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TAKUYA KONNO

1. What are CAP forms ?

The term CAP in the title is a short hand for the phrase \Cuspidal automorphic
representations which Associated to Parabolic subgroups". More precisely, let G be a
connected reductive group de�ned over a number �eld F , and G� be its quasisplit inner
form. An irreducible automorphic representation � =

N
v �v of G(A ) is a CAP form if

(i) � is cuspidal;
(ii) There exists a residual discrete automorphic representation �� =

N
v �

�
v of G

�(A )
such that �v ' ��v at all but �nite number of v.

Assuming the suitable generalization of Ramanujan's conjecture, the CAP forms should
be exactly the non-tempered cusp forms. Thus such forms should be beautifully described
in terms of Arthur's conjecture.
We write LG = bG o�G WF for the L-group of G where WF is the Weil group of �F=F ,

�F being an algebraic closure of F . For the purpose of stating the conjecture, we intro-
duce the hypothetical Langlands group LF of F . An A-parameter for G is a continuous
homomorphism  : LF � SL(2; C ) ! LG such that

(1) The following diagram commutes:

LF � SL(2; C )
 
���! LG

proj

??y ??yproj
WF WF

(2)  jLF is semisimple and  (LF ) is bounded;
(3)  jSL(2;C) is analytic.

We should also have some relevance condition (see Ex. 1.2 below). The set 	(G) of bG-
conjugacy classes of A-parameters should parameterize the irreducible representations of
G(A ) which appear in the L2-automorphic spectrum of G.
The A-parameters  associated to CAP forms � =

L
v �v can be characterized as

follows. The cuspidality of � implies, in particular, it appears in the discrete spectrum,
so that  should be elliptic. That is, Im is not contained in the L-group of any proper
F -parabolic subgroup of G. We write 	0(G) for the set of elliptic elements in 	(G). On
the other hand the condition \associated to parabolics" is equivalent to the non-triviality
of  jSL(2;C) . 	CAP(G) denotes the subset of  2 	(G) satisfying these two conditions.
Let us look at some examples.
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Example 1.1. Consider G = GL(n). LG is the direct product of bG = GL(n; C ) and WF ,
and an A-parameter is an n-dimensional representation of LF � SL(2; C ).  2 	0(G) is
equivalent to its irreducibility. Thus each  2 	(G) is of the form

 = '
 �d;

where ' is an m-dimensional irreducible representation of LF , �d is the d-dimensional
irreducible representation of SL(2; C ) and n = dm. ' should corresponds to an irreducible
cuspidal representation � of GL(m; A ). Then it is a result of Moeglin-Waldspurger that
the only automorphic representation attached to this is the global Langlands quotient

� =
O
v

J
GL(n)
P
md

(�vjdet j
(d�1)=2
v 
 �vjdet j

(d�3)=2
v 
 � � � 
 �vjdet j

(1�d)=2
v );

which appears in the residual spectrum. Here Pmd denotes the standard parabolic subgroup
of GL(n) with a Levi component isomorphic to GL(m)d. Thus there are no CAP forms
on GL(n).

Example 1.2. Next look at the multiplicative group G = D� of a central division algebra
D of dimension n2 over F .  2 	CAP(G) is of the same form as in the previous example.
But there should be a relevance condition on  so that only the parameters of the form

 = �
 �n; dim� = 1

is relevant. � : LF !WF ! C � is identi�ed with an idele class character of F . Certainly
the corresponding representation � = �Æ�D=F is a CAP form, where �D=F is the reduced
norm of D.

