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ABSTRACT. Let G be the quasi-split unitary group U(2,2) /i of four variables attached
to a quadratic extension k’/k of number fields. An irreducible decomposition of the
non-cuspidal discrete spectrum of L?-automorphic forms of G is obtained.
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1. INTRODUCTION

Let G be a reductive group defined over a number field k. For simplicity we assume
the center of G is anisotropic over k. If we write A for the ring of adeles of k, then the
group of A-points G(A) is a locally compact topological group which contains G (k) as a
discrete subgroup with finite covolume. The right regular representation R of G(A) on
the space of L?-automorphic forms L?(G(k)\G(A));

[R(9)¢](z) := d(zg), (¢ € L*G(k)\G(A)), g € G(A))

is a primary object in the modern theory of automorphic forms. In particular we are
interested in the “irreducible decomposition” of this R.

We know from the general theory of spectral decomposition that L?(G(k)\G(A)) de-
composes into a direct sum of two G/(A)-invariant closed subspaces L2, .(G) and L2, .(G).
L2

2. .(G) is a direct sum of irreducible representations of G(A) while L? (G) is a con-
tinuous sum of irreducible G(A)-modules. Nevertheless, Langlands’ spectral theory of
Eisenstein series ([La], [MW]) reduces the study of L? ,(G) to that of L3, (M) for Levi
subgroups M of G. Thus, the term “irreducible decomposition of L*(G(k)\G(A))” means
that of L2,,.(GQ).

For ¢ € L*(G(k)\G(A)), we define its constant term along a k-parabolic subgroup P
by

op(g) =

Here U is the unipotent radical of P. Then the space L3(G(k)\G(A)) of L?-cusp forms on
G(A) is spanned by those ¢ € L*(G(k)\G(A)) such that ¢p vanishes almost everywhere
for each proper k-parabolic subgroup P. This is clearly a G(A)-invariant closed subspace
in L?(G(k)\G(A)). Since every ¢ € L3(G(k)\G(A)) is rapidly decreasing, LZ(G(k)\G(A))
is contained in L2,,.(G).

Classical Fourier expansions for elliptic modular forms suggest that the Whittaker
model for irreducible automorphic representations is a useful tool for the irreducible de-
composition of L2(G(k)\G(A)). This idea was carried out by Jacquet and Langlands in
the case G = GL(2), and later extended to the case G = GL(n) by Jacquet, Shalika and
Piatetskii-Shapiro. Their results are quite satisfactory in these cases. But the Whittaker
model cannot capture all the irreducible representations appeared in L3(G(k)\G(A)) if
G is not GL(n) or SL(n). Thus the irreducible decomposition of L3(G(k)\G(A)) is open
except for the cases G = GL(n), SL(2) and U(2,1). (It seems that the only hope in this
direction is the theory of twisted endoscopy.)

There is one problem which is accessible with our present knowledge. It is to determine
the irreducible decomposition of the residual discrete spectrum, the orthogonal comple-
ment in L%, .(G) of L3(G(k)\G(A)), for rank 2 classical groups G. In fact

disc
(1) Tt was shown by Langlands ([La]) that the residual discrete spectrum is spanned
by certain residues of Eisenstein series on G(k)\G(A).

ug) du.
/U(k)\U(A) olug)
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(2) Since any Levi factor of k-parabolic subgroups of G is rank one, we know from [Sh]
that the poles of these Eisenstein series are given by those of certain automorphic
L-functions.

(3) Hence if the poles of these automorphic L-functions can be determined, then the
irreducible decomposition of the residual discrete spectrum is reduced to those of

LA(M(k)Ap (A)\M(A)) for Levi factors M of k-parabolic subgroups of G.

Here Aj; denotes the split component of the center of M.

In the present paper we shall carry out this in the case of rank 2 quasi-split unitary
group G = U(2,2),1, attached to a quadratic extension &’/k. In this case the automor-
phic L-functions appeared in (2) above, are products of Hecke L-functions, twisted ten-
sor L-functions ([As], [HLR], [G]) and the product L-functions for U(1,1) x Resy;1Gy,.
Their poles are either well-known or can be easily determined (cf. Appendices A, B).
Also the Levi factors appeared in (3) is one of My := Resp /xG,, X Resy /xGy, My =
Resp xGL(2) and M, := Resp Gy, X U(1,1)p /. The irreducible decomposition of
LA(M(k)Ap (A)\M(A)) for these M can be deduced from [JL] and [LL]. Now the main
result of this paper is stated as follows (Theorem 3.11, Theorem 3.18, Theorem 4.4 and
Theorem 5.5).

Theorem 1.1. The residual spectrum of G = U(2,2)ky, is a direct sum of the following
irreducible representations of G(A). Each occurs with multiplicity one.

(1) The one dimensional representations x o det. Here x runs over all the characters
of U(L,K)\U(1, A).

(2) The 0-lifts R(Va, x) of trivial representations of rank 1 unitary groups U(V,A).
Here Vi, =V & A and V' runs over all 1-dimensional Hermitian space over k'. x
runs over all characters of A /K™ such that X|sx = My k. Mk s the quadratic
character corresponding to k' [k by the classfield theory.

(3) The “B-lifts” of non-trivial 1-dimensional representations of U(1, 1) /i(A).

(4) The global Langlands’ quotients of Indgl(ﬁi) (S(P1) ® 1y, n)]. Here Py is a parabolic
subgroup of G whose Levi factor is My. &(P) = 7 ® |det |4, , where ™ runs over
the irreducible cuspidal automorphic representations of M (A) such that

(a) The central character w, of ™ restricted to A* is trivial.
(b) If we write H for the diagonal subgroup GL(2); of My ~ Resy xGL(2), then

/H(k)Z(H,A)\H(A) J(h) dh 70
holds for some f in the automorphic realization of .

(5) The global Langlands’ quotients ofInde(ﬁi) (S (Pa, i 1) @1y | and Ind%(ﬁi) [&(P,1)®
Ly, ], where Py is a parabolic subgroup of G whose Levi factor is My. S(Py, Nk /1)
runs over all the irreducible cuspidal representations of My(A) which satisfies the
following conditions. &(Py,ny i) is written as x| |, ® T according to Ma(A) ~
Ay x U1, 1)k k(A), where

(a) x|ax = k' k-
(b) 7 is the 0-lift of its central character w, from U(1)w /x(A) under the Weil
representation wy -1 (see B.1).
Also &(Py,1) runs over the irreducible cuspidal representations of My(A) of the

form x| \}&{5 ® 7 such that x|ax =1 and L(s,T X x) does not vanish at s = 1/2.
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The residual spectrum of GL(n) was obtained by Moeglin and Waldspurger ([MW2]).
Also the same kind of results for G = Sp(2) was obtained independently by H. Kim and
the author ([Ki]). Note that the condition (b) in (4) is equivalent to certain functorial
properties of 7 (see [HLR], [Y] and [F1]).

We now explain the organization of this paper. In section 2, we collect some notations
and review the basic tools in Langlands’ spectral theory of Eisenstein series from [MW].
In section 3 we determine the contributions of cuspidal Eisenstein series from the Borel
subgroup Py to the residual spectrum. This will need a detailed calculation of L?-inner
product of these Eisenstein series (see 3.2). Once the inner product is calculated (Theorem
3.4), we proceed to the irreducible decomposition. In this step the results of Kudla, Sweet,
S. T. Lee and C. Zhu on the irreducible decomposition of certain degenerate principal
series representations of U(n,n) will be used ([KSw], [Le] and [LeZ]). We review these
in 3.3.1. Finally we use the arguments of [KRS] §2 to have the statements (1) and (2)
in Theorem 1.1. The statement (%) is easily proved by a local Langlands’ classification
argument.

In section 4 and 5, we determine the contributions of cuspidal Eisenstein series from
the Siegel parabolic subgroup P; and from the non-Siegel maximal parabolic subgroup
P; respectively. The main problem in these cases is to determine the poles of certain
automorphic L-functions. In the Siegel parabolic case, the twisted tensor L-function
appears while the product L-function of U(1,1) x Resy /xG,, appears in the non-Siegel
parabolic case. The poles of these L-functions will be determined in Appendices A, B.
Once the poles are determined, the statements (4) and (5) in Theorem 1.1 can be easily
deduced from local Langlands’ classification arguments.

The author heartfully thanks to T. Tkeda for many helpful discussions on theta liftings
and L-functions, and also for introducing him the results of Kudla and Sweet. He also
thanks to Prof. T. Oda and Prof. H. Shimizu for constant encouragement. T. Uzawa
explained him some interesting motivations for studying distinguished representations.
Thanks are also due to the referee for some important comments. Finally he thanks to
K. Fujiwara, T. Takahashi and K. Hiraga for stimulating discussions.

2. PRELIMINARY

2.1. Notations and conventions.

2.1.1. Let k'/k be a quadratic extension of number fields. We write I' for the Galois
group Gal(k’/k) and o for its generator. W}, denotes the Weil group of k.

We write A for the adele ring of £ and write A, and A, for its infinite and finite
component respectively. | |4 denotes the idele norm of A*. A place of k is conventionally
denoted by v. For each place v of k, we write k, for the completion of k at v and | |, for
the v-adic norm. In particular if v is finite, we let O, be the maximal compact subring of
ky, p, be the maximal ideal in O, and w, be a generator of p,. Also we write g, for the
cardinality of the residue field of k,.

We write Ay for the adele ring of &’. The idele norm of A}, is written by | [4,. We
conventionally write a place of k" by w. The notations k!, D O, D p, 3 w, are defined
similarly as in the case of k. The following conventions on places of k and k' will be
convenient. If a place v is inert in &’ then the place of £’ lying over v will be denoted by
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w. If v splits in k' then the places of k' lying over v will be denoted by w; and w,. We
often write k] for the semisimple algebra k' ®j k, over k,.

2.1.2.  We need some notations about the group G := Resy /kGL(4). The k-automorphism

on G, which is determined by the action of o on GL(4,K), is denoted by . We fix a
k'-group isomorphism

G — GL(4)w X GL(4),
so that the action of o on G is transported to
0 GLA)w X GLA)w 3 (91,92) — (0(92),0(91)) € GL(4)w X GL(4)y,
and that o is transported to
d:GL(4)rw X GL(4)k 3 (91, 92) — (92,91) € GL(4)r X GL(4).
2.1.3.  We define an automorphism 65 of Gy by
0 : GL(4)w x GL(4)r 2 (91, 92) — (It So("g7 ), IntSo("g5 ")) € GL(4)w x GL(4)w,

(0 |1,
e ().

This clearly commutes with o and hence is a k-automorphism of G. Then our group
G :=U(2,2)p is defined by G := {g € G; §,05(g9) = g}. Note that G = {(g,02(9)) €
GL(4)p xGL(4)r} ~ GL(4)y. Fix a minimal k-parabolic subgroup P, and its Levi factor
M, of GG so that

) € Gk’ )

* %
Pow = ( 0 =
0
z Y
1 T O 1 Yo

Mo i= S d((x1, 1), (T2, 92)) = ( =1 )

O Y1 - O

The unipotent radical of Py is denoted by Uy. We write an element of My as d(z1,x2) :=
diag(z1, x2,0(x1) 7!, 0(22) ™) (2, € Resp Gy, @ = 1,2). Then the k-split component
Ay of the center of My is given by Ay = {d(x1,22); 21, v2 € Gy} We write G,
for the algebraic group over k, given by the scalar extension G, := G ®; k,. Then
Gy ~U(2,2)k, /i, if v is inert in k" and G, ~ GL(4)y, if v splits in &’. Also we fix a good
maximal compact subgroup K =[], K, of G(A) as

where

*
*

*
0

0

* K| X ¥
* O % *
* ¥ | ¥ ¥
* O ¥ *

G(k,) NGL(4,0,), if v {00 and v is inert in &/,
GL(4,0,), if v 1 0o and v splits in &/,
K,=UM4)NGR)~U(2) x U(2), ifv=R and v is inert in £/,
O(4), if v = R and v splits in £/,
U(4)NG(C)=U(4), if v =C.

Then we have the Iwasawa decomposition G(A) = Py(A)K. We write K, for ]
G(Ax).

K, C

v|oo
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We choose a basis {eq,ea} of X*(Ay), the character group of Ay, so that e;(d(x1,22))
= x; (j = 1,2). Let {e},ey} be its dual basis of X,(Ap), the group of one-parameter
subgroups of Ag: ey (z) = d(x, 1), ey(x) = d(1,z). Name the Py-positive roots of Ay as

R (Py, Ag) = {on :=e1 — e, g :=2ey, [y := ey + ey, B2 :=2e1},
then A(Fy, Ag) := {1, as} is the set of simple roots.
2.1.4. Fix a k-splitting of Gy as (Pox, Mo, {Xa}ta), where

a0 (a0 )y 0l ) (0dy
(o o) ==(ars ) oo )

X = 0(Xay)-

Here

ar(d((x1,11), (2, 92))) = w12y, ao(d((x1, 1), (22, 92))) = Taya,
o (d((z1, 1), (22, 92))) = 11y

are the simple roots of M ;s in Fp ;. The dual group Gof G = U(2,2)k 1, equals GL(4, C).
We fix a splitting (P, Mo, {Xav }av) of G to be objects of the form of the first components
of Poyr, Mog, {Xa}a. This distinguished splitting is stable under the I'-action o(g) :=
05(g). Now the L-group LG for G is given by LG := G Xg, Wi, where Wy, acts through I"
by o(g) := 02(g)-

2.1.5.  The k-parabolic subgroups of G which contain the minimal parabolic subgroup F,
is called standard parabolic subgroups. They contain a complete system of representatives
of G(k)-conjugacy classes of k-parabolic subgroups. Each standard parabolic subgroup
P has a unique Levi component M which contains My. Then the set of simple roots
A(M N Py, Ag) of Ag in M N Fy is a subset of A(FPy, Ag). This gives a bijection between
the standard parabolic subgroups of G and the subsets of A(Fy, Ag). Thus we have
two proper standard parabolic subgroups P, = M;U; (i = 1,2) other than Py, where P,
corresponds to {a;} C A(Py, Ag) under the above leeCtIOIl We also adopt analogous
notations for parabolic subgroups of G ‘which contain Py. Then the L- group of P, = M,;U;
(i =1,2) is given by P, xg, Wy. Here P, = M;U; is such that

5 R A aV, of}, ifi=1
y =2.

2.1.6. For a standard parabolic subgroup P = MU, we write A, for the k-split compo-
nent of the center of M. We fix a k-isomorphism W, : (Ggim Anm % Ay and write Ay (R)

for the image of the composit
(RY)I A GRm A (Ace) =¥ Anr(Aco).

Here the first injection is the diagonal embedding into GH™4M (A) = [1,j0e Gom A4 (k).
As usual we have real vector spaces ay; ;= Hom(X*(M)g,R) and aj, := X*(M); ®z R
dual to each other. Here X*(M); denotes the k-rational character group of M. We

write ag and ag for ayg and aj, respectively. aps is always identified with the subspace
{N € ap; (a, \) = 0 for a € A(PhN M, Ag)} of ap. On the other hand, the restriction
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map X*(M)r 3 x — x|m, € X* (M), gives a natural embedding a}, — af. The Harish-
Chandra map Hy : M(A) — ayy is defined by

(Har(m), x) = log[x(m)|a, forany x € X*(M)y.

We write the kernel of this map as M(A)!. Then we have a direct product decomposition
M(A) = M(A)' x Ap(R),. Hy is often considered as a map from G(A) by the Iwasawa
decomposition fixed above:

(2.1) Hy :G(A)>g=umk — Hy(m) €ay, (ueU(A),me M(A),keK).

The Weyl group of Aj in G is denoted by W. It acts on ay and aj. We write w; for
the simple reflection attached to the simple root «; (i = 1,2) and w_ for the longest
element wiwywiwy = wewjwoew;. We also have the Weyl group W (Ay,) of Ay in G
which acts on ap;. The inner product on af for which {e;, e;} is a ortho-normal basis
is W-invariant. This determines a W (A,s)-invariant inner product on each aj,. We fix
these inner products throughout the paper.

Finally we normalize various measures as in [Ar].

2.1.7. Notations about automorphic forms. In the rest of this paper, we freely use the
notations introduced in [MW] II. We briefly review them.

Fix a standard parabolic subgroup P = MU. We write the space of automorphic forms
on U(A)M (E)\G(A) as A(UA)M(k)\G(A)). A(M(k)\M(A)) denotes the space of auto-
morphic forms on M (k)\M(A). The space of cusp forms on U(A)M (k)\G(A) is written
as Ag(U(A)M(K)\G(A)). Ag(M(k)\M(A)) is the space of cusp forms on M (k)\M(A).

Next let m be a cuspidal automorphic representation. We write A(M (k)\M(A)), for
the m-isotypic subspace in Ag(M(k)\M(A)), and A(U(A)M (k)\G(A)), for the space of
functions ¢ € A(U(A)M (k)\G(A)) such that

¢or(m) == e<’pP’HM(m)>¢(mk), (me M(A))

belongs to A(M(k)\M(A)), for any k € K.
Each A € a}; ¢ := aj; ®g C is identified with the quasi-character

M(A) 3 m — exp(A, Hy(m)) € C*

of M(A) trivial on M(A)'. Recall that two automorphic subrepresentations = and 7 of
M(A) are equivalent if there exists A € aj, ¢ such that 7 ~ 7 ® A. We call a pair (M,*B),
where P8 is an equivalence class of cuspidal automorphic representations of M(A), a
cuspidal datum.

Fix a cuspidal datum (M, ) for the rest of this section. Recall the space of Paley-
Wiener sections Pysq). For each ¢ € Py, its Fourier transform F(¢) was defined.

2.1.8. Notations about FEisenstein series. For each m € P, we write w, for its central
character and define Rer € aj},, Imm € B by

Rem : M(A) 5 m — |ws(m)[s € RY, Im7 := (Remr) ' @ 7.

We also write —7 for the contragredient of 7 and 7 for the complex conjugate of w. We
have a hermitian pairing between ¢ € A(U(A)M (k)\G(A)), and ¢' € A(U(A)M(E)\G(A))_=
given by

<¢7 ¢/> = /K/M(A)l ¢(m1k)¢/(m1k) dmldk
Notice that if 7 € P then —7 € ‘B.
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For ¢ : P — AUA)M(k)\G(A)) with ¢(m) € A(UA)M(E)\G(A)), (7 € ), the
Eisenstein series attached to ¢ is defined by

E(¢,m)(9):= >,  o@)(vg), geGA).

YEP(R\G(k)
This converges absolutely on
CH(B) ={reP; (Rer — pp, a”) >0, for all « € R*(Ay, P)}.

Take w € W such that w(M) is again a Levi factor of a standard parabolic subgroup
containing My. In U(2,2) case this means w(M) = M. We have the intertwining operator

(M, m)6)(0) = [ 0l ug) du.

where ¢, € A(UA)M(E)\G(A))z, Uy := Uy Nw(U~) and w is a representative of w in
the normalizer of Ay(k) in G(k). This converges absolutely on

"
Cp(B,w) := {ﬂ' SRY } (Rem — pp, a’) >0 < sucfﬁrtigtawi{; }(%é](v[/ij\]/fj,)PJ } .

2.1.9. Constant terms of Fisenstein series. For a standard parabolic subgroup P = MU
of G, we have the Weyl group WM C W of M. Let P’ = M'U’ be another standard
parabolic subgroup. Set

ii) w(M) is again a Levi component of a standard
parabolic containing M,.

WMI{’UJEW

i) w is of minimal length in the coset wW™ }

WM,M’ = {w e Wuy ‘ IU(M) C M/}

Now let E(¢,7)(g) be as in 2.1.8. Then the constant term of E(¢, 7) along the parabolic
subgroup P’ = M'U’ is given by

Ep(¢,m)(m)= > EM(M(w,m)é(r),wr)(m), (me M(A))

weWM,]\/I/

where

EM' (M (w, m)(m), wr)(g) = > M (w, m)é(m)(79).

ye(wPw—INM")(k)\M’ (k)

2.1.10. Eusenstein pseudo-series. For each ¢ € Py ), we define

0s(9) == Y, F(®)(rg), (geGA)).

YEP(R\G(F)

Then the sum on the right hand side converges absolutely and uniformly on any compact

subsets of G(A). 6, is in L*(G(k)\G(A)), and
{0410 € Parsp), (M, ) runs over all cuspidal data.}

spans a dense subspace of L*(G(k)\G(A)).
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2.1.11. The inner product formula. Let (M,B) and (M’,’) be two cuspidal data. Set
W(‘B"B,) = {w € Waum ; w(M’ ‘B) = (M/’m,)}'

Two data (M, ) and (M’,’) are said to be equivalent if the set W (3, ') is non-empty.
The following theorem is [MW] Théoreme I1.2.1.

Theorem 2.1. Let (M,'B) and (M',B’) be as above. Then for ¢ € Purgpy and ¢' €
P sy, the hermitian inner product of 04 and 0y is given by

(0p, Or) L2(Gr)\G ()

(2.2) B 1 dimayy o
- <27T\/__1> /776‘13,R67r>\0 wev{%m/) (M(w,m)p(m), ¢'(—wT)) dr.

Here the hermitian pairing in the integrand is that of 2.1.8 and \g € Re(C}(R)).

We write € for the set of equivalence classes of cuspidal data for GG. For each equivalence
class X € €, L*(G(k)\G(A))x denotes the closed span of 8y’s (¢ € Parg), (M, ) €
X) in L*(G(k)\G(A)). Then as a corollary of Theorem 2.1, we have the direct sum
decomposition

(2:3) LA(G(kN\G(A)) = D L*(G(k)\G(A))x

Xee

3. THE CONTRIBUTIONS OF CUSPIDAL DATA ATTACHED TO F

To decompose the non-cuspidal spectrum of G, we first decompose the inner product
(2.2) in Theorem 2.1. From (2.3), it is enough to analyze (0y, 0y) r2(Gn\c(a)) for ¢ and ¢
belonging to the same equivalence class of cuspidal data. We say that a cuspidal datum
(M,*B) is attached to a standard parabolic subgroup P if M is the Levi factor of P. €p
denotes the set of equivalence classes of cuspidal data attached to P. In this section, we
study (s, 0) L2(cn\G(a)) for ¢, ¢ belonging to cuspidal data attached to F.

