LOCAL 0-CORRESPONDENCE FOR REAL UNITARY DUAL PAIRS

KAZUKO KONNO AND TAKUYA KONNO

ABSTRACT. This note summarizes the results of our paper [KK]. Motivated by applications
to automorphic forms, we consider Weil representations of a unitary dual pair over R (not of
its ’determinant” covering) constructed by the doubling argument [HKS96]. We construct its
Fock model and deduce the K-type correspondence under this. As a consequence, we obtain
the local #-correspondence (variant of the Howe duality correspondence under this Weil rep-
resentation) between limit of discrete series representations for unitary dual pairs of the same
size. It is described in terms of the sign of the functional equation for certain automorphic L-
factors. This can be viewed as an archimedean analogue of the e-dichotomy property of the local
f-correspondence of unitary dual pairs over non-archimedean local fields [HKS96].
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1. HOWE DUALITY FOR UNITARY DUAL PAIRS

Let (W, ((-,-))) be a 2N-dimensional symplectic space over R. We write Sp(W) for its
symplectic group. For each non-trivial character ¢ : R — CX, the metaplectic group of
(W, ({(-,-)))) is an extension:

(1.1) 1 — C' — Mpy(W) 2% Sp(W) — 1.

Its definition is given as follows. The Heisenberg group of (W, (((-,-)))) is given by H,, (W) =

W x C! with the multiplication law

{(w, w'))
2

The Stone-von-Neumann theorem asserts that there exists a unique isomorphism class p}f = Py

of irreducible unitary representations of H,,(W) on which the center C! acts by multiplication.
Mp(W) is the unique extension (LI)) such that p, extends to a unitary representation (also

(w; 2)(w'; 2') == (w+w’;zz’w< )), w,w €W, 2,2 € Ch.
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denoted by p,) of the semidirect product Jy (W) := W x Mp, (W) (the metaplectic Jacobi
group). Here, the Mp,,(W)-action on H (W) is the composite of the Sp(W)-action on W with
pw. Note that 7, (W) fits into the extension

1 — Hy(W) — Tp(W) — Sp(W) — 1.

The restriction wy y, = ww of py, to Mp, (W) is called the Weil representation.

For a direct sum decomposition W = W; & W, of symplectic spaces, we write iy, w, :
Sp(Wy) x Sp(Wy) — Sp(W) for the associated (diagonal) embedding. This lifts to a homo-
morphism iy, w, : Mpy(Wi) x Mpy,(Ws) — Mpy(W):

Mpy(Wy) X Mpy(Wa) —2, Mp,, (W)

Pwq XPWoy l lpw

Ty Wy

Sp(Wy) x Sp(Wa)  ——  Sp(W)
and we have
(1.2) Wi O Ty, W, = Wiy, @ Wi,

If we write —W for the symplectic space (W, —((-,-))), then w_yy = wyy 4 is isomorphic to
the contragredient representation wy ,, of wyy, .

Let (V,(-,-)) and (W, (-,-)) be hermitian and skew-hermitian spaces over C. Fix a square
root 7 of —1. We can choose a basis v, w of V', W, with respect to which we have

(v,0") = v L0, (w,w') = iwly yw'™.

Here, writing 1,, for the m X m identity matrix,

1
T = < ’ _1Q) .

By abuse of terminology, we call (p', ¢') the signature of the skew-hermitian space (W, (-, -)).
We write n := p+ ¢, n' := p' + ¢. The R-vector space W := V ®@¢ W with

fv@w, o ©w) = R((v,0)ww)

is a symplectic space of dimension 2(N := nn') over R. Here, Rz denotes the real part of
z € C. We write Gy, Gy for the unitary groups of (V, (-,-)), (W, (-, -)), respectively. We have
a homomorphism

ww =tw Xty : Gy X Gw 3 (9,9) — g® ¢ € Sp(W),

so that Gy, Gy form a reductive dual pair in Sp(W).
If we take (z) = €® with a > 0, the inverse images of 1y (Gy), tv(Gyw) under pyw :
Mpy(W) — Sp(W) are isomorphic to

év ={(g.2) € Gy x C! | 22 = det gq/*p'}7
éW = {(gu Z) S GW X (Cl | 22 = detgp*(I}_

We write %((N;’V, wyy) for the set of isomorphism classes of irreducible Harish-Chandra modules
of Gy which appear as quotients of WW’&;‘,- The Howe duality correspondence asserts that the
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relation Homévxéw (ww, Ty @ Ty ) # 0 determines an well-defined bijection [How89]:

~ Ty —  O(my, W)
%(G%WW)B 9(7TW,V) - Tw

€ Z(Gyw,wy).

