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Abstract

In this note we present a detailed account for a work of Moeeglin-Waldspurger
on the dimension of the space of degenerate Whittaker vectors [MW]. We hope
to extend this to the twisted case. This is in order to prove that certain twisted
endoscopy for GL(n) implies the (local) generic packet conjecture for many reductive

groups.
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1 Degenerate Whittaker models

1.1 Some estimations

Let F D O D pr = (w) be the usual notation for a non-archimedean local field of
characteristic zero. Let p be the residual characteristic of F, and write [F' : Q)] = ef
where e is the order of ramification and f is the modular degree. For x € Q,, we have

ordp(z) = —log,y |a:|§f = e - ordg, ().
On the other hand, if a € N then

[log,, a] a a [log,, ] a
o= 53] [ 2
k=1 p p =1 P
< = a a
= ok
=1 P p—1
These yield
ae
ordp(a!) < PR (1.1.1)

Let us consider a connected reductive F-group GG. Let g be its Lie algebra. We fix a
non-degenerate symmetric bilinear form B(, ) on g(F'). We need an F-group embedding
t: G — GL(n). This gives a Lie F-algebra embedding ¢ : g(F') — gl(n, F') = M, (F). Let
A’ be the O-lattice :71(M,(O)) of g(F). Clearly we have [A*, A‘] C A*. Choose A’ € N
such that B(X,Y) € O, for any X, Y € w? A", and set A := @AY, A := oM, (0). A
is an O-lattice in g(F') satisfying

(i) B(A,A) C O, (ii) [*,%] C*, (iii) e(*)e(x) C *.

We shall use the followings.

Lemma . (a) There exists A € N such that exp |54, is injective.
(b) For ¢ € N there exists Ay := sup(A4, p?’_el + ¢+ 2) such that

VX € w"A, VY € w™A, withn, m > A (1.1.2)

1
log(exp X expY) — (X +Y + Q[X’ Y]) € whtmrep,

VX € w"A withn > Ay, VY € w™A (1.1.3)
Ad(exp X)Y — (Y +ad(X)Y) € w54,

The term — [p{el] is unnecessary if the residual characteristic of F is not 2.
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Remark . In [MW, 1.1.5], it was stated that
Ad(exp X)Y — (Y +ad(X)Y) € @A, VX € @A, VY € @A,
instead of (1.1.3). But this is insufficient.

Proof. (a) is well-known (cf. [H]).
To prove (1.1.2) we identify X € g(F') with +(X) € M,,(F'). By symmetricity, we may
assume that n > m > A;. We fix k£ € N such that

(k+DOn—;§T)Zn+m+c+L

It follows from (1.1.1) that

In particular we have

2 e 1~\ [ VY e i~
expXexpY € <1 + X + XT 4 w[3(”—p_1)]/\) (Z 4+ w[(k+1)(m—p_1)]A> .

2n —m >n > A gives

[3(71 - Ll)

p_

and our choice of k£ implies

>3(n—i>—1>n+m+c,
p—1

{(kﬂ)(m—%)} >(k:+1)(m—L1)—1zn+m+c.

Thus we obtain

2 k!
X2 Y2 X%y XY? Y3
=1+X+Y+—+XY +— —
XY b XY e S o
X2ykz—2 ka 1 Yk e
nmCA
T T e s TR T
2 k

X? | ~
— 14+ X +Y + -+ XY + — w"tmEep,
+ XY+ XY +23_

X2 ~ V2 yk
expXexpY € (1+uX4—7?—+aﬁ+m“%) (1+)f+~——+ -%———%aﬂ“”“A)

Note that if j > 1, ¢ > 2, the choice of A; gives

() )] ) e (o) -2
Zn——iq+2(m——£—)—2:%n+mﬁw%+m—(;§T+c+2)

p— p—1
>n+m-+ec.




On the other hand, similar estimation gives
1
exp(X +Y + 5[X, Y])
k .
XY 1 X. Y1\’ ~
2 = i 2

XY - VX X2+XY+YX+Y2 k
+ Z

2

— 14+ X+Y + tmtep

j=3

(%) and (**) imply

X, Y ~
expXexpY € exp(X +Y + % + TN,

and the assertion follows.
For (1.1.3), we still identify X with ¢«(X). Note that n > A; implies

3
Thus we have

2 2

Y ~ X
+ w2n+m+c+1A> (1 - X 4 7
X?Y Y X?
— XY X+ 5

X X N
=Y + [X, Y] + g[X, Y] — [X’ Y]§ + w2n+m+c+1A.