Example 1.3. Finally we describe 	CAP(G) for G = Gn := U(n)E=F , the quasisplit
unitary group in n-variables attached to a quadratic extension E of F . We write � for
the generator of Gal(E=F ), and de�ne �n by

�n(g) := Ad
�0BB@

1
�1

:�:::

(�1)n�1

1CCA�tg�1:
We realize Gn so that

Gn(R) := fg 2 GL(n;R 
F E) j �n(
�g) = gg

for any commutative F -algebra R. LGn = GL(n; C ) o�Gn
WF , where

�Gn(w) =

(
id if w 2 WE;

�n otherwise.

 is known to be determined by its restriction to LE �SL(2; C ). Now each  2 	CAP(G)
is of the form

 jLE�SL(2;C) =
rM
i=1

(!i'i)
 �di:

Here,
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� 'i is an irreducible mi-dimensional representation of LE, which corresponds to an
irreducible cuspidal representation �i of GL(mi; A E ) such that �� ' �_ and !�jA� ,
the central character of � restricted to A � , is trivial.
� !i is an idele class character of E whose restriction to A � equals !n�di�mi+1

E=F . !E=F
is the quadratic character of A �=F� associated to E=F by the class�eld theory.
� n =

Pr
i=1 dimi, and the !i'i 
 �di are not equivalent to each other.

What are the CAP forms associated to the A-parameters in Ex. 1.3 ? The cases n � 2
is trivial. When n = 3, it was proven by Gelbart-Rogawski that such representations are
the theta liftings from G1 = U(1)E=F . Today we shall report the result of the joint work
with Kazuko Konno in the case n = 4. There are 6 types of parameters for G4 according
to the following list of f(di;mi)gi:

(1) Stable parameters: (1.a) f(4; 1)g, (1.b) f(2; 2)g.
(2) Endoscopic parameters: (2.a) f(3; 1); (1; 1)g, (2.b) f(2; 1); (1; 2)g, (2.c) f(2; 1); (2; 1)g,

(2.d) f(2; 1); (1; 1); (1; 1)g.

In this talk, we shall concentrate to the interesting cases (2.b) and (2.c).

2. Local theory

Let us write � and �0 for characters of A �E=E
� whose restriction to A � is trivial. Then

the parameters to be considered are given by

(2:b)  �;�jLE�SL(2;C) = (� 
 �2)� '�; (2:c)  �jLE�SL(2;C) = (� 
 �2)� (�0 
 �2);

where � = (�; �0) and � is an irreducible cuspidal representation of GL(2; A E ) satisfying
the condition of Ex. 1.3. At each place v of F , these give rise to the local parameters
 v : LFv �SL(2; C ) !

LGv. In this section, we shall construct the local A-packet � v(G)
attached to such  v. Again for brevity, we consider only those v where Ev := E 
F Fv
is a quadratic extension of Fv and �v is (super) cuspidal in (2.b) and �v 6= �0v in (2.c).
Also to keep in accordance with the theme of this conference, we restrict ourselves to
non-archimedean v. (The archimedean case is more explicit and needs some case-by-case
treatment.)

2.1. Parabolic induction. Recall some assertion from Arthur's conjecture. For  v 2
	0(Gv) we set S v(G) := Cent( v; bG)=Z( bG)�v , where �v = Gal( �Fv=Fv). In the case of
G = Gn, we have S v(G) ' (Z=2Z)r�1 where r is as in Ex. 1.3. Moreover since F is
non-archimedean, we may postulate that there exists a perfect duality

h ; i : S v(G) �� v(G) �! C
� :

Next set

� : Gm(C ) 3 t 7�!

�
t
t�1

�
2 SL(2; C )

 
�! bG:

There is an F -parabolic subgroup P = M U such that cM = Cent(� ; bG) and � is abP -dominant cocharacter of cM . Associated to  vjLFv 2 	(M ) is the tempered L-packet
� vjLFv

(M ). Then Arthur imposed

�0
 v
(G) := fJGP (� 
 e

� ) j � 2 � vjLFv
(M )g � � v(G):

Here, again JGP (�
e
�) denotes the Langlands quotient of IGP (�
e

�) = ind
G(Fv)
P (Fv)

[(� 
 e�)


