θ))χv(a)|a|2s−1
R

dϕ dθ da×
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=
∫
R
×
+

Φn1,n2(a)W
(m2)
v (d(a))χv(a)|a|2s−1

R
da×

∫ 2π

0

∫ π

0
e
√−1(lµ+lν−n2)ϕe

√−1(m1+m2−n1)θ dϕ dθ.

This equals ∫
R
×
+

Φn1,n2(a)W
(m2)
v (d(a))χv(a)|a|2s−1

R
da×

if n2 = lµ + lν , n1 = m1 +m2 and zero otherwise.
Now we set n2 = lµ + lν , and take n1, m1 and m2 so that n1 = m1 +m2 and that the

conditions of Proposition B.17 are satisfied. Then

Zv(W
(m2)
v ,Φn1,n2, χv; s) =

∫
R
×
+

Φn1,n2(a)W
(m2)
v (d(a))|a|2(s+σµ)−1

R
da×.

Next we extend the restriction τv|H(R) to a representation τ̂v := Ind
GL(2,R)
B(R) [(νv|R× ⊗ 111) ⊗

111N(R)] of GL(2,R) just as in the proof of Lemma B.6. Accordingly W (m2)
v restricted to

H(R) is extended to a Whittaker function of τ̂v and we have

W (m2)
v (d(a)) = νv(a)

−1W (m2)
v

((a2 0
0 1

))
.

Thus

Zv(W
(m2)
v ,Φn1,n2, χv; s) =

∫
R
×
+

Φn1,n2(a)W
(m2)
v

((a2 0
0 1

))
|a|2(s+σµ−σν)−1

R
da×

= 2
∫
R
×
+

Φn1,n2(
√
a)W (m2)

v

((a 0
0 1

))
|a|s+σµ−σν−1/2

R
da×.

To compute this we need following lemmas.

Lemma B.20. (i) The Mellin transform of Φn1,n2(
√
a);∫

R
×
+

Φn1,n2(
√
a)|a|s−1/2

R da×

is a linear combination of terms ΓR(s+
n+1

2
)ΓR(s+

n−1
2
) (n ∈ Z≥0).

(ii) The term ΓR(s+
1
2
)ΓR(s− 1

2
) appears if and only if k = lµ + lν.

Proof. Recall that

Φn1,n2(r) = F−1
2 φn1,n2(r) =

∫
R

φn1,n2(r +
√−1y) dy

=
∫
R

φ±n1−n2+k

2

(r + y)φ±n1+n2−k

2

(r − y) dy

=
∫
R

e−2π(r2+y2)H±n1−n2+k

2

(
√
2π(r + y))H±n1+n2−k

2

(
√
2π(r − y)) dy

= e−2πr2
∫
R

e−x2

H±n1−n2+k
2

(x+
√
2πr)H±n1+n2−k

2

(
√
2πr − x)

dx√
2π

= (−1)±n1+n2−k
2 e−2πr2

∫
R

e−x2

H±n1−n2+k
2

(x+
√
2πr)H±n1+n2−k

2
(x−

√
2πr)

dx√
2π

.

Clearly this is a linear combination of terms of the form e−2πr2rn (n ∈ Z≥0). The

orthogonality relation of Hermite polynomials asserts that the term e−2πr2 appears if and
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only if ±n1−n2+k
2

= ±n1+n2−k
2

, or equivalently k = n2 = lµ + lν . Now our lemma follows
from the well-known formula∫ ∞

0
e−2πa|a|s+n/2−1/2

R
da× = π−s−n/2Γ

(s+ (n+ 1)/2
2

)
Γ
(s+ (n− 1)/2

2

)
.

Lemma B.21. (i) The Mellin transform of W (m2)
v ;∫

R×
W (m2)

v

((a 0
0 1

))
|a|s−1/2

R
da×

is a linear combination of terms ΓR(s+ j1 + 2σν)ΓR(s+ j2) (j1, j2 ∈ Z≥0).
(ii) The term ΓR(s+ 2σν)ΓR(s) appears if and only if m2 is even.

Proof. We may assume Re(σν)" 0 and Re(s)" 0 throughout the proof. Let

Φ(m2)(x, y) := e−π(x2+y2)(x+
√−1y)m2 ∈ S0(R2)

f (m2)
νv

(g) := νv(det(g))| det(g)|1/2R

∫
R×
Φ(m2)([0, t]g)νv(t)|t|R dt×.