As in [MW] V.2.1, we rewrite (2.2) as follows. For X € €p, define

Pyi= @B Pup, 0= > O, .,
(MP)ex (M P)ex

where ¢ = ({13 (. p)ex € Px. Take (M,P) € X and write

A, ¢)(m) = > (> Mw,md(r), $lapg)(—w)),

(M",B)eX weW (B,P)

where ¢ € P and ¢ € Px. From now on we consider
(M,B)

dim apys
1
1 0, 0412 —(—— / A, &) () d
(3.1) (05, 00) L2(GN\G(A)) <27T\/_—1> e e, (¢, ¢')() dm

instead of (2.2).
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3.1. Singular hyperplanes. Let the notations be as above. For a subset & C ‘33, its
vector part &° is defined to be {\ € a};c|A® & C &}. A subset & C P is called an
affine subspace with vector part defined over R if

(1) Re(S) is an affine subspace in a}, whose vector part is Re(&Y),

(2) 6% :=Re(6") @& C C aj;¢ equals &°.
An affine hyperplane with vector part defined over R is an affine subspace & with vector
part defined over R, such that codima7\4Re(60) = 1. It is known that the singularity set
of A(¢,¢')(m) is a union of affine hyperplanes with vector part defined over R. We write
S(hM,ep) for the set of these singular hyperplanes of A(¢,¢') (¢ € Parsp), ¢ € Px). In the
following, we give a list of elements in S(hMom) which intersect the positive chamber.

Each 7 € 8 is decomposed into a restricted tensor product @, m,, where 7, is a smooth
irreducible representation of M(k,) if v is finite and of (LieM (k,) ®@r C, M (k,) N K,,) if
v is archimedean. We write B, for the set of local representations m,, which appear as
the v-component of some 7 € PB. By replacing | |4 with | |, in 2.1.6, we have the local
Harish-Chandra map Hy, : M (k,) — ayr. This gives local analogues Rer,, Imm,, C} (%B.)
and C} (B, w) of Rer, Imm, CF(P) and CF (P, w), respectively.

We may assume the Eulerian decomposition
(3.2) M(w, m)¢(r) = Q M(w, m)dy(m,) (7 € CH(P,w)).

Here ¢,(m,) is contained in the space Indggzzg[m ® 1y, and

(M m)oum)(0) = [ oulm)ing) dn (g € G(k))
for m, € CH(By, w) (cf. [Sh3]).

3.1.1. Analytic behavior of local intertwining operators. For the rest of this section, our
cuspidal data (M,*B) are always attached to Fy. Since Wy, = W, we have to study
M(w, m,)p,(m,) for all w € W. We write 7 € B in the form

T = ® pg : Mo(A) 3 d(z1, 22) — pa(w1)pa(2) € C*,

where p; = ®,, ttiw (1 = 1,2) are quasi-characters of A, /k'*. We fix a non-trivial additive
character v, of k, at each v. In particular we set

o (z) = Yr(x) = exp(2my/—1z) if v =R,
‘ Ye(x) =Yg o Trer(x) ifv=C.

Now the normalization factor r(w,n,) for M(w,m,) is given as follows (cf. [KS] §§2-3,
[Ar2] §3).

(1) The case of the simple reflection w,. In this case (Up)}, = UpN M, and Go, p =
Resys /k, SL(2) in the notation of [KS] §2. Thus

L(07 7TU7 Twl)
L(1, 7y, 7, )E(0, Ty, Ty s U)

r(wy, m,) 1=
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where

L (8, i ,wha ) if v is inert in &/,

Ly (s, /’Llywll’[’;ﬂllq)Lk/(S? ul,w,u;ﬂlm) if v splits in £/,

L(s, Ty, T, ) == {

)\(kiy/kv,wv)gk/(s,ulwuib, Yy 0 Tryy i) if v is inert in &/,

ELS, Ty, Ty W) = — _ . ..
( ' ¢ ) {6:’?'(87’1’1,1111”2,%111’ ¢v)5k’(3,l¢1,w2#2,3u27%) if v SphtS in &'.

(2) The case of the simple reflection wy. We have (Up),, = Uy N My and Gapp =
SL(2). Hence by [KS] §2,

L(07 7TU7 TU)Q)
L(1, 7y, 7, )E(0, o, Ty U)

r(wg, m,) 1=

where

L. (s, p2lpx ) if v is inert in &/,

L(s, 7y, ry) = {

L (s, 2w fl2,w,)  if v splits in £/,

kS if v is inert in &’
6<877Tvyrw2,¢v) = { k( 7“2710‘19571/11;) ’

k(8,2 2wy, Yy)  if v splits in &'
(3) The case of general w € W. Each w € W can be written as a product of simple

reflections w; (i = 1,2). We take such an expression w = w;w;, ---w;, (0 < k < 4),
which is reduced. Then the normalization factor is given by

r(w, my,) = r(Wiy, Wiy, Wi, Tp)T(Wiy, Wiy -+~ Wi, Ty) -+ -7 (Wi, Ty).

This does not depend on the choice of the reduced expression of w.

For w € W, write inv(w) for the set of positive roots a € R*(P,, Ag) such that wa ¢
R™(Py, Ag). Then the analytic behavior of the local operators M(w,m,) is stated as
follows.

Lemma 3.1. (1) M(w,m,)p,(m,), r(w,m,) are holomorphic and non-zero at m, € B,
such that (Rem,, ") > 0 for any a € inv(w).

(2) The normalized intertwining operator N(w,m,) := r(w,m,) *M(w,r,) is unitary at
Ty € P, with (Rem,, ") =0 for any o € inv(w).

Proof. (i) The holomorphy of M (w,m,)¢,(m,) was proved in [BW] IV 4.3, 4.5 if v is
archimedean and in [loc. cit] XI 2.6 if v is non-archimedean. The statement for r(w, m,)
is clear from its definition.

(ii) This is a special case of [Ar2] Theorem 2.1 when v is archimedean, and of [KS]
Theorem 3.1 when v is non-archimedean. [

3.1.2. Analytic behavior of global intertwining operators. We go back to the global situa-
tion and define

r(w,m) = []r(w,m), N(w,7):=r(w,x)" ' Mw,n).

For m = p1 ® g € P and o € RT(Py, Ap), define a quasi-character oY (m) by

oy () = mpy', Y(r) = puala, BY(R) = (a0 d), By (m) =l
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Lemma 3.2. (1) N(w,m)¢(w) is holomorphic at m € P with (Rew, ¥) > 0 for any
a € inv(w).
(2) r(w, ) has simple poles at ™ € P with

Oév(ﬂ') _ {| |Ak/ if oo = oy or B,

| la fa=ayorp,
for some a € inv(w), and is holomorphic at other m € P with (Rer,a¥) > 0.

Proof. (i) For each P and ¢ € Py,p), we take a finite set S of places of k, so that
if v ¢ S then 7, € P, is unramified and ¢,(m,) equals gb?rv, the K,-fixed vector in
Indg(f?,:j) (7m0 @ Lng(ky)) With ¢2 (1) = 1. Then the Gindikin-Karpelevich formula ([La2] p
45) gives

M(w, m)ou(m) = M(w, m)62, = r(w,m)d%.  atv g s,
and hence

M(w, m)¢(m) = @ r(w, m)N(w, 7o) dy(ms) @ Q) r(w, )¢y,

veS vgS

=r(w,m) Q) N(w, )¢y (1) @ Q) ¢,

vesS vgS

]V(lU,W CED]V-IU Ty ¢v Ty @Q(Eb‘ﬁwv

vesS vgS

Now the assertion follows from Lemma 3.1.
(ii) This is clear from the definition of r(w, ) and fundamental properties of Hecke
L-functions. O

3.1.3. Singular hyperplanes. We write S +qs) for the set of elements in S?M,m), which
intersect the closure of the “positive Chamber

{m € P; (Rem,a"’) >0, for any a € RT (P, Ap)}.

Then from Lemma 3.2, we have

S ={meP;ay(m)=]]a, .}
Ght Sy={meP;aj(n)=|]s}
M)~ ) Gy = {71 eP; B (r)=]l|a,}
Syi={meP;By(n)=]|a}

3.2. Decomposition of the scalar product.

3.2.1. Notations. Recall some general notations from [MW] V.2.1. Let P = MU be a
standard parabolic subgroup. Take X € €p and (M,B) € X. S(tw:p) denotes the set of

intersections of elements in S(hM+ ) For 6 € S(ng,‘ﬁ)’ we define its origin o(&) € a}; to be
Re(&) N (Re(&?))+. Here ( )+ denotes the orthogonal complement in a}; with respect to
the fixed W (Ays)-invariant inner product. We write dgm for the Lebesgue measure on &
defined by the W (Aj)-invariant metric on aj,. Recall that 2(&) € Re(&) is general but
near o(S) if for any &’ € S(ng,‘ﬁ) properly contained in &,

(1) 2(6) ¢ Re(&)

(2) If Re(®') intersects the ball of radius ||z(&) — o(&)|| with the center o(&), then

0(6) is contained in Re(&).
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3.2.2. The first step. Going back to the situation X € €p,, (My,B) € X, we have (cf.
Figure 1):

B (codim,:Re(&) = 0)
61, 62, 63, 64 (codimagRe((‘S) = 1)
(33) S(—’]—Wo,‘B) = 6172 = 61 N 62, 6274 = 62 N 64,
62,3 = 62 N 63, 61,3 = 61 N 63,
Gi14:=61N6G, (codim,:Re(6) = 2)
o(B) =0
(3.4) — _® _ _ D
. 0(61) = a1, 0(6y) = o 0(63) = f1, 0(B64) = b)Y
0(61'7]‘) = Re(@i,j), (1 <1 <] < 4)
Re(64)
Q9 &
0(G3) Re(CF, ()
Re(S,) 0(S2) = Re(Gy3) = Re(S,
ﬁl RG(GLQ)
»Re(S
0(64) ﬁ2 ( 173)
ar¥%0(6,)
=614
Re(Gg)

Re(e5)

FIGURE 1. Re(&) (& € Sy ))-
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Recall that Ay € af in the formula (3.1) is contained in Re(C, (3B)). We denote Ej for
the set {&1, Gy, &3, 64}. Fix a path I' from Ay to o(*P) as in Figure 2. This is general in
the sense of [MW] V.1.5. We put yg := Re(&) NT for & € E.

Re((‘54)

Q9 &

Ys
Re(62> Yoo

5

Yss
Ys,

\ /

o

651

Re(Gg)

he(e)

FiGURE 2. The path T

The first step to decompose the scalar product is to move the integration axis from
Rem = A\g to Remr = 0. But before doing this, we must estimate the integrands to apply
the residue theorem. For each w € W we write

Ay(o, ¢")(m) = (M(w, m)¢(m), ¢'(—wT)) = r(w, T)(N(w, T)d(), ¢'(—wT)).
r(w, ) is decomposed into a product of the form

L0, xa) -+ - L(O, xp)
L(17 Xl) e L(la Xp)’
where L(s, x;) are some Hecke L-functions and £(s, x;) are their root numbers. We write

L (s,x) and Lg(s,x) for the infinite and finite factor of L(s,x) respectively. Since
(s, x;) are certain exponential functions in s, they are bounded in every vertical strips.

r(w,m) = (£(0,x1) - - -£(0, xp))
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It is well-known that Ly, (s, x;) are of the order of a polynomial in Im(s) in any vertical
strip. Also a classical calculation shows that L, (s+1, x;) ™" is of the order of a polynomial
in log(Im(s)) in the region Re(s) > —d for some sufficiently small positive . For these
facts see [Ay]. Finally we use the Stirling’s formula to see that L. (s, xi)/Leo(s + 1, Xi)
are slowly increasing as Im(s) tends to infinity in every vertical strips in Re(s) > 0. Now
we recall that we have taken ¢ and ¢’ to be of Paley-Wiener type, so that they decrease
rapidly as Im(s) goes to infinity. Summing up, the term A, (¢, ¢')(7) tends to 0 as Im(s)
goes to infinity, uniformly in each vertical strip. Thus we can apply the usual residue
theorem to them.

Applying this to the integrand A(¢, ¢')(m) when it gets across each element of Ey, we
obtain

1 2
0y, 04) 12 _ / A6, ) () d
(0s, Os) L2 @00\G8) <2W \/_—1> oz A& dr

1
Rest A(é, ¢') () d
=] o terye, 8 A@.0)(m) doym

1
3.5 o Res® A , p
( ) - 2m\/—1 Jre&s Rer=ys, 562 (¢, ¢ )(7‘(‘) G, T

1
_|._ e
2w/ —1 m€G3,Rem=ye,
1
+
2ty —1 m€64,Rer=yg,

Here Res2A(¢, ¢') denotes the residue of A(¢,¢’) along &, which is a meromorphic
function on &.

Resg, A(¢, ¢')(7) deym

Resg, A(¢, ¢') (1) de,T.

3.2.3. Calculation of the residues. To carry out the second step, we must first calculate
the residues ResE A(¢, ¢') () appeared in (3.5). We write Ly (s) and £5(s) for the Dedekind
zeta function and its root number of k, and Ly (s) and e4/(s) for those of k'. ¢, and ¢
denote the residues

Ly (s)
Lk(s —+ 1)€k(8)7
Then the residues are calculated as:

Proposition 3.3. The residues Ress A(¢, ¢')(n) are calculated as follows (7 € &).

Resd, A(¢, ¢)(m) = V2er [ (N (wy, m)(7), ¢ (—wn7))

(1) + (M (wz, w1 )N (wy, 7)p(7), ¢’ (—waw1 7))

+ (M (wywq, wiT) N (wy, ™) (1), ¢ (—wiwewyT))

+ (M (wywywa, wy )N (wy, m)g (), ¢'(—w_7))].
(i) Resg, A(¢, ¢')(m) = Ck[<N(w2,W)¢(W), ¢ (—woT))

+ (M (w1, wom) N (wg, 7)p(7), ¢’ (—wiws7))

+ (M (wawy, wom) N (wa, T)P(m), ¢’ (—wowiw,T))

+ (M (wywawy, wym) N (wa, m)(w), ¢ (—w 7))
(iii) ResGSA( @) ()

Lk/(s)
Lk/(s + 1)€k/(8) .

cr = Res,_; cr = Resg—y

E

ii

E
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= V200 [(N (w1, warr) M (w3, ) (), ¢ (—wiwy7))
+ (M (w2, wiwem) N (wr, war) M (w2, 7)(7), ¢ (—wawiwsT))
+ (N (wy, wowym) M (wawy, ) (), ¢ (—wiwowT))
+ (M (wyws, wiwe) N (wy, wom) M (we, 7)o (1), gb'(—w_ﬁ))}.

(iv) Resg, A(¢, ¢')(T)
(N (ws, wim) M (wy, )(7), ¢ (—wawrT))
+ (N (wg, wiwam) M (w1ws, T)P(7), ¢'(—wawiwyT))
+ (M (wy, wow ) N (we, wym) M (w1, 7)p(7), ¢ (—wiwewT))
+ (M (wawy, wywy )N (wy, wim) M(wy, )6 (r), ¢ (—w_7))].

= Ck

—

Proof. The proof is straightforward and will be omitted. Note that

V2
1 if a is a long root.

ds,m o]l |5 if ais ashort root,
dav(r) (o, aY)

a

3.2.4. The second step. In the second step, we move the integration axis Remr = yg in the
right hand side of (3.5) to Remr = 2(&), where z(&) is general but near o(&) in the sense
of 3.2.1. Then we take the limit as z(&) tends to o(G).

(1) Contributions from ResglA(¢, ¢')(m). We begin with the second term in the
right hand side of (3.5). We take z(&;) to be 0o(&;) and apply the residue theorem to
have

1
2w/ —1 Jre&1 Rer=ys,
(3.6) __ 1 Res® A6 &) () d
T ocoenmoey) o5& A0, ) () deym
+ Resg! ResGIA(¢ ¢')(S1,2) + Resg! 3Res€,1A(¢ &) (G13).

We shall study each terms in the right hand side.
(1-i) The first term: We have to check the well-definedness of

1
— Res® A de,m
2w/ —1 €61, Rer=0(61) &1 ((b (b >( ) &1
when 6,4 = 6, N G4 is non-empty. In this case &1 4 = (1 ® o satisfies ,ul,u2_1 = | |Ak”
pilax = | |a and in particular o(ui)ps = of (wewym) = 1. We know from Proposition 3.3

(i) that

Res®, A(¢, @) (n) de, 7

NE k/Res“&A(qb ¢)(m)
. =(N (w1, m)¢(r), ¢/ (—wiT)) + r(wawyws, wim)(N(w_, 7)p(r), ¢ (—w_7))
' +7(ws, wim) (N (wawy, 7)(7), ¢ (—wywn 7))

+ (M (wy, wowym) N (wowy, 7)P(), &' (—wiwawT))|.
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First consider
r(wowiwsy, wymT) = (r(wg, wywew )7 (W, wlw)) - r(wy, WewyT).

The simple zero of the first term kills the simple pole of the second term. Hence the first
two terms on the right hand side of (3.7) is well-defined at & 4. As for the rest terms,
we know from [KS] Proposition 6.3 that M (w;, wew1S;4) = (—1)Id. Thus inside [ | has
a simple zero at m € &, 4, which kills the simple pole of r(ws, wym). The well-definedness
is proved.

(1-ii) The second term: We calculate the residue Resgi’zResgglA(gb, ¢')(m). The terms

(N (w1, m)¢(m), ¢ (=wim)), (M (wa, urm)N (w1, T)(r), ¢'(—wawiT))
(M (wywa, wym)N (wq, m)P(T), ¢(—wiwew;T))

are holomorphic at &, o, while

Resgi2 (M (wowywg, wym) N (wy, ) (), ¢'(—w_T))

d , —
= da%I(Z)CMN(w%w1w2w161,2)M(w1w27w161,2)N(w1, 61,2)615(61,2), ¢ (—w_6172))
1

= \/ickUV(wg,w1w2w161,2)M(w1w2, w161,2)N(w1, 61,2)¢(61,2)7 Qy(—w—@m»-

Hence we have

(38) R‘esgi,2Resg1A(¢a ¢/)(61,2>
= QCka/<N(’UJ2, w1w2w161,2)M(w1w2, w16172)N(w1, 61,2)¢(61,2)7 ¢/(—w7@1,2)>-

(1-iii) The third term: We calculate the residue ResgiaResgglA(gb, ¢')(m). Among the
terms on the right hand side of Proposition 3.3 (i),

(N(wr, o), ¢ (—wim),  (M(wn, wim)N(ws, m)(r), ¢ (—wpwim))

are holomorphic. As for the rest two terms, we have the following two possibilities. Note
that writing &, 3 = j; ® po, we have p1o0 (o) = g © Ny g, = 1.

CASE 1. ,LL2|A>< = Nk’ /k-
In this case, noting M (ws, wywow; 6, 3) = Id by [KS] Proposition 6.3, we have

(3.9) Resgiﬁ(l\/[(wlwg,wlﬁ)N(wl,ﬂ)¢(7r), @' (—wywawT))
= ﬁck’(-]\[(wl;w2w161,3)M(w2aw161,3)N(w1> G13)9(613), ¢ (—w_G13)),

and

Resgi3 (M (wawywa, wim)N(wy, 7)P(7), ¢ (—w_T))

(3.10) _
= \/ﬁck/<N(w1,w2w16173)]\/[(w2,w161,3)N(w1, 61,3)¢(61,3), ¢’(—w,6173)>

CASE 2. pg|px IS TRIVIAL.
The formula (3.9) still holds. But in this case, M (wq, wiwow1S;3) = (—1)Id by [KS]
Proposition 6.3. Thus the formula (3.10) must be multiplied by —1.
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In both cases, we take summations of the two terms and have

(3.11)
ResgisResqélA(@ ¢')(m)
{ 40% <N(UJ1, w2w16173)M(w2, U}16173>N(’UJ17 61,3)¢(61,3)7 ¢/(_w7@1,3)>

if pofpx = Nk’ ks
0 if pio|px is trivial.

(2) Contributions from Res‘ét A(¢p, ¢')(m). Next comes the third term in the right
hand side of (3.5). We take 2(&3) to be 0(S,) and apply the residue theorem to see

(3.12) Resg, A(¢, ¢')(7) de, T

1
271'\/ — 1 TI'EGQ,Reﬂ'Zy62
1

B 271'\/ —1 TEG2,Remr=0(G2) ReSGQA(gb gb )( ) d627T + ReSGQ 3R6862A(¢ ¢ )( )

+ Resg? Res§, A(¢, ¢') ()

We study each terms on the right hand side in turn. The first term has no problem.

(2-1) The second term: We calculate the residue R6862 3ResGQA(gb ¢')(m). First note
that Ga3 = iy ® o satisfies pgax = | |4, 10(2) = | |ax and hence o(upy') =
ay (wawywar) is trivial. Among the terms in the right hand side of Proposition 3.3 (ii),
(N(wq, m)p(), ¢'(—wsT)) is holomorphic at &, 3, and

R6862 M (wy, wom) N (wa, m) (), ¢ (—wiwsT))
i <N(w1w2, 62,3)¢(62,3)7 ¢/(—w1’w2@2,3)>

= 2ck/(N(w1w2, 6273), gb'(—wlwg@g,g)).

As for the rest two terms, we have

Resgi,g (M (wawy, wom) N (wg, 7)p(m), ¢'(—wowywoT))

+ (M (wywawy, wom) N (w, T)p(7), ¢'(—w_7))

IQCk/ lim {’I"(UJQ, ’w1UJ27T) (M(wl, wzwl’wzﬂ') —+ Id)}
7T—>¢é2,3
TeG2

X (N (wawiws, G23)P(S23), ¢’(—w,@2,3)>.

From [KS] Proposition 6.3, M (w;, wawwym) 4+ Id has a simple zero at S, 3, which kills
the simple pole of r(ws, wywem). Thus the limit exists. Summing up, we have

(3.13)
Res@g 3R6562A(¢ ¢')(m)
=2cpcp {(N(wlw% 62,3)625(62,3), ¢’(—w1w26273))
+ hm [r(wa, wlwgw)<M(w1,w2w1w27T) + Id)]

T—G62 ,3
7r662

X (N (wywnw, &5)0(Sn3), ¢ (—w-Gag))]
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(2-ii) The third term: Calculate the residue R68624R6822A(¢ &)(m). Gaa = p1 @ o

satisfies pi1]ax = pio|ax = | |a. Since the case p; = us has already been treated in (2-1),
we assume p1 # po. Then

R68624<N(w2,77)¢(7r) "(—weT)
R68624<M(w1,w277)N(w27 T)(m

0
, @' (—wiweT)) =0
Resng(M(wal,wﬂ)N(wQ, T)P(), ¢ (—wawwyT))
= (N (wa, wwsGs ) M (w1, W3S 4) N (wy, Go4)d(Ga4), ¢ (—wowiweGsy))
R6862 (M (wywawy, wem) N (wg, m)(7), ¢ (—w_T7))
= cp (M (w1, WowweSs 4) N (wa, w1weSs 4) M (w1, WeSa 4) N (we, S2.4)P(Sa4),
' (—w_Gqy)).