Explicit description of this correspondence in the cases n = n/, n’ 4 1 are obtained in [Pau98],
[Pau00], respectively.

2. DOUBLING CONSTRUCTION

The Weil representation is the base of #-correspondence in the theory of automorphic forms.
In order to formulate the (local) 0- correspondence of the unitary dual pair (G, Gy ), we need
a Weil representation not of GV X GW but of Gy x Gy . This is achieved by M. Harris’s
doubling argument. Let us briefly review the construction from [HKS96].

Writing (V—, (+,+)7) := (V, —(-,-)), we introduce a hyperbolic hermitian space (V¥ (-, -)H) :=
V()@ (V7 (5)7). aV = {(v,v) € VE|v e V}, ¢V = {(v,—v) € VE|v € V} are
maximal isotropic subspaces of V! dual to each other. We adopt similar notation for (W, (-, -)).
These doublings yield the same doubled symplectic space W := VE @c W =V ®@c WH and
the same polarization

WHZVW@AW, OWZQV@@WZV@@QVV, (Q:V,A).

Both (2 : Gyu x Gy — Sp(WH) and (8, : Gy x Gyys — Sp(WH) define reductive dual pairs.
Once such a polarization is fixed, we have an explicit description Mp,(WH) = Sp(WH) x C!
where the multiplication law is given by [RR93, Th.4.1]:

(91:21)@2,22) = (9192>CAW(91,92))> g; € SP(WH)> z; € C'.

The 2-cocycle ¢, w(g1, g2) is the Weil constant 7, (L (g1, g2)) of the Leray invariant of L(g1, g2) =
L(AW, AW.ggl, AW.gl).
First consider G'yu. We write w~ for w viewed as a basis of W ~. We choose a Witt basis
for the decomposition W = ¢W @ AW to be
/ w—-w W il w+w"
v =—= W = ; )
o V2 SRV}

Using this, the Siegel parabolic subgroup P,y := Stab(AW, Gyu) = M, w U, w is given by
a 0,
e = {mawte) = (5, 2%)

1, b X
Uw = {UAW<b> = (On/ ln/> ’ b=10"€ M”’<C>}

!

We have the Bruhat decomposition Gyyu = [[_, P.w - w, - Pyw with

a€ GL(n’,(C)},

r=1 A A
0, -1,
]—n’ r
Wy =

For
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we set d(g) := det(ajaz) € C*/RY, r(g) :=r =n' — dimc AW.g N AW. For any character &
of C* satisfying &'|gx = sgn”,

B (9) = ()™ (=1)7) "¢ (d(g), g € Gy,

splits the 2-cocycle cv (g1, 92) = cawl(ty(91), v (92)) (g1, 92 € Gye) [Kud94, Th.3.1]. That
is,
et Guws > gr— (g, 8te(9)) € Mpy(WH)

is an analytic homomorphism.
As for Gu, we choose a Witt basis of VH = ¢V @ AV to be

’ v—-v Vv
vV = vV = _Z—]p,q'

ToV2 T V2

We adopt similar definitions as in the WW-side with respect to the Siegel parabolic subgroup
P,y = Stab(AV, Gyx) = M, yU, . Note that this is realized as

M,y = {mAv(a) = (61 ag’i1>
= {uAV(b) = <1b" 22) ‘ b=1b" € Mn((C)}.

a € GL(n, (C)} :
U

with respect to v/ U v. Taking a character £ of C* satisfying &|px = sgn™,

B8 c(9) = (D> (1) "e(d(g)), g€ Gyn

splits ey (91, 92) = caw(ta-(91), 45 (g2)), (91, g2 € Gyu). Hence an analytic homomorphism

ie: Gya 3 g— (g, 8lc(g9)) € Mpy(WH)

is obtained.
Noting G- = Gy, we have the (diagonal) embedding iy : Gy X Gy — Gyu and the
following commutative diagram:

LH LH

iVT T’W LW
Gy x Gy X Sp(W) x Sp(W) &£ Gy x Gy
Fix a pair = (&,¢’) of characters of C* such that {|gx = sgn”, &'|gx = sgn™. We define

. TH
ZW@ : GV i GV X GV v, GVH E) Mpw(WH),

~H
1st.