X
Ad(exp X)Y € (Y+XY+ 5

+ w2n+c+1 K)

— Y T XY - YX 4 4 w2n+m+c+1K

Noting X/2 € w”_[;fel]]{, [X,Y] € @A, we get (1.1.3). O

1.2 The lattice A’

Let N € A be a nilpotent element. We write g and G for the centralizer of N in g and
G, respectively.

Lemma . X € gVV(F) if and only if B(N,[X,Y]) =0 for any Y € g(F).

Proof. We may assume that g = gl(n) and B(X,Y) = tr(XY). Then the statement
becomes that XN = NX if and only if tr(NXY) = tr(XNY) (= tr(NY X)) for any
Y € M, (F). This is clear since the latter condition reads

B(NX,Y)=B(XN,Y), VY €gl(n,F)

and B is non-degenerate. [



Let ¢ be arbitrary element in X,(G)g such that
Ad(¢(t))N =t7>N, VteG,,.

We put g; := {X € g|Ad(¢(t))X =t'X, Vt € G,,} so that

9:6992‘-

i€z
Since gV is Ad(¢(G,,))-stable, we may choose m C g such that

g=g" om,
m is Ad(¢)-stable.

We put m; =mnNg;: m=,, m.
Now it follows from the above lemma that

By g x g3 (X1, X)) — B(N,[X;, Xy]) € G,
is an alternating form and By|y, is non-degenerate. Since the definition of ¢ implies

By (Ad(¢(s)) X1, Ad(é(s))X2) = B(N, Ad(¢(s))[ X1, Xa])
= B(Ad(¢(s )N, [X1, X5]) = B(s’N, [X1, X)) = s* By (X1, Xa),

the duality By is between m; and my_;. Thus we can choose

e Basis {X1,..., X} of @5 m;and {X],..., X;} of ®°, m; dual to each other under
By, and

o A Witt basis {Z1,..., 2 21, ..., Z;} of my for By,

so that
By(X;, X)) =1, 1<i<k, Bn(ZiyZ7) =1, 1<i</{.
We put
k ¢
m =" (0X + 0X) + ) (0Z,+ 0Z)
=1 y=00
and let

A ::mA/JrZAﬂgZN(F), g’ =g ng".

€L

This is a lattice in g(F’), and we can take d € N such that

@A c N c w A,



1.3 The subgroup K,
Lemma . Fix C > d—1. For D > sup(A; +d,C + 3d), we have the followings.

(1) exp |opp : PN — exp(wPA') is a bijection. K, := exp(w"A’) is a subgroup of
G(F) forn> D.

(2) Form, m>D, X € w"A and Y € w™A\', we have

1

log(exp X expY) — (X +Y + 5

[X,Y]) € @™ OA.

(8) Forn>D, meZ, X €w"N andY € w™N, we have

2e

Ad(exp X)Y — (Y + ad(X)Y) € " m3-[7%] A,

The term — [pzfl] is not necessary if the residual characteristic of F' is odd.

Proof. Putting ¢ = 2d + C, we deduce (2), (3) and the first assertion of (1) from the
lemma in 1.1. We shall check that exp(w”A’) is a group. For X, Y € w"A" with n > D,
we need to show that log(exp X expY) € w"A’. We have from (2) that

1
loglexp XexpY) =X +Y + §[X7 Y]+ Z, 37 wtody,

Then the assertion follows from

%[Xa Y] 6 w[Q(n_d_P%l)]A C »WQ("L_"Z_ﬁ)—d—l‘/\/7

and

1.4 The unipotent subgroup attached to (N, ¢)

u::Zgi, ,ﬁizzgi7 E::Zgi,

>0 <0 1<0

and set U := exp(u) and P := Stab(u,G). P is a parabolic subgroup of G such that
LieP =p. For n > D, we set K/, := Ad(¢(w™"))K,,.

We now put

Lemma .

K, = (K, N P(F))(K, NU(F)) = (K, N U(F))(K, N P(F)).



Proof. Lemma.1.3 implies
K, NU(F) = exp(@"N Nu(F)), K,NP(F)=exp(@"AN Np(F)).