)=
)

Hence
(3.14)
Resg? Res§, A(¢, ¢')(7)
= 02<N(w2, w1 we Sy 4) M (w1, weSa4) N (wa, G24)0(S2,4), ¢'(—w2w1w2@274)>
+ Ci<M(w1, w2w1w26274)N(w2, w1w26274)M(w1, w26274)N(w2, 62,4)625(62,4),
¢ (—w-Gs4)).
(3) Contributions from Res‘ggA(gb, ¢')(m). We choose z(S3) to be any point on the

segment tying ys, and o(G3) but not to be 0(S3). We use the principal value integration
theorem, at first formally, to have

1
o 1 Resg, A d
27T\/—_1 /7f€637Re7r=yb3 es@ (¢ (b )( ) &3

1
:M\/_ oo [Re563A(¢ ¢')(m) + Resg, A(¢, qy)(wlw)] de,

+ ResGQSReSGSA(qﬁ ') ().

(3.15)

(3-1) The first term: First we need to check the limit

1
; - B / B /
(3.16) Z(GSI)LI%(GS) /ﬂeeg,Reﬂ:z(es) 2 [RQSGSA(¢’ ¢)(m) + Ress, A6, ¢ )(wﬂ)} de;m

exists. From Proposition 3.3 (iii), we know that

Resg, A(¢, ¢') (1) + Resg, A(¢, ¢') (wi)
() =v2ex | (N(wy, worr) (M (ws, 7)¢(m) + M (wywy, wrm)p(wn) ), ¢ (—wiwa7))
() + (N (wr, wawy ) (M (wa, wim)¢(wnm) + M(wawy, m)$()), ¢ (—wiwawn 7))
(I11)
+ (M (wa, wywam) N (wy, warr) M (w, m)$ (), ¢ (—wywywy7))

+ <M(’UJ1UJ2, ’w1UJ2’w17T)N(UJ1, wzwlﬂ)M(UJQ, w17r)¢(w17r), (b’(—wgwleﬁ)))
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(IV)
+ (M (wywa, wywam) N (wy, wym) M (wy, )¢ (r), ¢'(—w_7))
+ (M (wa, wiwowT) N (w1, wawm) M (we, wym) ¢ (wy ), (b'(—w,ﬁ)})}

As for (I), we have
M (wa, m)d(m)+M (wawq, wym)p(w;ym)
=r(ws, )N (wsq, ) {gb(ﬁ) + M (wy, wlﬁ)(b(wlw)} )

Since a1 (82 3) = 1, we see from [KS| Proposition 6.3 that ¢(Sq3)+M (wy, w1623)d(Sa3) =
0. This kills the simple pole of r(ws, 7) and (I) is well-defined at G4 3. (II) can be treated
in the same manner. The terms (III) and (IV) must be handled together. (III) becomes

<(7"(w2a wywaT )1 (w2, ™) N (wawiws, T)() + 1(wiws, wiww: T)r (we, wiT)
N(w-, wlﬂ)dﬁ(wﬂ))a ¢/(—w2w1wﬁ)>
=(r(wa, wywam)r (wa, )N (wawywa, m) (¢() + M (wy, wim)d(wy)),
¢'(—w2w1wﬁ)>,
while (IV) becomes
(r(wiwa, wywym)r (wa, TN (w_, ) ()
+ 7 (w2, wiwawy T)r (W2, w1 ) N (Waw wg, w1 T)P(wy ), ¢'(—w—7)>
(M (w1, wywywym)r(ws, wywsm)r(ws, ) N (wywyws, )

x (¢(m) + M(wy, wim)d(wim)), ¢ (—w_7))

We now apply Proposition 6.3 of [KS] to M (wy, wym) and to M (wy, wewjwsen) to see that
(III)+(IV) is well-defined at G4 5. Thus the limit (3.16) exists.

(3-ii) The second term: We calculate the half of the residue Resg;aRes‘g?)A(gb, @) ().
Among those terms appeared in the right hand side of Proposition 3.3 (iii), the first two
have the residue

Resg?, [(N (w1, wom) M (ws, m)¢ (), ¢ (—wiws7))
+ (N (wr, wowy ) M (wawn, m)$(m), ¢ (—wrwawnT))|

= Ck{<N(w1w27 62,3)¢(62,3)7 ¢/(_w1w2@2,3)>

- <N(w1w2,w162,3)M(w1, 62,3)¢(62,3)7 ¢/(—w1’w2@2,3)>}

= — 2V2¢,(N(wiwa, G23)0(Ga3), ¢ (—wiw.Gy3))

Here we have used w1S935 = Go3 and M (wy, Ga3) = (—1)Id (Proposition 6.3 in [KS]).
As for the rest two terms, we have

Resgg,a [<M(w2’ wlw?ﬂ-)N(wlv MQW)M(U}Q’ 7T)¢(7T)a ¢/(_w2w1w27)>
+ (M (wyw, wywam) N (wy, warr) M (wa, m)é(7), ¢ (—w_7))]
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:Resggﬁr(wg, wywam )T (W, ) {(N(wgwlwg, T)P(), ¢ (—wawywyT))

+ (M (wy, wawywom) N (wawiwy, 7)o (), ¢/(_w—7)>}
d@Sﬂ'

Tebs

X (N (wywiws, G23)0(Sas), ¢'(—w_Gyy))

=2v2¢;, lim [r(wg, wlwgw)(M(wl, Wow waT) + Id)}
7T—>¢é2,3
TeBG2

X (N (wawiws, Ga3)P(S23), ¢’(—w,62,3)>.

Note that M (wy, woww2&sy3) = (—1)Id by [KS] Proposition 6.3, hence the limit in the
above formula exists. Also we have used

li —92 1 ,
Jim ()=2 lim ()
€G3 €Sy

Now we conclude
1
iResgzﬁRes"gSA(qﬁ, &) ()

= — QCka/{ lim [r(wg, wlwgw)<M(w1, Wow waT) + Id)]
—G2.3
TEGy

(3.17) =
X (N (wowiws, Ga3)p(Sa3), ¢'(—w_6a3))

+ (N(wiws, Go3)0(6a3), ¢,(—w1w2§2,3)>

(4) Contributions from ResglA(gb, ¢')(m). 2(6y4) is chosen to be 0o(G,). From
Cauchy’s integration theorem, we have

1

S Res® Ao, &) () d
o7 /__1 €64 Ren=ys, 6864 (¢7¢)(7T> 6T

1
- 2w/ —1 T€S64,Remr=0(G4)

3.2.5. The final form of the inner product formula. Now we compile the formulae (3.6),
(3.19), (3.20), (3.12), (3.13), (3.21), (3.15), (3.17) and (3.18) and apply them to (3.5).

Theorem 3.4. Tuke X € €p, and (My,B) € X. Then the L*-inner product of 0, (¢ €
P(Mo,‘n)) and Oy (@' € Px) is given by

(3.18)
Resg, A(¢, &) (r) de,T.

1 2
0, 0012 —— / A6, &) () d
(05, 05 ) L2(G )G () <2W \/_—1> S (¢, ¢')(m) dr

! ResE (6, &)(r) de,

+
27T\/ —1 WEGl,Reﬂ:O(Gl)
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* 27r\1/—_1 /7r662,Re7ro(62) Res&A(gb, ¢)(m) de,m
lim # 1

2(63)—0(63) 2/ —1 Jrees Renr=2(65) 2
1

27T\/—_1 T€G4,Remr=0(64)

> Res‘g?)A(gb, &) (wr) de,m

w=1,w1

Resg, A(¢, ¢) (1) de,m

_|_

+

(3.19)

+ QCka/<N(’w2, w1w2w16172)]\/[(w1w2, w16172)N(w1, 61,2)¢(61,2)7 Qy(—w—@m»
(3.20)

+ 4cp (N (wr, wow1 61 3) M (wa, w1S1 3) N(wi, G13)8(S13), ¢'(—w-6G13))
(3.21)

+ 4¢3, [<N(’w27 w1w2Ss 4) M (wr, waGs4) N (w2, G2.4)P(Sa4), ¢ (—wrw1w2Ss4))

+ (M (w1, wowweSs 4) N (wa, w1weBs 4 ) M (w1, WeBa 4) N (w2, G24)P(S24),
¢ (—w_8y4))].
Here in the term (3.21), G4 # Ga3.

3.3. The residual spectrum from F,. In this subsection, we describe the contributions
of cuspidal data attached to Py to the residual spectrum. Only the terms (3.19), (3.20)
and (3.21) contribute to the residual discrete spectrum. To determine these contributions,
we shall study the images of intertwining operators appearing in these terms. We need
some results from [KSw] and [LeZ].

3.3.1. Review of the results of Kudla, Sweet, Lee and Zhu. Their results describe the
complete irreducible decomposition of certain degenerate principal series representations
of U(n,n) (inert case) and GL(2n) (split case) over a local field. Though our review
concentrates on the case n = 2, their results cover the general rank case.

(1) The non-archimedean inert case. Take a non-archimedean place v of k which
is inert in &', and let w be the place of £’ lying over v. For each character y, : k'), — C!
and s € C, we write I(s, x,) for the degenerate principal series representation;

I(s.x0) = Indg ) (v © det) et 2, © Lo s, ).
Proposition 3.5 (Theorem 1.1 in [KSw]). (1) I(s, x,) is reducible if and only if x, o
Nk, 18 trivial.
(2) If Xolpx =1, then the points of reducibility are sp = —1, 0, 1.
(3) If Xolpx = Mk, ,» then the points of reducibility are so = —1/2, 1/2.
Here gy 1, is the quadratic character of k) corresponding to k[ k, by the classfield theory.

To describe the irreducible constituents of I(s, x,) at its reducible points, we need
oscillator representations for unitary dual pairs. We write a reducible point so = (m—2)/2
where m equals one of m = 0,1,2,3,4. We first consider the case m # 0. The m-
dimensional non-degenerate Hermitian spaces (V, (, )y) over k! are classified as follows.

(1) When m = 1, there are, up to equivalence, two possibilities
‘/i,i = kiua <ZE, y)Vl,i = $Q25(y)7 (Z = 17 2)7
where Q1 =1 and Q2 = € k¥ — Ny ., (K'7).
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(2) When m = 2, there are two possibilities up to equivalence

V2,i = k,$2a <x7y>V2,i = in&(ty)a (Z =1, 2)7

Q= <(1) (1)> @ = (g —01>'
7 is same as in (1).

(3) If 3 < m <4, then there are two possibilities V,,, 1 and V}, 2, where

where

Vo Vii®Voy ifm =3,
T\ Ve @ Ve ifm=4."

We write U(V,,;) for the unitary group over k, attached to (Viui, (, )v,.,)- (W, (, )w)
denotes the anti-Hermitian space attached to G;

W=k (29w = 25 (ty).

Then we have the symplectic space

(WM,Z' =W Ok, Vinsis (,)w = Trkgu/k’v ((7 Jw @0 ((, >Vm,i)>)7

and write Sp(W,,;) for its symplectic group. G, x U(V,,;) is a dual reductive pair in

Fix a non-trivial character v, : k, — C!. Then we have the metaplectic group
1 — C'— Mp(W,.)o — Sp(W i ky) — 1,

and its oscillator representation wy,. We identify Mp(W,, ), with Sp(W,,;, k,) x C! as
a set. The multiplication law is given by

(91,€1)(92, €2) = (9192, €162¢0(1, 92)),  (gi € Sp(Wm,z‘, k,), € € (Cl)

where ¢,(g1, g2) is the metaplectic two cocycle calculated in [P].
Note that our X, satisfies x,|,x = Nkt jk,- Then from [Ku] Theorem 3.1, we have the
splitting
Ly, @ G(ky) X U(Vipi, ky) — Mp(Wop i)

attached to x,. Hence we can define the auxiliary oscillator representation wy, , —of
G (ko) xU(Vinis ko) by wy, 1= wy, oLy, . For simplicity, we twist the action of U(V,,;, k)
by the character (x,odet)™" and obtain the oscillator representation wy, ,,. Some explicit

formulae for its Schrédinger model S(V,23) are given by

(3.22) wy, . ((é 5(&1)>)@(x} = vo(det A)| det A|"2P(zA), (A€ GL(2,K.))

32 (5} 11))P0) = il e, BN, (B € Honlk /1)

320w (($ 0700 = 3 [ BT (xlenih ) dy

A2
Vm,i m,i

(3.25) Wy o (WO(@) = ("), (h € H(ky))
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Here, (z,y)v,,, denotes the matrix

(x1,y1)v,, (T1,y2)v, o
) m,i ) m,i , for r = (x ,T2), — ’ c Vmi’
<<5’527y1>vm,i <$2,y2>vmﬂ. (21, 22), ¥ = (Y1, 92) 7

and the measure in (3.24) is chosen to be self-dual with respect to the pairing tr(, )y,

m,i°

Hery (k;,/k,) denotes the space of 2 x 2 Hermitian matrices over k[,, and 77, ; is the usual
Weil constant for Try /i, ((, )v,..) With respect to v, (cf. [P]).
Now we write R(V},, x») for the image of the map

S(Via) 2@ — (9 = wi,xa (9)P(0)) € I(s0, x0)

(recall that sy = (m — 2)/2). Then Rallis’s coinvariant theorem ([Ra] Theorem II.1.1)
extended to the general case in [MVW] Chapter 3-IV Théoreme 7 asserts that

R(Vinis Xv) 2 (Wesyix0 U (Vi isko)s (the U(Vi, 4, ky)-coinvariant space).
Next we consider the case m = 0. U(1), denotes the unitary group
U(l)k//k = {g € Resk//ka; &(g)_l = g}

Then we have the k-homomorphism det : G — U(1)p/r. When m = 0, x, satisfies
Xolgx = 1. This allows us to define a character x/, of U(1, ky )ik by X, (25 (2)~") := xo(2).
(Note that every u € U(1,k,)p/x can be written in the form zg(x)™" for some x € k',
by Hilbert 90.) We write x¢ for the 1-dimensional representation y\/, o det of G(k,). We
define R(0, x,) := x&.

Proposition 3.6 (Theorem 1.2 and Proposition 5.8 in [KSw]). (1) The representa-
tion R(Vi1,xv) equals I1(1,x,) and R(Via,X,) is the unique irreducible submodule of
I(1, xy). The image of the normalized intertwining operator N(wowiws, (x, odet)|det |,)
equals R(0, x,) and its kernel equals R(Vy 2, Xy)-

(2) R(Vi1,Xxv) and R(V12, x0v) are two inequivalent irreducible submodules of I(—1/2, x,).
R(V31,x0) and R(Vaa, Xy) are two distinct mazimal submodules of 1(1/2,x,). The nor-
malized operator N(wywywy, (X, o det)|det|/?) induces isomorphisms

R(Vaixo) [ (R(Va1, x0) 0 R(Vaz, Xo) == R(Vig, xo), (i =1,2).

(2) The non-archimedean split case. Let v be a finite place of k which splits in &/,
and let wy, we be the places of k' lying over v. Then G, = GL(4)y, and

(A 0, ({1, B
o= (3 %) a peaum), vo-{(E 7

For each character x, = xw, ® Xw, of k, and s € C, define

BEMQ}.

I(s,x0) == () [((xu, 0 det)| det |3 ® (xyn © det)| det ;) @ 1, ,)].
Then we have

Proposition 3.7 (Theorem 1.3 in [KSw]). (1) I(s, x,) is reducible if and only if x, o
Nyt /by = Xun Xuwy = 1 and s = so with sg € {—1,-1/2,0,1/2,1}.

(2) I(s,xv) in (1) at its reducible point s = sg has a unique irreducible submodule A,
and the quotient ](SO,XU)/A 1s also irreducible.  Moreover the irreducible quotient of
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I(1/2, xv) (I(1, xy) resp.) and the irreducible submodule of 1(—1/2,x,) (I(—1,x,) Tesp.)
are both isomorphic to

G(ky _
Indp((&l))(kv)[((Xw1 o det) ® Xml) ® Ly k)l (X, 0 det resp.).

Here P31y = Mz yUsyy is the standard parabolic subgroup of G, such that My ~
GL(3) x Gy,.

(8) Above irreducible representations are related to the Weil representation as follows.
Write sg = (m—2)/2 withm € {0,1,...,4}, and consider the dual reductive pair G, x H,
with H, := GL(m),. We can construct an oscillator representation wy, , of G(k,) X
H(k,), for which explicit formulae for its Schrodinger model S(kP4™) are given by

(3.26)
wwv,xv((A Oz))fb(x,y) = Xun (det(AD))| det(AD)|;/*®(xA,y' D7), (A, D € GL(2,k,))

0, D
3 wnn(( 0))He) = A GB YD), (B €M)
(3.28) Wiy xo ((_Oi éi))@(m, y) = /kj‘??m O (u, v), (u'z + v'y) dudv
(3.29) Wio (M@ (2,y) = ©(h 7 (2,y)),  (h € H(k,)).

We write R(Vy,, Xv) for the image of the map
SHE™) 5 ® — (g - i, (B) € T2, v,).

Then

(1) R(Va, x0) = 1(1/2, x) and R(Vy, x) = 1(1, x0)-
(2) R(Vi, xo) is the unique irreducible submodule of 1(—1/2, x,).
(3) R(0, xy) defined to be X, o det is the unique irreducible submodule of I(—1, xy).

(5) These irreducible constituents are related by the normalized intertwining operators as
follows.

R(V1, xo) = ImN (wawiws, (xu, o det)| det [}/?) & (x, o det)| det |,/2)),
R(0, Xu) = ImN (wywiws, (Xu, o det)|det |,) @ (x;,! o det)] det[;")).

(3) The archimedean inert case. The situation is k], /k, = C/R. For each character
Xo of C* and s € C, we construct (s, x,) as in the non-archimedean case. We may assume
that y, is of the form y,(2) = (2/2)"/? (v € Z).

Proposition 3.8 (Theorem 6.2 in [Le]). The reducible points of I(s, x,) are so € v/2+
Z.

Next we describe the irreducible constituents of I(s, x,) at its reducible points sy. For
our purpose, it is sufficient to do this at

~1/2,1/2 ifv ¢ 27
S =
°71-1,0,1 ifve2z

We again write these sg as (m —2)/2 (m = 0,1,2,3,4). For m # 0 we classify the m-
dimensional Hermitian spaces V,,; (i = 1,2) just as in the non-archimedean inert case (by
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replacing  with —1). For each V},; we have the oscillator representation (wy, v, S(Vis))
of the dual pair (G(ky), U(Vyni, kv)) as in the non-archimedean case.

Let V,,;, = V;{’i © V,,; be the direct sum decomposition such that Trer(( , )m,) is
positive (negative resp.) definite (as a 2 x 2 symmetric matrix !) on Vi, (V,,; resp.). We
define an inner product (, ) ; on V,,; by

(,Y)ms fx,yeV,}

m,i)

<x7y>;r1,i = _<x7y>m7i ifl" ye m,i
0 ifxeV,!, and y € V, ;.

Using this we define the Gaussian function on V,27 by
99, (2) = exp(—mtr(z, 2),) € S(VE2).
Then the resulting space
S'(VER) = {@?,myi(x)P(x) | P(x) is a polynomial.}

of “standard functions” with respect to v, is the underlying (g,, K,) X (W(V,ni)c, Km.i)-
bimodule of wy, ,,. Here u(V,,;)c is the complexified Lie algebra of U(V,,;,R) and K, ;
is a certain maximal compact subgroup of U(V},;, R).

Proposition 3.9 (Theorems 4.2 and 5.9 in [LeZ]). Assume that the character x, is
such that x,|rx =sgn™ (m =0,...,4).
(1) If we write R(Vy,.i, Xv) for the image of the map

S' (Vi) 2@ — (9 = w0, (9)2(0)) € (752, x0),

then this map induces an isomorphism SO(Vﬁf)(u(vm’i)C,Km) — R(Vinis Xo)-
(2) R(Vi1,Xv) equals I(1,x,) and R(Vy2,Xy) is an irreducible submodule. The kernel of
the normalized intertwining operator

N(wowyws, (X, odet)|det|c) : I(1,xy,) — I(—1,x0)

equals R(Vya,X,) and its image is XS. Here XS is defined similarly as in the non-
archimedean case.

(3) R(Vs4,x0) (1 = 1,2) are two distinct mazimal submodules of 1(1/2,xy). R(Vii, Xv)
(1 = 1,2) are two inequivalent irreducible submodules of I1(—1/2,x,). The normalized
intertwining operator N(wywyws, (X, o det)|det \(10/ %) induces isomorphisms

R(Vaixo) [ (R(Va1, x0) 0 R(Va, Xo) = R(Vis, xo), (i = 1,2).

(2) Archimedean split case. In this case we have G(k,) = GL(4,R) or GL(4,C).
For each character x, = Xuw, ® Xuw, Of (k)* and s € C, we define I(s,x,) as in the
non-archimedean case. Then the following is essentially a classical result of E. M. Stein.

Proposition 3.10 (Lemma 2.4 in [V]). (1) I(s,x,) is irreducible unless X, Xw, = 1.

(2) If Xw,Xw, = 1, then it is reducible at s = s with sy € {—1,—1/2,1/2,1}. The unique
irreducible submodule of 1(—1/2,x,) and the unique irreducible quotient of 1(1/2,x,) are
G(k“)(kv)[((xwl odet) ® X;@l) ®1U(371)(kv)]- Here P31y is as in Propo-

LRy
sition 3.7. An isomorphism between them is given by N(wywiwy, (Xuw, © det)|det |1/? ®
(X;; o det)| det |;1/2).

both isomorphic to Ind
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(3) We adopt those notations of Proposition 3.7 on Weil representations. Then R(V3, x,) =
Gky _
I(1/2, x,) and R(1, x,) = IndP((g,lg(kv)[((le o det) ® Xw;) ® Luyg 1) (k) |-

3.3.2. The contributions of (3.19) and (3.20). Let Vi, = (V,), be a collection of 1-
dimensional Hermitian spaces V, over k] at each v. We fix a non-trivial character
Y = ®, 1, of A/k. For each character x = ®, x» of Aj/k'™ such that x|ax = 7k,
we can construct a collection of irreducible representations R(V,, x,) of G(k,) using .
Moreover R(V,, x,) is unramified at almost all v and hence we have a smooth irreducible

representation R(Vy, x) := ®, R(V,, x») of G(A).