Ij‘/,g/ : GW — GW X GW ﬂ) GWH V_,§/> Mplp(WH),
where the left arrows are the embeddings to the first components. These yield homomorphisms

ZW7§ : GV — Mp¢(W), L~V7§/ : GW — Mpw(W)
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These definition show that the following diagram commutes:

i A,

% In I
i det)~17 Ty o0 XE'(det) 71Ty, 41
Gy x Gy DTNy () ) Mpy(W) SN G G

Here, i : Mpy(W) x Mpy(W) 3 ((9,2), (¢, 2')) = (in(g, ), 2%') € Mpy(W5).
Now we can define the Weil representation wy,w¢ = wwe X wye of Gy X Gyy:

LUW7€ = Ww © L~W7§, UJV{/ = Ww O Zvél.

Also we have the Weil representations.w%g = Wy © Dye» Wy = wys 0 Iy of Gyu, Gy,
respectively. The above diagram combined with (I2)) show

2.1 Wiye 0y 2 we ® E(det)wyye, Wie 0w ~ wye @ & (det)wy .

The explicit formula for the Schrédinger model S(vW) for wy, ., wyr is given in [Kud94, § 5].

For completeness, we adopt the following convention. If V' = 0 (resp. W = 0), we set
Gy = {1} (resp. G = {1}) and wye = ¢ (det) (resp. wwe = &,(det)). Here, for a
character £ of C*/R*, we write &, : U(1,R) 3 z/z — &(2) € C*.

3. DOUBLING CONSTRUCTION OF THE FOCK MODEL

We now study the Harish-Chandra module of wy,y¢. Notice that (v @wUv~ @ w)U(ivl, ,®

Ly ywU—iv-I,,® Iy yw) is a Witt basis of WH. We choose another Witt basis
(3.1)
Re! v ®w 1y —15 |0y On VW
Sl | wew | _ 1[0y Oy | T I v O w
%Q T —Vv® [p/,q'w N \/§ Oy Oy |1y —1n Z‘Q[p,q ® [p’,q’w
%Q —ZK (024 [p’,q’w I -1 ON ON _Z-y_[pg & [p’,q’w
1y -1y |0y On VW vOW
1oy oy | T T vOw” _ | mew
_\/§ Oy Oy 1y —1y iQIp,q®Ip’7q’w N le,q®ﬂ
-1 -1 0N 0N _iylp,q ® Ip’,q’ﬂ_ ig[p,q ® w

for WH = oW @ AW, where I := I,,® I 4. Notice that v~ ® w and v ® w™ are identical
in WH, Let sp(WH) = £yw= @ pywe= be the Cartan decomposition of the Lie algebra of Sp(WH)

given by
A B A= -tA,
EWH:{(—B A)‘ B:tB EMQN(R)},

{4 2)] 4 e

in the realization with respect to the basis (3.1). We choose the Cartan decompositions gy =
ty Epy, gy = Byu B pyu for the Lie algebras of Gy, Gyu to be the inverse image of the above
decomposition under vy, Ly, respectively. We also use the similar Cartan decompositions for
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the WW-side. Since the basis transformation matrix in is unitary, this coincides with the
usual decomposition

(o) ew) w3 Do)

in the realization with respect to v. We write Ky C Gy, Kyw C Sp(W) for the maximal
compact subgroups having the Lie algebras &y, &y, respectively.