Also the definition of A’ gives A" = A'Np(F) & A Nu(F).

Now let ¢ = expX € K, (X € w"A’). We can choose Yy, € @w"A' N p(F) and
Zy € w"N Nu(F) such that X = Yy + Zy. If we set yo := exp Yy and zy := exp Zy,
then Lemma.1.3 (2) asserts that g; := y; 92" € K,41. Thus we can take X; € w" 1A’
such that g; = exp X;. Take Y} € @"™'A'Np(F) and Z; € @A Nu(F) satisfying
X, =Y+ Z;. Again Lemma.1.3 (2) gives

g =y gz €Kopa, g = exp(Yh), 21 = exp(Z)).

By repeating this process, we can take {4, € Kuim N P(F)}nen and {z, € K, N
U(F)}men such that

Intm ‘= (yO T ym)ilg(’zm e 20)71 € Kppm, VmeN

We may choose subsequences of {(¥o - Ym) }men and {(z, -+ - 20) }men which are conver-
gent. We write the limit of these sequences as y and z, respectively. Then

y_lgz_l € ﬂ Kn+m = {1}7

m>0
and hence g = yz with y € K, N P(F), z € K, NU(F). O
1.5 Remark
(1) Put

Q. = Ad(¢(@ ™)K, N P(F)), n>D
\% Ad(p(w™)) exp(@"N' NU(F)), n>0.

n -

Then we have o
K, =Q,V.,. (1.5.1)

Consider the two groups on the right hand side.
It follows from the definition that

"N Np(F) = @"m" Np(F) + ) ="Ang(F)

<0

(30 0%+ Y w0l (F).

j=1 =

Thus {Q,,}»>p is a system of fundamental neighborhoods of 1 in P(F).



Next comes V,,. exp X belongs to V,, if and only if X lies in
Ad(¢(w ")) (@" A Nu(F))

k l
= Ad(¢( ™))" (Z oxr +3 02+ 02+ Y «ng’ (]—“))
j=1 |=o )>o0

which clearly contains

k 1
D@ OX + Y (02+ 0Z)) +xNgl(F) + 3 @« g (F)
L

k
Z OX +> gl (F) | +Angl(F)+) (02 +02Z)).

=1

Thus V,, becomes bigger and bigger as n increases. Since
‘
D (02 +027) +xNg(F) =+ N goe(F).
j=1

we have

U Vo =exp(A ngu(F)) - U(F). (1.5.2)

n>0
with U%(F) := exp (Zi22 gZ(F))
(2) It follows form Lemma.1.3 (3) that K,, < K,, if m >n > D.

1.6 The character Yy,
We fix a non-trivial character ¢ of F' of order zero.
Lemma . Suppose that n > D and the residual characteristic of F' is not 2.

(1) xn: K, dexpX — (B(w N, X)) € C! is a character.

(2) Letn>m > D. Then Stab(xn, K,,) is contained in K, exp(cw™A N gV (F)).
Proof. (1) If we write X, X’ € @™\’ in the form

X:Z " (0; X + ;X +Z w"(2iZ; + 2} Z]) + w" Z,

k
X'=>" @@ X + 2} X;) +Z A2+ 27 + "7

Jj=1 j=1

with @, o5, 2, 27, @, 2’5, 2, 25 € Oand Z, 7' € AN gV (F), then we have

k ¢
By(X, X)) = o™ (Z (zja’y — z52) + Z (zjzj — zj*z;)> € pa.
=1
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That is, ¥(B(w "N, [X, X'])) =1 for X, X' € @"\’. Now for X, Y € w"A’, we have

. 1
xnlexp Xexp¥) "2 o Bm "N, X +Y + S XY+ = O

=40 B(w N, X +Y)o B(N,wA).