Theorem 3.11. (1) The contribution of (3.19) in Theorem 3.4 to the residual spectrum
is multiplicity free and consists of one dimensional representations ¢ = x' o det. Here
X UL A)we — Chis defined by X' (xa(x)™) := x(x), where x runs over characters of
AL /K™ such that x|y« = 1.

(2) The contribution of (3.20) in Theorem 3.4 is multiplicity free and consists of R(Va, x),
where V) = ., V, is obtained from one dimensional Hermitian space V' over k' by V, =
V @ ky, and x is a character of A /K™ such that x|ax = k.

The proof of this will occupy the following three subsubsections. We begin with some
review from [KRS].

3.3.3. Lemmas on coinvariant. We still fix the nontrivial character ¢ of 3.3.2. For brevity
we write

m(A) = (é a(tgf_l)> (a € Resy kGL(2)), u(B) := (32 i) (B € Hers(K'/K)),

and
w e 0, 1,
=1_1, 0,)"
(1) The non-archimedean case. First take a non-archimedean v which is inert in

K'. For each 8 € Hery(k!,/k,) we have a character of Uy (k,) defined by
Vs Ui(ky) 3 u(B) — 9, (tr(BB)) € C*.

For each smooth representation V' of G(k,), we define its twisted coinvariant space by

Vs =V /Span{u.§ — vp(u)€ | € € V, u € Uy(k,)}.
Now recall the Hermitian space V,, = Vi; (i = 1,2) and the oscillator representation
(Wepy s S(V.P2)) of G(ky) x U(V,, k,). For § as above, we set
Qp(V,) = {x € V;7*; (w,2)v, = A}
Lemma 3.12 (Lemma 1.3 in [KRS]). (1) The canonical projection S(V,*?) = S(V.#*)y, 5
factors through the “restriction to Qg(V,)” map S(VE?) — S(Q5(V,)).
(2) In particular if det 3 # 0, then Qg(V,) consists of a single U(V,, k,)-orbit and the
projection S(V,P2) — (S(VE)u, 5)u v k) 15 given by

o — O(x)dgx.
o () (z)dgs

Here dgx is the unique (up to a factor) U(V,, k,)-invariant measure.

Proof. (1) is merely a combination of the explicit formula (3.23) and [BZ] Lemma 2.33.
As for (2), the first assertion is clear and the second follows from the first and (7). O



28 TAKUYA KON-NO

The corresponding result at split v is almost trivial and will be omitted.

(2) The archimedean case. Again we treat the inert case only. Thus &/, /k, = C/R.
As in the non-archimedean case, we have a character ¢3 of U, (R) for each 8 € Hery(C/R).
We write dips : Lie(Uy(R))c — C for its differential. €23(V,) is defined similarly as in the
non-archimedean case. Again recall the Hermitian space V, = Vi, (i = 1,2) and the
(g0, Ko) X (w(Vy)e, Ky, )-module (wy, ,, S*(V,?)) and R(V,, x,). We write S*(V,2?)% for
the space of U(V,, R)-invariant tempered distributions 7" satisfying

T(deoy, , (X)D) = dis(X)T(D), VX € Lie(Uy(R)).
Also the space of linear functionals £ on R(Vy/, x,) which satisfies
L(X.Q) =dys(X) - £(®), VX e Lie(U1(R))
is denoted by R(V,, xu)5. Then

Lemma 3.13 (Proposition 1.7 and Corollary 1.8 in [KRS]). (1) IfQs(V,) is empty,
then both (S°(V,F2)5) VYR and R(V,, x.)5 are {0}.
(2) If Q3(V3,) is not empty, then (S°(V.2)5)VVeR) s spanned by the orbital integral

o — O(x)dgx.
o () (z)dgs

Consequently dim R(V,, x,)5 = 1.

Proof. The proof in the symplectic case was given in [Ra2] Lemma 4.2. The unitary case
can be treated similarly using [LeZ]. O

3.3.4. Generalized Whittaker models for R(Vy, x). Here we review some facts about the
generalized Whittaker models from [KRS] §2.
Every character of U;(A)/U; (k) is of the form

v 1 UL(A) > u(B) — ¢(tr(BP)) € C,

for some [ € Hery(k'/k). We restrict ourselves to those 1 with det 3 # 0. Then the space
of generalized Whittaker functionals for an irreducible smooth representation (7, V;) of

G(A) is defined by

W) = { £1Ve = C (D) L(r(u)f) = Ys(u)E(f), Vu € Ui(Ay)
PV linear map | (i) £(dn(X) f) = dibp(X)L(f), VX € LieUs(Ax)

Now we suppose that (m,V}) is an automorphic subrepresentation. For each f € V.
we define its #-th Fourier coefficient as

Ws(f)(g) == /Ul(k)\Ul(A)

and a Whittaker functional W3 € Ws(7) by
Ve s f—Ws(H)(1) e C.
Let Vi = Q®,V, and R(Vy, x) = ®, R(V,, x) be as in 3.3.2.

Lemma 3.14 (Lemma 2.5 in [KRS]). If an intertwining map D from R(Vy,x) to the
space of L*-automorphic forms L*(G(k)\G(A)) satisfies

WsoD =0, V€ Hery(k'/k) with det§ # 0,

f(ug)ibs(u) du,

then D 1is zero.



THE RESIDUAL SPECTRUM OF U(2,2) 29

Proof. We write m = @, 7, for the representation of G(A) on R(Vj, x). Take a finite place
v which is unramified or split in &’. We write Oy, for the integral closure of O, in ki

Let O(V,) := {0 € Hery (k. /k,) | det 8 # 0, B = (x,x)y, (z € V,?)}. Take a Schwartz
function h on Hery(k! /k,) such that its Fourier transform

h(b) = /H oy NBYG(ix(BY) 4B

is the characteristic function of O(V,) N My (O, ). We write f;, for the function on U (k,)
given by fi,(u(b)) := h(b). Then from the definition of R(V,, x,), we have

Tl fa)eulw) = [ o (wu (b)) 1(b) db
Hers (!, /kv)
choosing @, € S(V,#?) which projects to ¢,

= b))®,(0)h(b) db
[y @ ()2 O)R)

from (3.24) or (3.28),

1
— Hera (kL /o) ’Y(Trk{)/kv(<7 >Vv))2 /Vu@2 h(b)¢v(tr(b<$,$>m,)) db @U(l') dx

1

== T Vv692
W(Trk;/kv(<, Wv.))? <m,x>VUED%V1,)ﬂM2(Ok;)

o, (x) dx.

Thus we can choose ®, so that this does not vanish.

Now using this specific ®,, we construct ® = ®,., Py ® ¢, € S(V,F*) and write
© = QuryPuv @ @, for its image in R(Vy,x). Then using the Fourier expansion on
Up(k)\U1(A), one has

RUID@)0) = [ De)gw) fulu) du
- > (W0 D)(p)(gu)fulw) du

Ui (kv) ,BEHerQ(k"/k‘)

If we take g, = 1, then this equals

Y. Pultr(bB)h(b) db(Ws o D)(¢)(g)

€Hera (k' /k)

= > hBWsoD)(e)9)-

BeHera (k' /k)

/Herg (K2, /kv) 3

This is zero from our hypothesis. Since this means D(7(fy,)p) restricted to the dense
subset G(k) [1,/.2, G(kv) of G(A) identically vanishes, D(m(f4)¢) is forced to be identically
zero. But our choice of ¢ asserts 7(f,)¢ # 0. That is, D has non-trivial kernel. Hence
D = 0 because R(Vj, x) is irreducible. O

Home s (R(Va, x), L*(G(k)\G(A))) denotes the space of G(Af) X (g0, Koo )-equivariant
maps from R(Vj,x) to the space of smooth K. -finite vectors in L?(G(k)\G(A)).

Proposition 3.15 (Theorem 2.2 in [KRS]). Assume Vi comes from a Hermitian space
V oover K/, i.e. Vi =V ®; A. Then dim Homga) (R(Va, x), L*(G(k)\G(A))) < 1.
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Proof. Take two elements A, B € Homg (R(Va, x), L*(G(k)\G(A))) and set Ag :=
WsoA (Bg:=Wgo B resp.) for § € Hery(k'/k). Alsoset O(V) := {3 € Hers(K'/k); B =
(€,&)yv, 3¢ € V}. If Az is not zero, then by applying Lemma 3.12 and Lemma 3.13 to
Ag| RV, xo) and to Bg|r(v, x.), We see that 8 € O(V) and there exists a constant cg such
that Bg = cgAg. Moreover since

Ag(m(m(a))®) = Wp(R(m(a))A(P))
= Wiogz(a) (AP)) = Atz (D),

for a € GL(2, k') and O(V) is a single GL(2, k') orbit, we know that ¢ = ¢z is independent
of 8. Thus if we set D := B — cA, we have Wz o D = 0 for any § € Hery(k'/k) with
det 3 # 0. Now we apply Lemma 3.14 to finish the proof. O

Lemma 3.16 (Proposition 2.6 in [KRS]). Suppose that there is no Hermitian space V
over k' such that Vi =V &y, A, then Homg s (R(Va, x), L*(G(k)\G(A))) = 0.

Proof. Take a intertwining map D : R(Vy, x) — L*(G(k)\G(A)) and consider Wz o D for
B € Hery(K'/k). Then by Lemma 3.12 and Lemma 3.13, at every v it is necessary that
Q3(V,) is not empty for Wy o D restricted to R(V,, x.) to be non-zero. But this means
that the Hermitian space (V =k, (x,y)v := x05(y)) over k' satisfies V) = V ®j A, which
contradicts our assumption. Thus Ws o D = 0 for any € Hery(k'/k) must holds. Now
the lemma follows from Lemma 3.14. O

3.3.5. The proof of Theorem 3.11. First note that we can choose a character x of A} /k"”
such that

3/2 1/2
Si12 = x| |A£/ ® X| |A{€/> Xlax =1, (S13= x| s, ® X, Xlax = Mk TeSD.)

The contribution to be calculated is the image ImN(w_, &; 5) (ImN(w_, & 3) resp.). But
since w_ = (wewjwe)w; and

ImN (wy, 615) = Indg () [(x o det)| det |4, ® 1y, s)),
(ImN(wy, Sy 3) = Indgl(ﬁi) [(x o det)| det |Xj ® 1y, (a)] resp.)

the statement (1) follows immediately from Proposition 3.5 (2), Proposition 3.6 (2),
Proposition 3.7, Proposition 3.9, Proposition 3.10.
To prove (2), we have to determine the irreducible constituents of

N (wywnwy, x @ x| |4, ) (Ind50) [(x 0 det)] det [ 1% @1, ]).

A local component of this consists of at most two irreducible representations R(V7;, xy)
(1 =1,2) by Proposition 3.5 (2) (3), Proposition 3.6 (2), Proposition 3.7, Proposition 3.9
and Proposition 3.10. Thus the irreducible constituents are contained in

(i) Vi is a collection of one-dimensional Hermitian
R(Vy,x) | spaceV, over k, at each v,
(ii) x is such that x|ax = Nk

But we know from Lemma 3.16 that R(Vj, x) with Vi does not come from a global V/
must be excluded. Also Proposition 3.15 assures that the multiplicity of R(Vj,x) is at
most 1.

Finally we need to check that R(Vj,x) with V), = V ®; A for some V over £’ really
contributes to the residual spectrum (cf. [KRS|] Proposition 3.3). For such a Hermitian
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space V', we write its unitary group U(V'). We can construct the global oscillator rep-
resentation (wy , S° (V%)) of G(A) x U(V,A) (see 3.3.7 below). Using this we have the
usual theta kernel

Or(g.1: @) := 3 wyn(g.1)2(E), (9 € G(A), h e UV A)).
&ev

Since V' is always anisotropic, the theta integral

I(g,®):— /
x(9:2) U(VEN\U(V,A)

is well-defined. Moreover the map I, : S°(V,#?) — L?(G(k)\G(A)) is non-zero (calculate
the 1s-Fourier coefficients) and factors R(Vy,x). This completes the proof of Theorem
3.11. (q.e.d.)

3.3.6. The contributions of (3.21)—the result. The contribution of the term (3.21) is
relatively easy to describe. First we prove the following.

Oy (g, h; @) dh

Lemma 3.17. Decompose Sy 4 into a restricted tensor product ®,(Sa24)y. Then the
1mages
Im[N(’LUza w1w2(62,4)v)]\/[(w1, w2(62,4)v)N(w27 (62,4)v)]
Im[M (w1, wowwa(S2.4)y) N (wa, wiwa(Sg4)y) M (wi, wa(Sg4)y)N (w2, (S2.4)v)]
coincide to each other and are irreducible.

Proof. We write a4 as x| |11&£ > ® Xal \}&{C ? where x; (i = 1,2) are distinct characters of
A% /K™ such that x;|ax = 1.
THE CASE OF INERT v.
We take a inert place v of k. Then (Ga4)y := X1.0| |2 ® X2.| |1/? and hence
Ly (L, Xvalix)
Lk(27XU,2|kff )6/€( P
Lk(lv X’U71|k;5<)
Lk(27Xv71|k;Z< )gk(17Xv71|k;Z<7wv)

are both defined and non-zero. Thus we may replace N(w,e) by M(w,e) and study the
images

r(w, (S24)) = )

T(wm w1w2(62,4)u) =

ImM(wgwlwg, (6274)1,), ImM(w_, (6274)1)).

But since (m,, Vy,) = Ind%ﬂfj’(ﬁ [(S2,4)0 ® Lwonan)k,)] 18 essentially tempered, irre-
ducible and M (w1, (S24)y) : V,rv — V., is an isomorphism we know that the above

images are both isomorphic to the Langlands quotient of Indp, f,;’ )[7TU ® 17, (k) -

THE CASE OF SPLIT v.
At a split v, (S24), is of the form

1/2 1/2 1/2

X 12 @ X2 | 1) @ Xia| 107 @ Xan,| 12,
where X145 = X1,u1 @ X1wz> X200 = X201 @ X2,u0, and hence
Li(1, X200 X2,05)
L2, X2,01 X200 )€k (L5 X2,000 X2,0025 Vo)
Li (1, X100 X1,0))
Lk((2v Xl,w1X1,w2))5k(17 Xl,wlxl,wg)a ¢v) .

r(wa, (Gg4)) =

T(wm w1w2(62,4)u) =
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These again allow us to replace the normalized intertwining operators by the unnormal-
ized ones. Thus we study

ImM (wewiwiws, (S24)y), ImM(w_, (Sa4)y),

where w] denotes the simple reflection of G, ~ GL(4), attached to the simple root o]

(see 2.1.4). Again notice that My, ~ GL(2);, x GL(2);,, we see both of the images
are the Langlands’ quotient of Indﬁffgg) [Ty @ 1y, (k)] Where 7, := Ind?ﬁ,ﬁj}l)(m[(GM)v ®

Lwonm) (k) O
We may call the resulting irreducible representation
ImN(wgwlwg, 62,4) = ImN(w_, 62,4)
the global Langlands’ quotient of Indgéﬁi) (G240 ® Lyyo(ay)-

Theorem 3.18. The contribution of the term (3.21) in Theorem 3.4 to the residual spec-
trum 1s multiplicity free and consists of wrreducible representations corresponding to non-
trivial one-dimensional representations of U(1,1), by the theta correspondence.

Write H for the group U(1, 1), defined by

H— {h € Resy 1 GL(2) ‘h G é) 5(th) = (? é) } .

All we have to show is that the irreducible representation

ImN(wgwlwg, 62,4) = ImN(w_, 62,4)
of G(A) corresponding to the one dimensional representation (x1x5 ') = (x1x3 ')’ o det,
where (x1x2)" is defined similarly as in Theorem 3.11. To do this we calculate the constant

terms of theta series on G(A) x H(A) (cf. [Ra]).

3.3.7. Constant terms of theta series. (1) Global oscillator representations for G/(A)x
H(A). We begin with a short review of theta series on G(A) x H(A). As in the local case
(3.3.1), we consider G x H as a dual reductive pair in Sp(W). Here the Hermitian space

Vi is replaced by
L 102 L O 1
(V =E7 () )v = (1 O>)

As in [I] §1, we have the global metaplectic group Mp(W,) of Sp(Wy). This is a re-
stricted direct product of Mp(W,) with respect to their appropriate compact subgroups
K, divided by the central subgroup {(e,), € @, C'; I, €, = 1}. The group Sp(W, k) is
naturally considered as a closed subgroup of Mp(W). Also for a character ¥ of A/k, we
have the oscillator representation wy, of Mp(W ) associated to it.

Recall that our G, 4 was written in the form y;| |Xj ® X2 ‘11&1,2 Xi (i = 1,2) are two
distinct characters of A}, /k'™ whose restriction to A* are trivial. Using this y; we can
construct a system of local splittings (cf. [Ku] Theorem 3.1);

i, @ Gky) x H(ky) — Mp(W),.
Then from explicit formulae (3.22), (3.23), (3.24), (3.25) and (3.26), (3.27), (3.28), (3.29)

we see that ¢,,  (K,) C K, at almost all v. This allows us to construct a global splitting

ba P GA) X H(A) 3 (9,h) = (. (90: hw))o € MP(W)a.
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It follows from the product formula for the Weil constant that ¢,,(G(k) x H(k)) C
Sp(W, k). As in the local case we have the auxiliary oscillator representation wy, =
Wy © Ly, and twist the H(A)-action by the character x; o det to obtain the final oscillator
representation (wy,,, S(V,2%)).

Explicit formulae for (wy ,,, S(V,?)) are given by
(3.30) Wy (M(A))@(2) = x1(det A)| det Aln, P(zA), (A€ GL(2,Ar))

(3.31) Wi (u(B))®(2) = W(tr((z, 2)y B)®(x), (B € Hers(A/A))
(3.32) o) = [, @I pleriz.y)v)) dy
(3.33) Wy (M)®(z) = ®(h'2), (h € H(A)).

If we replace S(V,#?) with §°(V,#?) defined in 3.3.1 at each archimedean v, then we have
the underlying [G(A;) x (g(Ax)c, Kxo)] X [H(Ay) x (h(As)c, K2)]-bimodule S°(V,#%).
Now for ® € S°(V;2?), define the theta series attached to it by

9¢(g,h) = Z wiﬁ,Xl(g? h)(I)(f)

D2
gev,

This is a slowly increasing smooth K, x K _finite function on G(k)\G(A) x H(k)\H(A).
(3) Calculation of the constant term. At this point we identify V% with My (%),
on which G (H resp.) acts by right (left resp.) translation. We fix a point z; € V2 as

(00
.%'1—01

Lemma 3.19. If we set Fo(h)(9) == ez p) Wona (Cg, R)®(21) for @ € S(V,F?), then
the constant term of 8¢ along Py C G is given by

00(g, h)p, = Wy, (9, R)P(0) + D> Fa(yh)(9)
~eB; (F)\H(k)

+ > /M1 Fp(vh)(w;  ug) du
veBgNH(R) "0 W

(3.34)

Here By, denotes the Borel subgroup of H consisting of lower triangular elements.

Proof. We follow Rallis’s argument appeared in the proof of Theorem I.1.1 in [Ra]. First
we calculate the constant term along P;:

Oo(g, h)r, = | > s (g, )O(E) du

U1 (k)\U1(4) cev®?

- > wo (u(B))®(§)dB

Hera (k' /k)\Hera (A, /A) ceve?
k

= > Ww,m(g,h)@(f)/ Y(tr((€,€)yB)) dB

gevkeag Hera (k' /k)\Herz2 (A, /A)

= Y wen(g, )P(E).

cevE?
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Next set X := {& € V% | (¢,€)y = 0}. Then there are two M, (k) x H(k)-orbits in Xg;

Xoo :=1{0}, Xoq:={(§,n) € Xo| dim Span{§,n} = 1}.

The element z; above is a representative of Xy ;. If we write S; for the stabilizer of x; in
M, (k) x H(k), then

Ox (g, h)p, = Wy, (9, R)P(0) + > W1 (09, Yh)D(21).
(7)1 \H (k) x Mi (k)

Next we proceed to
O (g, h)Po = / (k)\UMl( ) 94)(“9’ h)Pl du’

where Py™ = MyU3™ is the intersection of Py and M;. Note that

5 ={0((5 s ) (3 o)) €< )

This combined with the Bruhat decomposition yields

Oo(g,h)p, =wyx, (9, )2(0) + > 2. Wy x, (09, 7h) D (1)

vEBy (K)\H (k) §€P(M1)(k)\M1 (k)

where P(M;) := { ((30“" %)) € Ml},

= Wi (9. W)+ 3wy, (Cg,vh) D ()
~EB7 (K)\H (k) CEZ(M,k)

XY wu(wrCeg ) () .

CEZ(Ml )GEUJWl( )

On the other hand,

Wiy, (ug, h)®(0) + Wy (Cug, Yh)®(x1) ) du
/Uéwl(k)\Uéwl(A)( waa )2(0) CEZXJ\:/A Y v ( )®( 1)>

=Wy x1 (97 h)q)(()) + Z Wip,x1 (Cga ’Yh)q)(xl)a
CeZ(My,k)

—1
w w €ug, h O(x du
/Uéwl (\UM (a) Z Z w7X1( | Ceug,vh)®(x1)

CEZ(Ml k’) EU]wl(k;)

= Wioes (G "ug, Y) B (1) du.

(8 cez M k)

Hence the lemma follows. O
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3.3.8. Proof of Theorem 3.18. For s € C, define

Fa(h,5)(g) = [ win (9. )®(az)xing @)laly,, da”, @ € SUVE2)

1’4

Since the main part of the integral is Ly (s, x1x5 ') and Y1 # X2, this converges absolutely
for Re(s) >> 0 and extended to an entire function on s. Moreover it satisfies

Fa((L ) 1o = S0 I Fahos)),

Fath (5 3))8) = @na(olela ol Fohs) ).
That is, Fs(h,s)(g) is a holomorphic section of A(By(A)\H(A))~ %

A(PO(A)\Ml(A))( 2ol 227 . Recall that

—s—172 and of
o(xi 'x2)| \

(1) The Eisenstein series

E(Fy,h;s)(9) == Y.  Fa(vh,s)(g)

YEBy (K)\H (k)

on H(k)\H(A) converges absolutely for Re(s) > 1 and meromorphically continued
to the whole plane.

