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1 Introduction

In this note, we present a brief survey on the Arthur-Selberg trace formula. Interested
readers can consult more detailed expositions [1], [28], [29], and of course, the original
papers [2] to [13]. See also [20] for some important ideas and several appropriate arguments
in reduction theory. For the purpose of this introduction, it is sufficient to recall the
original Selberg trace formula and give some words about arithmetic backgrounds.

The Selberg trace formula was originally proved for a pair (G,Γ) of a semisimple Lie
group and a cocompact discrete subgroup in it [37], [38]. If we exclude some exceptional
cases, this is equivalent to the setting of anisotropic adéle groups.

Thus let F be a number field and write A = AF for its ring of adéles. | |A denotes the
idéle norm on A× and set A1 := Ker| |A . For a connected semisimple group G over F , its
group of adelic points G(A) is a locally compact topological group, in which the group
G(F ) of F -rational points is a discrete subgroup. We assume that G is anisotropic over
F , that is, G(F ) contains only semisimple elements. Then G(F )\G(A) is compact by the
result of [18].

R denotes the right regular representation of G(A) on the space L2(G(F )\G(A)).
Write C∞

c (G(A)) for the space of functions with compact supports on G(A) which is
smooth in the archimedean components and locally constant in the non-archimedean
components. For f ∈ C∞

c (G(A)), the operator

[R(f)φ](x) :=

∫
G(A )

f(y)φ(xy) dy =

∫
G(A )

f(x−1y)φ(y) dy

=

∫
G(F )\G(A )

∑
γ∈G(F )

f(x−1γy)φ(y) dy

is an integral operator with the kernel

K(x, y) :=
∑

γ∈G(F )

f(x−1γy).

Since G(F )\G(A) is compact, this operator is of Hilbert-Schmidt class (i.e. K(x, x)
is square integrable on G(F )\G(A)). In particular one can show that the representation
R decomposes into a direct sum of irreducible representations where each irreducible
representation occurs with finite multiplicity:

R =
⊕

π∈Π(G(A ))

π⊕m(π) (1.1)

Here, Π(G(A)) denotes the set of isomorphism classes of irreducible unitary representa-
tions of G(A) . Moreover an argument of Duflo-Labesse [21, I.1.11] shows that R(f) is of
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trace class. That is, it admits a trace given by the integral of K(x, y) on the diagonal:

trR(f) =

∫
G(F )\G(A )

K(x, x) dx =
∑

{γ}∈O(G)

∑
δ∈Gγ(F )\G(F )

∫
G(F )\G(A )

f(x−1δ−1γδx) dx

=
∑

{γ}∈O(G)

1

[Gγ(F ) : Gγ(F )]

∫
Gγ(A )\G(A )

∫
Gγ(F )\Gγ(A )

f(x−1γx) dy dx

=
∑

{γ}∈O(G)

aG(γ)IG(γ, f).

Here O(G) is the set of (semisimple) conjugacy classes in G(F ), Gγ := Cent(γ,G) is the
centralizer of γ in G, Gγ := Cent(γ,G)0 is its identity component, and

aG(γ) :=
meas(Gγ(F )\Gγ(A))

[Gγ(F ) : Gγ(F )]
, IG(γ, f) :=

∫
Gγ(A )\G(A )

f(x−1γx) dx.

This combined with (1.1) yields the Selberg trace formula :∑
{γ}∈O(G)

aG(γ)IG(γ, f) =
∑

π∈Π(G(A ))

aG(π)IG(π, f), (1.2)

where aG(π) := m(π) and IG(π, f) := trπ(f) is the distribution character of π. The left
and right sides are called the geometric and the spectral side, respectively.

The Selberg trace formula has many variations reflecting its applications to wide vari-
ety of fields in mathematics. But the Arthur-Selberg trace formula is the only extension
to the case when G has the F -rank greater than one. It is one of the important ingredients
of the Langlands program. Perhaps it will be helpful to explain the program briefly.

It is a program to understand the deep relationship between automorphic forms and
Galois representations and motives. Two main processes are

(1) To describe the automorphic representations of reductive groups by means of their
associated automorphic L-functions (or their Langlands parameters);

(2) To construct the correspondence between automorphic representations of arithmetic
type and �-adic representations of Galois groups of the field of definition of such
forms. This correspondence should be characterized by the equality between auto-
morphic and Artin L-functions.

Both of them are very hard but will provide a lot of fruitful arithmetic informations.
As for (1), the case of inner forms of GL(n) was successfully treated [25], [26], [35] and

[15]. The relevant L-functions are the Rankin product L-functions. Then one expects to
reduce the case of general reductive (or at least classical) groups to the GL(n) case. This
divides into two steps. First we relate the automorphic representations of a reductive
group G to those of its quasisplit inner form G∗. This is suggested by the experience in
the GL(n) case [24], [15]. Then relate the automorphic representation of G∗ with those
of some GL(n). In [14, § 8] the detailed framework of the second part for classical G
are explained. We need to compare the trace formula for G with that of G∗ in the first
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problem, while a twisted trace formula for GL(n) need to be compared with the ordinary
one for G∗ in the second.

The problem (2) contains so many aspects that we cannot explain them in any detail
here. But the starting point is to construct the Galois representations associated to
an arithmetic automorphic representations in the �-adic cohomology of certain Shimura
variety. Here the trace formula with special geometric test functions will be compared
with the Lefschetz-Verdier trace formula of the Shimura variety.

For these purposes, the trace formula must be of the arithmetic form, i.e. must be
stabilized . In fact, already in the spectral decomposition of the L2-automorphic spectrum,
the normalization of intertwining operators by L-functions and the precise analytic prop-
erties of those L-functions must be established. The analytic trace formula alone yields
little arithmetic information !

In this note, however, we deal only with the analytic aspects in the construction of the
Arthur-Selberg trace formula. Some parts of the stabilization process will be found in the
article of Hiraga in this volume. The contents of this note is as follows. We start with a
brief review of Langlands’ theory of spectral decomposition of the automorphic spectrum
by Eisenstein series § 2. In the higher rank case, the residual Eisenstein series appears
which makes the construction in what follows muchmore complicated. Anyway this allows
us to express the kernel of the right translation operator in two forms, one geometric and
the other spectral. § 3 explains the construction of [2] and [3]. We define the truncated
kernel and prove that its integral over the diagonal converges. We obtain the coarse trace
formula. § 4 is devoted to the fine O-expansion. We write the geometric terms in terms
of the unipotent terms of certain reductive subgroups of G. Then they are expressed
by means of weighted orbital integrals. The spectral counter part, the fine X-expansion,
is explained in § 5. This is the heart of this note, because it is the most important
part in applications. We use the fact that the coarse X-expansion is a polynomial in the
truncation parameter T to deduce the precise expression of the X-expansion from the
asymptotic formula of the inner product of truncated Eisenstein series. Finally in § 6, we
illustrate the rough idea of Arthur’s construction of the invariant trace formula [11], [12].

Because of the lack of time and volume, many important ideas are overlooked. In
particular, we ignore many convergence/finiteness arguments, and also cannot refer to
the works of Osborne-Warner [34]. Instead we add some examples in the simplest case
G = GL(2) with some figures.

2 Spectral decomposition

We begin with some notation. For a finite set of places S of F , we write AS := {(av)v ∈
A | av = 0, ∀v /∈ S}. The infinite and finite components of A are denoted by A∞ and Af ,
respectively.

Let G be a connected reductive group over F . For brevity, we write G := G(A),
GS := G(AS), etc. Let AG be the maximal F -split torus in the center Z(G) of G, while
the maximal R-vector subgroup in the center Z(G∞) of G∞ is denoted by AG. Write aG

for its Lie algebra. We have a direct product decomposition G =G1 × AG such that

|χ(ag)|A = |χ(a)|A , a ∈ AG, g ∈ G1

4



holds for any F -rational character of G. Set

HG : G = G1 ×AG
proj−→ AG

log−→ aG.

For a parabolic subgroup P = MU , we write F(M), P(M) and L(M) for the set of
parabolic subgroups containing M , the set of parabolic subgroups having M as a Levi
factor and the set of Levi subgroups containing M . We fix a minimal parabolic subgroup
P0 = M0U0. F(P0) and L(P0) denotes the set of parabolic subgroups containing P0

and the set of Levi components of elements of F(P0) containing M0 (the set of standard
parabolic and Levi subgroups).

Fix a maximal compact subgroup K =
∏

v Kv of G such that the Iwasawa decompo-
sition G = PK holds for any P ∈ F(M0). Using this we extend the map HM :M→ aM

to
HP : G = UMK � umk �−→ HM (m) ∈ aM .

W = WG denotes the (relative) Weyl group Norm(A0, G)/M0 of A0 = AM0 in G,
where Norm(H,G) means the normalizer of a subgroup H in a group G. We identify W
with a fixed system of representatives in Norm(A0, G). W acts by conjugation on F(M0)
and the associated objects. We write the action w : P �→ w(P ) = wP := wPw−1 etc.

2.1 Siegel domains

Fixing an invariant measure on G and a Lebesgue measure on AG, we can consider the
space

L2(G(F )AG\G) :=

{
φ : G→ C
measurable

∣∣∣∣ (i) φ(γag) = φ(g), ∀a ∈ AG, γ ∈ G(F )
(ii)

∫
G(F )AG\G |φ(g)|2 dg < +∞

}
as in the anisotropic case. Let C∞

c (G/AG) for the space of smooth functions on G which
are compactly supported modulo AG. Similar calculation as in the anisotropic case shows
that, the operator

[R(f)φ](x) :=

∫
AG\G

f(y)φ(xy) dy

on L2(G(F )AG\G) is an integral operator with the kernel

K(x, y) :=
∑

γ∈G(F )

f(x−1γy) (2.1)

for f ∈ C∞
c (G/AG). Later we shall use the subspace H(G/AG) of elements which are

K-finite on both sides in C∞
c (G/AG) as the space of test functions.

The spectral decomposition of the right regular representation R = RG of G on
L2(G(F )AG\G) is more complicated than in the anisotropic case, because G(F )AG\G =
G(F )\G1 is no longer compact. The form of the non-compactness is described as follows.
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Since M0 is anisotropic modulo center by definition, we can choose a compact subset
ω1 of M1

0 satisfying M1
0 = M0(F )ω1. As U0 is a multiple extension of additive groups,

there exists a compact subset ω2 ⊂ U0 such that U0 = U0(F )ω2. For T ∈ a0, we set

A0(T ) := {a ∈ A0 |α(H0(a)− T ) > 0, ∀α ∈ ∆},

where we have abbreviated AM0, HP0 as A0, H0, respectively, and ∆ is the set of simple
roots of A0 := AM0 in P0, considered as a subset of a∗

0.

Proposition 2.1 ([23]). We can choose T0 ∈ a0 sufficiently negative so that

G = G(F )S(T0), S(T0) := ω2ω1A0(T0)K

Thus the non-compactness comes from that of A0(T0), a shifted positive cone.

2.2 Cusp forms

For an F -parabolic subgroup P = MU of G and a measurable function φ on U(F )\G,
we can define its constant term along P by

φP (g) :=

∫
U (F )\U

φ(ug) du.

The space of L2-cusp forms L2
0(G(F )AG\G) consists of φ ∈ L2(G(F )AG\G) such that

φP vanishes almost everywhere for any P ∈ F(P0). Of course this is not the space of cusp
forms A0(G(F )AG\G) in the usual sense [33, Chapt. I], but A0(G(F )AG\G) is a dense
subspace of L2

0(G(F )AG\G). The following lemma is fundamental in our estimation
arguments.

Lemma 2.2. Suppose φ : G(F )\G → C is slowly increasing and sufficiently smooth
relative to dimU0. Then the alternating sum

cφ(g) :=
∑

P=MU∈F(P0)

(−1)aG
MφP (g)

is rapidly decreasing. Moreover c extends to a projection on L2(G(F )AG\G) whose re-
striction to L2

0(G(F )AG\G) is the identity. Here aGM := dimaM/aG.

The proof is a simple extension of the argument showing that the classical holomorphic
cusp forms are rapidly decreasing. From this, we see that the kernel of the restriction
R0(f) of R(f) to L2

0(G(F )AG\G) is cyK(x, y) (cy means the operator c applied in y)
which is rapidly decreasing. Hence R0(f) is of Hilbert-Schmidt class and R0 decomposes
discretely . Moreover each irreducible component has finite multiplicity:

L2
0(G(F )AG\G) =

⊕
π∈Π(G)

π⊕mcusp(π).
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2.3 Decomposition by cuspidal data

A pair (M, ρ) of M ∈ L(P0) and an irreducible component ρ of L2
0(M(F )AM\M) is

called a cuspidal pair for G. We write L2
0(M(F )AM\M)ρ for the ρ-isotypic subspace

in L2
0(M(F )AM\M) and A0(M(F )AM\M)ρ for its intersection with A0(M(F )AM\M).

This is the underlying admissible (g∞,K∞) × Gf -module of the unitary representation
L2

0(M(F )AM\M)ρ. A G(F )-conjugacy class of cuspidal pairs is a cuspidal datum for G.
We write X(G) for the set of cuspidal data for G.

Fix a cuspidal pair (M, ρ) ∈ X ∈ X(G) and a finite set of K-types F. Write P̂ F
(M,ρ) for

the space of smooth functions φ̂ : UM(F )AG\G→ C such that

(1) M(F )AM\M � m �→ φ̂(mg) ∈ C belongs to A0(M(F )AM\M)ρ for any g ∈ G;

(2) AM/AG � a �−→ φ̂(ag) ∈ C is compactly supported for any g ∈ G;

(3) K � k �−→ φ̂(gk) ∈ C belongs to the linear span of the matrix coefficients ofK-types
in F for any g ∈ G.

Noting that φ̂ ∈ P̂ F
(M,ρ) is rapidly decreasing, we deduce the following.