The assertion follows from B(N,A) € O.
(2) Suppose that exp Xy € Stab(x,, K;), (Xo € @w™A’). We can write Xy = Yy + Zy,
Yy € w"™m? | Zy € w™A N g (F). We have
Yn(Ad(exp(=Z)) exp X) = ¢ 0 B> N, Ad(exp(—Zo)) X)
= o B(w *Ad(exp Zy)N, X) =1 o B(w *"N, X)

= xn(exp X)
Thus we can replace exp Xy by exp Xgexp(—Z). It follows from 1.3 (2) that
Yo, —Z
exp Xoexp(—Zp) = exp(Yo + [072—0] +7), 37 e @®tCA

€ exp(Yy + @™ 3N).

m > C + 3d assures that 2m — 3d > m + C. Thus if we set X; := log(exp Xy exp(—Z2p)),
it can be written as X; = Y} + Z; with V7 € w™m? and Z; € @w™tCA N gV (F). Again
we can replace exp X; by

Dfl,;Zl] + Z’), HZ/ c me-i—QCA

c eXp(Yl + w2m+073dA/).

exp X exp(—Z1) = exp(Y; +

We have X := log(exp X exp(—Z;)) = Yo+ Z with Yy € w™m| Z, € @™ 2 Ang™(F).
By repeating this process we obtain, for any r € N,

exp Xog =exp X, exp Z,_1---exp Ly,
X, =Y, 4+ 2, Y,ew™m, Z, ¢ @™ ANgN(F).

Thus, if we take Z € @w™ANg™ (F) such that exp Z is the limit of a convergent subsequence
of {exp Z, - - - exp Zy }ren, then Y := log(exp Xy exp(—Z2)) is in w™m!".
Now let Y € w™m™ be such that exp Y € Stab(y,, K,,). Since 1.3 (3) gives

Xn(Ad(expY)exp X) = ¢(B(w_2”N, X4V, X]|+ Z)Qy)), I xy € oPmin=3dp
this is equivalent to
By(Y,X) + B(N,Zxy) € p3', VX € w"N. (%)

If 2m — 3d < n, this forces us to have By(Y,X) € —B(N, Zxy) + @O C p;ﬁﬂ_a[.
m?’ is self-dual with respect to By and this implies that Y € w?" 3¢m?’. By repeating
this argument, one may assume that Y € w*m? with 2k — 3d > n. Then B(N, Zxy) €
B(N,w*A) C w*"O. Thus (*) becomes

By(Y, X) € p3?, VX € @"A.

Now the self-duality of m*" gives Y € w"A’. ]



1.7 Degenerate Whittaker models

Let N € g(F) be a nilpotent element and take ¢ € X, (G)fr as above.
Put V = exp(g, N gV )U? We observe that

U(F) > V(F) > U*F). (1.7.1)
(Clear because U(F)/U?(F) is abelian.) We define
x:V(F)3expX — ¢(B(N, X)) e Ch

Then
X is a character stable under U(F). (1.7.2)

Proof. Since B is Ad(¢)-invariant, its restriction to g,(F') x g;(F) is identically zero unless
i+j=0. Writing X = X1 4+ X5y, X' = X{ 4+ XL, € LieV(F), (X1, X] € g{ (F), X>2,
XL, € ZZZQ g:(F)), we have

X1, X
X(eprepr’)zw(B(N,X—l—X’—i-%—FZ Yj));HYjEGJ‘(F)
Jj=3
By (X1, X
Neg(F) X(epr)x(epr’)l/J(—N( 217 1))

= x(exp X)x(exp X').
Thus x is a character.

Next take X = X;+ X5y € LieV(F) asabove and Y =Y, + Y5y € U(F), (Y1 € g1(F),
Y5, € LieU?(F)). Then

X(Ad(expY)exp X) = o B(N,Ad(expY)X) = o B(N,Ad(1 +Y + Y—2 +...)X)

2
=¢oB(N, X +[Y,X]+2), 3Z¢€) _ g(F)
>3
= X(exp X)¥(By (Y1, X1)) = x(exp X)),
since X; € gV (F). -
N € g _o(F) gives
xlexp(gy (F)) = 1. (1.7.3)

Now let (7, E') be an admissible representation of G(F') [BZ]. We introduce the spaces
[BZ]
E(V,x) = Span{r(v)§ = x(v){|v e V(F), £ € B}, Evy = E/E(V, ),
E(U?,x) := Span{m(u)§ — x(u)¢ |u € UX(F), § € E},  Ey2y = E/E(U* X).
We set
H(me(F), 10 By) if my # {0},

C! otherwise.