(2) It has a simple pole at s = 1 and its residue there spans the one dimensional
representation (y1xz ).

Write ©,, p, for the space of functions on My(k)\Mo(A) x H(k)\H(A) spanned by
0s(g,h)p, (® € S°(V,F?)). We consider the integral

/ > Falyh)(zg)
Z(M1,k)\Z(M7,A) e

B, (k)\H (k
Y [ Pt tuzg) dulxog (), dz
veByo\H(E) * 0 W

If Re(s) > 1, then

Fo(yh)(z9)xaxa ' (2)|2[3,, dz
7€By ()\H(k /Z<M1 k)\Z(M1,4) (h)(zg)xixz " (2)ll,

- Z /X 1% Z w¢=X1(€gah)@(axl)xlxgl(a)m&y da>
(R)\

YEBy; (k)\H (k) Ak CEZ(Mu,k)

— > Fy(vh,s)(9) = E(Fs,h;s)(9)
YEBy (k)\H (k)

2 / o () / Z(My,k)\Z(My,A Fq)Wh)(wl_luzg) dzdu

vEBL (K)\H (k)

= X [, Feloh )i ug) du
veBy (R)\H (k)

= Y MM(wal 2@l 2 Fa(vh,s)(g)
vEBL (K)\H (k)
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1/2 3/2—s
=EM™ (wr, x| [ ® xal [y ") Fo. b s)(9)
are absolutely convergent and are equal to

Y. Fae(M)oxig ()=, dz,
1€B5 (D\H (k)

(vh)(wy Yuzqg) du 215 dz
/Z(Ml,k)\Z(M1,A) %\H(k /Ml(A a(Yh) (wituzg) duxixg ' (2)12]3,,

/Z(Ml,k)\Z(Ml,A)

respectively. Thus (3.35) is well-defined for Re(s) > 1 and meromorphically continued to
define an intertwining operator

A<S) : @XLPO > 9@(97 h)
— B(Fy, s 5)(g) + B(M™ (wy, xa] [i2 @ xal [327°)Fs, h; 5)(g) € ACH(k)\H(A)),

for s € C.

From (2) above, we know that A(s) has a simple pole at s = 1, and the image of the
residue Res;—1 A(s) is the constant term of the automorphic representation corresponding
o (x1x2 ) by the Howe duality. But as a function on G(k)\G(A), ImRes,_; A(s) is still
of the form

6(g) + M(wr, il 12 @ xal [15)6(9)
for some ¢ € A(FPy(A)\M;(A))

Gl |1/2®x | ‘1/2) This is precisely the constant term of the

global Langlands’ quotient of Ind [62 4 ® 1y, ] and we have done. (q.e.d.)

4. THE CONTRIBUTIONS OF CUSPIDAL DATA ATTACHED TO P

In this section we describe the contribution of cuspidal data attached to the Siegel
parabolic subgroup P, = M;U; to the residual spectrum.

4.1. Singular hyperplanes. We retain the notations defined at the beginning of the
previous section. In particular we take X € €p and (M;,B) € X. For ¢ € Py ) and
¢’ € Py we consider

1
0,00 1 - / A, &) () d
(09, 057 2@ 0000) = 5 T Jcpnon, (¢, ¢') () dm

where
Alg.d)= > (Y Mw, né(r), ¢(—uwr)).
(M1, B)ex weW (B, PB)
In the Siegel parabolic case Wy, consists of 1 and w(P;) := wewjws, hence the singular

hyperplanes for A(¢, ¢')(m) are those of M(w(Py), m)p(m).

4.1.1. Analytic behavior of the local intertwining operator. Take m = @, m, € P. We
begin with the review of the normalization factor for M(w(P;), m,) ([Sh]). Recall that
our M, is isomorphic to Resy; /1, GL(2). We have the following two cases.

(1) At inert v. Let w|v be as before and write I', := Gal(k!,/k,). We identify the
generator of I', with o. Just as in the global case, one has G, = G X9, Wk, , where the
Weil group Wy, acts on G through I', by 0 = 6. Hence we have the L-isomorphism

(4.1) V= <64 %) xw—> (A,'D7") xw € "(Resy, 1, GL(2)),
2
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and identify *M; with “(Resy, /x, GL(2)) by this.
In the notation of [Sh], we have (Uy)wp) = Ui. The adjoint representation r,p, of
LMy on Lie((Ur)yp,)) = M(C) is given by

(4.2) Tw(Py)l g7, = Stz ® Sta,  ry(p) (1 X 0)(v1 @ v2) = v2 ® 01,

where Sty denotes the standard representation of GL(2, C). The L-function attached to m,
and r,(p,) is the twisted tensor L-function L (s, m,) ([As], [HLR]). The normalization
factor r(w(P,), m,) for M(w(Py), m,) is defined by

LAsai(O7 7TU)
P, v) = .
r(w( 1)’ " ) LAsai(L 71-v)gAson'(()? Uee wv)
(2) At split v. Let wy, we|v be as before and write

Ty = Ty @ Ty + Mi(ky) (64 (l);> — Ty (A) @ 7Tw2(tD_1) € GL(V,).
2

The normalization factor in this case is well-known and given by
L(0, o, X Tyy)
L(1, Ty X Ty )E(0, Ty X Ty, U)

r(w(Py), m) ==

where L(S, Ty, X Tyw,) and €(s, Ty, X Ty,, 1y ) are the Rankin product L-factor and its root
number for m,, and m,, defined in [Ja].

Lemma 4.1. The local normalized intertwining operator N(w(Py), m,) := r(w(Py), m,) !
M(w(Py), m,) is holomorphic on the closed positive chamber {m, € B, ; (Rem,, 5) > 0}.
(Note that 3y is the only positive root of Ay, in Py.)

Proof. At splitting v, this was proved in [MW?2]. Hence we assume v is inert in k’. When 7,
is essentially tempered, this follows from [Ar2] Theorem 2.1 if v is archimedean and from
Proposition 7.2 in [Sh] if v is finite. Thus we may assume that 7, is in the complementary
series. Then 7, is of the form
M (k, _
Ty = Ind(Pi)(ngl)(kv)[(MM |i\u/2 & :U’w| |w>\/2) ® l(UOli)(kv)]’

where i, is a quasi-character of k', and 0 < A < 1. From 3.1.1, M(w(P,), 7,) and its
normalization factor can be written as

M(w(Pr), ) = M(wz, 5(p, )| [ @ pal [32) M (wr, pl 12 @ ()] 1)
M (wa, prol 137 ® gl [,
r(w(Pr), ) = r(ws, 6 (e, )] 12 © sl [*)r(ws, wol 1072 © 6, 12

|1 @ gl 172).

(w2, fhu
Since (Rem,, 5) > 0 is equivalent to Rep,, > 0, both of
r(wa, &, )| 12 @ gl [3/2) M (w2, 6, )] 1 @ el 13/)
r(wy, ol 137 ® 6 (] 127 M (wr, ol 102 @ 5 (0] 1)
are holomorphic on the region (Rem,, 3)) > 0. On the other hand, it follows from [Sh]
Corollary 7.6 that both r(ws, f| |22 ® | [5?) and M (wy, | |/? @ | |5?) have a

|l
simple pole at ju,, = | |2/2, and are holomorphic and non-zero at other 7, in our positive

cone. [
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4.1.2. Analytic behavior of the global intertwining operator. As in §3, we set

r(w(P), m) = Hr(w(Pl), ), Nw(P), 7) :=r(w(P), ) " M(w(P,), 7).

Then the following proposition will be proved in Appendix A.

Proposition 4.2. For an irreducible representation m of GL(2, Ay), we write its central
character w,. We write H for the diagonal subgroup GL(2) of Resy ,GL(2). Then the
only pole of r(w(Py), 7) in the region (Rem, 3Y) > 0 occurs at

(1) wrlax =1 I3, }
&(P) = € I _ ,
(F) {“ ® ‘ () g0 2010y ()] det(R)|5 dh # 0
and it is simple.

4.1.3. Singular hyperplanes. From Proposition 4.2, we have S?J(/Z,‘ﬁ) ={6(P)}.

4.2. Decomposition of the scalar product. In this case S(Jg\/[lm) = {P, 6(P)} and
we set o(P) := 0.

Theorem 4.3. For ¢ € Py, ) and ¢’ € Px, we have

1
6, 6,2 = A ! d
(05, 04) L2 c\G () /T Jrcm oo (¢,¢")(m) dm

+aN(w(P), 6(h))e(6(h)), ¢'(—w(P)S(F)))

for some non-zero constant c;.

(4.3)

Proof. Since our P; is a maximal parabolic subgroup, we can apply Lemma 101 in [HC].
This allows us to apply the usual residue theorem to A(¢, ¢’), and the assertion is obvi-
ous. [

4.3. The residual spectrum from P;. By Theorem 4.3, it is enough to determine the
image

ImN (w(P), 6(P) = QImN(w(Py), &(P)),).

If §(Py), is essentially tempered, then ImN(w(Py), &(P),) is irreducible by the Lang-
lands’ classification. Next we handle &(P;), in the complementary series. Then its
exponent is of the form

| (N2 @ | [A=N20(0 < X < 1) if v is inert,
[V @IV | [[U2 ] [[07m2 (0 <X p<1) ifv splits.
In both cases this is regular and
N (w(P), §(P1),) = Indp G [S(P) © 1o, i)

is irreducible. We call the irreducible representation ImN (w(P;), &(P;)) the global Lang-
lands’ quotient of Indgl(ﬁi) [6(P1) ® 1y, (). Then our conclusion is

Theorem 4.4. The contribution of the cuspidal data attached to Py to the residual dis-
crete spectrum is multiplicity free and consists of the global Langlands’ quotients ofIndgl(ﬁi) [S(P)®
1y, (a)], where &(Py) were defined in Proposition 4.2.
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5. THE CONTRIBUTIONS OF CUSPIDAL DATA ATTACHED TO P,

In this section we study the contributions of cuspidal data attached to the non-Siegel
maximal parabolic subgroup P, to the residual spectrum. For this purpose, it is more
convenient to redefine our group G' = U(2, 2)w/i by replacing J, in 2.1.3 with

01

0 '

Then the Borel subgroup P, consists of upper triangular elements in G and the Cartan
subgroup M consists of elements of the form d(zy, ;) = diag(zy, z2,5(25"),d(z1h)).
Also P, = MsUy and P, = MU, becomes

x 1] % | *
e { () e Vo= (5 ) <o
(xT) A I
x 1] % | *
= z,y € G, (C), S N
M, = A Acarec). (V= 1, . €G

Here the group U(1,1) is defined by

U(L 1)k’/k = {g S Resk//kGL(Q) ; nga‘(tg) = J1}7 where J; 1= ( 0 1) )
We conventionally write G5 for this group.

5.1. Singular hyperplanes. We take X € €p,, (M>,) € X and consider

1
05,0,) 12 = A(g, ¢)(m)d
06, 00r) 2 G = 5 7T cqrener (¢, ¢') () d,

where

A, ¢)(m) = > ( > M(w,m(r),¢(—wr))

(M2, B)eX weW (B, 3)

for ¢ € Po,p), ¢ € Px. Since Wy, consists of 1 and w(F») := wywsws, the analytic
behavior of A(¢, ¢')(m) is determined by that of M (w(P,), 7).

5.1.1. Analytic behavior of the local intertwining operator. Take m = @, m, € P and
consider M (w(Py), m)p(7m) = &, M(w(Pz), m,)py(m,). We first recall the normalization
factor r(w(P,), m,) defined in [Sh]. We write 7 € P as x ® 7, where x is a quasi-character
of AJ5/K™ and 7 is an irreducible cuspidal automorphic representation of Go(A).

(1) At inert v. Let w|v be as before and I', be as in 4.1.1. We use the isomorphism

X
LM2 = A X W — [(l’,yil) X A] Xw e L(Resk//ka X Gz)
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to identify these L-groups. Then the adjoint representation 7,,(p,) of “My on Lie(Us)} p,) =

Lieﬁg decomposes into the direct sum 7,,(p,) 1 ® 7w (p,),2, Where

rw(Pg),1|]\’/\[2 = [(Stl &® 1) &® §E2] D [(1 (029 St1> & Stz], ’I"w(p2)71(0') (’01 b U2) = V9 P U1,
Tw(Py) 2l 7, = (St1 @ St1) @ L, Ty (py)2(0) (V1 ® v2) ®u) = (V2 ® V1) B u

Here St; denotes the standard representation of G,,(C) and §2 is the contragredient of
Sty. The L-factor attached to m, = x, ® 7, and ry(p,),1 is the product L-factor of 7, x x.;

L(S7 7TU, rw(Pg),l) = L(S’ TU X XU)

The L-factor attached to m, and 7y (p,) 2 is simply Li(s, Xu[yx). Thus from [Sh] §7, we
have

T(w(P) T ) — L<O7TU X XU) Lk(O7Xv|kf,<)
2 L 7 X X0)2(0, 70 X X W) Li(L Yol )2 (0, Xolx ¥0)

(2) At splitting v. Again let wy, ws|v be as before. We identify M, ,, with (G,, x G,,) X
GL(2) by

M, > A = (z,y7") x A€ (G, x Gy,) x GL(2).
)

Accordingly 7, = x, ® T, is written as (Xuw, ® Xw,) ® To- The normalization factor in this
case is well-known and is given by
L(O vy Tw(Ps),1 ) L(O, T, 7hw(Pg),Q)

r(w(P),m,) = )
( ( 2> ) L(laﬂvarw(Pg) ) (O Ty Tw(Py),1 71/111) (177Tv7rw(P2),2)€(077T07rw(Pg),Qawv)

where, writing 7, for the contragredient of 7,

L(s, 7o, (o)1) = L8, T © Xy ) L8, To @ Xawo)
e(s, Mo, Tw(pa),1, Vo) = (8, To ® Xuys Yo)(S, To ® Xu, ¥0)
L8, T, TPy 2) = Lk (85 Xan Xawn )5 €08, T, Tu(Py) 25 P0) = (S, Xaoa Xaws P)-
Lemma 5.1. The normalized operator N(w(P),7,) = r(w(P),m,) *M(w(P,),7,) is

holomorphic on the region (Rew, By) > 0. (Note that 35 is the only positive oot of Ay,
m PQ)

Proof. 1f v splits in &, then this was proved in [MW2]. Hence we assume v is inert in &’
and let w|v. First assume m, is essentially tempered. Archimedean case is a special case of
Theorem 2.1 in [Ar2]. Non-archimedean case follows immediately from [Sh] Proposition
7.2 (b). Next comes 7, with 7, in the complementary series. Then 7, is of the form

7o = Indg2 vy @ | 12 @ 1yya)] (0 <A< 1),

where v, is a character of k), such that v,| px = = 1. By = 15N, is the Borel subgroup
consisting of upper trlangular elements in G5. It follows from

L(s, mo, Tu(py1) = L(s — A/2,x0v, ) L(s + A/2,5(x0) 1)

that r(w(P), m,) has its only pole in the region (Rem,,8y) > 0 at x, = v, and it is
simple. On the other hand, we apply Corollary 7.6 of [Sh] to M (w1, wsw;m,) and note

M(’w(P2>, ’7TU) = M(wl, wgwlm)]\/[(wg, wlm)M(wl, 7Tv)

| |)\/2
w
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to see that M (w(P,),T,) has its only pole in the positive region at x, = v,| |/? and it is
simple. The lemma is proved. [

5.1.2. Analytic behavior of the global intertwining operator. For m € P, we define
) = Hr(w(Pg),wv), N(w(Py),7) == r(w(Py), n) ' M(w(P), ).

Then the following proposition will be proved in Appendix B.

Proposition 5.2. Here again, we write m € B as x ® 7. The central character of T is
denoted by w,. For each character p of U(1, A) /i, we write ©(&, 1)), for the theta-lifts of
p to Ga(A) under the Weil representation wy¢ of Ga(A) x U(L,A)y . (See Appendiz B
for more details.) Then the only poles of M (w(Pz), ) in the region (Rem,3y) > 0 locate
at

S(Poympp) = {mr=x®7€P; xlax = | [Emwsms 7= O |ay s %) }

6(P271) = {ﬂ- = X®T € ffpv X|A>< = ‘ |A7 L(07T X X) 7é 0}7

and they are simple. Here in the definition of &(Pa, nw k), 1 has been chosen so that T,
1s generic with respect to it.

Remark 5.3. If we exchange v in the definition of &(Ps, ni i), then T changes to another
irreducible cuspidal representation in the same global L-packet (cf. [LL]).

5.1.3. Singular hyperplanes. From Proposition 5.2, we have
S(h]\;r PB) - = {6(P27 nk’/k)a 6(P27 1)}

5.2. Decomposition of the scalar product. We have S{ = {B, S(P, ni k), G(P2,1)}
and set o(*B) := 0. Then the following is proved in the same manner as Theorem 4.3.

Theorem 5.4. For ¢ € Py, ) and ¢’ € Px, we have

1
6,60, = A / d
(0, 0s7) L2 (G)\G(A)) v/ T Jrem oo (¢,¢")(m) dm

+ ca(N(w(P2), &(Po, i i) ) (S (Poy M 1)) &' (—w(Pa) S (Pay i)
+ (N (w(Py), &(P2,1))p(S( Py, 1)), ¢'(—w(P2)&(F,1)))

for some non-zero constants co and c,.

(5.1)

5.3. The residual spectrum from P,. By Theorem 5.4, it is enough to determine the
images

ImN(w(Ps), &(Ps, i k) ®ImN )y &(Pay it /k)o)
ImN(w(Pg) PQ, ®ImN 6(P2, 1)1})

(1) ImN (w(Ps), S(Po. s si)or). If S(Po, miy 1) 1s essentially tempered, then ImN (w(P,),
S( Py, Mi /i )v) is irreducible by the Langlands’ classification. Next we handle &(Ps, nw k) =
Xv ® T, with 7, in the complementary series. Then its exponent is of the form

| |w ® | |{\U/2, 0<A<]) if v is inert,
el B2 2] ;" (0<p<1) ifvsplits.

In both cases this is regular and hence ImN (w(FP,), &(Ps, N /k)w) is irreducible.
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(2) ImN(w(P,), S(P5.1),). Again the tempered case is cared by the Langlands’ classi-
fication. In the non-tempered case, the exponent of G(P, 1), is of the form

| |%v/2 ® | |{\U/2, <A< if v is inert,
2| M2 | |7+ @ | |72, (0 < p< 1) if v splits.

Again this is regular and hence ImN (w(P,), &(F2,1),) = Indg(f,: [S(P2, 1)y @ Ly, (k)] s
irreducible.
The resulting irreducible representations ImN (w(F;), &(Ps, nw k) and ImN (w(Py),

S(Po,1)) will be called the global Langlands’ quotients of Indggﬁi) (S(Po, i /i) © Luyay]
and Indg&) (S(Ps,1) ® 1y, (a)] respectively.

Theorem 5.5. The contribution of cuspidal data attached to Py to the residual discrete
spectrum, is multiplicity free and consists of the global Langlands’ quotients defined above
of Ind\()) [ (Pa, misi) @ Luywy) and Ind5()) [S(Py, 1) @ 1yyw). where &(Pa,my i) and
S(Py,1) are as in Proposition 5.2.

APPENDIX A. POLES OF THE TWISTED TENSOR L-FUNCTION

In this appendix we determine the poles of the twisted tensor L-function in the half
plane Re(s) > 0 and prove Proposition 4.2 as a corollary. In fact this is little more than
Satz 3.13 in [HLR]|. We begin with the integral representation of L 44 (s, 7).

A.1. The zeta integral.

A.1.1. The zeta integral Z(f,®,s) and its unfolding. Let k'/k and T be as before. We
write G for Resp,GL(2) and H for the k-subgroup GL(2); of G;. We fix a Borel
subgroup B = T'N consisting of upper triangular elements, together with the Levi factor
T consisting of diagonal elements in Gy. Set By := BNH, Ty =TNH and Ny := NNH.

For ® € S(A®?) and a quasi character w of A*/k* we define a meromorphic section

fo(w, s;h) for Indg [ 1577 @ 1979 %0™) @ 1y, ) as

folw, s:h) = |det(h)|}/? /A ([0, fh)w (@) [t dt™,  (h € H(A)).
Using this we define the Eisenstein series

Fo(w,s;h) := > felw,s;h), (he H(A)).
YEBH (k)\H (k)

This converges absolutely for Rew + Re(s) > 0 and is meromorphically continued to the
whole s-plane.
Now let 7 be an irreducible cuspidal automorphic representation of G1(A) and write

w, for its central character. We define the Zeta integral Z(f, ®, s), where f is a cusp form
in the space of m and ® € S(A%?), by

(A.1) Z(f, ®,s):= f(h)Eg(wx, 2s; h) dh.

/H(k)Z(HA)\H(A)
Here Z(H) is the center of H. Since f is rapidly decreasing and Fg(w,,2s;h) is slowly
increasing, this converges absolutely for Rew + Re(s) > 0 and meromorphically continued
to the whole plane. Also note that the functional equation for Z(f, ®,s) can be deduced
from that of Eg(w,,2s;h) as was done in [As].
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The zeta integral (A.1) is decomposed into the direct product of local zeta integrals
as follows (cf. [HLR] pp. 76-77). We fix a non-trivial character ¢y, of Ay /K" such that
Yp|ax = 1 and take the Whittaker model W(m, ¢y, ) for m. Then we have the Fourier
expansion on Ny (k)\Ng(A);

=y Wf(<8‘ ?) h), (AW € W(m, ¢w)).

ack’>

Using this and the definition of Eg(w,,2s;h), we have

93 Wf(<o‘ O) h) fo(wn, 251 h) dh.

agkX

2(f,9,5) = |
(f,2,5) = N (A)Z(HA)\H(A

We note that W(h) := > cpx Wf(<0 ?) h) is contained in W(w,1y). Further we may
assume that W(h) and @ are of the form
®W , Wo € W(Tp, i), P(z) = Q) Pu(zn), Py € S(EF?)