This integral converges absolutely for Re(σν) > −m2+1, and f
(m2)
νv

is a m2-weight vector

in τ̂v. Thus from [JL] §5, we may take W (m2)
v to be

W (m2)
v (g) =

∫
R

f (m2)
νv

(
w−1

(
1 x
0 1

)
g
)
ψv(x) dx

from definition,

= νv(det(g))| det(g)|1/2R

∫
R

∫
R×
Φ(m2)([t, tx]g)νv(t)|t|Rψv(x) dt

× dx

putting x := tx,

= νv(det(g))| det(g)|1/2R

∫
R×

∫
R

Φ(m2)([t, x]g)ψv(t−1x) dx νv(t) dt
×

writing R(g) for the right translation by g,

= νv(det(g))| det(g)|1/2R

∫
R×

F−1
2 [R(g)Φ(m2)](t, t−1)νv(t) dt

×

using Proposition 1.6 (ii) in [JL],

= νv(det(g))| det(g)|1/2R

∫
R×
[ωψ(g)F−1

2 Φ(m2)](t, t−1)νv(t) dt
×.

Here ωψv denotes the Weil representation of SL(2,R) defined in [JL] Proposition 1.3
extended to GL(2,R) by Proposition 1.6 loc.cit.
Using this we have

W (m2)
v

((a 0
0 1

))
=

∫
R×

F−1
2 Φ(m2)(at, t−1)νv(at)|a|1/2R dt×.

Hence the Mellin transform becomes∫ ∞

0
W (m2)

v

((a 0
0 1

))
|a|s−1/2

R
da×
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=
1

2

(∫
R×

W (m2)
v

((a 0
0 1

))
|a|s−1/2

R da× +
∫
R×

W (m2)
v

((a 0
0 1

))
|a|s−1/2

R sgn(a) da×
)

=
1

2

(∫
R×

∫
R×

F−1
2 Φ(m2)(at, t−1)νv(at)|a|sR dt× da×

+
∫
R×

∫
R×

F−1
2 Φ(m2)(at, t−1)νv(at)|a|sRsgn(a) dt× da×

)
=
1

2

(∫
R×

∫
R×

F−1
2 Φ(m2)(x, y)νv(x)|xy|sR dx× dy×

+
∫
R×

∫
R×

F−1
2 Φ(m2)(x, y)νv(x)|xy|sRsgn(xy) dx× dy×

)

On the other hand

F−1
2 Φ(m2)(x, y) =

∫
R

e−π(x2+u2)(x+
√−1u)m2ψv(−uy) du

=
m2∑
j=0

√−1jxm2−j

(
m2

j

)
e−πx2

∫
R

e−πu2

ujψv(−uy) du.

This is a linear combination of terms e−π(x2+y2)xj1yj2 (j1, j2 ∈ Z≥0), and e
−π(x2+y2) appears

if and only if m2 is even. Hence the Mellin transform is a linear combination of

1

2

( ∫
R×

∫
R×

e−π(x2+y2)xj1yj2|x|2σν+s
R

sgn(x)lν |y|s
R
dx× dy×

+
∫
R×

∫
R×

e−π(x2+y2)xj1yj2|x|2σν+s
R

sgn(x)lν+1|y|sRsgn(y) dx× dy×
)

=
1

2

( ∫
R×

e−πx2|x|2σν+j1+s
R

sgn(x)lν+j1 dx×
∫
R×

e−πy2 |y|j2+s
R

sgn(y)j2 dy×

+
∫
R×

e−πx2|x|2σν+j1+s
R

sgn(x)lν+j1+1 dx×
∫
R×

e−πy2 |y|j2+s
R

sgn(y)j2+1 dy×
)

This equals

2
∫ ∞

0
e−πx2

x2σν+j1+s dx×
∫ ∞

0
e−πy2

yj2+s dy× =
1

2
ΓR(s+ j1 + 2σν)ΓR(s+ j2)

if j1 + lν ≡ j2 (mod 2) and zero otherwise. The term with j1 = j2 = 0 appears if and
only if lν (or equivalently m2) is even.