111U(Fv)].
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We now examine these constructions in our G4-case. The standard parabolic subgroups
of G4 are G, Pi = MiUi (i = 1, 2) and the upper triangular Borel subgroup B = TU,
where

M1 =

8<:m1(a; g) =

0@ a
g

�1(�a)

1A
������ a 2 ResE=FGm

g 2 G2

9=; ;

U1 =

8>><>>:u1(y; �) =
0BB@

1 y00 y0 � � hy; yi=2
1 ��y0

1 �y00

1

1CCA
��������
y = (y00; y0) 2 W1

� 2 G a

9>>=>>; ;

M2 =

�
m2(a) =

�
a

�2(�a)

����� a 2 H2

�
;

U2 =

�
u2(b) =

�
1112 b

1112

����� b 2 (ResE=FM 2)
t(�b) = �b

�
:

Here (W1; h ; i) is the hyperbolic skew-Hermitian space (E2; ( 1
�1 )) over E.

Proposition 2.1. The group S v(G) and �0
 v
(G) for parameters (2.b), (2.c) are given

as follows.

A-parameter S v(G) �0
 (G)

(2.b)  �v;�v Z=2Z fJGP1(�vj j
1=2
Ev

 �v) j �v 2 Tvg

(2.c)  �
v

Z=2Z fJGP2(I(�v 
 �
0
v)jdet j

1=2
Ev

)g

Tv in (2.b) is the L-packet of G2(Fv) whose standard base change to GL(2; Ev) is �v. I(�v

�0v) in (2.c) is the obvious notation for the principal series representation of GL(2; Ev).

2.2. Local theta correspondence. We still need to construct the members of � v(G)n
�0
 v
(G). For this we use the theta correspondence. We write G+

2 := G2 and G�
2 for its

anisotropic inner form. Fix a non-trivial additive character  Fv of Fv. For a character
�v of E�

v having the trivial restriction to F�
v , we can construct the Weil representation

(!�v;�; S) of the unitary dual pair G
�
2 (Fv)�G2n(Fv). Again for simplicity, we assume that

the residual characteristic of Fv is odd. Then for an irreducible admissible representation
� of G2n(Fv) (resp. � of G�

2 (Fv)), we have its (possibly zero) local Howe correspondent
��2n;�v(�) (resp. �

2n
�v (� )), an irreducible representation of G�

2 (Fv) (resp. G2n(Fv)). Then
we can prove the following.

Proposition 2.2 (local �-correspondence for U(2)). Consider the case n = 1.
(i) ��2;�v(�) does not vanish if and only if �(1=2; � � �v;  Fv)!�(�1)�(Ev=Fv;  Fv)

2 = �.
(ii) If this is the case, we have

��2;�v(�) =

(
�_ if � = 1,

JL(�_) otherwise.

Here �_ is the contragredient of � and JL(�_) is the \Jacquet-Langlands correspondent"
of �_.

Remark 2.3. This is the �-dichotomy property which is proved by Harris-Kudla-Sweet
for general unitary dual pairs. But their result uses the �-factor de�ned by the doubling
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method of Piatetskii-Shapiro-Rallis. The comparison conjecture between their �-factor and
that de�ned by the Langlands-Shahidi method is not yet established in the present case.
This is the reason why we rely on the construction of M. Harris using the Shimizu-Jacquet-
Langlands correspondence.