(restricted tensor products). Now we have

(A.2) Z(f, ®,s) =[] Z.(W,, Dy, 5),

where

Zy (W, @y, 5) = Wy (h) fo,(Wn,, 25; h) dh,

/NH(kv)Z(H,kv)\H(kv)
fou(worsih) 1= [ det(W)/2 [ @u(0, R, (1)l "

v

e Indp el (115792 @ wi '] 197972) @ L (o).

These local zeta integrals converge absolutely for Re(w,,) + Re(s) > 0 and are mero-
morphically continued to the whole plane. (A.2) can be considered as a equality of these
meromorphic functions.

A.2. Comparisons of local factors. Here we shall check that Z,(W,, ®,,s) has the
same poles as those of the L-factor Lasi(s,7) at least in the region (Rew, 3)) > 0. We
treat various types of 7, separately.

A.2.1. The case of splitting v. Let w; and ws be the places of k' lying over v. From
our choice of 9 we can take a non-trivial character v, of k, such that ¢y ,, = 1, and
Vpr g = U, We identify G (k,) with GL(2, k,) x GL(2, k,) and write 7, as 7, = Ty, @ Tu,
accordingly. Then we may assume W, = W,, ® W,,, where W,,, € W(m,,,) and

W, € W(Tw,,,). Noting that W(h) = W((é _01
W (T, y) t0 Wy, 1,,), We have
0

1
AW oy :/ W, (R)W,, h)z(] [Pwr, h.®)| det(h)|* dh.
( °) Nz (ko) Z(H ke)\H (ko) () w2(<0 _1> )Z(| [yw )| det(h)]

Here Wy, € W(Tw,, ¥y), W, € W(Twy,, 1), and z(w, @) was defined in the introduction
of [Ja]. Hence from [Ja], we know that

(1) The local integrals Z,(W,,, @, s) have L asqi(S, Tp) = L(S, Ty, X Ty, ) as their G.C.D.

) h) gives an isomorphism from
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(2) (Unramified situation.) We assume that 7, = m,, ® T, is unramified, @, is ®Y,
the characteristic function of O, @& O,, and ), is of order 0. Then for the class-1
Whittaker function W2 € W(m,, ¢y ) with W2(1) = 1, we have

Zy (W, @y, 8) = L(S, Ty X Tapy)-

A.2.2. The case of inert unramified v. Let w be the place of £k’ lying over v. We assume
that

(1) k,/k, is an unramified quadratic extension,

(2) m, is of the form Indgzék”)[(u ®v) ® lnwk,)), where p and v are unramified quasi-

characters of k', |
(3) ®@, equals @0 (see A.2.1). WP € W(m,, ) is the class-1 Whittaker function for
To;

Wl(1) =1,  W2%gk)=W2g) forVk € GL(2,0,).
Lemma A.1 (Lemma 3.14 in [HLR]). Under these assumptions we have
Zv(Wq?a (I)ga S) = LAsai(57 7Tv)-

A.2.3. The case of non-archimedean inert v. Let w|v be as before. It follows from the
well-known integration formula that

a 0 |a 0 -1 x
Z,(W,, @y, 5) /k /GLM (0 1) ) fo, (wn, 251 (O 1) k)lal -t dk da*.

But since

a 0 s s _—s
fononss (1) 1) = o225 00 )P0

with P(X,Y’) a polynomial, and W, (h) is GL(2, O,)-finite, it is enough to consider
2o @0,8) = [ pu@)laly™! da* L(2s,wnli) P(a3 0.

Here ¢, is in the Kirillov model K(7,, ¢x ) of m, with respect to ¢ .
Recall that the space IC(m,, ¥y ,) was calculated by Godement as follows.

(1) If m, = IndGi" (1 @ 1) @ 1y(r,), then

K (s har) = {f(a)u(a)|al? + g(a)v(a)|al?| f, g € S(K.,)} T
"I S @pla)lalf? + gla)pla)ordy (a)|alf2] £, g € S} if p=w.

Gl kv) [(

(2) If m, is a special representation embedded in Indj L@ plleh) ® v, as a

submodule, then

K(mo, ) = {f (@)p(a)laly/*| f € S(k,)}.
(3) If m, is supercuspidal, then K(m,, ¢ ) = S(k's,).
In the case (1), we see
Zv(gpva D, 3) = Lk(sa M’kj )Lk(sa Vv‘kvx )Lk(257 W, |lgvX )Pl(qzsn q178>

for some polynomial P’(X,Y"), while we have from 3.1.1

Lasai(8,m0) = Li(s, plyx ) Li (s, V| px ) Ly (8, wir, ).
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But both Ly(2s,wn,[,x) and Ly (s,wys,) are holomorphic and non-zero on the region
(Remy, 1) > 0 and Re(s) > 0. Thus Z,(p,, ®,,s) has the same poles as Lagqi(s, )
has in that positive region.

In the case (2), we have

Zv(gova P, 3) = Lk(s7M‘kj)Lk(z‘S?wﬂv‘kj)Pl(qi?q;s)'

On the other hand the twisted tensor L-factor in this case was calculated in [G] Theorem
9.6;

Lasai(8,m0) = Li(, plpx ) Li(s — 1, (plyx) © M, s, )-
Here again, both L(2s, wy,|,x) and Li(s — 1, (p1]x) ® ks, /k,,) are holomorphic and non-
zero on the region (Rer, 3Y) = Re(?| |;') > 0 and Re(s) > 0. Hence Z,(¢,, P,,s) and
L asqi(s,m,) have the same poles in this region.
In case (3), the G.C.D. of Z,(y, @y, s) is Ly(2s,wr,|,x). This is holomorphic on our
positive region. On the other hand [Sh] Proposition 7.2 (a) asserts that Lasu(s,m,) is
also holomorphic in that region.

A.2.4. The case of archimedean ramified v. Since ki, /k, = C/R, we may assume 7, =
Indg%g;)[(u ® V) @ 1n(,)]. As usual we write Ir(s) := 77*/?T'(s/2) and L(s, x) := I'r(s+
r+m) for x = | |gsgn™ (r € C, m € {0,1}). We may assume

O —1n S
fonlons2 (1) 1O = Tl L2500 2 P),

(g ) on =i 3o = (5 ).

where P(s) is a holomorphic function. Then it is enough to consider
Z( @0 ys5) 1= [ o, (a)lali da” L(2s,0n,],),
with
e, (a) = W%((O 1)), o, € S(C*),

W (9) = uldet(9)| det(@)l [ [r(9)@ul(z, =™y () d=,

Here 7(g) denotes the Weil representation of GL(2,C) on the linear model S(C?) given
in [JL] Lemma 1.6.
Now one has

sfld X
[, ee.(@lali da
:/ u(a)\als/ o ([z z7 a0 ),uu_l(z)dzX da™
RX R CX w ’ O 1
:/ / pla)|ala®y(az™t, 2)p v (2) dz™ da™
Rx Jox
decomposing C* into R* x (C!'/+1),

:/ / /1 plaz™ N alg @y (az vt zu)v(au) du do™ da™
RX JRX C/:tl
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= -1 D, -1 d s 5 da> dx>
/Rx /RX (/@/ﬂ pov(u) @y (au, zu) u) p(a)|algyv(x)|z|g da™ dx
writing @/ (a, ) for the inside of (),

= [ [ @ule. 0@l (@)l da* dr~
R* JRX

Since @/ (a,x)’s span a dense subspace of S(R®?), the G.C.D. of these integrals is
L(s, plyx)L(s,v[;x). Again noting Ly (2s, wr,[rx) and Ly (s,ws,) are holomorphic on the
region (Rem, 8Y) > 0 and Re(s) > 0, we conclude that Z(®,, ®,, s) has the same pole as
L psqi(s, ™) has.

A.3. Poles of the twisted tensor L-function. We now state the main result of this
appendix.

Proposition A.2. Let © be an irreducible unitary cuspidal automorphic representation
of G1(A) and write w, for its central character. Then the only possible pole of L asq;i(s, )
in the region

(Remr, 3Y) >0, Re(s) >0

locates at s = 1 with we|ax = 1. It is a pole if and only if

(A.3) F(hdh#0, 3f eV,

/H(k)Z(HA)\H(A)
holds.

Proof. From A.2, it is sufficient to determine the poles of Z(f, ®, s) in the positive domain
of the proposition. Then these poles were calculated in [HLR] Satz 3.13. O

Corollary A.3 (Proposition 4.2). Let the notations be as above. Then the only pole
of r(w(Py), ) in the region (Rem, 5y > 0 occurs at

_ (i) wrlas = | 2,
O(P) = {7 € MGG | (7“1 h o ezt an 2o |

and it is simple.
Proof. Recall that
LAsai (07 7T)

P, = .
T(w( 1)’ Tr) LAsai(L 7T)€Asai(07 7T)
The infinite product € as4i(s, ™) = [, €4sai($, Ty, 1) 18 in fact a finite product ([Sh] Theo-
rem 3.5 (1)) and each local factor is an exponential function. Thus € 44,(0, 7) contributes
nothing to the analytic property of r(w(P;), 7). On the other hand L a4, (1, 7) does not
vanish in our positive region by Shahidi’s non-vanishing theorem ([Sh3] Theorem 5.1).

Thus the poles of r(w(P;), ) are the same as those of Ls(0,7), and the corollary
follows from Proposition A.2. O

APPENDIX B. POLES OF THE PRODUCT L-FUNCTION OF U(1,1) x Resp /1Gy,

Here we shall determine the poles of the product L-function of Gy X Resy /G, and
deduce Proposition 5.2 as a corollary. For this we use the Shimura type integral repre-
sentation (cf. [GJ]), and hence we begin with some review of theta series on Ga(A).

B.1. Oscillator representations for U(1,1) x U(1).
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B.1.1. Preliminary for the local theory. Let F' be a local field of characteristic 0. F
denotes a 2-dimensional abelian semisimple algebra over F' and let {1, €} be a basis of E
over F. We may assume that €2 = —§ € F*. We write o for the non-trivial involution
of E trivial on F. We write | | for the modulus of F. If F' is non-archimedean we write
Or, pr, wr and gr for the maximal compact subring of F, the maximal ideal in Op, a
generator of pr and the cardinality of the residue field of F', respectively. ng/r denotes
the quadratic character of F'* which corresponds to E/F by the classfield theory.
The group G5 to be considered is defined by

GQ = U(l, 1)E/F = {g c RGSE/FGL(2> ) gJﬁ(tg) = Jl},

where J; is as in the beginning of §5. This is attached to the skew-Hermitian space
(V,®) = (E®2,J;). We define the symplectic space (W, @) over F' by W := Resg/rV
and ¢(, ) := Trg/p®(, ) and write Sp(IW) for its symplectic group. Of course we have
the natural embedding ¢ : Gy — Sp(W). We fix a Borel pair (B, T3) of Gy such that
By consists of upper triangular elements and Ty consists of d(a) := diag(a,d(a)™1), (a €
Resg/pGy,). Then Gy is generated by H := SL(2)p and T. We take the Borel pair
(Bm,Th) to be the intersection of (Bs, T5) with H. We choose a suitable symplectic basis
of W and identify Sp(W) with Sp(2), so that the above embedding ¢ is given by

0 205 b
a0 | ((Z d)EH)

O T = §1 + §2€ € RGSE/FGm with
O o 1m0 |’ o(x)~" = m + e
—N2

B.1.2. Splitting of the metaplectic 2-cocycle and local oscillator representations. It is known
that the metaplectic 2-cocycle on Sp(W) = Sp(2) splits over ¢(G2(F)). The explicit split-
ting is calculated in [MVW] Chapter 3.1.4 (see also [Ku] Theorem 3.1). To state the result,
we fix a character £ of E* such that {|px = ng/r. We define three 1-cocycles as follows.

(1) Define a 1-cocycle A\; on H(F') by

a b (c/2,=0)p ifc+#0,
)\1( ) = .
c d (d,—0)r  otherwise,
where (, ) denotes the Hilbert symbol for F'.
(2) Define a 1-cocycle Ay on T5(F') by
7(Ng/p(2))
Ao(d(x)) = —————.

Here ~ is the Weil constant (cf. [P]).
(3) Define a 1-cocycle A3 on Gy(F') for h € H(F) and d(z) € To>(F),

No(h - d(x)) = Ng(d(x) - ) = {iNE/F() o oftﬁfxfse
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Then we define a 1-cocycle A\¢ on Go(F) by
Ae(g = h-d(x)) = Ae(d(x) - h) := M(h)Aa(d(2))E(2)As(g), (b € H(F), d(z) € To(F)).

This is independent of the decomposition g = h - d(z) and the metaplectic 2-cocycle
c(g1, g2) ([P]) restricted to ¢t(G2(F)) becomes

_ A (9192)
C([’(gl)7b(g2)) - )\5(;1))\5(92>

Thus we have the splitting
te : Ga(F) 3 9 — ((9), Ae(g)) € Mp(W).

We fix a non-trivial character ¢ of F' and write wy, for the oscillator representation
of Mp(W) associated with ). The above splitting gives the oscillator representation
Wy e =Wy, 0 te o0 S(E). We have explicit formulae:

5.1 oeldl@)B(a) = §(@) ol D), (o € B)
5.2 cscl(p 1)20) = v r) ()

0 -1 1
B3 el )00 = s [ e Teeluo(a) s

B.1.3. Local Howe duality for U(1,1) x U(1). Here we assume that F/F is a quadratic
extension of fields. Note that the group U(1)g,p is contained in G as its center Z,. Since
Zy(F') is compact, we can define the local theta integral

(B.4) Pr,®(z) := /ZQ(F) XE(2)P(xz) dz.

This defines a projection on S(E) whose image (wy ¢(x), S(E)y) is the x-isotypic subspace
of (wye, S(E)). Then the following lemma was essentially proved in [ST] 1.1.

Lemma B.1. (i) Pr, commutes with wy¢(g) and hence

(wye, S(B)) = ) (Wye(x), S(E)y)-

x€Hom(Z5(F),Cl)

(11) Each (wye(x),S(E)y) is non-zero and irreducible.

(i11) Suppose F is non-archimedean. If x # &, then wye(x) is supercuspidal. If x = &
then wye(x) is a limit of discrete series representation. Another limit of discrete series
representation in the same L-packet will be obtained by replacing 1.

(iv) When F =R, (i) still holds if the term supercuspidal is replaced by discrete series.

Proof. (i) is clear since Zy(F') is compact. For (ii) we use a classical argument in [ST].
We first consider the non-archimedean case. Take A € Home,(p)(wy.e(X), wye(x)). Then
from (B.2),

PN g () AB() = (3 ‘{))Acmac):Aww,f(x; (3 f{))@@c)

=AyY(bNg/p(x))P(x).
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But since (wy¢(x), S(E)) extends to a continuous representation on L?(E), A has a kernel
function K(z,y);

A0(2) = [ K(z,y)0()dy.

Then we must have
[ 0N p (@) = (N () K (2. 9) () dy = 0, VO € S(E).

It follows that K(x,e) = k(z)d,, where J, is the Dirac distribution supported at = and
k(x) is a bounded measurable function; A®(x) = k(z)®(x). Moreover it follows from
(B.1) that k(za) = k(x) for any a € E*. Now we have two E*-orbit in E, the open orbit
E* and the closed one {0}. If y # &, then

Pr, &(0) = / () dz B(0) = 0.

Zo(F)

Hence dim Homg, gy (wy,e(X), wpe(x)) = 1 and wye(x) is irreducible. Next we assume
x = &. Then we apply Rallis’s invariant distribution theorem to have

PreS(E) ~ Span{wy ¢(g)do}-

Again this asserts that dim Home, (p)(wye(§), wye(§)) = 1 and wy ¢(§) is irreducible. This
proof is also valid in the archimedean case, but notations will become more complicated.
(iii) and (iv) were proved in [JL]. O

B.1.4. Local Howe duality for GL(2) X G,,. Next we assume £ = F'& F. Then Gy =
GL(2)r and ¢ is identified with a character of F* by &(zy~!) := £(x,y). Then the explicit
formulae for (wy ¢, S(F®?)) become

(B3 aosl(( 0))2te) = Slaalonali 0(uanas )
(B.6) ww,5(<(1) l{))@w,y):w(bxw@(m,y)
(B.7) w¢,5(<_01 é))@(m,y):/E@(u,v)zﬁ(uy—kvx)dudv.

Now the following results were proved in [JL].

Lemma B.2. (i) The partial Fourier transform;

Fod(z,y) = /F O(z,u)p(yu) du, (P € S(E))
gives a Go(F)-equivariant isomorphism
(W6 S(B)) > ((€ o det)| det [}* @ R, S(F®2)).

Here R denotes the right translation action.
(ii) The map

S(F®) 5 & — ¢(det(g))| det(g)|#*®((0, 1]g) € ind e D [&] [ @ L]



50 TAKUYA KON-NO

is a Go(F)-equivariant isomorphism. Here BY denotes the subgroup of Bo consisting of

elements of the form g % . indgﬁgg assigns the unnormalized induction.
2
(i4i) We define a projector Pr on indgggg (€] |}/2 ® Iy, m) by
Pr’ = / X(2)p(zg) d=.
009) = [ X(2)9(z9)
This is a surjection to Indgigg[(g ® x&) ®1n, ()] Hence the x-isotypic quotient wy ¢(x)
GQ(F)

of wy.¢ is isomorphic to Indy 1 [(§ ® X&) @ Ly

B.1.5. The global theory. Now let k' /k be a quadratic extension of number fields. We use
notations defined in 2.1 and in §5. As in the local case we have the skew-Hermitian space
(V,®) over k' and obtain the symplectic space (W, ¢) over k by the restriction of scalars.
We again write Sp(WW) for the symplectic group of (W, ¢). Fix a non-trivial character
v =@Q,%,. As in [I] §1, we can construct the global metaplectic group Mp(W), and its
oscillator representation (wy, S(Ag)).

We also fix a character { = ®, &, of A /K’ whose restriction to A* equals 7. Then
using the arguments of 3.3.7 (1), we have the global splitting ¢ : G3(A) — Mp(W),.
This time we define the oscillator representation wy ¢ of Go(A) by wy ¢ := wy 0 te. The
explicit formulae are given as follows:

B.5) Cocd@)(w) = @al}’B(ar), (@€ A)
(B9 wscl(p 12 = v p)R0
(B.10) aoel () o2 = [ oeTuntuoo) s

Now we define a tempered distribution, called #-distribution, on S(A;/) by
S(Ak/) 50 — Q(Cb) = Z @((5) e C.

Sek!
The theta series 04(g) attached to ® € S(Ay) is defined by 05(g) = O(wye(9)P) (g €
G(A)). We write the space of automorphic forms spanned by 0g’s with ® € S°(A./) as
O(&,v). Here 8°(Ay) is defined similarly as in 3.3.7 (1).

Next we take a character x = ®, X, of Z2(k)\Z2(A). At inert v we have the projection
Pr,,. At split v Pr,, can still be defined by (B.4) if x € &k satisfies Ny /i, (x) # 0.
This defines Pr,, ®,(z) (¢, € S(k])) at such z, and we define Pr, @, € S(k}) to be its
extension to ki, by zero. We now define the global projector Pr, on S(Ay) by

(Bll) PI‘X : S(Ak/) > ®q)v — ®Pr)@q)v € S(Ak/)

This is clearly well-defined and G3(A)-equivariant. We write S(Ay/), for its image and
wy e(x) for the restriction of wy¢ to S(Ay)y. On the other hand since Zy(k)\Z3(A) is
compact, the distribution
q)—u?q)::/ XE(2)0(P(e2)) dz
(@)= [ RE(e:)
is also tempered. We define 04 ,(g) := 0\ (wye(9)®) (9 € G2(A)). The space of automor-
phic forms spanned by 6g, (® € S°(Ay)) is denoted by ©(&, ),



THE RESIDUAL SPECTRUM OF U(2,2) 51

Proposition B.3. (i) We have the direct sum decomposition

NEA(Za(k)\ Z2(1))
X s unitary
(11) Each ©(&, )y is an irreducible automorphic representation. Moreover if x # &, then
O(&,1)y is cuspidal, while ©(&, )¢ is not cuspidal.

Proof. (i) is clear. The first statement and the cuspidality in (7i) were proved in [ST]
Proposition 4.9. The last statement follows from the fact that 04 ¢ has the non-trivial
constant term wy,¢(g)®(0) along By. O

B.2. The zeta integral—definition and unfolding. Here we fix a irreducible cuspidal
automorphic representation 7 = @, 7, of G2(A) and give an integral representation for
L(s, 7 X x).

B.2.1. Classification of 7, at inert v. Let w|v be as before. The results of [JL] combined
with [Si] Theorem 2.5.9 and [Sh] Corollary 7.6 gives:

Lemma B.4 (Non-archimedean case). (i) If 7, is not supercuspidal, then we can
choose a character vy of K, and s € C such that 7, is a submodule of I(vp,s) =
Ind 2 00| [4%) © Lvsguo]

(i) I(vo, s) is irreducible unless vol,x = Mk, and s =0 or volx =1, and s € {—1,1}.
(i1i) If volyx = Mk, sk, then 1(14,0) is a direct sum of two distinct limit of discrete series
representations.

(i) If volyx = 1, then I(vo,1) has a unique irreducible submodule, the Steinberg repre-
sentation St(vy) with the central character vy. The quotient of I(vo, 1) by St(vg) is the
one-dimensional representation v5? defined similarly as in 3.3.1. I(vy, —1) has v5? as its
unique submodule and the quotient of I(vy, —1) by it is St(vp).

The corresponding archimedean results are very well-known and will be omitted (cf.
[JL] Lemma 5.7).

B.2.2. Whittaker models for T, at inert v. Note that in the classification above, finite
dimensional irreducible representations can never be a 7,. We begin with the non-
archimedean case. Take a non-trivial character ¢, and consider it as a character of
Ny(k,). The space of Whittaker functional on 7, is defined by

W, (7o) = Hom, (k) (o] Na ko) ¥o) = (7o) Ny (k)

From [LL], we know that W, (7,) # 0 with some suitable 1,. For this suitable 1, we
choose a non-zero £, € Wy, (7,) and define the Whittaker model of 7, with respect to ),
by
W(Ty, ) = {Wf “(g) = Lu(r(9) )| f €V}
Finally we remark that if 7, is in the principal series, Wy, (7,) # 0 for any t,,.
Next assume &/, /k, = C/R. The non-trivial characters 1, = 1z or 1z" are considered
as a character of Ny(R). Its differential is denoted by d),. Define

(i) £, is continuous with respect to the Schwartz

topology,
(i) £o(d7(X)[f) = dip(X)Lu(f), (X € Lie(N(R)))

Then again Wy, (7,) # 0 for ¢, = g or ¢y . With this suitable 1/, we choose a non-zero

£y € Wy, (1,). Extend £, to a map on a unitary completion (7,,V ). Then using this

LoV, —C

linear functional

W, (T0) =
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extended £,, we define the Whittaker model W(7,,1,) as in the non-archimedean case.
By the uniqueness of the Whittaker model, this does not depend on the choice of the
unitary completion.