Lemma 2.3. (i) For φ̂ ∈ P̂ F
(M,ρ),

θφ(g) :=
∑

γ∈P (F )\G(F )

φ̂(γg)

converges absolutely and belongs to L2(G(F )AG\G).
(ii) If we write L2(G(F )AG\G)X for the closure of the span of

⋃
F

⋃
(M,ρ)∈X {θφ |φ ∈

P̂ F
(M,ρ)}, then we have the orthogonal decomposition

L2(G(F )AG\G) =
⊕

X∈X(G)

L2(G(F )AG\G)X.

2.4 Cuspidal Eisenstein series

Next we set P F
(M,ρ) for the space of functions φ : (aG

M )∗
C
×UM(F )AM\G→ C satisfying

(1) (aG
M)∗C � λ �→ φ(λ; g) ∈ C is of Paley-Wiener type for any g ∈M1K;

(2) M(F )AM\M � m �→ φ(λ;mk) ∈ C belongs to A0(M(F )AM\M)ρ for any λ ∈
(aG

M)∗
C
, k ∈ K;

(3) K � k �−→ φ(λ;mk) ∈ C belongs to the linear span of the matrix coefficients of
K-types in F for any λ ∈ (aG

M)∗
C
, m ∈M1.
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Obviously, any φ̂ ∈ P̂ F
(M,ρ) is the Fourier transform

φ̂(uamk) :=

∫
i(aG

M )∗
φ(λ;mk)aλ dλ (2.2)

of some φ ∈ P F
(M,ρ). On the other hand, associated to each φ ∈ P F

(M,ρ) is a “Paley-Wiener
section”

(aG
M)∗C � λ �−→ [g �→ φλ(g) := e〈λ+ρP ,HP (g)〉φ(λ; g)] ∈ IG

P (ρλ)

of the bundle of induced representations IG
P (ρλ) := indG

P [(e
λ⊗ ρ) ⊗ 111U] → λ. Here

ρP ∈ a∗
M denotes the half of the sum of positive roots of AM in P .

For φ ∈ P F
(M,ρ), the associated cuspidal Eisenstein series is defined by

EP (x, φλ) :=
∑

δ∈P (F )\G(F )

φλ(δx). (2.3)

P = MU , P ′ = M ′U ′ ∈ F(P0) are said to be associated if the set W (M,M ′) := {w ∈
W |w(M) =M ′} is not empty. Obviously the Weyl group WM of M acts on this set by
the right translation. A system of representatives of WM -orbits in W (M,M ′) is given by
WM,M ′ := {w ∈ W (M,M ′) |w(PM

0 ) ⊂ P0}. For w ∈ WM,M ′ we define the intertwining
operator by the integral

[M(w, ρλ)φ](x) :=

∫
(U′∩w(U))\U′

φλ(w
−1ux) du · e−〈w(λ)+ρP ′ ,HP ′(x)〉.

Using the theory of resolvent, Langlands established the following properties [31], [33,
Chapt. II, IV].

(1) Convergence. EP (x, φλ) and M(w, ρλ)φ absolutely converge for Re(λ) >> 0. At
such λ, EP (x, φλ) defines and automorphic form onG(F )AG\G, and φλ �→ (M(w, ρλ)φ)w(λ)

defines an intertwining operator IG
P (ρλ) → IG

P ′(w(ρλ)). Moreover the following
holds.

(i) Equivariance. EP (x, IG
P (ρλ, f)φλ) = R(f)EP (x, φλ) for any f ∈ H(G/AG).

(ii) Constant terms. The constant term of EP (x, φλ) along Q = LV ∈ F(P0) is
given by

EP (x, φλ)Q =
∑

w∈WM(L)

EL
PL

w
(x, (M(w, ρλ)φ)w(λ)).

Here WM (L) :=
⋃

M ′∈LL(PL
0 ) WM,M ′ and PL

w denotes the unique element of

FL(PL
0 ) having Mw := w(M) as its Levi component.

(iii) Functional equations. EP (x, (M(w, ρλ)φ)wλ) = EP (x, φλ) for w ∈ WM (G).
Also for w ∈WM,M ′, w′ ∈WM ′,M ′′, we haveM(w′, w(ρλ))M(w, ρλ)φ =M(w′w, ρλ)φ
at λ where both operators converge absolutely.

(iv) Fourier transform. For λ0 whose real part is sufficiently positive, we have

θφ(uamk) =

∫
λ0+i(aG

M )∗
EP (umk, φλ)a

λ+ρP dλ.
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(2) Analytic continuation. EP (x, φλ) and M(w, ρλ)φ extend meromorphically to the
whole (aG

M )∗C . The properties (i) – (iv) of (1) still hold as equalities of meromorphic
functions.

(3) Singularities. The set of poles of EP (x, φλ) (hence those ofM(w, ρλ)φ by (1-ii)) is a
union of locally finite collection of affine hyperplanes whose vector parts are zeroes
of some coroots.

2.5 Residual Eisenstein series and the spectral decomposition

Essentially by the Perseval formula, we deduced from (ii), (iv) the L2-inner product
formula:

〈θφ, θφ′〉G =

∫
λ0+i(aG

M )∗

∑
w∈WM,M ′

〈M(w, ρλ)φ, φ
′〉M dλ. (2.4)

Here 〈 , 〉G denotes the hermitian inner product on L2(G(F )AG\G). That is, the inner
product between two θφ’s is the integral over the Pontrjagin dual of AG

M of the Petersson
inner product of M(w, ρλ)φ and φ′. Certain residue analysis transforms (2.4) into

〈θφ, θφ′〉 =T

∫
i(aG

M )∗

∑
w∈WM,M ′

〈M(w, ρλ)φ, φ
′〉M dλ

+
∑
S

∫
o(S)+i(aG

MS
)∗

∑
w∈WM,M ′

ResS 〈M(w, ρλ)φ, φ
′〉M dλ.

(2.5)

=T denotes a certain equivalence relation, the sum on the right runs over a finite set
of intersections S of singular hyperplanes of EP (x, φλ) and o(S) is a certain “origin” of
S. MS ∈ L(M0) is such that i(aG

MS
)∗ equals the vector part of S. ResS means the

iterated residue along S. Noting that
∑

w∈WM,M ′ ResSM(w, ρλ)φ belongs to the discrete

spectrum of L2(MS(F )AMS
\MS) and, at the same time, equals to the constant term of

certain residual Eisenstein series, we arrive at the following theorem [31, Chapt. 7], [33,
Chapt. 6]

Theorem 2.4. We call a pair (M,π) consisting of M ∈ L(P0) and an irreducible sub-
representation π of L2(M(F )AM\M) a discrete pair. A G(F )-conjugacy class [M,π] of
discrete pairs is a discrete datum. Write [P ] for the associated class of P ∈ F(P0).
(1) For a discrete pair (M,π) and a finite set of K-types F, we define the space P F

(M,π) in

the same manner as P F
(M,ρ) with A0(M(F )AM\M)ρ replaced by A2(M(F )AM\M)π, the

intersection of the space of square-integrable automorphic forms A2(M(F )AM\M) with
the π-isotypic subspace L2(M(F )AM\M)π. Then the residual Eisenstein series EP (x, φλ)
defined by (2.3) with φ ∈ P F

(M,π) satisfies the properties (1), (2) and (3) of 2.4 (But this

time, the formula (1-ii) holds only for Q ⊃ M .).

(2) Let L̂[M,π] for the Hilbert space of families of functions F = {FP ′}P ′∈[P ] such that

(i) FP ′ : i(aG
M ′)∗ → L2(U′M ′(F )AM ′\M′)π′ is a measurable function. Here (M ′, π′) ∈

[M,π].
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(ii) FP ′(w(λ)) =M(w, πλ)FP (λ), w ∈WM,M ′.

(iii) The norm

‖F‖2 :=
∑

(M ′,π′)∈[M,π]

1

|WM(G)|

∫
i(aG

M ′)
∗
‖FP ′(λ′)‖2

M ′ dλ′

is finite.

Then there exists a G-equivariant unitary injection L̂[M,π] ↪→ L2(G(F )AG\G), whose
restriction to the automorphic spectrum valued Paley-Wiener sections is given by

F �−→
∑

(M ′,π′)∈[M,π]

1

|WM(G)|

∫
i(aG

M ′)
∗
EP ′(x, FP ′(λ′)) dλ′.

If we write L2(G(F )AG\G)[π] for the image of this map, we have the orthogonal decom-
position

L2(G(F )AG\G) =
⊕
[M,π]

L2(G(F )AG\G)[π].

Note that the properties of residual Eisenstein series are deduced from their realization
as residues of cuspidal Eisenstein series. In particular, various growth properties of cuspi-
dal Eisenstein series are no longer assured for residual ones. This makes the construction
of the trace formula much harder in the case when the F -rank is more than one.

2.6 Spectral kernel

Th. 2.4 allows us to deduce the spectral expression of the kernel K(x, y) (2.1).
Choose a discrete datum [M,π], a cuspidal datum X ∈ X(G) and a finite set ofK-types

F. Set

A2(M(F )AM\M)π,X := A2(M(F )AM\M)π ∩
⊕

XM∈X(M )∩X

L2(M(F )AM\M)XM ,

and write A2(M(F )AM\M)F
M

π,X for the subspace of functions which transform under FM ,

the set of irreducible components of the restrictions toKM :=K∩M of elements in F, un-
derKM . This is a finite dimensional subspace of L2(M(F )AM\M), so that we can choose a

ortho-normal basis B
FM

π,X of it satisfying B
FM

π,X ⊂ B
F′M

π,X if F ⊂ F′.Similarly we have an ortho-

normal basisB
F
π,X of the induced spaceA2(UM(F )AM\G)Fπ,X = IndK

KMA2(M(F )AM\M)F
M

π,X.

Associated to each ϕ ∈ A2(UM(F )AM\G)Fπ,X is the “constant section”

ϕλ(uamk) := aλ+ρPϕ(mk)

of the bundle IG
P (πλ)→ λ ∈ (aG

M)∗C .
Now the space L2(G(F )AG\G)F[π],X for functions transforming according to F under K

in
L2(G(F )AG\G)[π] ∩ L2(G(F )AG\G)X
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is spanned by

ΦF (x) :=

∫
i(aG

M )∗
E(x, F (λ)λ) dλ,

where F : i(aG
M)∗ → A2(UM(F )AM\G)Fπ,X is a Paley-Wiener section. Using the expan-

sion F (λ) =
∑

ϕ∈BFπ,X
〈F (λ)λ, ϕλ〉ϕλ, we have

[R(f)ΦF ](x) = R(f)

∫
i(aG

M )∗

∑
ϕ∈BFπ,X

〈F (λ)λ, ϕλ〉EP (x, ϕλ) dλ

=

∫
i(aG

M )∗

∑
ϕ∈BFπ,X

R(f)EP (x, ϕλ)〈F (λ)λ, ϕλ〉 dλ,

for f ∈ H(G/AG)
F. Now recall the H(G/AG)-equivariance

R(f)EP (x, ϕλ) = EP (x, IG
P (πλ, f)ϕλ)

and the following formula obtained by the Fourier inversion formula applied to AM/AG×
(aG

M)∗:

〈F (λ)λ, ϕλ〉 = 〈
∫
i(aG

M )∗
EP (F (µ)µ) dµ,EP (ϕλ)〉G.

We see that [R(f)ΦF ](x) equals to∫
i(aG

M )∗

∑
ϕ∈BFπ,X

EP (x, IG
P (πλ, f)ϕλ)〈

∫
i(aG

M )∗
EP (F (µ)µ) dµ,EP (ϕλ)〉G dλ

=

∫
G(F )AG\G

∫
i(aG

M)∗

∑
ϕ∈BFπ,X

EP (x, IG
P (πλ, f)ϕλ)EP (y, ϕλ) dλΦF (y) dy.

In other words, R(f) (f ∈ H(G/AG)
F) restricted to L2(G(F )AG\G)F[π],X has the kernel

KF
[π],X(x, y) :=

∫
i(aG

M )∗

∑
ϕ∈BFπ,X

EP (x, IG
P (πλ, f)ϕλ)EP (y, ϕλ) dλ.

It was shown in [2] that

KX(x, y) :=
∑

P∈F(P0)

∑
π∈Π(M1)

1

|WM(G)|∫
i(aG

M )∗

∑
ϕ∈Bπ,X

EP (x, IG
P (πλ, f)ϕλ)EP (y, ϕλ) dλ,

(2.6)

defined as a certain limit, exists. Here Bπ,X :=
⋃
F B

F
π,X is empty if π does not appear

in the discrete spectrum of L2(M(F )AM\M). Also the factor 1/|WM (G)| is necessary
because we take the sum over all the standard parabolics, not over their associated classes.
We obtain the spectral kernel :

K(x, y) =
∑

X∈X(G)

KX(x, y). (2.7)
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3 Convergence

3.1 Truncated kernel

One can easily see that the operator R(f) is no longer of trace class and∫
G(F )AG\G

K(x, x) dx

diverges. The first step towards the trace formula is to truncate the kernel so that its
integral over the diagonal converges. To see how this works, we need the following com-
binatorial functions.

We write ∆0 and ∆
∨
0 for the set of simple roots of A0 in P0 and the set of corresponding

simple coroots, respectively. For P =MU ∈ F(P0), set ∆P := {α|AM
|α ∈ ∆0 \∆M

0 } and
∆∨

P := {(α∨)M |α ∈ ∆0\∆M
0 }, where XM denotes the aM component of X = XM⊕XM ∈

a0 under the W -invariant decomposition a0 = aM
0 ⊕aM . Using this, we define the positive

chamber
a+
P := {X ∈ a0 |α(XM ) > 0, ∀α ∈ ∆P},

whose characteristic function is denoted by τP . Next let ∆̂P ⊂ (aG
M)∗ be the dual basis of

the basis ∆∨
P ⊂ aG

M . Then the convex open cone

+
aP := {X ∈ a0 |:(X) = :(XM ) > 0, ∀: ∈ ∆̂P}

is spanned by ∆∨
P (Strictly speaking, this is the direct sum of aG with an open cone.).