H/\/ == H'/\/‘#) = {
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Here H(my (F), v o By) is the Heisenberg group my(F) x C! with the multiplication law:
(X, 2)(Y,w) = (X +Y, zwp(By(X,Y))), X,Y €my(F), 2z, weC
Then the map
pn 2 U(F) 3 exp(Xy + Xoo) — (X3 9(B(N, Xx2))) € Hy

is a surjective homomorphism with the kernel ker y. Write py for the Schrédinger repre-
sentation of H(ms(F), 1o By) if my # 0 and the identity representation of C! otherwise.
(1.7.2) assures that U(F) acts on Ey, by py o pn. We define the space of degenerate
Whittaker vectors with respect to (N, ¢) by

Wi () := Homyz)(pn © \/N, EVix)-

We write NV (g(F)) for the set of nilpotent Ad(G(F'))-orbits in g(F'). Define Ny ()
for the subset of N (g(F)) consisting of those O with Wy ,(7) # {/} for some N € O and

o.

From now on, we assume that N is in the lattice A. Set
md =m(F)NA, L=expml.

Since m is a self-dual lattice in H,/C>, m} x C! is a maximal abelian subgroup in
Hnr. Hence it follows from the definition of py that

Wi o(m) ~ E5. (1.7.4)

1.8 Character expansion

Now suppose that 7 is irreducible. The following theorem is due to Howe in the case of
GL(n) and Harish-Chandra in general.

Theorem ([HC]). There ezists a neighborhood U, of 1 in G(F) and a finite set of
complex numbers {co(T)}oen(gF)) such that

wr(f)= Y eolm) [ fewX)du(X), VS € CUL)
OEN (g(F)) O

—

Here, f(exp X) is the Fourier transform
Fua{00)(¥) = [ {(exsV)u(BEx. V) [P
a(F)

The constants co(m) depend on the choice of various measures. We fix the relevant
measures as follows. We fix the measure on g(F") self-dual with respect to ¢ o B. The
measure on G(F) is chosen so that the Jacobian of exp has absolute value one near 0.
For each © € N(g(F)) and N € O, the tangent space of O at N is

TnO ~ Span{ad(X)N | X € g(F)} ~ g(F)/g" (F) ~ m(F).

On this we fix a measure self-dual with respect to 1) o By. This determines the invariant
measure fio on 9.

We write Ng(7) for the set of nilpotent orbits O € N (g(F)) such that co(r) # 0.
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1.9 System of isotypic spaces

From now on, we suppose that the residual characteristic of F' is not 2. For n > D, we

introduce
K' Ad(¢>( ™)) Knﬂ)cl

and

Elxn] :={¢ € E| (k)€ = xan (k) VR € Kn}
ElG] =A{¢S € E|n(k)§ = x, (k)§ vk € K., }.

Of course we have E[x!] = m(¢p(@w™™))E|[xn]. We also define for m, n > D

et Bl € — e | X Wnlko(=" )6 dk € Elx,

1

I' Elx _—
n,m [Xn] > g — meaSK’

, Btk < Bl

L B3¢ measK / o (R (R)E dk € Elxa],
/. 1 NAAY !
LEsE— o /K g dk € Bl

The following diagram obviously commutes:

I’nm

Elxn] —— ElXm]
”(d’(w*"”l lww(w*m)) (1.9.1)

Elx, =2 B[y,

Also we remark that

X;L|6n =1, Xn‘ﬁ(F)mKn =1,
XolL =1 (note that L C V,,, Vn) (1.9.2)

XHV(F)OK;L = X’V(F)FWK’,L-

These are clear from above.
Now we have for m > n, £ € E[x]

mealsK’/ Xm()()gdk’_ﬁ/() mem() m (k)€ dk

- measV / X (I (measQ / Xom k/) (k) dk)

since x/,, (k') = 1 by (1.9.2) and ¢ € E[Y/] is invariant under Q,, C Q,,,

= dk.
measV / Xm k)¢

12
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Noting

V,.=K, NUF), V=exp(g)) U? V,=V(EF)NK,)xL, (1.9.3)
we see that the above becomes

1 -
I = " (kO)m(kO)E dk dl
el I R ALGL Ok

(1.9. 2) /
dk d¢ E
In&mv,‘/‘ I L O )

(1.9.4)

meas(V(F)me) /V(F)mem Xm( (k)& dk

(19:2) 1 . ,
~ meas(V(F)NK,,) /V a— x(k)m(k)edk, V¢ € E[x)).

Since V (F') N K, grows larger as m increases, we see that ker I, ,, C ker I, , if m < (.