B.2.3. Whittaker models for 7. From above, we can choose a non-trivial character ¢ =
&, ¥y of A/k so that Wy, (7,) # 0 at any v. Moreover at almost all v, 7, is unramified
and 1, is of order 0. At such v we write W for the element of W(7,,,) such that W2 is
right K5 ,-invariant and W?(1) = 1. Here K>, is a suitable maximal compact subgroup
of Gy(k,). The global Whittaker model W(r,4) of 7 is given by the restricted tensor
product of W(7,,1,)’s with respect to W?. It was shown by Shalika that W(r, 1) is
unique for a fixed .

Our final remark is about the Fourier expansion. For a cusp form ¢ € V, we can define
an element of W(r,) by

W¥(g) = p(ng)(n)dn, (g€ Ga(A)).

/N2(k)\N2(A)
If we write 1 (x) := 1 (dx) for § € k, then the Fourier expansion on Ny(k)\No(A) reads

plg) =S W(g).

o€k

B.2.4. The zeta integral and its unfolding. We retain the notations defined above. In par-

ticular fix a character £ of A /K’ such that £|,x = . Additionally for each character

x of Aj /K™, we choose a holomorphic section Fy(x§) of A(Na(A)To(k)\Ga(A))ye |
k/

(s € C). Then we have the Eisenstein series

E(F(x),s)(9):= >,  Fx&n9)

vEB2(k)\G2(k)

on Go(A). The properties of E(F(x&),s) were given in 3.3.8. We choose a non-trivial
character ¢ of A/k so that 7 has a global Whittaker model with respect to it. Then we
construct the oscillator representation wy, ¢ and @-series using this 1. Now for fixed data
eV, ®eS(Ay) and Fy(x€), we define the zeta integral by

(B.12) Z(p,0s,x;5) = ©(9)0s(9)E(F(x§),s — 1/2)(g) dg.

/G2(k)\G2(A)

Proposition B.5. Suppose that the data appeared in the definition of the zeta integral
are chosen to be of the form

o= ® q)v S S(Ak’>7 Fs(Xf)(g) = ®Fs,v(Xv§v)(gv>7 W:ob(g) = ®Wv(gv>

If we define the local zeta integral Z,(W,, @y, Xv; S) by

B13) [ [ Fern006) R)on o DBL@W. Ak (@)l da* at.

then
Z(@ae@ax; S) = H Zv(an (I)vaxv; S)'

v



THE RESIDUAL SPECTRUM OF U(2,2) 93

Proof. Since the analogous argument in the case of SL(2,A) was given in [GJ], we only
give the formal outline and the convergence argument will be omitted. From the definition
of E(F(x£),s), we have

Zlp b0, x:s) = | Bo(9) Fyrp(xE ) d
(.08, X; s) A ©(9)0s(9)Fs_1/2(x&; 9) dg

0 1 =z da*
- Oo Fs d(a)k) dx —— dk
/K2 /k/X\Ax F\A Pl L's 1/2()(5)((0 1) (CL) ) €T

|a|Ak/

1 da*
_/K2 /W\AX —12(X&; k)xé(a |G‘Ak// e <0 f) d(a)k) da dk.

|a’|Ak/

Here K, is a certain maximal compact subgroup of G3(A). From (B.9), our inner integral

becomes
—/(1 =z
/k\A gp%((o 1) g) dx

- /k\A @((é T) g) Z Y(xNp (@) wy £(9) () d

ack’>

- 3 Gt [ (o 1) )i

agk!*

But notice that
1 a 1 Nk//k( ) 1.1' wany
foue(o 3)opmmentanas= [ o(s ™) o)

Al >< G o) o

= WY (d(a)g).

Thus we conclude

Z(p,0p,x;5) = /K2 //«X\AX Fo_1/2(X¢; k)XS(a)Ialfsk/
k/

x Yy ww,g(d(a)k)@(a)Wf(d(aa)k)ﬂdk

ack’* |a|Ak’

putting a := aa and using (B.8),

- /KQ | Feap 0 R)wu R R@WE (k) x(@)lal;,, " da* dk
= H Zy (W, oy X5 S)-
|

B.3. Comparisons of local factors. Here again we shall see that Z,(W,, ®,, xu;s)
equals certain quotient of L(s, 7, X x,) at almost all v. Then we shall prove that, at every
v in the region Re(s) > 0, the G.C.D. has the same set of poles as L(s, 7, X x,) has.
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B.3.1. Unramified calculations. We begin with the inert case, hence k!, /k, be an unram-
ified quadratic extension. Further assume that y, and &, are unramified, v, is of order
0, @, = ®° (the characteristic function of O,) and Fj,(x€) is the spherical vector such
that Fs,(x&; k) =1 for (k € Ks,). The spherical Whittaker function W was defined in
B.2.3.

Lemma B.6. Under these assumptions we have

L (8, Xou) Lir (8, Xy b) L5, X Xu)

Zy(W2 00 xp; 8) =

Lk:(237 (Xv&)”kvx) B Lk(287 (ngv)|kvx )
Proof.
2,00 i) = [ BU@Wid(@)x(a)lal; " da*
k%
= Wy (d(a))xo(a)laly " da*
OwNk')

= > Wid(w)xo(w) g,

We need to calculate W2(d(w?)). 7, IndngZ” (Vo ® 1ny(k,)] 1s Testricted to 7|mk,) =

Indgl({k&)v)[l/Akg ® 1N, (k,)); then extends to a representation

7o = Ind3 5 (vl © 1) @ i)

of GL(2,k,). Here B = T'N denotes the upper triangular Borel subgroup of GL(2)y,.
Accordingly W2 is restricted to H(k,) and then extended to the spherical Whittaker
function for 7,. For this an explicit formula is available (cf. [JL] p. 123);

witatw) (%5 ) (5 0)

v

—1y ()" || /k _ Cho,eo, (@2t v, (t) dt*

2n n+1 —-n
— —j Vv(wv) - Vv(wv) —n/2
=vy(@,)"q, " vy(w,) ™ = T
jz% vy(wy) — 1

Here Chp,a0, denotes the characteristic function of O, & O,. Hence we have

= = 2 (@) - e (=)™

Zy(W2,8°, v,
( vs Xv3 5) e

B 1 vy () 1
_Vv(wv) -1 (1 - XUVv(wv)qw 1 — Xoly ( U)q )
_ 1+ xo(®0)g,”

(1 - le/v(wv)qas)(l - Xoly ( v)q )

noting &, (w,) = Uk{u/kv(wv) =—1,

:Lk’(sa XoVo) L (3, vav_l)
Lk(257 (vav)‘kff)
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Next comes a split v. Let w;, we|v be as before. Assume that X, = Xw, @ Xuws
and &,(z,y) = & (zy™') are unramified, v, is of order 0, ®, = ®° (the characteristic
function of O,, ® O,,) and F;,(x.&y) is the spherical vector such that Fj ,(x.&y; k) =1

for k € Ky,. Further assume that 7, is of the form Ind?((,’z”)[( Vwy, @ Vigy) @ Ly k)], where

Vw, are unramified characters of k. The spherical Whittaker function W2 is as in B.2.3.

Lemma B.7. Under these assumptions we have

L L(s, T, L
Zv(WvO, @27 Yo S) — (57 Ty & Xw1> <S7Tv ® Xw2> — (57 Ty X XU> ]
L(2s, (xo&o)1x) Ly (25, (xo€o) |5y
Proof. In this case G(k,) = GL(2, k,) and we have from [JL] p. 123 that

W d(@y, @) = vy v, (@, ™, (@) ) ]2

x / Cho, 50, (@™, 1~ Y1, Vi, (1) dt*
K

n+m
= Vo, (@) (@) gy TS v, vy ()
7=0
g (/2 Iy Vi, (T04) Vi (70,77 if m+n >0,
0 otherwise

Thus one has

W08 xuis) = [ [ @Y bWl b)) X (@)X (B) by da”

= > > W@, @) Xaon (50) X () gy, TP
n=0 m=0

_ Z Z Z Vun wv)]l/wQ(wv)J n+mxw1(wv) Xll)g(wv) q;(ner)S.

n=0m=0j=—m

We now use abbreviations

Q1= Vyyy (wv)a ﬁ = Vi, (wv>7 A= Xw1 (wv>qQ787 B = Xws (wv)QJ8~

Then
Z (WO (I)07Xv; Z Aan(Oénﬁm 4 anflﬁmfl 4. —FOéimﬁin)
n,m>0
Oén—l—lﬁm—}—l _ a—mﬁ—n
n,mzjzo af —1
=S (e (B - —— ¥ (A7) (Ba™)"
Oéﬁ —1 n,m>0 O[ﬁ —1 n,m>0
af 1

(@B -1D(1—Aa)(1-BB) (af—-1)(1—Ap7)(1~ Ba™t)
_af(l— AB™'— Ba '+ ABa™'371) — (1 — Aa — B3 + ABaf3)
B (1= Aa)(1 = A (1 = Ba~!)(1 - Bf)(af — 1)
1—-AB
(1= Aa)(1 = A51)(1 - Ba (1 — BY)
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_ 1= Xy Xy () 4

(1 = Xun Vo (@) @57 ) (1 = X Vip (@) €57 ) (1 = X Vi (@) €57 ) (1 = X Vo (@) 457°)
~L(5, Ty @ Xy ) L(8, Ty © Xuw,)
B L(2s, Xv§v|k;5<)

Ol

B.3.2. Ramified split case. We want to show that the G.C.D. of Z,(W,, ®,, x,; s) has the
same analytic behavior as that of L(s, 7, X x,) in the region Re(s) > 0. At a split v this
is reduced to the corresponding results in [Ja]. The key point is the following lemma.
Lemma B.8. If we set

Ga (ko - GL(2,ke _
T2 1= IndB;((kvg[(Xun & wTuXwgl) ® ]‘NQ(kv)] = IndB(k(f) )[(le ® wTv1Xw2) ® ]'N(kv)]’

then we can choose Wy € W(12,1,) and &y € S(k¥?) (S°(kF?) if v is archimedean) so
that
ZU(WU7 cha Xvs 3) - \11(37 Wm W2a @2)

Here the right hand side is the Rankin product local zeta integral defined in [Jal.
Proof. We may assume Re(s) > 0 throughout the proof. From definition, we have

a 0
Zv(anqDMXU;S) = /K /l’€>< X stl/2(Xv§v;k)wwv,gv(k)év(aa b)Wv(<O bl) k)

X X (@)X (b) bl /% da™ db™

putting = := ab, y = b1,

= . 1 zy 0
— /K2’v /'%< /kff Fs—l/Q,v(ngvvk)wwmﬁv(k)q)v(xy?y )Wv(< 0 y) k)le({L'y)

Xoos () [2]571/2 da™ dy* dk

= /K /k /k [wWep, e, (K)o (@Y, ¥y~ wr Xoo! Xaws (¥) Y™ Fom1/2,0(Xo&oi k)

z 0 s
WU(<O 1) k) X () |23/ da™ dks,
Here we note
/k MW (B) @] (2, ™) wr X, X (1) dy™
= [ o Xun Xy (1) [Wo ¢, (F) o] (zy,y™ ) dy™ =Pr, ah Wene, (F) 2] (2, 1)
= Wy, &, (k)(Pr(mewle;)q)”)(x’ 1),

and hence

Zy(W, @y, Xo3 5)

z 0
= /Kz,u /kvx wlﬂv,&;(k)(Pr(wTvalxw;)ch)(l‘71)Fs1/2,U(XU£U;IC)WU<<O 1) k)
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X (@)]a]3 2 da™ dk

= Fy 1/00(X0€v; 9)wy,.e,(g)Pr 1,9, (1, 1)W,(g) dg.
Na(ko) Za(ho\Gak) * (Xw&03 D)W 0 (DPT (0, 0, 3t (1 DWelg) dg

Next we specify the integrand. We may assume Fi_1 /2, (xv&v; g) is of the form

o (Xo60:.9) = X €u(dlet(9)) det(g)[; [ @2((0,]g)unxan (It

= Xun &o(det(9))] det(9)[52(| 5 Xun Xuas 9-P2),
where @, € S(k%%) (€ S°(k%?) if v|oo) and z(w,®) was defined in the introduction of
[Ja]. Moreover if we set

GL(2,kv)
7 :=1In dB(k2 [(fv ® valeXu;Q) ® Ink,)l,

then from Lemma B.2 we know wy, ¢, (Wr, Xuw, X ) = 75 and
W) = 00 (9P o o iy Po(1 1)

is in the Whittaker model W(74,1,) (cf. [JL]). Note that W*(g) spans a dense subspace
of W(74,1,) as ®, changes. Now the zeta integral becomes

Zy(W, @y, Xo3 5)

= W (g) W+ w, o (det 2(] 12 Yo Yo s §-@2)| det ()2 dg.
s (o) Za (ko Gl (GIW*(9)Xun&o(det(9)) 2(| 157 Xw: Xws» 9-P2)| det(g)]; dg

On the other hand, since W*(g) runs over the Whittaker functions WQ(( ) ) (Wy €
W(Th, ), Wa(g) == Xu,&o(det(g))Wi(g) runs over Whittaker functions for

T2 = (Xuw §o 0 det) @ T 7—2 = Indg(Lk2 kv)[(le ® w;leuu) ® ]‘N(k‘v)]

with respect to v,. Hence we conclude
Zy (W, @y, X3 S)
1

0 2
- W, (g)W: X Xung» 9-®)]| det(g) 5 d
Mt 22N Gati) ) 2(<0 _1> )21 [ s -2)| detl o) dg

= U(s, W, Wy, ).
1
Corollary B.9. The G.C.D. of Z,(W,, ®,, xv; ) equals
L(3, Ty @ Xuwy ) L(8, T @ Xawy) = L(8, Ty X Xu)-

B.3.3. Ramified inert non-archimedean case. Let w|v be as before. We first state the
result.

Proposition B.10. Z,(W,, ®,, x.; $) has the same poles in the region Re(s) > 0 as

L(s, Ty, X Xu)
L(ZS’ (Xv£U)|kvx)

has.

(1) A key lemma. The proof of the proposition is a case-by-case argument and quite
lengthy. We start with a key lemma which will be commonly used in all cases.
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Lemma B.11. Z,(W,, ®,, xu; s) has the same set of poles as

H(k,s) ::/ wwé(k:)CD(a)Wv(d(a)k)Xv(a)|a|fu_1/2 da™, (k€ Kyy)

w

has.

Proof. Since

Zo(Wo, By, Xo: 5) = / Fyt 0 (oo k) H (K, 5) dk,

B (kv)NK2,,\ K20

all poles of Z,(W,, ®,, xv; $) come from those of H(k,s).

Conversely if we set
n a b a, del+yp? . a b
KZU(pw) = {(C d) € KQ,v b7 = pn P }7 KQ,v(pw) = { (C d) € KQ,v

then we have for sufficiently large n,

(i) Koo(pl) = (Ba(ky) N Ka) Koo (p7)
(ii) H(kl,s) = H(k,s), (VI € Ko,(p"), k € Ky,).

CGPZ}},

Thus if we choose

Xobola) i k= (4%) € Ko (ph),
0 otherwise,

Fs—l/?,v(ngv; k) = {

then Z,(W,, ®,, xv; s) becomes
. N Fo 100(xo&; K)H (K, s)dk =c- H(1,s).
/32(kv)ﬁKZv(PZ)\KzU(PZ) V2 Ounbos H (K, 5) (1,5)
Hence every pole of H(1,s) contributes to that of Z,(W,, ®,, xv;s). O
(2) Whittaker functions for generalized principal series. To prove the proposi-

tion for non-supercuspidal 7,, we need explicit formulae for the Whittaker functions for
them. For this we calculate the Whittaker functions for the induced module I(v,) =

Indgzézzg [V @ 1Ny (k,)), where v, is a quasi-character of &'}
We define the Whittaker functional on I(r,) by the principal value integral

We(Nl) =3 [ (é 9{) 9)d.(x) de,

I}_pv

where w = _01 (1) . If this is well-defined, then it gives a Whittaker functions at least

for an irreducible quotient of I(v,). We formally have

won@@) =% [ (G D (p N e

nez ’ Po P

= v,(0(a)) " Hall/? Z/ . f(w—l <(1) T))wU(N%/kv(a)x) dx.

nez Py —Po

(5 N =15 5 (A 1) =merite s

But since
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for |x|, > 1, the principal value integral converges if Rer, > —1 (cf. [JL]). Moreover
using the explicit formulae for the Kirillov models on GL(2,k,) (see A.2.3), we see that
the Kirillov functions

S [ (o 1)@

nez pv —Pv

are contained in

{f1(Nkg s, (@)1 (N s, (@) + f2(Nig i, (@) | fr, fo € S(R)} i wlix #1151,

)
{f1(Ny sk, (@))ord, (Nir, s, (@) + f2(Nir jx, (@) | f1, f2 € S(ky)} if v = 1,
{f1(Niyyx, (@) | f1 € S(ky)} if vyl =1 [,
Hence Wy, (f)(d(a)) is of the form
(B.14)
(f1(Nig, s, (@))v(@) + fo(Nig g, (@), (0(a)))]al,/? if vl # | 511,
(f1(Nkgy sk, (@) (@)ordy (Nig, sk, (@) + fo(Nig i, (@) (o (@))]alif?  if vl = 1,
Fir(Ny, s, (@)vy  (o(a))]aly/? A

where f; and f, are in S(k,).

(3) Proof of Proposition B.10 for non-supercuspidal 7,. First consider 7, in
the principal or complementary series. It equals some I(v,) with (i) v, is unitary and
Vylpx 7 My sk, OF (i) vl = | |3 with 0 < A < 1. Hence from (B.14), H(1,s) is of the
form

. e@on(@llalda* + [ ®ax@pv o o) (@)lal;, da”
kL, kL,

if v,[;x # 1 and

L. ®@xm@ord, (N . @)lali da + [ @a(a)xo(ty 0 0) 7 (a)al;, da”

if vlx = 1, with & € S(k,) (i = 1,2). In both cases the G.C.D. of H(1,s) is
L (8, Xovu) Lir (8, Xo (v 0 0)71) which equals L(s, 7, X ).

Next we treat 7, in the limit of discrete series. This 7, is a direct summand of I(v,)
with v, |,x = Nk, k. As in the principal case, we have from (B.14) that the G.C.D. of
H(1,s) equals

Lk’(37 vav)Lk’(37 Xv(yv ° U)_l)‘
This is holomorphic for Re(s) > 0, while L(s, 7, X x,) is also holomorphic in that region
by [Sh] Proposition 7.2 (b).

Finally we care 7, in the discrete series. It is a unique irreducible quotient of (v, ) with

Vylpx = | |, Hence from (B.14),

H(1,s) = /k ®(a)xo(ve 0 o)~} (a)|af}, da™

and their G.C.D. is Ly (s, xo(v, 0 0)™!). This is holomorphic for Re(s) > 0 and again we
use [Sh]| Proposition 7.2 (b) to finish the proof. O

(4) Whittaker functions for supercuspidal 7,. To obtain an explicit formula for
the Kirillov space of such 7, we use the following variant of the Gel’fand-Kazhdan theory
(cf. [BZ] Chapter III). We freely use the notations and terminologies of [BZ]. In particular
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Ind$ denotes the induction functor from Alg(H) to Alg(G) and ind§ denotes the finite
induction functor between these categories.

—

We write the space of characters of Ny(k,) as No(k,). Then our ¢, allows us to identify

m) with the ¢-space k, and C°(Ny(k,)) with S(m)) (by the Fourier transform).
This gives the category equivalence

(1) Alg(Ny(ky)) — (f—sheaves/m)).

—

If £ is an (-sheaf on Ny (k,) corresponding to an object E of Alg(N2(k,)) by the equivalence
(), then En, k)0 ~ Ey as S(Na(k,))-modules for any ¢ € Ny(k,) (cf. [BZ] 5.9, 5.10).
Fix o € k} — Ny i, (K'5,) and set 1 := 4y, ¢~ := ¢$. Then we have six functors

Oy Alg(Ba(kv)) 3 E — Enyk,) 9= € Alg(Za(ky))

L : Alg(Za(ko)) 2 p — indy2 )y, 1, (0 © %) € Alg(By(k,))
U™ Alg(Ba(ky)) 3 E — Eng,) € Alg(Ta(ky))

U Alg(To(ky)) 3t — 1@ 1y, € Alg(Ba(ky)).

The main properties of these functors are as follows.

Lemma B.12. (a) All functors are exact.

(b) O~ is left adjoint to WT, ®F is left adjoint to P.

(c) P oWt =0 and ¥~ o ®f =

(d) The adjonction map iy :id — ®LPL, j: U — id are isomorphisms.
(e) We have an exact sequence

0— PIPT ®PTP- — id — ¥TU™ — 0.
Proof. (a) is clear. (b) to (e) will be proved along the following considerations.

(1) For (m, E) € Alg(Bs(k,)), we can take an (-sheaf (m),g) such that £ ~ &,

L

as S(Nz(k,))-modules. Using this isomorphism we transport the Bs(k,)-module
structure to &.. Then

—

m(n)p(0) = 0(n)p(0), (0 € Na(ky), n € Na(ky), ¢ € &)

—

(2) Once we have realized (m, E) on &., we analyze the By(k,)-orbits in Ny(k,). We
have three orbits;

Z = {1y } yE .= (Qbi)BQ(kv).

Let 7t := T|e.(v+). Then since the representation of Z(k,)Na(k,), the stabilizer
of ¥* in By(k,), on the stalk £(Y*),+ = Ey+ is equivalent to L (7) @ ¢*, we have
from [BZ] 2.23 (b) that

E(Ny(k,), 1) =n" @7, ®LoL(r)=r"

Thus from (7 — ®3 (7)) € Homy,s,) (7, DL (7)) we can construct an element of
Homp, (1,)(PL(7), 7) by the composition

i(r) — [@105(r) = 74 < .
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(3) Next we construct the inverse Homp,,)(®1(7),7) — Homy,,) (7, @ (7). By
[BZ] 2.23 (a), we have an (-sheaf F} over Y= such that ®1(7) ~ FL, as S(Y¥)-

—

modules. We extend this to an ¢-sheaf Fy on Ny(k,) by Fi|zuys := {0}. Then
F4 is the f-sheaf associated to ®L(7) by the construction of (1). Hence

PLOL(7T) = (PL(T)) Ny(ho) o — Faypt = T.