In general, we rarely have a good understanding of the rami�ed local theory of theta
correspondences. Except for few examples such as Waldspurger's study on the Shimura
correspondence, all such examples put some strong restriction on the representations
treated (e.g. trivial in the example of Siegel-Weil formula, and one-dimensional in the
study of Shalika-Tanaka).
As was remarked above, we deduce the proposition from the similar result for GU(2)

obtained by M. Harris. His method deduces the rami�ed local theory from the Shimizu-
Jacquet-Langlands correspondence combinedwith the result of Waldspurger-Tunnel-Saito-
Prasad on the restriction of a representation of GL(2; Fv) to elliptic Cartan subgroups.
Our task is to deduce the unitary group case from the similitude group setting. This
is achieved with the help of the following lemma. Let us identify the unitary similitude
group eG2 = GU(2) with (ResE=FGm �GL(2))=Gm by

(ResE=FGm �GL(2))=Gm 3 (z; g) 7�! z�1g 2 eG2 � ResE=FGL(2):

Thus each irreducible representation e� of eG2(Fv) is of the form !
�, where ! is a character
of E�

v and � is an irreducible representation of GL(2; Fv) such that (!jF�v )!� = 111.

Lemma 2.4. We have e�jG2(Fv) =
L

�2T � , where T is the unique L-packet of G2(Fv)
whose standard base change lift is !(det)�Ev. �Ev denotes the base change of � to
GL(2; Ev).

We are now ready to complete the A-packets � v. Consider the following diagram of
local theta correspondences.

G��
2 (Fv)

�4�v�! G4(Fv)

JL l
�4�v
% j

G�
2(Fv)  �

��
2;�v

G2(Fv)

The left vertical arrow is the \Jacquet-Langlands correspondence", while the right vertical
line indicates the Witt tower. For �v 2 Tv in Prop. 2.1, write

� := �(1=2; � � �v;  Fv)!�(�1)�(Ev=Fv;  Fv)
2

so that ��2;�v(�v) 6= 0. The tower property of theta correspondence implies

�4�v Æ �
�
2;�v(�v) ' �+ ;v := JGP1(�vj j

1=2
Ev

 �v):

On the other hand, we know from Prop. 2.2 that �2�v Æ JL Æ �
�
2;�v(�v) is zero. This again

combined with the tower property says that

�� ;v := �4�v Æ JL Æ �
�
2;�v(�v)

is a cuspidal representation of G4(Fv). We argue similarly in the case (2.c) and obtain
the following.



6 TAKUYA KONNO

Theorem 2.5. � v(G) = f�
�
 ;vg, where �

�
 ;v are de�ned above in the case (2.b) and

�+ ;v = JGP2(I(�v 
 �
0
v)jdet j

1=2
Ev

); �� ;v := �4�v((�v�
0
v
�1
)G�

2

);

in the case (2.c). Here (�v�0v
�1)G�

2

: G�
2 (Fv)

det
! G1(Fv) 3 x�(x)�1 7! (�v�0v

�1)(x) 2 C � .

Remark 2.6. (i) Similar results hold for other types of �v in the case (2.b). In particular,
when �v is the special representation, �� ;v coincides with that in the case (2.c).
(ii) The archimedean case is treated in a similar way. In the case (2.b) with Tv is en-
doscopic, jTvj = 2 while its Jacquet-Langlands correspondent is a singleton. But since
�(1=2; �v � �v;  R)!�v(�1)�(C =R;  R)

2 = 1 in this case, the theorem is still valid.

3. Global theory

We now de�ne the duality (multiplicity pairing) h ; i : S v(G)�� v(G)! f�1g so that
�� ;v corresponds to the sign character of S v(G). The following veri�es the multiplicity
formula for the global A-packet � (G) =

L
v � v(G) conjectured by Arthur.

Theorem 3.1. If we write m(�) for the multiplicity of an irreducible representation � =L
v �v 2 � (G) of G4(A ) in the L2-automorphic spectrum, then

m(�) =
1

jS (G)j

X
�s2S (G)

� (�s)
Y
v

h�s; �vi:

Here

� (s) =

(
sgnS (G) in the case (2.b) with �(1=2; � � �) = �1,

111 otherwise.

We show the inequality � by the global theta correspondence. Also in some cases, this
gives the exact equality. But in other cases including (2.c), we need the analysis of the
Fourier coeÆcients to have the converse inequality.
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