We write ¢(z) = e with di) € iR* and &, for the sign of di)/i. To obtain the Harish-
Chandra modules of w%s, w%}{ s WE take the following totally complex polarization W]g =

I @ L of the complexification of W:

L := spang (e’ U3¢'), L :=spanc TeU Ve,

(3.2) o, O —eyid% o Ce—eyi%

e = , e =—- = Ror ).

e 7 e NG (¢ )

The universal enveloping algebra of the complexified Lie algebra b, (WE) of H,,(WH) is the
quantum algebra

Qu(We) = T(We)/(w @ w' — v’ @ w — dpfw, w)" |w, w' € We)

of (W dyp((-,-)™). Here T'(WE) is the tensor algebra of WX, Thanks to the Poincaré-Birkoff-
Witt theorem, we have the decomposition Q,(WE) = S(IL) & Q,(WE)L'. S(IL) stands for the
symmetric algebra of L.

Qy (W) carries a filtration Q) (W) = C € Q),(Wg) C --- € Q(Wg¢) C ... induced from
the grading T(W¢) = @D, .y T"(WE). One can easily check that Q7 (W) is isomorphic to the
complexified Lie algebra j,;(WE) of J,,(W™). We define the representation (r; = r)) , S(L))
of j,(WE) by

ry(X)P=X.P, X €j(Wg), PeS(L)=Qu(Wg)/Qu(Wg)L'.

It is known that this yields the (sp(WE ), Ky )-module of the Weil representation wyy.
We identify *e = {*e;+}, “e = {Ze;;} with variables {u;}, {€;¢,v;x}, respectively. Then
S(L¥) = C[(u;k), (vjr)] (polynomial ring over M, ,,,(C)?) on which b,,(Wg) acts by
ro("ejn) = ujn,  ry(Cejn) = v,
0 . 0
ro("ely) = dy .

Ty (‘e},k) = €j€2d¢av—%
Js

(9uj,k.7
Here €; (resp. €}) denotes the (j, j)-entry of I, , (resp. Iy o). Set wj = \/Eil(u‘j,k + v, k),
Wi = \/i_l(ujyk —ivjy), (1 < j<n,1 <k <n'). Now we can state our first result.

Theorem 3.1. The decomposition @.1)) of the (gv.c ® gw.c, Ky x Ky )-module S(ILY) is given
by

—
&
Eal
P
~

((w%g ¢} ’Lv) X (w@{&, o Zw), (C[(wM)



LOCAL #-CORRESPONDENCE FOR REAL UNITARY DUAL PAIRS 7
We also have the following explicit formulae for (wy,w¢, Pv.w,). We use the basis

Uj,k = Ej,k; (1 < J7k < p>7 X],k = Eerj,kv (1 S] < q, 1 < k < p)7
3 3) ij,k = Ep+j7p+ka (1 < j7 k< Q)7 Y},k = E]',P-l—ka (]- < ] <p, 1<k< Q)7
' h =B, (1<5,k<p), Xjp=FEjpuw (1<j<p,1<k<(),
)

Vi =Eyijpie, (1< k<q), Yi=Epp (1<j<qd1<k<y)

of gv,c, gw,c realized with respect to v, w, respectively. Here E; ;. denotes the (7, k)-elementary
matrix. We write

z V4

£(z) = <E>m/2, (z) = <E)ml/2, m=n,m'=n (mod 2), € Z.

Proposition 3.2. (a) When €, > 0, we have the following explicit formulae for (wv,w,§ , Pvw. g).

m+q —p 4 ) " )
wwe(Ujr) =%5ka—2ww —+ ) Wil g

=1 Owje P41 Wkt
m+p —q v 0 u 0
wwe(Vig) == 0ju + > Wptit G > P G
/=1 PR, f=p'+1 b,
wwe(Xjr) = w Wie + |d
W,£( |d1b| Z p+, 0 Wk £ ’ 7/}‘ Z’H 8wp+geawkz
w dy Wj (Wpt k0
welon) = ‘Z awjeawp+ke |d?/1‘ é;l RS
m' +p— a5 0 - )
g J, )= -2 ]k+z we,]a Wy B Z wM&UM7
/=1 l=p+1 ’
m' +q Ps 0 - 0
wye (V1) k— ) Wepikm— + Wepr
§ 2 J ; P+ awep i é;l D'+ awl,p’-ﬁ-k
w / Wy k— d?/)
Vf k ‘d¢| Z 4, 0+ | | E_Z+l aw&] 811}( » +k-
Wyl dy w w
183 ( ‘ | Z aUJgp +38w4k |d¢| £§1 £p' 43 We k-