Also we have ®3 o ®% = 0. This gives the natural isomorphism iz : id = &3 01,
and for ®L(7) — 7 we have an element

7= 0L 0L(7) — PL(7)

of Homg, ) (7, @ (7)).

(4) The left adjointness of ¥~ to Ut is obvious. Since F|z = {0}, we have U~ & =
UH (1) No(k) = INa(ky) gives @LWH = 0. Finally the exact sequence in (e) is given
by

0 — E(Ny(ky),1) — E — Eny(r,)a — 0.
|

Corollary B.13 (Kirillov models for supercuspidal 7,). Assume that 7, is super-
cuspidal. Then for W, € W(7,,¥,), W,(d(a)) is in S(K'.,) as a function of a € K},

Ba (ky . 3Ba(kv
Proof. Define 7, := [ndzj((kv))NQ(kv)(wTv ® ¢*) and 7} = mdzj((kv))NQ(kv)(wm ® ¢*). By
definition we have the natural embedding 7} < 7. On the other hand

Homp, 4,y (72, 72) = Homz, (o,) Na (k) (TL| Za (k) Na (k0 )s Wr, @ ©F)
:< g:)}k\fg(k‘v),wi

is 1-dimensional.

Since 7, is supercuspidal, it follows from Lemma B.12 that 7,|p,,) = @19 (7,) &
PP (7). But W(r,,1,) 3 W, — Wylp,k,) € T+ is non-zero by our assumption (recall
¥, = ), and hence ®TP (7)) = 7]

We still have to show ®*®~(7,) = {0}. If this is not {0}, then it is a direct sum of
copies of 7. But since Homp, (,)(m°, 74) = 0, T (7,) go to {0} under the “restriction
to By(k,)”-functor. O

(5) Proof of Proposition B.10 in the supercuspidal case. From Corollary B.13,
the G.C.D. of H(1,s) is 1. On the other hand, from [Sh] Proposition 7.2 (b) we know
that L(s, 7, X Xy) is also holomorphic on the region Re(s) > 0. (q.e.d)

B.3.4. K-types of the oscillator representation. We now proceed to the archimedean inert
case, k., /k, = C/R. To calculate Z,(W,, ®,, x,; s) explicitly, we need to know the K-types
of the oscillator representation wy, ¢, .

We begin with the explicit formulae for the differential dwy, ¢,. Noting nc/r = sgn, &,
can be written as

&.(2) = (2/2)%/2, (ke2Z+1).
Write gor for the R-Lie algebra of G3(RR). It is generated by the elements;

) w40 (0] (5 )
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Lemma B.14. The explicit formulae for the differential of (wy,e,,S(C)) are given as
follows.

dwy, &, (X1)P(z = 2+ V=1y) = £2rV/~1(a* + ") 0(2), (as ¢, = ¢i")

Ao (H)B() = B(z) +a0(z) + yaﬁy@@
o £, (2)0(2) = VIRD(:) — v B(2) + 27 0(:)

dwy, e, (U)®(2) = £ l87r\1/_ <883:2 4 9 ) ®(2) + 2mv/—1(2% + y2)@(2) |, (as 1y = ¥iEh).

Proof. These can be easily deduced from (B.1), (B.2) and (B.3). O

Next we change the polarization.

Lemma B.15 (Change of the polarization). Define the partial Fourier transform Fy
by

Fod(x ++/—1y) = /R Oz + vV —10)b, (yv) dv

Then we have

(B.15)

Fol o 00)0) = % |t (o + 1) Fd(e) 4 2T + )00
(B.16)  F(dwy, ¢,(2)®)(2) = l\/——lki <47T N af:a +4my/—1 a;yﬂ Fod(2).
Here the signs & are according to ¢, = i,

Proof. The proof is again a simple computation. [

The final preliminary is the change of variables v := z + y and v = x — y. Then we
have

0 0 0 0 0 0

8x_8u+8v’ du _ Ou v

0?9 0> 02 0? 02 02
@*@I%@*@) 900y 0w 0o
Hence if we write ¢(u,v) := Fo®(2) € S(R®?) and set
D, = #_@-}-ﬂ'\/_ﬂ (t =wu orv),
then (B.15) and (B.16) become
(B.17) dwy, ¢, (U)o(u, v) = £(Dy + Dy)d(u, v)
(B.18) dwy, ¢,(2)6(u,v) = (V=1k  (Dy — D,))é(u, v).

We now describe the Ky ,-types in wy, ¢,. First we solve the differential equation

Dip(t) = V=1x(t), (A€R, ¢ € S(R)).
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Lemma B.16 (cf. [W] Chapt. 5 §6). D;¢(t) = v/ —1A\¢(t) has a non-trivial solution
in S(R) (or in L*(R)) if and only if X € Z>o + 1/2. If this is the case, the solution space
15 spanned by

Oa(t) = e ™ Hy_1/o(V2r - 1).
Here H,, (n € Z>q) denotes the classical Hermite function;

H,(t) = (—1)%9%@—9

As usual we identify each irreducible representation of K5, with a pair of integers;

(m,n): Ky, 2 eV le cosf sinf — VT ImiV=Ing ¢ 1
A sinf cos0 ’

Proposition B.17 (K, ,-types of wy, ¢, ). Using the notations defined above, the Ks -
types of wy, ¢, are

{(mn)eZdZ|m=n (mod 2), k—m <n<k+m} if,=1g,

{(m,n) €ZOZ|m=n (mod 2), k+m<n<k—m} if,=1vg"
B.3.5. Z,(W,, ®y, Xv; $) in the principal case. We treat 7, in the principal and comple-
mentary series at the same time. We may assume that

G2 (R g — Oy = \tlv
Ty = IndBjER;[VU ® 1N2(R)]7 ngv(z) = |Z|(CH(Z/Z)lH/27 Vv(z) = |Z|(C (Z/Z)l /27
where
Re(o,) =0, 0<Re(o,) <1, 1,1, €Z

As before we write S°(C) for the space of standard functions with respect to 1,;
S%(C) = {e ) P(z,y) | P is a polynomial function.}.
We may assume @, € S°(C).

Proposition B.18. Under these assumptions, Z,(W,, ®,, xv; $) is a linear combination
of functions of the form

n n
(B.19) FR(S+Uu+UV+j1+§+1>FR(3+(7M—O'y—|—j2—|—§—|—1)

n on
—)'r(s+0, — 0, + jo+ 5)/PR(2S +20,+1)

2

with j1, ja, n € Zso. Moreover the term with j; = jo = n = 0 appears if and only if
k=1,x1l, andl, is odd.

XIr(s+o,+0,+ 51+

Assuming the proposition for a moment, we shall prove the following.

Corollary B.19. The G.C.D. of Z,(W,, ®,, xv; $) has the same set of poles in the region
Re(s) >0 as

L(C(Sa XvVU)L(C(S7 vaqjl)
Lz (25, (Xo&o)|rx)

(B.20)

has.
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Proof. Recall from [Sh2] §3 that

7 = l [, —k
c(8 Xxovw) = Le(s, [2[¢ et Y (z)7) et R)/2) FC(S +o,+o0,+ %)
L = ly—1,—k
C(&le/;l) F(C(S_'_aﬂ_ oy | 5 |)

€
LR(237 XU£U|RX) = FR (3 + O-M 2>

where e = 0 or 1 is such that e =, (mod 2). Thus (B.20) has its only pole in the region
Re(s) > 0 at s = 0, — 0, with

k=1,—-1, 0<o0,<1/2, 1, iseven.

On the other hand (B.19) in Proposition B.18 has its only pole in the same region at
s = 0, — 0, with

h=J2=n=0.
We apply the last statement of Proposition B.18 to verify that these two conditions are
equivalent. [

Proof of Proposition B.18. We may assume that F,_;/5,(x»&) and W, are of the form

(m1) o cos) sinf\\ "
F8—11/2,U (Xvé-lh e\/_1<,0 (_ Sln@ COS 9)) — e\/_l I'ﬂpe\/_l ! ) ml E lu + 2Z

W(m2)<€\/f1@ co§9 sin 0 ):eml”“"e\/jlme, my € 1, + 27.
v —sinf@ cosf

Let (n1,n2) be a Ky ,-type in wy, ¢, (cf. Proposition B.17). Using the notations of Lemma
B.16 we set

¢n1 N2 (l’ + \/__1y) = ¢in1—"2+k (1' + y)¢in1+ng—k (l' — y) - SO(C)
nl M2 (l‘ + \/_y) "TQ ¢N1 n2 (l‘ + \/_y)

where the inverse Fourier transform F, ! is defined by

Fy'o(e +v=Ty) = [ o +v=To)i(vy) dv

From Lemma B.16, it is clear that ®,, ,, is the (n, ny)-weight vector in wy, ¢,, and it is
enough to calculate

Zy (W(mQ) P, o2y Xvs S )
[ E s M T (W ) o) da i

—sinf cosf )’

writing k() := < cos¢  sin 0)

= [ E L e A TR0 o U RO ()

W) (d(aeV = )k(0)) xo (@) a2~ dp df da™

(2



THE RESIDUAL SPECTRUM OF U(2,2) 65

B / iy e ()W) (d(a)) X (@) |al " da®
RX

+

/27r /ﬂ 6\/—71(lu+l,,—ng)weﬁ(m1+m2—n1)9 dg& d6.

This equals
Py o ()W (d(@)) X0 (a) | da™

RX
if ng =1, +1,, n1 = my; + my and zero otherwise.
Now we set ny = [, + [, and take ny, m; and my so that n; = m; + my and that the
conditions of Proposition B.17 are satisfied. Then

Zv(W(mz)’ (I)nl’nQ’Xv; 3) = /RX CI)”LHQ (&)WémQ)(d(a))‘a’%(s—w“)_l da*.
+

(2

Next we extend the restriction 7,|g®) to a representation 7, := Indg(Lﬂg’R) (L|rx ®1) ®

1nm)) of GL(2,R) just as in the proof of Lemma B.6. Accordingly Wm2) restricted to
H(R) is extended to a Whittaker function of 7, and we have

2

e ata) = e Wi (1))

Thus

m = 3 m a® 0 2(s+ou—0)—1
2V i) = [ T @ () e

- 2/ (I)m nz WémQ (( >)| ‘S—W” ov=1/2 da™.

To compute this we need following lemmas.

Lemma B.20. (i) The Mellin transform of ®,, »,(v/a);
/ q)"l nz |a‘s Y2 da”

is a linear combination of terms Ir(s + 2£4)Tr(s + %5%) (n € Zxo).
(it) The term Ir(s + $)Ir(s — 3) appears if and only if k =1, +1,.

Proof. Recall that
Durs(1) = 5 Gnrna(r) = [ a7+ V=1y) dy
= [ Gumomn (4 Y6 pmrms (7 — ) dy
— /R eI H vy (V2R(r 4 ) H oy opina o (V2 (r — ) dy

—2mr —x / / dx
=€ 2712 /R e QHj:"1732+k (.fL' + 27TT) n1+n2 k( r — l‘) \/%

mtnpk _onp —x / / dx
= (—1):|: it 22 e 2712 /R e QH:tnl_;2+k (.fL' —+ QWT)H:tnl-F;LQ—k (x - 27TT) \/—2—7T

Clearly this is a linear combination of terms of the form e >"’r" (n € Zsy). The
orthogonality relation of Hermite polynomials asserts that the term e~ appears if and
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only if im*gﬂk = i"lJrng

from the well-known formula

/oo 6_27m|a|s+n/271/2 da* — 7T_S_n/QF(s + (n+ 1>/2)F<8 +(n— 1)/2)
. R = 5 5 .

, or equivalently £ = ny = [, +{,. Now our lemma follows

|
Lemma B.21. (i) The Mellin transform of W{m2);

RX WUmQ)(( >)| |S 1/2d g

is a linear combination of terms I'r(s + j1 + 20,)I'r(s + j2) (J1, J2 € Z>0).
(ii) The term T'r(s 4 20,)I'r(s) appears if and only if my is even.

Proof. We may assume Re(o,,) > 0 and Re(s) > 0 throughout the proof. Let
CID(mQ)(x,y) = e*ﬂ'(m2+y2)(x+ \/__1y)m2 c SO(RZ)
f5(g) = w(det(g))] det(g)[ /R ([0, t]g)v (1) [t} dt .

This integral converges absolutely for Re(o,) > —ms + 1, and flEZ”?) is a mo-weight vector
in 7,. Thus from [JL] §5, we may take W™ to be

m m 1z )
Wi(g) = [ g (w (0 1) O do

from definition,

= v(det(g))| det(g) §* [ [ @) ([t talg)u,(t)lt}x 0, (@) dt* da
putting z = tz,

= v,(det(g))| det(g) [§* [ [ @) ([t,2]g)b, (1) da v, (t) dt*
writing R(g) for the right translation by g,

= n(det(o)] det()l¥* [ 7[R0, wer) de
using Proposition 1.6 (ii) in [JL],

= vi(det(g)| det(@i” [ [wolg)F5 0Nt t (t) e

Here wy, denotes the Weil representation of SL(2,R) defined in [JL] Proposition 1.3
extended to GL(2,R) by Proposition 1.6 loc.cit.
Using this we have

mo)(fa O 1 (g B
e (5 1)) = [, 7o ol e

Hence the Mellin transform becomes

/ W“”Q ( >)| i /2 g%
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</ () (( >)| 5% da” +/ () (< >)| I 1/2sgn(a)daX>

/ f Lp(m2) (a,t t~ )Vv(@t)!a|Rth da*
+/ fz_lcb(mﬂ(at, t_l)yv(at”ahf{sgn(a) At dax>
RX JRX
1
= —(/ f;lé("@)(x’y)]/v(l'”xyhf%dxX dy><
2 RX RX

+ Fy ') (2, y)v, () |zy[3sgn(zy) da* dyx)
RX JRX

On the other hand
Fy 0, y) = [ 0 (@ 4/ —Tu)™y,(—uy) du

m2 y . .
=> V —1gme <m2> e / e wdihy (—uy) du
=0 J R

This is a linear combination of terms e ™@*+¥*) zityd2 (j,. jy € Zsp), and e ™** %) appears
if and only if ms is even. Hence the Mellin transform is a linear combination of

(L[ e iyt osgn eyl de dy
R* JRX
+ [ / e gy o g o)y sen(y) da” dy”)
Rx JRX
=S ( [, el rsgntay i dee [ ey tsgn(y) dy”

el (@) e [ gl sy dy)

This equals
00 . 1
2/ 2 2OV+J1+S dx /O eiﬂ.yQyJQJ’»s dyx = §FR(S _'_ jl _'_ 20-1/>FR(8 _'_ j2)
if 71 + 1, = jo (mod 2) and zero otherwise. The term with j; = jo = 0 appears if and

only if [, (or equivalently ms) is even. O

We now return to the proof of Proposition B.18. We apply the Barnes-Mellin lemma
([Ja] Lemma 17.3.2) to the result of Lemmas B.20 and B.21 to see that

[ o Wém((g ?))\arﬁldax

is a linear combination of terms
Tr(s + j1 4 20, + Z)Tr(s + j2 + 25 Tr(s + 1 + 20, + 255 Tr(s + j2 + %57)
FR(25+j1 —|—j2—|—20'1,—|—n)

Y

and the term corresponding to j; = jo = n = 0 appears if and only if £ = [, 4+ [, and [,
is even. Since k is odd, this is equivalent to & = [, + [, and [, is odd. Replacing s with
s+0,—o0,+1/2 will yield the proposition. The statement for k = [,, —, will be obtained
by replacing v, with (v, o o)™!. (q.e.d.)
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B.3.6. Z,(W,, ®y, Xv; $) in the discrete case. Here we take care of 7, in the discrete series.
We embed such 7, into a generalized principal series:

Ty < Indgiggg (Ve @ 1y (mw))-

Here v,(z) = |z ”/2(2/2)1”/2 satisfies if ¢, = 0 or 1 is such that [, = ¢, (mod 2), then

) |
k,—¢€,€ 2N —1.
Proposition B.22. (i) Under these assumptions, the G.C.D. of Z,(W,,, ®,, xu; s) is given
by

Fe(s+o0,+k,/2)Tc(s+ 0, +k,/2+1)
I'r(2s+20, +k, +2) ’

(i) In particular Z,(W,, ®,, xu; s) is holomorphic in the region Re(s) > 0.

Proof. Let the notations be as in the proof of Proposition B.18. Then the local zeta
integral Z,(W ™) &, .. y,;s) equals

iy ()W) (d(a)) X0 (@) fal " da™

RX

ifng =1,+10,,n = m1 + my and zero otherwise. We concentrate on the former case. We

again extend W(™) to a Whittaker function of 7, = In dg(LRQ Nyl ©1) ©1 N and

have
Zv(”’émQ)acI)nl,nzaxv;S) — 2/ q)nhm(\/a)”férm)(( >>| ‘s-&—au (kv+1) /2d X
5

The analogue of Lemma B.21 in this case is much simpler.

Lemma B.23. The Mellin transform of W)

R va)(<o 1))' 5 da”

is a linear combination of terms U'r(s 4+ k, +7 + D)I'r(s + k, +7) (§ € Z>o).
Proof. From the explicit calculation in [JL]| pp. 187-189, we know that

P, (a)ak*1/2e=2m if ¢ > 0,

W(?n—f—ku—f—l)((af O)) _ 0 if a <0,
' 01 0 ifa>0,

Po(—a)(—a)k*1/2e2mif g < 0,

if ¥, = g,
if 1, = Y.

Here P,(a) is a certain polynomial. The formulae for W(=2"=%=1) are given by replacing
¥, =Yg and 1, = 1z " in the above. Thus our Mellin transform is a linear combination

/RX e gt da* = Tr(s+ k, 4+ + Dlr(s +k, +7), (€ Zso).
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We again apply the Barnes-Mellin lemma to the result of Lemmas B.20 and B.23 to
see that Z,(W,™2) @, ... Xu;5) is a linear combination of
Tr(s+o,+52+j+2+2)Tr(s+o,+ 2 +j+2+1)Tr(s+o, + 2 +5+%2)
I'r(2s + 20, +k, +2j +n+2)

(j,n € Z>p). Finally we note

oo |
T (s + 1)Ta(s) z/0 et dr* = Te(s)

to have the proposition. 0
B.4. Poles of L(s,7 x x). We finally come to the main result of this appendix.

Theorem B.24 (Poles of L(s,7 x x)). L(s,7 X x) has its only possible pole in Re(s) >
0 at s =1, and it is a pole if and only if

(Z) X|AX = nk’/ka (”) T = @(X_17w)w7'

Proof. Lemma B.6, Lemma B.7, Corollary B.9, Proposition B.10, Corollary B.19 and
Proposition B.22 combined with Proposition B.5 assert that we have only to determine
the poles of

Z,e,;s;:/ I () E(F(xE), s — 1/2)(q) dg.
(9 00.59) = | o gay POV EENE),s =1/2)(g) dg

First note that ¢ is rapidly decreasing while 0¢ and E(F(x€),s — 1/2)(g) are slowly
increasing. Hence the integral converges absolutely (if E(F(x&),s — 1/2)(g) is defined),
and its poles come from those of E(F(x£),s —1/2)(g). But it is well-known that

(1) The only pole of E(F(x&),s—1/2)(g) in Re(s) > 0 occurs if and only if x§[ax =1
and it locates at s = 1.
(2) The residue of E(F(x§),s—1/2)(g) at the pole spans the 1-dimensional represen-
tation (y&)%2.
Thus Z(p,0s, x; s) has its only possible pole in Re(s) > 0 at s = 1, and it is a pole if
and only if x|ax = M /x and

(B.21) ©(9)05(9)(x€)*(g) dg # 0.

/G2(k)\G2(A)
But the left hand side reads

20)0s (2 G2(20)dzd
/G P, /Z e PO () (2g) d=dg

G -
- ’ wrx&(2)00(2g) dzd
eaty zam gy PO XS ) /ZQ(k)\ZQ(m XE(2)0a(29) dz dg

G -
- ’ 0 . dg.
Ga(k)Z2(A)\G2 (A) (Xf) (g%p(g) P, ‘rXf(g> g

Of course this means that (B.21) is equivalent to

(B.22) 7= ()% ®O(E,V)ure.

since the multiplicity one theorem is true for Gj.
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We now analyze the representation (x¢ )GQ—1 ® O(&,¢)w,xe- By definition this space is
spanned by functions of the form

(&% (9) [ X (@0 wre(9)P(02)) dz

Z2(k)\Z2(4)

~ Jzn\ze() ()% (29X ()X (2)O(E(2) e (29) ) dz

_ ot
 JZa(k)\Z2(8) wr(2)0((x¢) (29)wy e(29)P) dz.

On the other hand it follows from the explicit formulae (B.8), (B.9), (B.10) that

() @ wye, S(Aw)) = @y, S(Aw)).
Hence (x€)% ' ® O(¢, ) w. e 1s spanned by

wr(2)0(wy, -1 (2 Q)dz_—/ Wr(2)0(wy =1 (2)wy r~1(g)P) dz
memm (2)8(wy 1 (29)®) Za(k)\ Z2(A) (2)0(wyxr (2w (9)P)
= X 20wy -1(g)P(e2)) dz.
Zo(b)\Z(A) X (2)0( P,x (9)®(e2))

These span O(x 1, 4),. . O

We now apply Shahidi’s non-vanishing theorem to L(s, 7, 7(p,)) to have the following
corollary:.

Corollary B.25 (Proposition 5.2). The poles of r(w(Py), ) in the region (Rew, By ) >
0 locate at

6(P2777k;’/k> = {7T = X®T € f’pv X|A>< = | |12v7/€’/k7 T = @(Xil‘ |Ak/71/1)w7}
G(PZal) = {ﬂ- =x®7€eP; X|AX = ‘ |A7 L(OaT X X) 7é O}'

Here in the definition of &(Ps, ni i), ¥ has been chosen so that 7, is generic with respect
to 1t.

Note that &(F,,1) is the only pole of L(s, 7, 7w(py),2) = Li(s, X|ax )-
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