Write τ̂P for the characteristic function of this cone.
Let O(G) be the set of semisimple classes in G(F ). For each o ∈ O(G), we write

o for the set of γ ∈ G(F ) whose semisimple part γs under the Jordan decomposition
γ = γsγu = γuγs belongs to o. We have

K(x, y) =
∑

o∈O(G)

Ko(x, y), Ko(x, y) :=
∑
γ∈o

f(x−1γy).

Next, for P =MU ∈ F(P0) write

KP (x, y) =
∑

o∈O(G)

KP,o(x, y), KP,o(x, y) :=
∑

γ∈P (F )∩o

∫
U (F )\U

f(x−1γuy) du

for the kernel of the right translation operator RP (f) on L2(UM(F )AG\G) defined
similarly as R(f). Choosing T ∈ a0, define the truncated kernel

kT (x, f) :=
∑

o∈O(G)

kTo (x, f),

kTo (x, f) :=
∑

P=MU∈F(P0)

(−1)aG
M

∑
δ∈P (F )\G(F )

KP,o(δx, δx)τ̂P(H0(δx)− T ).
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Example 3.1. We present the explicit formulae in the case of G = GL(2) [22]. The
minimal parabolic subgroup will be denoted by B = TU . The kTo (x, f) is given as follows.
(i) If o is elliptic, then ∑

γ∈o
f(x−1γx). (3.1)

(ii) If o � ( α β ) is hyperbolic regular, then∑
γ∈o

f(x−1γx)−
∑

δ∈B(F )\G(F )

∫
U

f(x−1δ−1

(
α

β

)
uδx)τ̂B(H0(δx)− T ) du

−
∑

δ∈B(F )\G(F )

∫
U

f(x−1δ−1

(
β

α

)
uδx)τ̂B(H0(δx)− T ) du.

(3.2)

(iii) If o = {ζ · 1}, ζ ∈ F×, then∑
γ∈o

f(ζx−1γx)−
∑

δ∈B(F )\G(F )

∫
U

f(ζx−1δ−1uδx)τ̂B(H0(δx)− T ) du. (3.3)

Note that this last term unifies the unipotent and identity terms.

Theorem 3.2 ([2] Th. 7.1). If we choose T ∈ a0 sufficiently positive with respect to
suppf , then

JT (f) :=
∑

o∈O(G)

JT
o (f), JT

o (f) :=

∫
G(F )AG\G

kTo (x, f) dx

converges absolutely.

Let us sketch the proof. In the higher rank case, the following combinatorial argument
is fundamental.
§ 2.1 combined with the Iwasawa decomposition yields G = P (F )SP (T0), where

SP (T0) = ω2ω1A
M
0 (T0)AMK. If we write F P

Q (•, T ) for the characteristic function of

Q(F ){x ∈ SP (T0) |:(H0(x)− T ) ≤ 0, ∀: ∈ ∆̂L
0 }

and JP
Q(δx, T ) := F P

Q (x, T )τ
P
Q (H0(x)− T ), then we have [2, Lem. 6.4]:∑

Q=LV ∈F(P0)
Q⊂P

∑
δ∈Q(F )\P (F )

J
P
Q(δx, T ) = 1. (3.4)

Next we put KP
Q(x, T ) := F P

Q (x, T )σ
P
Q(H0(x)−T ), where σP

Q is the characteristic function
of X ∈ a0

∣∣∣∣∣∣
(1) α(XL) > 0, ∀α ∈ ∆QM ,
(2) α(XL) ≤ 0, ∀α ∈ ∆Q \∆QM ,

(3) :(X) > 0, ∀: ∈ ∆̂Q.


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Example 3.3. If G = SL(3), the chambers in a0 are illustrated as

α1 = 0✡
✡
✡

✡✡
α2 = 0

❏
❏

❏
❏❏

✡
✡

✡
✡✡

❏
❏
❏

❏❏

and σP
Q are the characteristic functions of the regions

✡
✡
✡

✡✡

❏
❏

❏
❏❏

✡
✡

✡
✡✡

❏
❏
❏

❏❏

◗
◗

◗
◗◗

σG
0 : ✡

✡
✡

✡✡

❏
❏

❏
❏❏

✡
✡

✡
✡✡

❏
❏
❏

❏❏

◗
◗

◗
◗◗

σP1
0 :

✡
✡

✡
✡✡

❏
❏

❏
❏❏

✡
✡

✡
✡✡

❏
❏

❏
❏❏

◗
◗

◗
◗◗

σP2
0 : ✡

✡
✡

✡✡

❏
❏

❏
❏❏

✡
✡

✡
✡✡

❏
❏

❏
❏❏

◗
◗

◗
◗◗
�����
�

�
��

�
��

�
�

�

�
�

��

�
�

��

�
�

�
�

�
�

�
��

�
�

�
�

�
�

��

�
��

�
���

τ̂0 :

✡
✡

✡
✡✡

❏
❏

❏
❏❏

✡
✡

✡
✡✡

❏
❏

❏
❏❏

◗
◗

◗
◗◗

�
�

�
��

�
�

��

�
��

�
�

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
��

�
�

��

�
��

�
�

τ̂P1 = σG
P1

: ✡
✡

✡
✡✡

❏
❏

❏
❏❏

✡
✡

✡
✡✡

❏
❏

❏
❏❏

◗
◗

◗
◗◗

◗
◗

◗
◗◗
���

�

�
��

�
�

��

�
�

�
�

�
�

�
��

�
�

��

�
��

�
�τ̂P2 = σG

P2
:

where Pi =MiUi ∈ F(P0) are such that ∆
P

Mi
0

= {αi}, (i = 1, 2).

As these illustrate, we have
∑

R⊃P σR
Q = τQM τ̂P and hence∑

R∈F(P0)
R⊃P

K
R
Q(x, T ) = J

P
Q(x, T ). (3.5)
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Applying these combinatorial formulae to our integrand, we have

kTo (x, f)
(3.4)
=

∑
Q⊂P∈F(P0)

∑
δ∈Q(F )\G(F )

(−1)aG
MKP,o(δx, δx)J

P
Q(δx, T )τ̂P(H0(δx)− T )

(3.5)
=

∑
Q⊂R∈F(P0)

∑
δ∈Q(F )\G(F )

K
R
Q(δx, T )

∑
P∈F(P0)
Q⊂P⊂R

(−1)aG
MKP,o(δx, δx).

Thus it suffices to prove the convergence of∫
Q(F )AG\G

|KR
Q(x, T )

∑
P∈F(P0)
Q⊂P⊂R

(−1)aG
MKP (x, x)| dx.

KR
Q(x, T ) cut off the domain of integration to a product of a compact set and a transported

positive cone in a
MR
L . But on such cone the alternating sum in the integrand is rapidly

decreasing by Lem. 2.2.

3.2 Truncation operator and the basic identity

Next we turn to the convergence of the spectral side [3]. Already it follows from Th. 3.2
that the integral of the total kernel∫

G(F )AG\G

∑
X∈X(G)

kTX(x, f) dx

converges absolutely. Here we have written

kTX(x, f) :=
∑

P=MU∈F(P0)

(−1)aG
M

∑
δ∈P (F )\G(F )

KP,X(δx, δx)τ̂P(H0(δx)− T ),

where

KP,X(x, y) =
∑

Q=LV ∈F(P0)
Q⊂P

∑
τ∈Π(L1)

1

|WM
L (M)|∫

i(aG
L )∗

∑
ϕ∈Bτ,X

EP
Q(x, IM

QM (τλ, f)ϕλ)EP
Q(y, ϕλ) dλ

is the kernel of RP (f) restricted to L2(UM(F )AG\G)X. Thus the problem is the com-
mutativity of the integration and the summation.

For T ∈ a0, define the truncation operator ∧T on L2(G(F )AG\G) by

(∧Tφ)(x) :=
∑

P=MU∈F(P0)

(−1)aG
M

∑
δ∈P (F )\G(F )

φP (δx)τ̂P(H0(δx)− T ).

As in the proof of Th. 3.2, we can rewrite this as

(∧Tφ)(x) =
∑

Q⊂P1∈F(P0)

∑
δ∈Q(F )\G(F )

K
P1
Q (δx, T )

∑
P ;Q⊂P⊂P1

(−1)aG
MφP (δx),

and obtain the following properties:
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(1) ∧T is an orthogonal projection.

(2) ∧Tφ = φ for φ ∈ L2
0(G(F )AG\G).

(3) If φ is slowly increasing and sufficiently smooth relative to dimU0, then ∧Tφ is
rapidly decreasing.

We have similar operators ∧T,P on L2(UM(F )AG\G).

Example 3.4. Consider the simplest example, the GL(2) case. Note that if T is suffi-
ciently positive the sum on δ contains only one term. (Recall the classical situation where
any element of SL2(Z) which preserves the region

✫✪
✬✩

y = t

��
�

��

�
��

�
�

with sufficiently large t is upper triangular.) Then ∧T is the operator which cuts off the
constant term in the neighborhood {x | τ̂P (H0(x)− T ) > 0} of cusps, the complement of a
compact set in the Siegel domain. The properties stated above are rather obvious in this
example.

A similar combinatorics as in the geometric side yield

kTX(x, f) =
∑

Q⊂R∈F(P0)

∑
δ∈Q(F )\G(F )

σR
Q(H0(δx)− T )

×
∑

P∈F(P0)
Q⊂P⊂R

(−1)aG
M ∧T,Q

2 KP,X(δx, δx).

Here ∧T
2 means the truncation operator is applied in the second variable. This combined

with (3) above shows that the integration and the summation commute. Moreover the
alternating sum on the right gives

JT
X (f) :=

∫
G(F )AG\G

kTX(x, f) dx

=
∑

Q⊂R∈F(P0)

∫
Q(F )AG\G

σR
Q(H0(x)− T )

∑
P∈F(P0)
Q⊂P⊂R

(−1)aG
M ∧T,Q KP,X(x, x) dx

=

∫
G(F )AG\G

∧TKX(x, x) dx.

(3.6)

That is, the term associated to Q, R vanishes unless Q = R = G.
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We now come to the coarse Arthur-Selberg trace formula∑
o∈O(G)

JT
o (f) =

∑
X∈X(G)

JT
X (f), (3.7)

for sufficiently positive T ∈ a0.

4 The fine O-expansion

Next we need to calculate each terms JT
o (f) and J

T
X (f) in (3.7). Recall that, in the GL(2)

case [24], [22], certain part of the hyperbolic terms and Eisenstein terms cancel each other.
The resulting equality has a meaning when T →∞. Since such an explicit cancellation is
not available in the present case, taking the limit under T → ∞ is not allowed. Instead
we calculate the special value at “T = 0”.

4.1 JT (f) as a polynomial

For Q ⊂ P ∈ F(P0), consider the function

ΓP
Q(X, Y ) :=

∑
P1;Q⊂P1⊂P

(−1)a
M
M1 τQM1 (X)τ̂PM

1
(X − Y )

on a0× a0. Noting that the matrices ((−1)aLτQM )Q,P and ((−1)aL τ̂QM )Q,P are inverse to
each other, one sees that this function expresses the variation of τ̂QM :

τ̂QM (X − Y ) =
∑

P1;Q⊂P1⊂P

(−1)a
M
M1 τ̂QM1 (X)ΓP

P1
(X, Y ). (4.1)

Some calculation shows that

JT+X
• (f) =

∑
P∈F(P0)

JM,T
•M (fP )

∫
aG

M

ΓG
P (H,X) dH,

where fP is the descent

fP (m) := mρP

∫
K

∫
U

f(k−1muk) du dk

of f to M . Since the integral of ΓG
P (H,X) in H is a polynomial function in X, the same

is true for JT
• (f) [4, Prop. 2.3].

Recall that the distributions in (3.7) depend on the choice of the set of representatives
W ∈ Norm(A0, G), which can be chosen in G(F ) ∩ K if G is split. In general W ⊂
KM0 ∩ G(F ) and, for α ∈ ∆0, the representative wrα of the reflection rα attached to α
satisfies H0((wrα)

−1) = hαα
∨ for some hα ∈ R. We define the (analytic) origin T1 ∈ a0 by

T1 :=
∑
α∈∆0

hα:
∨
α .

Here {:∨
α}α∈∆0 is the basis of aG

0 dual to ∆0 ∈ (aG
0 )

∗. We define Jo(f) := JT1
o (f),

JX(f) := JT1
X (f) [4, § 1, 2].
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Example 4.1. Let us compare this to the classical GL(2) case. The distributions JT
o (f)

are calculated as follows [22].
(1) If o is elliptic, we have

JT
o (f) = meas(Gγ(F )AG\Gγ)

∫
Gγ\G

f(x−1γx) dx (4.2)

as in the anisotropic case. Note that we have Gγ = Gγ in the special case of GL(2).
(2) If o is the hyperbolic regular class of ( α β ), (3.2) equals the sum over δ ∈ B(F )\G(F )

and w ∈W of

1

2

∑
ν∈U (F )

f
(
Ad(wνδx)−1

(
α

β

))
−

∫
U

f
(
Ad(wuδx)−1

(
α

β

))
duτ̂B(H0(δx)− T ).

One sees that JT
o (f) equals∑

w∈W

∫
B(F )AG\G

1

2

∑
ν∈U (F )

f
(
Ad(wνx)−1

(
α

β

))
−

∫
U

f
(
Ad(wux)−1

(
α

β

))
duτ̂B(H0(x)− T ) dx

=
∑
w∈W

∫
UT (F )AG\G

∫
U

f
(
Ad(wux)−1

(
α

β

))(1
2
− τ̂B(H0(x)− T )

)
du dx

=
∑
w∈W

∫
T (F )AG\G

f
(
w−1x−1

(
α

β

)
xw

)(1
2
− τ̂B(H0(x)− T )

)
dx

=

∫
T (F )AG\G

f
(
x−1

(
α

β

)
x
)(
1− τ̂B(H0(x)− T )− τ̂B(H0(wx)− T )

)
dx

using the Iwasawa decomposition,

=meas(T (F )AG\T1)

∫
K

∫
U

f(k−1u−1

(
α

β

)
uk)∫

AG
T

1− τ̂B(H0(a)− T )− τ̂B(H0(wau)− T ) da du dk.