(iii) Similarly if €, < 0, we have

m+p
wwe(Ujn) = Jk+z Wi g—— M— Z Wit

/+1

m 4+ q —p B 0
wwe(Vig) =——F—— wake + Y Wprjes——
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2

wig(X; \dwz awpﬂgawu \dw Z;—l Wy 45, Wk, 0
wiwe(Yir) = |d¢’ Z W oWy ke + || Z_Z,H aw],ga’wp+kz
(=p+1 )
wyer( ]/k:) _m +2p — q5j7k + g We,p/ +j awi/ﬁ — Z :+1 We,p/+k 8wfp/+j’
(X)) = |dv] Z o T ;p;l Bisrgren
e 070 =[5 2 Z ettt = () ; i

Following the argument of [How89]], one can deduce the local §-correspondence under wy; ¢
from this. Let Z(Gy,ww,) be the set of isomorphism classes of irreducible (gy.c, Ky)-
modules v such that HOID(QV’C’KV)(@V’VV,&W\/) 7é 0. For Ty € %(Gv,ww7§), let </V(7Tv)
be the intersection of ker¢, ¢ € Hom(g‘,’C,K;) (Pyvwe,mv).

Theorem 3.3 (local f-correspondence). Tuke my € Z(Gy,wwe).

(i) The quotient Py ¢ [N (v ) is of finite length, hence has an irreducible quotient.
(ii) Pywe/ N (mv) admits a unique irreducible quotient 0 (my, W).

(iii) This and the analogous construction in the W -side give a bijection

Vinve — eé(’iﬁ/,W)

%<GV’WVV’§)9 eé(ﬂ'w,V) < W

€ %(Gw, wV7§/).

4. K-TYPE CORRESPONDENCE

The next problem is to compute the bijection in Th[3.3]explicitly. We first prepare some more
notation.

We write V, := spanc{vy,...,v,}, Vo = spanc{v,41,...,v,} and (-,-)1 for the re-
strictions of (-,-) to Vg, respectively: (V. (-,-)) = (V4,(-,-)+) ® (V_,(-,+)-). Then Ky =
Gy, x Gy_. We adopt the similar notation for G'yy. Thus we have the seesaw dual pairs

GV GW X GW GV X GV GW

e 4

Kv GW GV KW

in Sp(W).

Take any decompositions § = &, - &, &' = &, - €. such that &4 [gx = sgnd™ W+ ¢ g« =
sgnd™ V= respectively. The Weil representations wyw, (¢, ¢) @ wyw_ ¢ ¢ of (Gy X Gy) X
Ky and wy, wee,) ® wv wee ) of Ky x (Gw X Gy ) share the same Fock model Py .



LOCAL 6-CORRESPONDENCE FOR REAL UNITARY DUAL PAIRS 9

Using the basis (3.3), we take the Harish-Chandra decompositions gy,c = tv,c ®py ., SPyw, -
gw,c = EW(C b p+W7Vi D p;V,Vi as

Eyp _ w2y 1<k<p &y Ey _ 1<k<gq
Prw, =Pyw. =spanc{X;i 112,20, Py, = Pyw. = spanc{Yji i<,

€ —£ 1<k<q’ € 1<k<p’
pmﬁ,w = pw,lli, = spanc{ X k}1<j§§u Pwy, = pv;ﬁ,v, = spanc{Y] k}1<j§§/-
We define the spaces of Ky and Ky -harmonics to be
Ay (Kw) = {P € Pywe|ww. e Py, )P =0},
Ky (Ky) = {P € Pvwe|wvy e, ()P =0},

respectively. Their intersection fy ¢ 1= 7 (Kw) N 6y (Ky ) is called the space of joint
harmonics. Prop3.2lapplied to (V, W), (V, W) in place of (V, W) shows that _#y, ¢ consists
of P € Py killed by

p/

82
Z Ow; 0wy s’ Z Ow; 1 OWy i

aw - = ’
4.1
4.1) , 52 . 52
T —, (1<ji<p 1<k<(),
Z_Zl 8wg7j8wg,p/+k f—p:-i-l aw&jaw&p/.’_k ( )

if dipi < 0. When dyi > 0, we have the same description with w; j replaced by w .
The following result is implicit in the proof of Th[3.3l

Proposition 4.1 (cf. [How89] §3). (1) Zv,w, is stable under wy,w¢(Ky x Ky).