We now return to the proof of Proposition B.18. We apply the Barnes-Mellin lemma
([Ja] Lemma 17.3.2) to the result of Lemmas B.20 and B.21 to see that∫

R
×
+

Φn1,n2(
√
a)W (m2)

v

((a 0
0 1

))
|a|s−1

R
da×

is a linear combination of terms

ΓR(s+ j1 + 2σν +
n+1

2
)ΓR(s+ j2 +

n+1
2
)ΓR(s+ j1 + 2σν +

n−1
2
)ΓR(s+ j2 +

n−1
2
)

ΓR(2s+ j1 + j2 + 2σν + n)
,

and the term corresponding to j1 = j2 = n = 0 appears if and only if k = lµ + lν and lν
is even. Since k is odd, this is equivalent to k = lµ + lν and lµ is odd. Replacing s with
s+σµ−σν+1/2 will yield the proposition. The statement for k = lµ− lν will be obtained
by replacing νv with (νv ◦ σ)−1. (q.e.d.)
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B.3.6. Zv(Wv,Φv, χv; s) in the discrete case. Here we take care of τv in the discrete series.
We embed such τv into a generalized principal series:

τv ↪→ Ind
G2(R)
B2(R)[νv ⊗ 111N2(R)].

Here νv(z) = |z|kν/2
C

(z/z)lν/2 satisfies if εν = 0 or 1 is such that lν ≡ εν (mod 2), then
kν − εν ∈ 2N − 1.

Proposition B.22. (i) Under these assumptions, the G.C.D. of Zv(Wv,Φv, χv; s) is given
by

ΓC (s+ σµ + kν/2)ΓC (s+ σµ + kν/2 + 1)

ΓR(2s+ 2σµ + kν + 2)
.

(ii) In particular Zv(Wv,Φv, χv; s) is holomorphic in the region Re(s) > 0.

Proof. Let the notations be as in the proof of Proposition B.18. Then the local zeta
integral Zv(W

(m2)
v ,Φn1,n2, χv; s) equals∫

R
×
+

Φn1,n2(a)W
(m2)
v (d(a))χv(a)|a|2s−1

R da×

if n2 = lµ+ lν, n1 = m1+m2 and zero otherwise. We concentrate on the former case. We

again extend W (m2)
v to a Whittaker function of τ̂v = Ind

GL(2,R)
B(R) [(νv|R× ⊗ 111) ⊗ 111N(R)] and

have

Zv(W
(m2)
v ,Φn1,n2 , χv; s) = 2

∫
R
×
+

Φn1,n2(
√
a)W (m2)

v

((a 0
0 1

))
|a|s+σµ−(kν+1)/2

R
da×.

The analogue of Lemma B.21 in this case is much simpler.

Lemma B.23. The Mellin transform of W (m2)
v ;∫

R
×
+

W (m2)
v

((a 0
0 1

))
|a|s−1/2

R
da×

is a linear combination of terms ΓR(s+ kν + j + 1)ΓR(s+ kν + j) (j ∈ Z≥0).

Proof. From the explicit calculation in [JL] pp. 187–189, we know that

W (2n+kν+1)
v

((a 0
0 1

))
=



Pn(a)a
kν+1/2e−2πa if a > 0,

0 if a ≤ 0, if ψv = ψR,0 if a ≥ 0,
Pn(−a)(−a)kν+1/2e2πa if a < 0,

if ψv = ψ−1
R
.

Here Pn(a) is a certain polynomial. The formulae for W
(−2n−kν−1)
v are given by replacing

ψv = ψR and ψv = ψ−1
R in the above. Thus our Mellin transform is a linear combination

of ∫
R×

e−2πaas+kν+j da× = ΓR(s+ kν + j + 1)ΓR(s+ kν + j), (j ∈ Z≥0).
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We again apply the Barnes-Mellin lemma to the result of Lemmas B.20 and B.23 to
see that Zv(W

(m2)
v ,Φn1,n2, χv; s) is a linear combination of

ΓR(s+ σµ +
kν

2
+ j + n

2
+ 2)ΓR(s+ σµ +

kν

2
+ j + n

2
+ 1)2ΓR(s+ σµ +

kν

2
+ j + n

2
)

ΓR(2s+ 2σµ + kν + 2j + n+ 2)

(j, n ∈ Z≥0). Finally we note

ΓR(s+ 1)ΓR(s) =
∫ ∞

0
e−2πxxs dx× =

1

2
ΓC (s)

to have the proposition. �

B.4. Poles of L(s, τ × χ). We finally come to the main result of this appendix.

Theorem B.24 (Poles of L(s, τ × χ)). L(s, τ ×χ) has its only possible pole in Re(s) >
0 at s = 1, and it is a pole if and only if

(i) χ|A× = ηk′/k, (ii) τ = Θ(χ−1, ψ)ωτ .