Noting H0(wau) = w(H0(a)) +H0(wu), the inner integral becomes∫ α(T )α∨/2

α(H0(wu)−T )α∨/2

dH =
α(2T −H0(wu))√

2
.

Here α denotes the unique positive root of T in G. We obtain

JT
o (f) = −meas(T (F )AG\T1)

∫
K

∫
U

f
(
k−1u−1

(
α

β

)
uk

)α(H0(wuk))√
2

du dk (4.3)

+
√
2α(T )meas(T (F )AG\T1)fP

((α
β

))
. (4.4)
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(3) The case of central o is easily reduced to the case o = {1}. If o = {1}, o =∐
δ∈B(F )\G(F ) Ad(δ)

−1U(F ) allows us to write (3.3) as

f(1) +
∑

δ∈B(F )\G(F )

( ∑
ν∈U (F )\{1}

f(x−1δ−1νδx)−
∫

U

f(x−1δ−1uδx) duτ̂B(H0(δx)− T )
)
.

Thus, by the Iwasawa decomposition, JT
{1}(f) equals the sum of

meas(G(F )AG\G)f(1) (4.5)

and ∫
T (F )AG\T

 ∑
ν∈U (F )\{1}

f (t−1νt)−
∫

U

f(t−1ut) duτ̂B(H0(t)− T )

 t−2ρB dt, (4.6)

where

f (x) :=

∫
K

f(k−1xk) dk.

Fix a non-trivial character ψ of F\A. Write u for the Lie algebra of U and u∨ be its dual.
Then the Poisson summation formula for the Fourier transformation

̂(Ad(t)f ◦ exp)(X∨) :=

∫
u(A)

(Ad(t)f)(expX)ψ(〈X∨, X〉) dX = t2ρB ̂(f ◦ exp)(α(t)X∨)

implies that (4.6) equals

√
2 ·meas(F×\A1)

∫
F×\A×

∑
ξ∈u(F )\{0}

(f ◦ exp)(x−1ξ)|x|−1
A
− ̂(f ◦ exp)(0)τ>α(T )(log |x|A ) dx×

=
√
2 ·meas(F×\A1)

(∫
F×\A<1

∑
ξ∈u(F )\{0}

(f ◦ exp)(x−1ξ)|x|−1
A
dx×

+

∫
F×\A≥1

∑
ξ∨∈u∨(F )

̂(f ◦ exp)(xξ∨)− f (1)|x|−1
A
− ̂(f ◦ exp)(0)τ>α(T )(log |x|A) dx×

)
=
√
2meas(F×\A1)

(∫
F×\A>1

∑
ξ∈u(F )\{0}

(f ◦ exp)(xξ)|x|A dx×

+

∫
F×\A≥1

∑
ξ∨∈u∨(F )\{0}

̂(f ◦ exp)(xξ∨)− f(1)|x|−1
A
dx×

+ ̂(f ◦ exp)(0)
∫
F×\A≥1

1− τ>α(T )(log |x|A ) dx×
)
.

Here τ>A is the characteristic function of R>A. Consider the integral

Z(f, s) :=

∫
A×

(f ◦ exp)(x)|x|sA dx×.
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This converges absolutely for Re(s) > 1 and extends to a meromorphic function in s.
It turns out that the sum of the first two integrals in the above equals the regular part
regs=1 Z(f , s) of this “zeta function” at s = 1, while the last equals meas(F×\A1)α(T ).

Noting that ̂(f ◦ exp)(0) = fP (1), we conclude that

JT
{1}(f) = meas(G(F )AG\G)f(1) + meas(Z(F )AG\Z)regs=1 Z(f, s) (4.7)

+
√
2α(T )meas(T (F )AG\T1)fP (1). (4.8)

We choose T1 = 0. Then taking the special value at T1 is equivalent to throw away the
sum of (4.4) and (4.8):∑

α,β∈F×

√
2α(T )meas(T (F )AG\T1)fP

((α
β

))
.

This is precisely the term which cancels the analogous term in the spectral side [22, p. 289].
Thus we can say that the present construction is a generalization of the GL(2) case. Note
also that this term can be viewed as the geometric side of the “trace formula” for the Levi
subgroup T applied to fP .

4.2 Reduction by the Jordan decomposition

Calculate the geometric terms. Our goal is to express Jo(f) as a sum of terms, each of
which is a product of a global constant and an Euler product of local distributions.

First we replace kTo (x, f) with

jTo (x, f) :=
∑

P∈F(P0)

(−1)aG
M

∑
δ∈P (F )\G(F )

jP,o(δx)τ̂P (H0(δx)− T ),

jP,o(x) :=
∑

γ∈M (F )∩o

∑
ν∈Uγs (F )\U (F )

∫
Uγs

φ(x−1ν−1γuνx) du.

We have

KP,o(x, x) =

∫
U (F )\U

jP,o(ux) du

and hence

JT
o (f) =

∫
G(F )AG\G

jTo (x, f) dx.

Take a representative σ ∈ o which is elliptic in some P1 = M1U1 ∈ F(P0), that is,
σ ∈M1(F ) but it is not contained in any proper parabolic subgroup ofM1. Then P1,σ is a
minimal parabolic subgroup of Gσ. Each γ ∈ o is conjugate to some element of σUGσ(F ),
where UGσ is the unipotent variety of Gσ, the connected centralizer of σ. Thus writing
ιG(σ) := [Gσ(F ) : Gσ(F )], we have

jQ,o(x) =ι
G(σ)−1

∑
w∈WM1

(L,Gσ)∑
π∈(wGσ∩Q)(F )\Q(F )

∑
ν∈w−1(L)(F )∩UGσ(F )

∫
w−1(V)∩Gσ

f(x−1π−1w(σνv)πx) dv.
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Here

WM1(L,Gσ) :=

{
w ∈WM1(L)

∣∣∣∣ (i) w−1(α) > 0, ∀α ∈ ∆wPL
1
,

(ii) w(β) > 0, ∀β ∈ ΣP1,σ

}
,

ΣP being the set of positive roots of P . If we write R for the standard parabolic subgroup
w−1

Q ∩ Gσ of Gσ and F(M1)R := {P ∈ F(M1) |Pσ = R}, the above gives

JT
o (f) =ι

G(σ)−1

∫
Gσ\G

∫
Gσ(F )AG\Gσ

∑
R∈F(P1,σ )

∑
δ∈R(F )\Gσ(F )∑

ν∈UMR
(F )

∫
UR

f(y−1x−1δ−1σνvδxy) dv

∑
P∈F(M1)R

(−1)aG
M τ̂P (H0(δxy)− w−1

P (T − T1)− T1) dx dy.

(4.9)

wP ∈W is such that wPP ∈ F(P0). R =MRUR denotes the standard Levi decomposition
of R. We shall write this in terms of the unipotent terms JMS ,T

{1} of the trace formula for
the Levi subgroups of Gσ.

As in the case of G, we have the origin T1,σ ∈ aM1 for Gσ. We write Tσ for the image
of T − T1 + T1,σ in aM1 and set

Y T
P (x, y) := −HP (kPσ (x)y) + w−1

P (T − T1)− Tσ + T1, P ∈ F(M1)R.

Then the family YT
P (x, y) := {Y T

P (x, y) |P ∈ F(M1)R} is compatible in the sense of [9,
§ 4]. Generalizing (4.1), we see that the last line in (4.9) can be written as∑

S∈FGσ (M1,σ)
S⊃R

(−1)a
MS
MR τ̂RMS (HR(δx)− Tσ)Γ

G
S (HS(δx)− Tσ,YT

S (δx, y)),

where

ΓG
R(X,YR) :=

∑
S∈FGσ (M1,σ)

S⊃R

τRMS (X)

 ∑
Q∈F(M1)S

(−1)aG
L τ̂Q(X − YQ)

 .

This combined with the Iwasawa decomposition yields

JT
o (f) = ιG(σ)−1

∫
Gσ\G

∑
S∈FGσ (P1,σ )

(∫
Kσ

∫
AG

S

JMS ,Tσ

{1} (ΦT
S,a,k,y) da dk

)
dy, (4.10)

with

ΦT
S,a,k,y(m) := mρS

∫
US

f(y−1σk−1muky) duΓG
S (HS(a)− Tσ,YT

S (k, y)).

Finally if we specialize this to T = T1, Γ
G
S (X,YT1

S (k, y)) reduces to ΓG
Q(X,−HQ(ky) +

T1 − T1,σ) for any Q ∈ F(M1)S. Applying this to the integral over a in (4.10), we obtain

Jo(f) = ιG(σ)−1

∫
Gσ\G

∑
S∈FGσ (P1,σ )

JMS

{1} (ΦS,y,T1−T1,σ ) dy

= ιG(σ)−1

∫
Gσ\G

( ∑
R∈FGσ (M1,σ)

|WMR|
|WGσ | J

MR

{1} (ΦR,y,T1−T1,σ)
)
dy,

(4.11)
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where

ΦS,y,T (m) := mρS

∫
Kσ

∫
US

f(y−1σk−1muky)v′S(ky, T ) du dk,

vS′(ky, T ) :=
∑

Q∈F(M1)S

∫
aG

L

ΓG
Q(X,−HQ(ky) + T ) dX.

4.3 Weighted orbital integrals

Our goal here is to express (4.11) as a linear combination of weighted orbital integrals.
We must first recall the notion of (G,M)-family.

For Q ⊂ P ∈ F(M0), we define two denominator functions

θPQ(λ) :=
1

meas(aM
L /Z[∆

∨
QM ])

∏
α∈∆QM

α∨(λ),

θ̂PQ(λ) :=
1

meas(aM
L /Z[∆̂

∨
QM ])

∏
1∨∈b∆∨

QM

:∨(λ).

Here ∆̂∨
P denotes the basis of aG

M dual to ∆P ⊂ (aG
M )∗. These functions first appeared in

the Fourier transform of ΓG
Q(X, Y ) in X [4, Lem. 2.2]:∫

aG
L

ΓG
Q(X, Y )e

λ(X) dX =
∑
P⊃Q

(−1)aM
L

e〈λM ,Y 〉

θ̂PQ(λ)θ
G
P (λ)

,

but its real nature is to produce certain “difference”

c′Q(λ) :=
∑
P1⊃Q

(−1)a
M1
L

cP1(λ)

θ̂P1
Q (λ)θGP1

(λ)
(4.12)

of a smooth function cP (λ) on ia
∗
M , Q ⊃ P . Here cP1(λ) := cP (λM1), λM1 being the ia

∗
M1

component of λ under ia∗
M = i(aM1

M )∗ ⊕ ia∗
M1
.

Example 4.2. In the case of GL(2), we have

c′B(λ) =

√
2

α∨(λ)
(cB(λ)− c′G(λ)) =

√
2

α∨(λ)
(cB(λ)− cB(λG)).

Since
√
2 is the length of α∨, this is literally the difference of cB(λ) around λG.

A family {cP (λ)}P∈P(M ) of smooth functions on ia∗
M is a (G,M)-family if cP (λ) =

cP ′(λ) for any P , P ′ ∈ P(M) whose associated chambers share a wall and λ in that
wall. For a (G,M)-family {cP (λ)}P∈P(M ), the function (4.12) is well-defined because it is
independent of the choice of P ∈ PP1(M).
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Lemma 4.3 ([4] Lem. 6.1, 6.2, 6.3). Let {cP (λ)}P∈P(M ) be a (G,M)-family.
(1) c′Q(λ) extends to a smooth function on ia∗

L.
(2) The function

cQM(λ) :=
∑

P∈P(M )
P⊂Q

cP (λ)

θQP (λ)

extends to a smooth function on ia∗
M .

(3) If {dP (λ)}P(M ) is another (G,M)-family, (cd)P (λ) := cP (λ)dP (λ) form a (G,M)-
family and we have

(cd)M (λ) =
∑

Q∈F(M )

cQM (λ)d′Q(λ).

An example of (G,L)-family is the family {vQ(λ, x) := e−λ(HQ(x))}Q∈P(L) for x ∈ G. If
P =MU ∈ F(L), then we have the bijection

PP (L) � Q �−→ QM := Q ∩M ∈ PM(L).

Thus, from a (G,L)-family {cQ(λ)}Q∈P(L), one deduces a (M,L)-family {cQM (λ) :=
cQ(λ)}QM∈PM(L). Applying this to {vQ(λ, x)}Q∈P(L), we have the smooth function

vPL (λ, x) :=
∑

QM∈PM(L)

vQ(λ, x)

θPQ(λ)

by Lem. 4.3 (2). This depends on P ∈ P(M) (as the notation suggests) because the
function HQ depends not only QM but also Q. Set vPL (x) := limλ→0 v

P
L (λ, x).

Let S be a finite set of places of F . We now define the weighted orbital integral
JM(γ, f) for M ∈ L(M0) and γ ∈MS . Write γv = γv,sγv,u for the Jordan decomposition
of γv. If Gγv,s ⊂ Mγv,s at any v ∈ S, we define

JM(γ, f) = |DG(γ)|1/2
AS

∫
MS\GS

∫
oMS (γ)

f(x−1µx)vM(x) dµdx

= |DG(γ)|1/2
AS

∫
GS,γ\GS

f(x−1γx)vM(x) dx.