We put
E, . = U ker I}, ..

m>n

Then it follows from (1.9.4) and [BZ, 2.33] that E, , C E(V,x) and the map
j:E/E,, — Eyy (1.9.5)

is well-defined.

1.10

Lemma . If Wy 4(m) # 1, then E|x,] and E[x],| are non-zero for sufficiently large n.

Proof. Since (W () =~ &) ) # 1, we can choose £ € E whose image in Ey,,, is non-zero
and belongs to Ej; . Take M € N such that

e M > D, and
e (s QM—invariant.

Then we have for m > M,

, B 1 1 —
10 = gy [, VoW Y S [ [ N dga

1éﬁ/xmwﬂLﬂm@m
= measV / Xon () (0)¢ v

o3 1
B measV //V(FmK/ X (K (Ck)E dik: de

(192 m /L (0) ( /V . Ww(k)fdk) dt

13




Our choice of £ assures that w(¢)¢ — £ belongs to E(V,x) C E(U?, ) for any ¢ € L. By
[BZ, 2.33], we can take M sufficiently large so that

/ X(E)Yr(k)(m(0)¢ =€) dk =0, ¥Ym > M, VL,
U2(F)NK/,

since U?(F)NK/ exhausts U%(F) as m increases and Span{r(£)¢ | ¢ € L} is finite dimen-
sional. This gives

/ X (k) (x(0)€ — €) d
V(F)NK],

= / / x(exp X - k)m(exp X - k)(n(0)§ — &) dk dX
ang (1) Ju2(r)nK,

_ / 7 (exp X) / (k) (w(0) — €) dkdX =0
Ang (F) U%(F)NK7,

for any m > M and ¢ € L. Since L normalizes V(F) N K/ , this is equivalent to saying
that the inner integral on the right hand side of (1) is m(L)-invariant. We conclude

e 1 _—
) = TR o, W

Since £ ¢ E(V,x), [BZ, 2.33] implies

0 # X(B)m (k)€ dk = meas(V(F) N K.,)1L, (€).
V(F)NK],

Thus 1/, (§) € E[x},] cannot be zero. O

1.11

Proposition . If Wy 4(7) # 1, then there exists O € Ng(n) (cf. 1.8) such that N € O
(the closure in the usual p-adic topology).

Proof. By Lemma 1.10 we may suppose that E[x,] # 0, for sufficiently large n. Put

0 otherwise.

() = {Xn(x)_l if r € K,,,

Then the theory of elementary idempotents implies

dim E[x,]| =

trr(p,,).
measK,, 7 (n)
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We shall apply 1.8 to this. We note

—

oroEEp(X) = / ,, PlEPY OB Y)Y

= [ xalen(Y)u(BE V) ay

_ Y(B(w N, -Y)+ B(X,Y))dY

wn A
= Y(B(X —w ?"N,Y))dY

w A/
_ Jmeas(@w™N) if X € w "N 4 (@"A)¥,
0 otherwise.

Here (@w™A’)* denotes the dual lattice of w™A’. Then Theorem 1.8 gives
Z Cg(ﬂ')/ ©n 0 exp(X) duo(X) = trr(p,) = measK,, dim E|[x,,] # 0.
DeN( o

B(m)

Thus there must be 9 € Nz(7w) such that O N w "N + (w"A’)* is non-empty. Or
equivalently,
ONN+ T (@"N)* #0, ¥n>>0

since O is invariant under multiplication by (F*)?. But because {w*"(@w"A')* |n € N}
form a fundamental system of neighborhoods of 0 in g(F'), we deduce N € 9. ]
1.12

We define a partial order O > O on N(g(F)) by © > 9. For each subset S € N(g(F)),

we write SS"P for the set of maximal elements in S with respect to this partial order.
Lemma . Suppose N € O € Ng(m)*P. Then dim E[x,] = co(m) for sufficiently large n.

Proof. As in the proof of Prop.1.11, we have

dim Ex,| = ! trm(on) = Z Cgl(ﬂ')/ due (X). (1)

meaSKn O EN(m) O'N (w20 N+(w" A )*)

The last integral does not vanish only if N € O. If N e then D NoO # () and the
maximality of © implies 9’ = O. Thus (f) becomes

dim E[x,] = co(m)po(O N (@ 2" N + ("A)*)).