Proof. Lemma B.6, Lemma B.7, Corollary B.9, Proposition B.10, Corollary B.19 and
Proposition B.22 combined with Proposition B.5 assert that we have only to determine
the poles of

Z(ϕ, θΦ, χ; s) :=
∫
G2(k)\G2(A )

ϕ(g)θΦ(g)E(F (χξ), s− 1/2)(g) dg.

First note that ϕ is rapidly decreasing while θΦ and E(F (χξ), s − 1/2)(g) are slowly
increasing. Hence the integral converges absolutely (if E(F (χξ), s− 1/2)(g) is defined),
and its poles come from those of E(F (χξ), s− 1/2)(g). But it is well-known that
(1) The only pole of E(F (χξ), s− 1/2)(g) in Re(s) > 0 occurs if and only if χξ|A× = 111

and it locates at s = 1.
(2) The residue of E(F (χξ), s− 1/2)(g) at the pole spans the 1-dimensional represen-

tation (χξ)G2.

Thus Z(ϕ, θΦ, χ; s) has its only possible pole in Re(s) > 0 at s = 1, and it is a pole if
and only if χ|A× = ηk′/k and∫

G2(k)\G2(A )
ϕ(g)θΦ(g)(χξ)

G2(g) dg �= 0.(B.21)

But the left hand side reads∫
G2(k)Z2(A )\G2 (A )

∫
Z2(k)\Z2(A )

ϕ(zg)θΦ(zg)(χξ)
G2(zg) dz dg

=
∫
G2(k)Z2(A )\G2 (A )

ϕ(g)(χξ)G2(g)
∫
Z2(k)\Z2(A )

ωτχξ(z)θΦ(zg) dz dg

=
∫
G2(k)Z2(A )\G2 (A )

(χξ)G2(g)ϕ(g)θΦ,ωτχξ(g) dg.

Of course this means that (B.21) is equivalent to

τ = (χξ)G2
−1 ⊗Θ(ξ, ψ)ωτχξ,(B.22)

since the multiplicity one theorem is true for G2.
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We now analyze the representation (χξ)G2
−1 ⊗ Θ(ξ, ψ)ωτχξ. By definition this space is

spanned by functions of the form

(χξ)G2
−1
(g)

∫
Z2(k)\Z2(A )

ωτχ(z)θ(ωψ,ξ(g)Φ(•z)) dz

=
∫
Z2(k)\Z2(A )

(χξ)G2
−1
(zg)χξ(z)ωτχ(z)θ(ξ(z)

−1ωψ,ξ(zg)Φ) dz

=
∫
Z2(k)\Z2(A )

ωτ (z)θ((χξ)
G2

−1
(zg)ωψ,ξ(zg)Φ) dz.

On the other hand it follows from the explicit formulae (B.8), (B.9), (B.10) that

((χξ)G2
−1 ⊗ ωψ,ξ,S(Ak′)) � (ωψ,χ−1 ,S(Ak′)).

Hence (χξ)G2
−1 ⊗Θ(ξ, ψ)ωτχξ is spanned by∫

Z2(k)\Z2(A )
ωτ (z)θ(ωψ,χ−1(zg)Φ) dz =

∫
Z2(k)\Z2(A )

ωτ (z)θ(ωψ,χ−1(z)ωψ,χ−1(g)Φ) dz

=
∫
Z2(k)\Z2(A )

ωτχ
−1(z)θ(ωψ,χ−1(g)Φ(•z)) dz.

These span Θ(χ−1, ψ)ωτ .

We now apply Shahidi’s non-vanishing theorem to L(s, π, rw(P2)) to have the following
corollary.

Corollary B.25 (Proposition 5.2). The poles of r(w(P2), π) in the region 〈Reπ, β∨
2 〉 ≥

0 locate at

S(P2, ηk′/k) := {π = χ⊗ τ ∈ P ; χ|A× = | |2
A
ηk′/k, τ = Θ(χ

−1| |A k′ , ψ)ωτ}
S(P2,111) := {π = χ⊗ τ ∈ P ; χ|A× = | |A , L(0, τ × χ) �= 0}.

Here in the definition of S(P2, ηk′/k), ψ has been chosen so that τv is generic with respect
to it.

Note that S(P2,111) is the only pole of L(s, π, rw(P2),2) = Lk(s, χ|A× ).
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