Here DG(γ) = (DG(γv))v∈S is given by DG(γ) := det(1− Ad(γv,s)|g(Fv)/gγv,s(Fv)), gγv,s

being the fixed part of Ad(γv,s) in gv, the Lie algebra of G⊗F Fv. Also oMS (γ) is the MS-
orbit of γ. The convergence of JM(γ, f) is assured by [10, Lem. 2.1] and the Deligne-Rao
theorem [36]. In the general case, we define

JM(γ, f) := lim
a→1

∑
L∈L(M )

rLM(γ, a)JL(aγ, f). (4.13)

Here rLM (γ, a) = rQM(γ, a) (Q ∈ P(L)) is constructed from the (G,M)-family

rP (λ, γ, a) =
∏
v∈S

∏
β∈Σr

Pγv,s

|aβ − a−β|ρ(β,γv,u)λ(β∨)/2
v , P ∈ P(M)
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by the process explained above. The non-negative integers ρ(β, u) are defined in [10, § 3],
and the existence of the limit in (4.13) is assured by [10, Th.5.2]. In this case the resulting
function is independent of Q ∈ P(L) [10, Lem. 5.1]. Note that, if M = G this reduces to
the ordinary orbital integral

JG(γ, f) = |DG(γ)|1/2
AS

∫
GS,γ\GS

f(x−1γx) dx.

We need the following descent formula for weighted orbital integrals.

Lemma 4.4 ([10] Cor. 8.7). Suppose that γ ∈ GS satisfies

(i) (γv,s)v∈S ∈ G(F );

(ii) aMγs
= aM (γs is elliptic in M(F )).

Then we have

JM(γ, f) = |DG(γs)|1/2
AS

∫
Gγs,S\GS

 ∑
R∈FGγs (Mγs )

JMR
Mγs

(γu,ΦR,y,T )

 dy,

where

ΦR,y,T (m) := mρR

∫
Kγs,S

∫
UR,S

f(y−1γsk
−1muky)v′R(ky, T ) du dk

is the local analogue of ΦR,y,T in (4.11). In particular the right hand side does not depend
on T .

We now go back to the calculation of (4.11). Take a finite set S of places of F
sufficiently large with respect to G and f so that

Jo(f) = ιG(σ)−1

∫
Gσ,S\GS

 ∑
R∈FGσ (M1,σ)

|WMR|
|WGσ | J

MR

{1} (ΦR,y,T1−T1,σ )

 dy (4.14)

We have following formulae on the variation of J{1}(f) and JM(γ, f) under conjugations:

J{1}(Ad(g
−1)f) =

∑
Q∈F(M0)

|WL|
|W | J

L
{1}(fQ,g),

JM (γ,Ad(g−1)f) =
∑

Q∈F(M0)

JL
M (γ, fQ,g),

where

fQ,g(�) = �ρQ

∫
K

∫
V

f(k−1�vk)u′Q(k, y) dv dk

u′Q(k, y) =

∫
aG

L

ΓG
Q(X,−H0(ky)) dX.
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From this Arthur deduced [8, Cor. 8.3] that there exists a family of complex numbers
{aL(S, u) |L ∈ L(M0), u ∈ UL(F )} such that

J{1}(f) =
∑

L∈L(M0)

∑
u∈UL(F )/Ad(LS )

|WL|
|W | a

L(S, u)JL(u, fS).

Using this (4.14) becomes

Jo(f) =ι
G(σ)−1

∫
Gσ,S\GS

∑
L∈LGσ (M1,σ)

∑
R∈FGσ (L)

|WL|
|WGσ |

×
∑

u∈UL(F )/Ad(LS)

aL(S, u)JMR
L (u,ΦR,y,T1−T1,σ ) dy

writing L0
σ(M1) := {M ∈ L(M1) | aM = aMσ},

=ιG(σ)−1
∑

M∈L0
σ(M1)

|WMσ |
|WGσ |

∑
u∈UMσ (F )/Ad(Mσ,S )

aMσ(S, u)|DG(σ)|1/2
AS

∫
Gσ,S\GS

∑
R∈FGσ (Mσ)

JMR
Mσ

(u,ΦR,y,T1−T1,σ) dy.

Going back from Gσ to G by Lem. 4.4, we obtain

Jo(f) = ιG(σ)−1
∑

M∈L0
σ(M1)

|WMσ |
|WGσ |

∑
u∈UMσ (F )/Ad(Mσ,S )

aMσ(S, u)JM(σu, f). (4.15)

4.4 The fine O-expansion

Our final step is to get rid of σ from (4.15). We say that γ, γ′ ∈M(F ) is (M,S)-equivalent
(notated as γ ∼

(M,S)
γ′) if there exists δ ∈M(F ) such that

• γ′s = δγsδ
−1 and

• γ′u and δγuδ
−1 are conjugate in MS .

We write (M(F ) ∩ o)M,S for the (finite) set of (M,S)-equivalence classes in M(F ) ∩ o.
Noting that σ ∈M(F ) is elliptic if and only if M ∈ L0

σ(M1), we set

aM (S, γ) :=
εM(γs)

ιM (γs)

∑
u∈UMγs

(F )/Ad(Mγs )
γsu ∼

(M,S)
γ

aMγs(S, u),

where

εM(σ) :=

{
1 if σ is elliptic in M(F ),

0 otherwise.
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This allows us to write

Jo(f) =
∑

M∈L(M1)

|WM |
|W |

|W | · |WMσ| · ιM (σ)

|WM | · |WGσ | · ιG(σ)
∑

γ∈(M (F )∩o)M,S
γs=σ

aM(S, γ)JM (γ, f)

=
∑

M∈L(M0)

|WM |
|W |

∑
oM∈O(M )

Ad(G(F ))oM=o

∑
γ∈(M (F )∩o)M,S

γs=σ

aM(S, γ)JM (γ, f)

=
∑

M∈L(M0)

|WM |
|W |

∑
γ∈(M (F )∩o)M,S

aM(S, γ)JM(γ, f).

Theorem 4.5 ([9] Th.9.2). For each compact neighborhood Ω ⊂ AG\G of 1, there ex-
ists a finite set of places SΩ such that we have

J(f) =
∑

M∈L(M0)

|WM |
|W |

∑
γ∈M (F )M,S

aM(S, γ)JM (γ, f)

for S ⊃ SΩ and f ∈ C∞
c (G/AG) supported on Ω.

We must remark that aM(S, γ) are constants which are not well-understood. The only
information for these is the following theorem.

Theorem 4.6 ([9] Th. 8.2). For a semisimple γ ∈ G(F ) and sufficiently large S, we
have

aG(S, γ) =


meas(Gγ(F )AG\Gγ)

ιG(γ)
if γ is elliptic in G(F ),

0 otherwise.

5 Fine χ-expansion

Next we calculate the spectral terms. Let us recall the definition of JT
X (f). We have the

induced space A2(UM(F )AM\G)π,X § 2.6. Define the linear transformation ΩT
π,X(P, λ)

on this space by∫
K

∫
M (F )AM\M

[ΩT
π,X(P, λ)φ](mk)φ

′(mk) dmdk =

∫
G(F )AG\G

∧TEP (x, φλ)∧TEP (x, φ′
λ) dx,

for any φ, φ′ ∈ A2(UM(F )AM\G)π,X. From (2.6), we know that

∧T
2 KX(x, y) = ∧T KX(x, y) =

∑
P∈F(P0)

∑
π∈Π(M1)

1

|P(M)|∫
i(aG

M )∗

∑
ϕ∈Bπ,X

∧TEP (x, IG
P (πλ, f)ϕλ)∧TEP (y, ϕλ) dλ.
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Replacing this in (3.6), we have

JT
X (f) =

∑
P∈F(P0)

∑
π∈Π(M1)

∫
i(aG

M)∗

1

|P(M)|tr
(
ΩT

π,X(P, λ)IG
P,X(πλ, f)

)
dλ, (5.1)

where IG
P,X(πλ) denotes the representation of G on A2(UM(F )AM\G)π,X. We would like

to obtain a more explicit expression for this.

5.1 An application of the Paley-Wiener theorem

We put

ωT (λ, λ′, φ, φ′) :=
∑

Q=LV ∈F(P0)

∑
w∈WM,L

∑
w′∈WM ′,L

meas(aG
L/Z[∆

∨
Q])

×〈M(w, πλ)φ,M(w′, π′
λ′)φ′〉e(w(λ)−w′(λ′))(T )∏

α∈∆Q
(w(λ)− w′(λ′))(α∨)

,

for φ ∈ A2(UM(F )AM\G)π,X, φ
′ ∈ A2(U

′M ′(F )AM ′\G)π′,X, λ ∈ ia∗
M , λ′ ∈ ia∗

M ′. Ex-
tending the GL(2) case, Langlands proved that if φ and φ′ belong to the space of (induced
from) cusp forms, the L2-inner product of truncated Eisenstein series 〈∧TEP (φλ),∧TEP ′(φ′

λ′)〉
is given by ωT (λ, λ′, φ, φ′) [30, § 9]. For general φ, φ′ we have the following weaker result.

Proposition 5.1 ([5] Th. 9.1). There exist ε > 0 and a locally bounded function ρ(λ, λ′)
on ia∗

M × ia∗
M ′ such that

|〈∧TEP (φλ),∧TEP ′(φ′
λ′)〉 − ωT (λ, λ′, φ, φ′)| ≤ ρ(λ, λ′)‖φ‖ · ‖φ′‖e−ε‖T ‖.

Here the norms on the right are given by

‖φ‖2 :=

∫
K

∫
M (F )AM\M

|φ(mk)|2 dmdk.

Example 5.2. In the GL(2) case, we write χ, χ′ for π and π′ ∈ Π(T1). Then we have

〈∧TEB(φλ), ∧T EB(φ
′
λ′)〉 = 〈EB(φλ),∧TEB(φ

′
λ′)〉

=

∫
B(F )AG\G

EB(x, φλ)
(
φ′
λ′(x)− EB(x, φ′

λ′)B τ̂B(H0(x)− T )
)
dx

=

∫
UT (F )AG\G

EB(x, φλ)B
(
φ′
λ′(x)− EB(x, φ′

λ′)B τ̂B(H0(x)− T )
)
dx

using § 2.4 (1-ii),

=

∫
UT (F )AG\G

(φλ(x) +M(w, χλ)φλ(x))

× (φ′
λ′(x)(1− τ̂B(H0(x)− T ))−M(w, χ′

λ′)φ′
λ′(x)τ̂B(H0(x)− T )) dx.
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Using the Iwasawa decomposition this becomes, for Reα∨(λ′) > ±Reα∨(λ),∫ α(T )

−∞
〈φ, φ′〉etα∨(λ+λ

′
)/2 + 〈M(w, χλ)φ, φ

′〉etα∨(w(λ)+λ
′
)/2 dt√

2

−
∫ ∞

α(T )

〈φ,M(w, χ′
λ′)φ′〉etα∨(λ+w(λ

′
))/2 + 〈M(w, χλ)φ,M(w, χ′

λ′)φ′〉etα∨(w(λ+λ′))/2 dt√
2

=

√
2e(λ+λ

′
)(T )

α∨(λ + λ
′
)
〈φ, φ′〉+

√
2e(w(λ)+λ

′
)(T )

α∨(w(λ) + λ
′
)
〈M(w, χλ)φ, φ

′〉

+

√
2e(λ+w(λ

′
))(T )

α∨(λ + w(λ
′
))
〈φ,M(w, χ′

λ′)φ′〉+
√
2ew(λ+λ

′
)(T )

α∨(w(λ + λ
′
))
〈M(w, χλ)φ,M(w, χ′

λ′)φ′〉.

If we restrict the last formula to (λ, λ′) ∈ ia∗
T×ia∗

T , we obtain ωT (λ, λ′, φ, φ′). In the higher
rank cases, π can be in the residual spectrum, an irreducible quotient of an induced from
cuspidal representation. Since it throw away some submodules which might contribute to
the inner product formula, we can control the inner product only asymptotically.

We would like to replace ωT (λ, λ′, φ, φ′) for the inner product of truncated Eisenstein
series in (5.1). But this is not allowed because the domain of the integral is not compact.
We bypass this difficulty in the following way.

Fix an R-minimal parabolic subgroup P∞ = M∞U∞ of G∞ which is contained in
the global minimal parabolic subgroup P0,∞. Write a∞ for the Lie algebra of the R-
split component A∞ of Z(M∞). Choose a Cartan subalgebra hK∞ in the Lie algebra of
K∞ ∩M∞ and set h := ihK∞ ⊕ a∞, a Cartan subalgebra of g∞. Write W (hC ) for the
Weyl group of hC in g∞(C) and let E(h)W (hC ) be the space of W (hC )-invariant compactly
supported distributions on h. The following is a corollary of the Paley-Wiener theorem
for real reductive groups.

Proposition 5.3 (Multiplier theorem, [7] Th. 4.2). For γ ∈ E(h)W (hC ) and f∞ ∈
H(G∞), we can find f∞,γ ∈ H(G∞) such that

π∞(f∞,γ) = γ̂(χπ∞)π∞(f∞), ∀π∞ ∈ Π(G∞).

Here γ̂ denotes the Fourier transform of γ and χπ∞ ∈ h∗
C

is a representative of the in-
finitesimal character of π∞.

Write hG for the kernel of h
exp→ G∞

HG→ aG. Applying this proposition to the infinite
component of f ∈ H(G/AG), we have:

Corollary 5.4. For γ ∈ E(hG)W (hC ), we have a linear map f �→ fγ on H(G/AG) such
that

π(fγ) = γ̂(χπ∞)π(f), ∀π ∈ Π(G1).

We use the abbreviation

ΨT
X,π(λ, f) :=

1

|P(M)|tr(Ω
T
π,X(P, λ)IG

P,X(πλ, f)).
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There exists C0 > 0 such that if α(T ) > C0, ∀α ∈ ∆0 we have

JT
X (fγ) =

∑
P∈F(P0)

∑
π∈Π(M1)

∫
i(aG

M)∗
ΨT
X,π(λ, fγ) dλ

=
∑

P∈F(P0)

∑
π∈Π(M1)

∫
i(aG

M)∗
γ̂(χπ∞ + λ)ΨT

X,π(λ, f) dλ

=
∑

P∈F(P0)

∑
π∈Π(M1)

∫
i(aG

M)∗
ΨT
X,π(λ, f)

∫
hG

γ(X)e(χπ∞+λ)(X) dX dλ

=

∫
hG

∑
P∈F(P0)

∑
π∈Π(M1)

ψT
X,π(X, f)γ(X)eχπ∞ (X) dX,

where

ψT
X,π(X, f) :=

∫
i(aG

M )∗
ΨT
X,π(λ, f)e

λ(X) dλ.