Let us calculate puo(%,) for sufficiently large n, where X,, = O N (w2"N + (w"A)*).
The map G(F)/GN(F) 2 g = Ad(g)N € O gives

G(F)p(zm™))GN(F) 3 gp(w™) —— Ad(g)w "N € ©O.

15



Since Ad(g)w ?"N € w 2"N + (="A’)* if and only if
Ad(g)N — N € @ (="N')* = "N,
we have
Xo = {Ad(gp(=w"))N | g € G(F)/GY(F), Ad(g)N — N € w"A"}.

Next we note that {w™ A" },cn is a system of fundamental neighborhoods of 0 in g(F'). It
follows that
{g€ G(F)/GN(F)|Ad(9)N — N € @"A"}, n>>0

form a system of fundamental neighborhoods of 1 in G(F)/G™(F). Thus noting the
decomposition g(F) = gV (F) @ m(F), for any a > D, we can take M € N such that
X, C Ad(exp(wamA/M(w"))N, Vn > M.

We shall calculate X, with n > M. Suppose X € wm” satisfies Ad(exp(X)p(”))N €
X,. Then Z := Ad(exp X)N — N € w"A”" and
¥ o B(w " Ad(exp X)N,Y) = ¢ o B(w 2"(N + Z),Y)
=1 o B(w *N,Y)o B(w *Z,Y)
=¢YoB(w *N,Y), VY cw"\.
In other words, exp X is in Stab(x,, K,) C K, exp(@w?ANg"(F)) (Lem.1.6 (2)). Thus we

may write exp X = expYexpZ with Y € w"A’, Z € w*AN g™ (F). But then it follows
from (1.1.2) with ¢ = 2d + C that

1 / ’
XeY+Z+3lv, 2+ w" TN N ' m? C " m

That is, X, C {Ad(exp X¢(@"))N | X € w"m™'}. Conversely, if X € w"m”, then (1.1.3)
gives

2e
-1

Ad(exp X)N — N € [X, N] + &> 2 [7%]A.

Since (A')* is a fixed lattice of g(F'), we have o2l ¢ (A)* for sufficiently large
n. Moreover in each simple component of g(F), we have

B(w™"[X,N],Y) =@ "r(XNY — NXY) = w "tr(NYX — NXY)
— w "tr(N - [Y, X]) = B(N, [Y, @ "X])
= By(Y,w "X) € By(m* m")
cO, YYyex.

That is, @ "[X, N] € (A')* and we obtain Ad(exp X)N — N € w™(A")*. We conclude
X, = {Ad(exp Xp(@™))N | X € w"m"'}. (1.12.1)
We now have

dim E[x,] = co(m)uo(Xa) = co(m)meas[K,¢(=")G" (F) /G (F)]
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co(m)meas((K,, /K, N GY(F))d(=")]
o(m)meas[Ad(¢(w ™)) (K, /Ky N GY(F))]
co(m)| det(Ad(p(w™"))|g(F)/g" (F))[meas(K,, /K, N G" (F)).

I
o

Noting that dimm = dimm; + .., 2dimm;, we have

det(Ad(¢(@™))|g(F)/g" (F)) = det(Ad(o(™"))m)

— ’wfndlmml . | | wfnzdlmmi . wfn(271) dimm;
i>2

— |w—ndimm‘.

Also it follows from the choice of our measures in 1.8 that

meas(K,, /K, N GY(F)) = meas(w"m") = | dmm|,

We obtain dim E|x,| = co(m). O
1.13
Lemma . Let N € O € Np(7)*™™® be as above. Take b > D and X € w™2+A N gV(F).
Then

(i) exp X € Norm(K,,, G(F)), exp X € Stab(xn», G(F)).

(i1) In particular, w(exp X) preserves E|x,|. Moreover w(exp X)|E[x,] = id for suffi-
ciently large n.

Proof. (i) If Y € w"A’, we have
Ad(exp X)expY =exp(Y + [X,Y] + 2),

where Z € @?M/A+2=dinpy c m"A/. Also we have [X,Y] € [wlV/IHA @ 9A] C
/A=A A’ Thus exp X € Norm(K,, G(F)). The latter assertion follows
from

n(Ad(exp X) expY) = (B(w *"N,Y + [X,Y] + Z))
= ¢p(N(@ "N, Y))¢(w *"By(X,Y))p(B(w *'N, Z))
= Xn(expY),

for Y € w"A. Note that By(X,Y) = 0 because X € gV(F). Also B(w ?"N,Z) €
o2 t2n/2+2b—d+n ) — HEN/E-\+EC+V[ ).