(2) We write Z(Kv, _Zv.we) for the set of K -types which appear as irreducible direct sum-
mands of Zyvwe. Similarly we define Ky, Zyvwe) in the W-side. Then Zy e is multi-
plicity free as a Ky x Kyy-module, so that it gives a bijection

0c(ry K
F(Ky Foawe) > " TV — (v, Kw)

e(tw, Ky)) ™w € AKw, Fvwe):

(3) For a Ky-type Ty, we write degy;¢(7v) for the minimum degree of polynomials in the
Ty -isotypic subspace in @V,W@ (Set degW@(Tv) := o0 if Ty does not appear in yv,w,g-) Ky -
type v of my € Z(Gy,ww,) is of minimal (W, §)-degree if degyy(7v) is minimal among
detw¢(7), (T runs over the set of Ky -types in my ). Similar definition applies to the W -side.
(i) Suppose 1y is a Ky -type in my € Z(Gv,ww,) of minimal (W, §)-degree. Then 1, €
2Ky, Fvwe)
(ii) Furthermore, 0¢(1y, Ky ) is a Ky -type of minimal (V, {')-degree in ¢ (my, W).

Similar assertion holds in the W -side.

Because of the assertion (3), the K-type correspondence (2) plays an important role in the
explicit description of the Howe correspondence [AB95], [Pau98]|, [PauO0]. Following the
calculation of [KV7/8, 1I1.6], we obtain the following.

We write by = tyc@ny, by = ty,c®@ny for the upper and lower triangular Borel subalgebras
of &y, ¢ in the realization with respect to v, respectively. Using similar notation for £y,c, we set

(Ev, bw) iwa = 1,

by, b = _
(bvie bwiy) mem if e, = —1.
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We take a basis {e1,...,€p,€1,...,8.} of t{,¢ as
ei(diag(ty,. ... 1)) ==t;, &(diag(ts, ... tn)) :=tpr
and identify tj, with C" by this. We write {¢/,...,¢},;¢é),...,é,} for the analogous basis for

* . . . . . * ~ n/
tjy ¢, which gives an identification tj;, o ~ C".

Theorem 4.2 (K-type correspondence). (i) Write the by, ,-highest weight of a Ky -type 1y as

<@ m.m @)+8 <q’—p’ - r-d p’—q’)
(42) 5 g g g p 5 5 ) B ey 5
+6¢(—a1,...,—ar,O,...,O,bs,...,bl;—dl,...,—du,O,...,O,ct,...,cl),

forsomeay > -+ > a, by > - >bg,cy > >0, dy > > dy € Lo Then 1y belongs
to Z(Kv, Fvwe)ifand onlyifr +t < p', s +u < ¢'. In that case, the by -highest weight of
Oc (v, Kw) is given by

!/ !/

(Q m’ m/ @>+€ (p—q P—q q—p q—p>
2’...,2,2’...,2 w

5 T g g T g
+€¢(a1,...,aT,O,...,O,—Ct,...,—cl;dl,...,du,O,...,O,—bs,...,—bl).

4.3)

(ii) Conversely, a Ky -type Ty with the by -highest weight @.3) belongs to Z#(Kw, fvw)
if and only ifr + s < p, t +u < q. In that case, 0¢(Tw, Ky ) has the by -highest weight (4.2).