In particular, if we write γH := |W (hC )|−1
∑

w∈W (hC ) δw−1(H) (average of Dirac distribu-

tions), then for T with α(T ) > C0, ∀α ∈ ∆0 we have

JT
X (fγH

) =
1

|W (hC )|
∑

w∈W (hC )

∑
P∈F(P0)

∑
π∈Π(M1)

ψT
X,π(w

−1(H), f)eχπ∞(w−1(H)). (5.2)

Let pT (H) be the right hand side. This is a polynomial in T and is smooth in H. We can
recover JT

X (f) as p
T (0) =“δ0(p

T )”.
The last expression is incorrect because the right hand side of (5.2) has non zero real

exponent, i.e. is not tempered. Instead, we look at the coefficient

ψT
λ (H) :=

1

|W (hC )|
∑

P∈F(P0)

∑
(w,π)∈W (hC )×Π(M1)

w(Reχπ∞ )=λ

ψT
X,π(w

−1(H), f)eImχπ∞ (w−1(H))

of each real exponent λ of pT (H): pT (H) =
∑

λ ψ
T
λ (H)eλ(H), the sum is finite. We can

asymptotically approximate these by polynomial functions:

Lemma 5.5 ([6] I, Prop. 5.1). There exists a unique (finite) family {pTλ (H)} of poly-
nomials in T which satisfies the following conditions for some C, ε > 0. For any differ-
ential operator D on hG, we can find cD > 0 such that

(1) |D(ψT
λ (H)− pTλ (H))| ≤ cD exp(−ε infα∈∆0 α(T ))(1 + ‖T‖)d0, for H ∈ hG and suffi-

ciently positive T ,

(2) |DpTλ (H)| ≤ cD(1 + ‖H‖)d0(1 + ‖T‖)d0, for H ∈ hG and T ∈ a0.

Here d0 is the maximum of the degrees of pTλ .

By construction, these pTλ (H) are tempered and we can consider

pTλ (β) :=

∫
hG

pTλ (H)β(H) dH, β ∈ S(hG),

a polynomial in T . Moreover we have
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(1) For β ∈ S(hG) satisfying ∫
hG

β(H) dH = 1,

we have limε→0 p
T
λ (βε) = pTλ (0) where βε(H) := ε−dim hG

β(ε−1H).

(2) For β ∈ S(hG), we have ∫
hG

ψT
λ (H)β(H) dH − pTλ (β)→ 0

as α(T )→∞ for any α ∈ ∆0.

Now we are ready to calculate JT
X (f). Take B ∈ C∞

c (i(hG)∗) and write BM for the
restriction of this to i(aG

M)∗ ⊂ i(hG)∗. There is a β ∈ S(hG) such that

B(λ) =

∫
hG

β(H)eλ(H) dH.

If we put P T (B) :=
∑

λ p
T
λ (β), then the theory of Fourier transformation and the above

(1), (2) imply:

(1) If B(0) = 1 we have limε→0 P
T (Bε) = JT

X (f), where Bε(λ) := B(ελ).

(2) P T (B) is the unique polynomial in T such that∑
P∈F(P0)

∑
π∈Π(M1)

∫
i(aG

M )∗
ΨT
X,π(λ, f)BM (λ) dλ − P T (B)

goes to zero as α(T ) tends to infinity for any α ∈ ∆0.

Consider the linear transformation

AP,π,X(λ, λ
′) :=

∑
Q∈F(P0)

∑
w,w′∈WM,L

e(w′(λ′)−w(λ))(T )

θGQ(w
′(λ′)− w(λ))

M(w, πλ)
−1M(w′, π′

λ)

on A2(UM(F )AM\G)π,X. Since the global intertwining operators are unitary on the
imaginary axis, we have

〈AP,π,X(λ, λ
′)φ′, φ〉 =

∑
Q∈F(P0)

∑
w,w′∈WM,L

〈M(w′, λ′)φ′,M(w, λ)φ〉e(w′(λ′)−w(λ))(T )

θGQ(w
′(λ′)− w(λ))

= ωT (λ′, λ, φ′, φ).

It is shown that ωT (λ′, λ, φ′, φ) is holomorphic on i(aG
M)∗ × i(aG

M)∗ [5, Cor .9.2], and we
can define ωT

X,π(P, λ) := AP,π,X(λ, λ) for λ ∈ i(aG
M)∗. Since BM are compactly supported,

we can apply Prop. 5.1 to see that P T (B) is the unique polynomial in T such that∑
P∈F(P0)

∑
π∈Π(M1)

1

|P(M)|

∫
i(aG

M)∗
tr[ωT

X,π(P, λ)IG
P,X(πλ, f)]BM(λ) dλ − P T (B)

goes to zero as α(T ) tends to infinity for any α ∈ ∆0.
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5.2 Logarithmic derivatives

Yet we need to give an explicit expression for ωT
X,π(P, λ). We first look at the simplest

case.

Example 5.6. Suppose G = GL(2). In the notation of Ex. 5.2, we have

AB,χ,X(λ, λ
′) =

√
2e(λ′−λ)(T )

α∨(λ′ − λ)
+

√
2e(w(λ′)−λ)(T )

α∨(w(λ′)− λ)
M(w, χλ′)

+

√
2e(λ′−w(λ))(T )

α∨(λ′ − w(λ))
M(w, χλ)

−1 +

√
2ew(λ′−λ)(T )

α∨(w(λ′ − λ))
M(w, χλ)

−1M(w, χλ′)

=

√
2

α∨(λ′ − λ)

(
e(λ′−λ)(T ) − e(λ′−λ)(w(T ))MB|B(1, χλ)

−1MB|B(1, χλ′)
)

+

√
2

α∨(w(λ′)− λ)

(
e(w(λ′)−λ)(T )M(w, χλ′)− e(w(λ′)−λ)(w(T ))MB|B(1, χλ)

−1MB|B(w, χλ′)
)
,

where we have written MB|B(1, χλ) := w ◦M(w, χλ) and MB|B(w, χλ) := w. This illus-
trates how AB,χ,X(λ, λ

′) becomes holomorphic on λ = λ′. Moreover, writing λ′ = λ+ tα/2,
the first row in the right hand side restricts to λ = λ′ as

lim
t→0

√
2

t

[
eα(T )t/2− e−α(T )t/2MB|B(1, χλ)

−1MB|B(1, χλ+tα/2)
]

= lim
t→0

√
2

t

[
1− e−α(T )tMB|B(1, χλ)

−1MB|B(1, χλ+tα/2)
]
,

which gives rise to the logarithmic derivative term in the trace formula of GL(2).

To produce the higher dimensional analogue of the logarithmic derivative, we use two
kinds of (G,M)-families. We need the following recapitulation of intertwining operators.

Take M , M ′ ∈ L(M0). For P ∈ P(M), P ′ ∈ P(M ′) and w ∈WM,M ′, we define

[MP ′|P (w, πλ)φ](x) =

∫
(U′∩wU)\U′

φ(w−1ux)e〈λ+ρP ,HP (w−1ux)〉 du · e〈−(w(λ)+ρP ′),HP ′(x)〉,

a linear operator A2(UM(F )AM\G)π,X → A2(U
′M ′(F )AM ′\G)w(π),X. One can easily

show that

v ◦MP ′|P (w, πλ) = e−〈(w(λ)+ρP ′),T1−v−1(T1)〉Mv(P ′)|P (vw, πλ)

MP ′|P (w, πλ) ◦ v−1 = e〈λ+ρP ,T1−v−1(T1)〉MP ′|v(P )(wv
−1, v(πλ)).

If we choose P1, P
′
1 ∈ F(P0) and v1, v

′
1 ∈W such that P = v1P1, P

′ = v′1P ′
1, we may write

w = v′1w1v
−1
1 for some w1 ∈WM1,M ′

1
. Then the above formulae imply that

MP ′|P (w, πλ)

= e
〈w1v

−1
1 (λ)+ρP ′

1
,T1−v′1

−1(T1)〉
e−〈v−1

1 (λ)+ρP1
,T1−v−1

1 (T1)〉v′1 ◦MP ′
1|P1

(w1, v
−1
1 (λ)) ◦ v−1

1 .
(5.3)
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This relation allows us to translate the basic properties ofM(w, πλ) to those ofMP ′|P (w, πλ).
In particular the latter operator absolutely converges if the real part of λ belongs to a
cone, and extends meromorphically to a∗

M,C . This defines an intertwining operator at λ
where it is holomorphic. Finally this fits into the functional equations:

EP ′(x,MP ′|P (w, πλ)φλ) = EP (x, φλ), (5.4)

MP ′′|P ′(w′, w(πλ))MP ′|P (w, πλ) =MP ′′|P (w
′w, πλ), P ′′ ∈ P(M ′′), w′ ∈WM ′,M ′′. (5.5)

These results allow us to write AP,π,X(λ, λ
′) as:

AP,π,X(λ, λ
′) =

∑
P1⊃P0

∑
w,w′∈WM,M1

e(w′(λ′)−w(λ))(T )

θGP1
(w′(λ′)− w(λ))

MP1|P (w, πλ)
−1MP1|P (w

′, π′
λ)

=
∑

P1⊃P0

∑
v∈WM,M1
w∈WM,M

ev(w(λ′)−λ)(T )

θGP1
(v(w(λ′)− λ))

MP1|P (v, πλ)
−1MP1|P (vw, πλ)

using (5.5)

=
∑

P1⊃P0

∑
v∈WM,M1
w∈WM,M

ev(w(λ′)−λ)(T )e(w(λ′)−λ)(T1−v−1(T1))

θGv−1(P1)(w(λ
′)− λ)

×Mv−1(P1)|P (1, πλ)
−1Mv−1(P1)|P (w, π

′
λ)

putting Q := v−1(P1) ∈ P(M)

=
∑

Q∈P(M )

∑
w∈WM,M

e〈w(λ′)−λ,YQ(T )〉

θGQ(w(λ
′)− λ)

MQ|P (1, πλ)
−1MQ|P (w, π

′
λ).

Here we have written YQ(T ) := T1 + v−1(T − T1) for Q = v−1(P1), v ∈ WM,M1. To
calculate tr[ωT

π,X(P, λ)IG
P,X(πλ, f)], which equals the restriction of

∑
w∈WM,M

∑
Q∈P(M )

e(w(λ′)−λ)(YQ(T ))

θGQ(w(λ
′)− λ)

tr(MQ|P (1, πλ)
−1MQ|P (w, πλ′)IG

P,X(πλ, f)) (5.6)

to λ = λ′, we note that

cQ(T,Λ) := eΛ(YQ(T )), dwQ(Λ) := tr(MQ|P (1, πλ)
−1MQ|P (w, πλ+Λ)IG

P,X(πλ, f))

form (G,M)-families. Then we know from Lem. 4.3 that (5.6) is smooth at any (λ, λ′)
and

tr[ωT
π,X(P, λ)IG

P,X(πλ, f)] =
∑

w∈WM,M

∑
P1∈F(M )

cP1
M (T, w(λ)− λ)dwP1

′(λLw , w(λ) − λ).
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Here Lw ∈ L(M) is such that aLw = {H ∈ aM |w(H) = H} and

dwQ(λLw ,Λ) := tr(MQ|P (1, πλ)
−1MQ|P (w, πλ+ζ)IG

P,X(πλ, f)),

if Λ = w(λ) − λ+ ζ, ζ ∈ ia∗
M . (Notice that λ and ζ can be recovered from Λ and λLw .)

We now combine the above with the result of § 5.1 to see that∑
P∈F(P0)

∑
π∈Π(M1)

1

|P(M)|
∑

w∈WM,M∫
i(aG

M )∗

∑
P1∈F(M )

cP1
M (T, w(λ)− λ)dwP1

′(λLw , w(λ)− λ)BM (λ) dλ

(5.7)

is asymptotic to P T (B). Write χP1
M (T, •) for the characteristic function of the convex hull

of {YQ(T ) |Q ∈ P(M), Q ⊂ P1}, then cP1
M (T ) is its Fourier transform [4, § 6]:

cP1
M (T, µ) =

∫
(YQ(T ))M1

+a
M1
M

χP1
M (T,X)eµ(X) dX.

Then the integral over i(aG
M)∗ can be calculated as

1

| det(w − 1|aLw
M )|

∑
P1∈F(M )

∫
(YQ(T ))M1

+a
M1
M

χP1
M (T,H)∫

i(aLw
M )∗

∫
i(aG

Lw
)∗
eµ(H)dwP1

′(λ, µ)BM ((w − 1)−1(µ) + λ) dλdµdH

In this, the terms associated to P1 +⊃ Lw goes to 0 as α(T ) → ∞, ∀α ∈ ∆0. Those
associated to P1 ⊃ Lw becomes

1

| det(w − 1|aLw
M )|

cP1
Lw
(T, 0)

∫
i(aG

Lw
)∗
dwP1

′(λ, 0)BM (λ) dλ.

We conclude that (5.7) equals∑
P∈F(P0)

∑
π∈Π(M1)

1

|P(M)|
∑

w∈WM,M

1

| det(w − 1|aLw
M )|

∫
i(aG

Lw
)∗

∑
P1∈F(Lw)

cP1
Lw
(T, 0)dwP1

′(λ, 0)BM (λ) dλ.

(5.8)

Final step towards the fine X-expansion is to look at the nature of the “logarithmic
derivative” ∑

P1∈F(Lw)

cP1
Lw
(T, 0)dwP1

′(λ, 0) =
∑

Q∈P(Lw)

cQ(T,Λ)d
w
Q(λ,Λ)

θGQ(Λ)

∣∣∣∣∣
Λ=0

. (5.9)

As in Ex. 5.6, we divide dwQ(λ,Λ) as

dwQ(λ,Λ) = tr[
(
MQ|P (1, πλ)

−1MQ|P (1, πλ+Λ)
)
◦
(
MP |P (w, πλ+Λ)IG

P,X(πλ, f)
)
]
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The latter simply restricts to Λ = 0. But in the former,

MQ(P, π, λ,Λ) :=MQ|P (1, πλ)
−1MQ|P (1, πλ+Λ), Q ∈ P(M)

is a (G,M)-family in Λ and so is

MT
Q(P, π, λ,Λ) := cQ(T, λ)MQ(P, π, λ,Λ).

This combined with Lem. 4.3 justifies to write the specialization of (5.9) to Λ = 0 as

tr[
( ∑
Q∈P(Lw)

1

θGQ(Λ)
MT

Q(P, π, λ,Λ)
∣∣∣
Λ=0

)
MP |P (w, π)IG

P,X(πλ, f)].

Note thatMP |P (w, πΛ+λ) =MP |P (w, π) for Λ+λ ∈ ia∗
L. Since this is a linear combination

of certain derivatives at Λ = 0 of the exponential functions cQ(T,Λ) = eΛ(YQ(T )), the
exponents being linear in T , this is a polynomial function in T . Since (5.8) and P T (B)
are both polynomials and asymptotic to each other, they must coincide:

P T (B) =
∑

P∈F(P0)

∑
π∈Π(M1)

∑
L∈L(M )

∑
w∈WL,reg

M,M

1

|P(M)|
1

| det(w − 1|aL
M )|

×
∫
i(aG

L )∗
tr(MT

L(P, π, λ, 0)MP |P (w, π)IP,X(πλ, f))BM (λ) dλ.

(5.10)

Here WL,reg
M,M := {w ∈ WL

M,M | det(w − 1|aL
M ) += 0}. Once we have an equality, we can

specialize it to T = T1. Since YQ(T1) = T1, we have

MT1
L (P, π, λ, 0) = eΛ(T1)ML(P, π, λ,Λ)|Λ=0 =ML(P, π, λ, 0).

Using p. 30 (1), we conclude from (5.10) that

JX(f) = lim
ε→0

∑
P∈F(P0)

∑
π∈Π(M1)

∑
L∈L(M )

∑
w∈WL,reg

M,M

1

|P(M)|
1

| det(w − 1|aL
M )|

×
∫
i(aG

L )∗
tr(ML(P, π, λ, 0)MP |P (w, π)IP,X(πλ, f))(Bε)M(λ) dλ

= lim
ε→0

∑
M∈L(M0)

∑
L∈L(M )

∑
π∈Π(M1)

∑
w∈WL,reg

M,M

|WM |
|W |

1

| det(w − 1|aL
M )| (5.11)

×
∫
i(aG

L )∗

1

|P(M)|
∑

P∈P(M )

tr(ML(P, π, λ, 0)MP |P (w, π)IG
P,X(πλ, f))(Bε)M (λ) dλ.

Here B ∈ C∞
c (i(hG)∗) is such that B(0) = 1.
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5.3 Normalization and estimation of intertwining operators

We hope to get rid of the limit ε → 0 and the factor Bε from (5.11). For this we have
to estimate the integrand and show that it converges without the factor Bε. For such an
estimation, we adopt the usual approach of normalizing intertwining operators.

The normalization is constructed locally. Consider a connected reductive group G over
a local field F of characteristic zero. We adopt the local analogue of various notation pre-
sented above. In particular we write G = G(F ) and fix its maximal compact subgroup K
so that the Iwasawa decomposition G = PK holds for any P ∈ F(M0). For M ∈ L(M0),
write Πadm(M) for the set of isomorphic classes of irreducible admissible representations
(irreducible (mC ,K

M)-modules if F is archimedean) ofM. For π ∈ Π(M) and P ∈ P(M),
write VP (π) for the space of smooth right K-finite functions on G satisfying

φ(umg) = π(m)φ(g), u ∈ U, m ∈M, g ∈ G.

The parabolically induced representation IG
P (πλ), λ ∈ a∗

M,C is defined by

[IG
P (πλ, g)φ](x) := φ(xg)e〈λ+ρP ,HP (xg)〉e−〈λ+ρP ,HP (x)〉, g ∈ G, φ(x) ∈ VP (π).

This is isomorphic to the usual parabolically induced representation by

IG
P (πλ) � φ(x) �−→ φ(x)e〈λ+ρP ,HP (x)〉 ∈ indG

P [πλ ⊗ 111U].

As in the global case, we define the intertwining integral MP ′|P (w, πλ), (P = MU , P ′ =
M ′U ′ ∈ F(M0), w ∈WM,M ′) by

[MP ′|P (w, πλ)φ](x) :=

∫
(U′∩wU)\U′

φ(w−1ux)e〈λ+ρP ,HP (w−1ux)〉 du · e〈−w(λ)+ρP ′),HP ′(x)〉.

Proposition 5.7 ([27], [39] § 2.2). (i) [MP ′|P (w, πλ)φ](x) converges absolutely if Re(λ)
belongs to some open cone in a∗

M , and meromorphically continued to the whole a∗
M,C .

(ii) If we write �P (w) for the length function on WM (G) with respect to P ∈ P(M)
[33, I.1.7], then for w ∈ WM,M ′ and w′ ∈ WM ′,M ′′ with �P (w

′w) = �P (w) + �P ′(w′), the
functional equation

MP ′′|P ′(w′, w(πλ))MP ′|P (w, πλ) =MP ′′|P (w
′w, πλ)

holds.

Consider first the following two special cases.

(1) F is archimedean.

(2) G is quasisplit over F and π is generic with respect to some non-degenerate character
of a maximal unipotent subgroup of M.
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(Recall that a splitting of G is a triple of a Borel subgroup B, a maximal torus T in B
and a system of root vectors {X} ⊂ g for the simple roots of T in B. G is quasisplit if it
admits a splitting splG = (B, T, {X}) which is stable under Gal(F/F ). Then a character
θ of the unipotent radical N of B is non-degenerate if its stabilizer in B equals the center
ofG. For such θ, a θ-Whittaker functional on π ∈ Π(G) is a linear functional Λθ

π : Vπ → C
on a realization of π such that

Λθ
π(π(n)ξ) = θ(n)Λθ

π(ξ), n ∈ N, ξ ∈ Vπ.

We say that π is θ-generic if it admits a non-trivial θ-Whittaker functional.) In these
cases, we have the automorphic L and ε-factors L(s, π, r) and ε(s, π, r, ψ) of π attached to
certain finite dimensional continuous representation r of the L-group LG of G [17], ψ being

a non-trivial character of F . (N.B. The L-group should be the Weil form LG = Ĝ�ρG
WF

instead of the Galois form Ĝ�ρG
Gal(F/F ) adopted in [17], since some important cocycles

on Gal(F/F ) does not split while its inflation to WF does.) In the case (1), these are
defined in terms of the local Langlands correspondence established in [32]. In the case
(2), the definition is given in [40, § 7]. Now let P , P ′, π ∈ Πadm(M

1), λ ∈ ia∗
M be as

above. Writing ûw := u/w
−1

u′ ∩ u, set

rw : LM � m� w �−→ Ad(m) ◦ ρG(w)|buw ∈ GL(ûw).

Define the normalization factor for MP ′|P (w, πλ) by

rP ′|P (w, πλ, ψ) :=
L(0, πλ, rw)

ε(0, πλ, rw, ψ)L(1, πλ, rw)
.

The normalized operator NP ′|P (w, πλ) := rP ′|P (w, πλ, ψ)
−1MP ′|P (w, πλ) enjoys the follow-

ing properties [13, I, §§ 2,3], [40, Th. 7.9]:

(N1) NP ′|P (w, πλ)IG
P (πλ, f) = IG

P ′(w(πλ), f)NP ′|P (w, πλ), f ∈ H(G).

(N2) Without any length condition, the functional equation

NP ′′|P ′(w′, w(πλ))NP ′|P (w, πλ) = NP ′′|P (w
′w, πλ)

holds.

(N3) For λ ∈ ia∗
M , NP ′|P (w, πλ) is unitary.

(N4) In the case (1), NP ′|P (w, πλ) is a rational function in (α∨(λ))α∈∆P
. In the case (2)

it is a rational function in (q
−α∨(λ)
F )α∈∆P

, where qF is the cardinality of the residue
field of F .

(N5) In the case (1), and if π is tempered, then rP ′|P (w, πλ, ψ) has no poles in the region
Re(α∨(λ)) > 0, ∀α ∈ ∆P .

(N6) If G is unramified in case (2) and IG
P (πλ) admits a fixed vector φ0 under the

hyperspecial maximal compact subgroupK, thenNP ′|P (w, πλ)φ
0(k) = φ0(k), k ∈ K.
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The property (N5) should also hold in the case (2) [40, Conj. 7.1].

Example 5.8. Consider the case of GL(2). If χλ = χ1| |λ1
F ⊗χ2| |λ2

F , then the normaliza-
tion factor equals

rB|B(w, πλ, ψ) = rB|B(1, πλ, ψ) =
L(λ1 − λ2, χ1χ

−1
2 )

ε(λ1 − λ2, χ1χ
−1
2 , ψ)L(1 + λ1 − λ2, χ1χ

−1
2 )

.

(N5) is clearly valid in this case.

In the general case, a normalization factor satisfying (N1) to (N6) was constructed
by Langlands using the Plancherel measure [20, Lect.15]. We still use the notation
rP ′|P (w, πλ, ψ) for this normalization factor, since these two essentially coincide in the
above special cases. To obtain an expression of rP ′|P (w, πλ, ψ) in terms of L and ε-factors
as illustrated above is also important in the arithmetic applications.

Going back to the global setting, we define

rP ′|P (w, πλ) :=
∏
v

rP ′|P (w, πv,λ, ψv), NP ′|P (w, πλ) :=
⊗
v

NP ′|P (w, πv,λ).

Here ψ =
⊗

v ψv is a non-trivial character of A/F and π =
⊗

v πv. We use these to
estimate ∑

π∈Π(M1)

∫
i(aG

L )∗
‖ML(P, π, λ, 0)IG

P,X(πλ, f)‖ dλ,

where ‖ ‖ is the trace class norm. Define two (G,M)-families

NQ(P, π, λ,Λ) := NQ|P (1, πλ)
−1NQ|P (1, πλ+Λ), rQ(P, π, λ,Λ) :=

rQ|P (1, πλ+Λ)

rQ|P (1, πλ)
.

We apply Lem. 4.3 toMQ(P, π, λ,Λ) = rQ(P, π, λ,Λ)NQ(P, π, λ,Λ) to have

ML(P, π, λ, 0)IG
P,X(πλ, f) =

∑
P1∈F(L)

rP1
L (P, π, λ, 0)N ′

P1
(P, π, λ, 0)IG

P,X(πλ, f).

Since N ′
P1
(P, π, λ, 0)IG

P,X(πλ, f) is rapidly decreasing in λ, it suffices to show that∫
i(aG

L)∗
|rP1

L (P, π, λ, 0)|(1 + ‖λ‖)−N dλ

converges absolutely for sufficiently large N . Once we are reduced to the estimation of
such a scalar valued function, we can deduce it from that of the inner product of two
truncated Eisenstein series (using Prop. 5.1) . This is done in [6, II, § 9]. Finally we have
the following.

Theorem 5.9 (The fine X-expansion). For f ∈ H(G/AG), we have

JX(f) =
∑

M∈L(M0)

∑
L∈L(M )

∑
π∈Π(M1)

∑
w∈WL,reg

M,M

|WM |
|W |

1

| det(w − 1|aL
M)|

×
∫
i(aG

L )∗

1

|P(M)|
∑

P∈P(M )

tr(ML(P, π, λ, 0)MP |P (w, π)IG
P,X(πλ, f)) dλ.
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5.4 Weighted characters

To obtain an expression of JX(f) analogous to Th. 4.5, we need weighted characters, the
spectral counter part of weighted orbital integrals [13].

Let S be a finite set of places of F . Consider the local analogue

NQ(P, π, λ,Λ) = NQ|P (1, πλ)
−1NQ|P (1, πλ+Λ), π ∈ Πadm(MS), Λ ∈ ia∗

M

of the (G,M)-family defined above. Since the singularity of NQ|P (1, πλ) as a function in
λ is isolated, its “logarithmic derivative” at λ

NM(P, π, λ) := lim
Λ→0

∑
Q∈P(M )

1

θGQ(Λ)
NQ(P, π, λ,Λ)

can be defined. This is meromorphic in λ whose singularity set is a locally finite union
of affine hyperplanes whose vector parts are the zeros of coroots. Define the weighted
character to be

JM (πλ, f) := tr(NM (P, π, λ)IG
P (πλ, f)).

More generally, for τ ∈ Πadm(L) (L ⊂ M), we define JM(τλ, f) := JM (IM
Q (τ )λ, f) with

any Q ∈ PM(L). This again is a meromorphic function having the same type singularities
as NM(P, π, λ) has. Note that, by taking trace, this is independent of P ∈ P(M) as the
notation suggests. We also need the distribution

JM(π,X, f) :=

∫
iaG∗

M,S

JM(πλ, f)e
−λ(X) dλ, f ∈ H(GS).

Here aM,S := HM (MS) is aM itself or a lattice in aM (according to either S contains an
archimedean place or not), and we have written a∗

M,S for a∗
M or a∗

M/(a
∨
M,S) accordingly.

a∨
M,S denotes the dual lattice of aM,S in the latter.
We look at the discrete part (i.e. the term associated to L = G) of the fine X-expansion

Th. 5.9: ∑
M∈L(M0)

∑
π∈Π(M1)

∑
w∈W reg

M,M

|WM |
|W |

1

| det(w − 1|aG
M )| tr(MP |P (w, 0)IG

P,X(πλ, f)).