The same argument as in the proof of [Pau98, Prop.1.4.10] shows:

Corollary 4.3. Let (V,(-,-)) be an n-dimensional hermitian space and T, be a Ky -type. Fix
a pair § = (&,&') of characters of C* such that {|gx = &'|gx = sgn”. Then there ex-
ists a unique (up to isometry) n-dimensional skew-hermitian space (W, (-,-)) such that 7, €
<9?(]5(\/, /V7W7§)'

5. LOCAL #-CORRESPONDENCE FOR LIMIT OF DISCRETE SERIES

As a consequence of our calculation, we compute the Howe correspondence between limit of
discrete series representations of unitary dual pairs of the same size (cf. [Li90], [Pau98, 5.2]).
Consider the group Gy = U(p, q) realized with respect to the basis v. T'y C Gy denotes
the diagonal fundamental Cartan subgroup with the Lie algebra t;,. The isomorphism classes of
irreducible limit of discrete series representations of Gy, are classified as follows [Vog84, §2].
Up to Ky -conjugation, an elliptic limit character of Gy is a triple v = (¥, A\, A) consisting of
(LC1) V¥ is a positive system in R(gy.c, ty,c), the root system of ty ¢ in gy c.
LC) A € X7 (n+1+2Z)e; ® 327 (n+ 1+ 2Z)e; C t¢, satisfying the following
conditions.
(@) a¥(\) > 0forany a € V.
(b) If a simple root « of ¥ satisfies a¥(A) = 0, it must be non-compact: « €
R(pvc, tve)-
(LC3) A is a character of T'y such that dA = X\ + p(Wyept) — p(Wept). Here Wy := ¥ N
R(pyc, tve) Yept := ¥ N R(Eyc, ty,c), and p(X) denotes the half of the sum of roots
in 2.
For such v = (¥, A\, A), we have an irreducible limit of discrete series representation 7y (A, ¥)
of G'y. This is characterized by its unique minimal Ky -type with the W -highest weight A and
the infinitesimal character A (or its Weyl group orbit) [KV95, Ch.11]. Two such representations
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v (A, W) and 7y (N, ¥') associated to v = (W, A\, A) and 7/ = (¥/, M, A’) are isomorphic if and
only if v and 7" are Ky -conjugate.
Now we consider a unitary dual pair (Gy, Gy ) with n = n/. Fix a character pair { = (£, &)
as before: -
z z

£(z) = <j>m/2, g(z) = <j)m,/2, m=m'=n (mod 2).

z z

For each odd algebraic character p%(z) := (2/2)%?, (a € 2Z + 1) of C*, we introduce the sign

cola) = eu() = £(1/2, 1", pe)* (=) = e, - sgn(a).

Here €(s, 1, 1) denotes the Artin e-factor for p® [Tat79, (3.2)] and ¢¢ := ¢ o Tre/g.
Let my (A, U) be a limit of discrete series representation of Gy. Taking a suitable Ky -
conjugation, we may assume

(i) A is of the form ([a]; denotes the k-tuple (a, ..., a).)

2 e
\ _(’m m m m‘>
(5.1) 21 272 2
— S (@ilks [k, B Bl @il ol Bl [l
» M
where a;, b; € 27 + 1 satisty
(5.2) ep(a;) >0, ey(bj) <0,
(5.3) ar| > lag| > -+ >ap], [b1] > |bo] > -+ > |b].

(ii) Wepe = R(bvy, tvc).

Setting k== >0, ki, 0= >0 Uik : .
hermitian space of signature (p' :=k +¢,¢ =k

C:=3"" O, let (W, (-,)) be the skew-
)

-
_Q

+ %(laﬂkl, B [ P [N /R [bl]a;l@l]l}la N (8 S0 [ VR [51]1211)7
i q
(5.5 \Iji:pt = R(bw.y, twe),
() 1<i<k1<j<kande—é¢; ¢V, or
(5.6) e —¢e; €V, <= (i) k<i<p.k<j<qdande,_j 5 —e;_jp &V, or

(i) (e; —ej)" () > 0.
Using the characterization by the minimal K-type and the infinitesimal character of limit of

discrete series representations, we deduce the following from Th4.2l

Theorem 5.1. (1) A limit of discrete series representation my (A, V) of Gy belongs to Z(Gv , ww )
for an n-dimensional skew-hermitian space W if and only if W has the signature (p', ¢').
(2) In that case, O¢(my (A, V), W) =~ my (X, ¥').
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Remark 5.2. The signature (P, q') is determined by (p, q) and the signatures €,(§ " w;), where
w = (w1, ...,w,) is the character of Ty with the differential \. This is the archimedean ana-
logue of the e-dichotomy property of the local 0-correspondence of non-archimedean unitary
dual pairs [HKS96, Th.6.1].
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