Since tr(MP |P (w, 0)IG
P,X(πλ, f)) is an invariant distribution and IG

P,X(πλ) is admissible, we
find that this is a finite linear combination of characters:∑

π∈Π(G1)

aGdisc(π,X)trπ(f).

Here we note that aGdisc(π) :=
∑

X∈X(G) a
G
disc(π,X) are merely some scalars and are not the

multiplicity of π in the discrete spectrum (cf. Th. 2.4)

L2
disc(G(F )AG\G) =

⊕
[G,π]

L2(G(F )AG\G)[π].
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We now give an expression analogous to Th. 4.5 for the sum J(f) =
∑

X∈X(G) JX(f).
Set

Πdisc(M) :=

{
π ∈ JH(IM

Q (σµ))
Q ∈ PM(L)

∣∣∣∣ (1) aLdisc(σ) += 0,

(2) w(σµ) = σµ, ∃w ∈WM,reg
L,L

}
,

Π(M1) :=
∐

M∈LM1(M0)

{
πλ | π ∈ Πdisc(M), λ ∈ i(aM1

M )∗
}
.

Note again that Πdisc(M) is not the set of discrete automorphic representations of M .
For πλ ∈ Π(M1), π ∈ JH(IM

Q (σµ)) being as above, define

aM1(πλ) := aLdisc(σ)r
M1
L (πλ), rM1

L (πλ) := lim
Λ→0

∑
Q∈F(L)
Q⊂P1

rQ(Q1, π, λ,Λ)

θP1
Q (Λ)

.

Here rM1
L (πλ) is independent of Q1 and P1.

Corollary 5.10 ([12]). For f ∈ H(G/AG), we have

J(f) =
∑

M∈L(M0)

|WM |
|W |

∫
Π(M )

aM(π)JM(π, f) dπ.

Here we have written JM(π, f) := JM(π, 0, f) and the measure dπ on Π(M) is such that∫
Π(M )

φ(π) dπ =
∑

L∈LM (M0)

|WL|
|WM |

∑
π∈Πdisc(L)

∫
i(aM

L )∗
φ(πλ) dλ

holds.

Proof. Write RM
disc for the right regular representation of M on the discrete spectrum

L2
disc(M(F )AM\M) ofM . We may consider the induced representation IG

P (R
M
disc,λ), which

from Th. 2.4 is isomorphic to
⊕

X∈X(G)

⊕
π∈Π(M1) IG

P,X(πλ). Th. 5.9 asserts that

J(f) =
∑

L∈L(M0)

∑
M∈LL(M0)

∑
w∈WL,reg

M,M

|WM |
|W |

1

| det(w − 1|aL
M )|

× 1

|P(M)|
∑

P∈P(M )

∫
i(aG

L )∗
tr
(
ML(P, λ, 0)MP |P (w, 0)IG

P (R
M
disc,λ, f)

)
dλ.

HereML(P, λ, 0), MP |P (w, 0) are defined similarly as ML(P, π, λ, 0), MP |P (w, π) with π
replaced with RM

disc.
One can easily see that the operator ML(P, λ, 0)MP |P (w, 0)IG

P (R
M
disc,λ, f) vanishes on

the orthogonal complement of a subspace which is a direct sum of IG
Q (πλ), (Q ∈ P(L),

π ∈ Πdisc(L)). On the IG
Q(πλ)-component,ML(P, λ, 0) equals

ML(P, π, λ, 0) =
∑

Q∈P(L)

1

θGQ(Λ)
rQ(P, π, λ,Λ)NQ(P, π, λ,Λ)

∣∣∣
Λ=0

.
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Noting that rP1
L (P, π, λ,Λ) (cf. Lem. 4.3) depends only on M1 and not on P1 ∈ P(M1),

we can write this as∑
M1∈L(L)

rM1
L (P, π, λ,Λ)NM1(P, π, λ,Λ)

∣∣∣
Λ=0

= rM1
L (πλ)NM1(P, π, λ).

This combined with the definition of aLdisc(σ) yields

J(f) =
∑

L∈L(M0)

∑
M1∈L(L)

|WL|
|W |

∑
π∈Πdisc(L)

∫
i(aG

L )∗
aLdisc(π)r

M1
L (πλ)tr

(
NM1(Q, π, λ)IG

Q(πλ, f)
)
dλ

decomposing i(aG
L)

∗ = i(aM1
L )∗ ⊕ i(aG

M1
)∗,

=
∑

M1∈L(M0)

∑
L∈LM1(M0)

|WL|
|W |

∑
π∈Πdisc(L)

∫
i(a

M1
L )∗

aLdisc(π)r
M1
L (πλ)JM1(πλ, f) dλ

writing M for M1 and using the definition of the measure dπ,

=
∑

M∈L(M0)

|WM |
|W |

∫
Π(M )

aM(π)JM(π, f) dπ.

6 The invariant trace formula

Recall, in many application of the trace formula, we need to compare the trace formulae
of different groups. The starting point of the comparison is a correspondence between
the conjugacy classes of the relevant groups. Consequently, we need to express the trace
formula in terms of invariant distributions, distributions which are invariant under the
conjugation. Here we shall explain how Arthur achieved this [4], [11], [12].

6.1 Non-invariance

First we measure the non-invariance of the terms in the trace formula. Recall the geomet-
ric kernelKf

Q(x, y) =
∑

o∈O(G) K
f
Q,o(x, y) of the induced operator RQ(f) on L

2(VL(F )AG\G)

§ 3.1. Since KAd(y−1)f
Q,o (x, x) = Kf

Q,o(xy
−1, xy−1), we have

Ad(y)JT
o (f) =

∫
G(F )AG\G

∑
Q∈F(P0)

(−1)aG
L

∑
δ∈Q(F )\G(F )

KQ,o(δx, δx)τ̂Q(HQ(δxy)− T ) dx
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using (4.1),

=

∫
G(F )AG\G

∑
Q⊂P∈F(P0)

(−1)aM
L

∑
δ∈Q(F )\G(F )

KQ,o(δx, δx)τ̂QM(HQ(δx)− T )

× ΓG
P (HQ(δx)− T,−HQ(kQ(δx)y)) dx

=
∑

P∈F(P0)

∫
P (F )AG\G

∑
Q∈F(P0)
Q⊂P

(−1)aM
L

∑
δ∈Q(F )\P (F )

KQ,o(δx, δx)τ̂QM(HQ(δx)− T )

× ΓG
P (HP (δx)− T,−HP (kQ(δx)y)) dx.

Here we have written δx = q(δx)kQ(δx) for the Iwasawa decomposition of δx with respect
to G = QK. If we write x ∈ P (F )AG\G as x = umak, (u ∈ U, m ∈M, a ∈ AG

M , k ∈ K),
then

Kf
Q,o(δx, δx) = K

fk
P

QM ,oM (δma, δma), HQM (δx) = HQM (δm),

ΓG
P (HP (δx)− T,−HP (kQ(δx)y)) = ΓG

P (HP (a)− T,−HP (ky)),

where

fk
P (m) := mρP

∫
U

f(k−1muk) du, m ∈M.

Using the function fQ,g (see p. 24), we obtain the following. (The proof for the spectral
formula is similar.)

Lemma 6.1 ([4] Th. 3.2). For f ∈ H(G/AG), we have

Ad(y)Jo(f) =
∑

Q∈F(M0)

|WL|
|W | J

L
o (fQ,y),

Ad(y)JX(f) =
∑

Q∈F(M0)

|WL|
|W | J

L
X (fQ,y).

We now explain the rough idea of the combinatorial part of the construction. Suppose
we are given a family of continuous linear maps φM

L : H(M)→ I(L) satisfying

(1) φM
L (Ad(y−1)f) =

∑
P1∈FM (L) φ

M1
L (fP1,y),

(2) φM
M : H(M)→ I(M) is surjective,

(3) Any (Ad(M)-) invariant distribution IM on H(M) passes through φM
M : IM = ÎM ◦

φM
M .
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Then we define a family of distributions {IMo , IMX }M∈L(M0) by

IMo (fM ) := JM
o (fM )−

∑
L∈LM(M0), �=M

|WL|
|WM | Î

L
o (φ

M
L (fM )),

IMX (fM ) := JM
X (fM )−

∑
L∈LM(M0), �=M

|WL|
|WM | Î

L
X(φ

M
L (fM )).

Then it follows from Lem. 6.1 and (1) that (• is o or X)

I•(Ad(y
−1)f − f) =J•(Ad(y

−1)f − f)−
∑

L∈L(M0), �=G

|WL|
|W | Î

L
• (φ

G
L(Ad(y

−1)f − f))

=
∑

P∈F(M0), �=G

|WM |
|W | J

M
• (fP,y)−

∑
L∈L(M0), �=G

|WL|
|W |

∑
P∈F(L)

ÎL• (φ
M
L (fP,y))

=
∑

P∈F(M0), �=G

|WM |
|W |

JM
• (fP,y)−

∑
L∈LM(M0)

|WL|
|WM | Î

L
• (φ

M
L (fP,y))


=0.

That is, IM• are all invariant distributions. On the other hand we deduce from (3.7) the
invariant trace formula ∑

o∈O(G)

Io(f) =
∑

X∈X(G)

IX(f).

6.2 Application of the trace Paley-Wiener theorem

Of course the most difficult point is to construct the maps φM
L . Arthur used the distri-

bution JM (π,X, f) (§ 5.4) for this. In fact, he defined the “Fourier transform” φG
M(f) of

f ∈ H(GS) by

φG
M (f) : Πtemp(MS)× aM,S � (π,X) �−→ JM(π,X, f) ∈ C.

Here Πtemp(MS) denotes the subset of tempered elements in Πadm(MS). Of course this
can be extended to Πadm(MS) × aM,S by analytic continuation. It was shown in [13, I.
Lem. 6.2] that this satisfies (1) above:

JM(π,X,Ad(y−1)f) =
∑

Q∈F(M )

JL
M(π,X, fQ,y).

Here we overlook the technical imprecision that H(GS) is not stable under Ad(GS). The
image I(GS) of H(GS) under φ

G
G is described by the trace Paley-Wiener theorem [19],

[16].
The next problem is that the image I(MS) does not contain φ

G
M(H(GS)) if G += M .

Then Arthur enlarged the range a little by relaxing the support condition in the direction
of the center to obtain Iac(MS). To assure the surjectivity, he also enlarged the domain
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to a little larger space Hac(MS). Finally we have the surjective maps φM
L : Hac(MS) →

Iac(LS) for any L ⊂ M ∈ L(M0).
The final problem is to show that the distributions IGo , I

G
X pass through φG

G in order

to define ÎGo , Î
G
X . More precisely, we need to establish the following inductive statement.

Problem 6.2. Suppose for any M ∈ L(M0), += G, we are given the distributions IML (γ),

IML (π) on H(M) which pass through φM
M , so that we can define ÎML (γ), ÎML (π), and satisfy

JM
L (π, fM) = IML (π, fM ) +

∑
M1∈LM(M0), �=M

ÎM1
L (γ, φM

M1
(fM )),

JM
L (γ, fM ) = IML (γ, fM ) +

∑
M1∈LM (M0), �=M

ÎM1
L (π, φM

M1
(fM )).

Then the distributions

IGL (γ, f) := JG
L (γ, f) −

∑
M∈L(M0), �=G

ÎML (γ, φG
M (f)),

IGL (π, f) := J G
L (π, f)−

∑
M∈L(M0), �=G

ÎML (π, φG
M(f))

pass through φG
G.

This was done at length in [11], [12]. We end this note by stating the resulting formula.

Theorem 6.3 (The invariant trace formula). If we take a finite set of places S suf-
ficiently large for f ∈ H(G/AG), then we have

∑
M∈L(M0)

|WM |
|W |

∑
γ∈(M (F ))M,S

aM(S, γ)IM(γ, f)

=
∑

M∈L(M0)

|WM |
|W |

∫
Π(M )

aM(π)IM(π, f) dπ
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baki, 1962/63, n. 257.

[24] H. Jacquet and R.P. Langlands, Automorphic forms on GL(2), Lect. Notes in Math.
114, Springer Verlag, 1970.

[25] H. Jacquet, I.I. Piatetskii-Shapiro and J.A. Shalika, Rankin-Selberg convolutions ,
Amer. J. Math. 105 (1983), no. 2, pp. 367–464.

[26] H. Jacquet and J.A. Shalika, On Euler products and the classification of automorphic
representations II , Amer. Jour. of Math. 103 (1981), pp. 777–815.

[27] A.W. Knapp and E.M. Stein, Intertwining operators for semisimple Lie groups II ,
Invent. Math. 60 (1980), pp. 9–84.

[28] J.P. Labesse, La formule des traces d’Arthur-Selberg, Séminaire Bourbaki, (1984–85),
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45



[34] M.S. Osborne and G. Warner, The Selberg trace formula. I. Γ-rank one lattices , J.
Reine Angew. Math. 324 (1981), pp. 1–113, II. Partition, reduction, truncation,
Pacific J. Math. 106, (1983), no. 2, pp. 307–496, III. Inner product formulae (ini-
tial considerations), Mem. Amer. Math. Soc. 44 (1983), no. 283, IV. Inner product
formulae (final considerations) in “Lie group representations I”, (College Park, Md.
1982/1983), Lecture Notes in Math. 1024, Springer, Berlin-New York, 1983, pp.
112–263, V. Questions of trace class, Trans. Amer. Math. Soc. 286 (1984), no. 1,
pp. 351–376, VI. Implications of estimability , Amer. J. Math. 107 (1985), no. 6, pp.
1369–1437, VII. Application of the truncation process to the continuous spectrum , Pa-
cific J. Math. 140 (1989), no. 2, pp. 263–352, VIII. Contribution from the continuous
spectrum , Trans. Amer. Math. Soc. 324 (1991), no. 2, pp. 623–653.

[35] I.I. Piatetskii-Shapiro and J.W. Cogdell, Converse theorem for GL(n), Inst. Hautes
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