(ii) We first modify the assertion. Take H € g(F") such that ad(H)N = 2N.
Claim . B([H,N],X) = 0.

17



Proof. We may decompose g as g = @,_, g8i, where gy = 3 is the center and each g; is a
simple Lie algebra. We note that this decomposition is orthogonal with respect to B(, ).
In fact, we have
B([X:,Yi], X;) = B(X;, [Yi, Xj]) = B(X;,0) =0

for any X;, Y; € g;(F), X; € g;(F), 1 <i<r,0<j<r,i#j. Butsinceg, (1 <i<r)
are simple, it is spanned by the elements [X;, ;] (X, Y; € g;(F')). Thus the decomposition
is orthogonal.

We write N = >0 | N;, X =57 X, and H = )|, H;, where N;, X; and H;
belong to g;(F'). Then

B([H’ N]vX) = B(Z [Hth]?Z Xz) = B(Z [Hz,Nz],Z Xz)

i,j=0 ie

- Z B([H;, N;], X;).

Thus we are reduced to the case when g is simple. B
Now we fix an embedding of F-Lie algebras g(F') 3 X — X € gl(n, F') in such a way
that s
B(X,)Y)=trXY

holds. We conclude

B([H,N],X) = tr[H,N]X = trHNX —trNHX
— ttNXH — ttNHX = B(N, [X, H]) = Bx(X, H)
=0

This claim implies B(N, X) = 5B([H, N], X) = 0 and hence

1
2

Y(B(w "N, X)) = 1. (1.13.1)
Next we note that if n is sufficiently large, exp X belongs to a compact open sub-

group K, for some m. Considering 7|k, as a unitary representation of K,,, we see that
m(exp X)|E[xy] is a unitary operator. In particular, w(exp X )|E|[x,| = id if and only if

trm(exp X)|E[x,] = dim E[x,). (1)

We recall the function ¢, from the proof of Prop. 1.11. Usual calculation shows that
7(¢n) is the measK,-multiple of the K,-equivariant projector onto E[x,]|. Moreover we
have (Jexp x is the Dirac distribution at exp X)

T(©n * Oexp x )€ = measK,, m(exp X)E, € € Exu) (1.13.2)

Using (1.13.2), the formula () to be shown becomes

1

mtf(ﬂ'(g@n * 5epr)‘E[XTL]) = dim E[Xn] (i)

18



To prove this, we calculate trm (¢, * dexp x)|E[xn] by means of Th.1.8. Write R2° for
the right regular representation of G(F') on C°(G(F)). We know that [BZ, 1.25]

P * Oexp x = R (exp(—X))on.
Calculate the Fourier transform:
(R (X)) o) (V) = [ pulespTexp(X)W(B(T,¥) T
The integrand is not zero only if expT € K,, exp X. Lem.1.3 (2) gives
log(expYexpX)=X+Y + %[Y, X+ 2, Zegh/Ab-dintCy

and hence
@"N 3 S+ exp(X +95) € K,expX

is a bijection. (Note that exp|x.onas is injective for sufficiently large n.) Thus we have
(R (exp(—X))epn) 0 exp)"(Y)
= 0(BXY)) [ oulexp(X + ) exp(~X))U(B(S.Y)) dS.

o(F)

As in the proof of (1.1.2), we have

X2+ XS+ SX + 52 X3+

exp(X +9)=1+X+ S5+ ) +5 w " IA,
2 XB
eXp(—X) =1- X + 7 — ? + w2”+1A,
and hence
X2 X? XS+S8X §?
exp(X+S)exp(—X):1—X+X+S+7—X2—SX+7+++7

X3+X3+SX2 X3 XSX SX? SQX+X3+ i1y

6 ' 2 2 2 2 2 2 6
X. 5] 2

:1+S+%+?+w2n+1/\.

Also we have Y5 g
) € 1+S+u+—+w2"“A.

exp (S + 5 5

X, 5]
2

This enables us to take 7" € w1 A such that

exp(X + S) exp(—X) = exp(S + @ +1).

In particular we have

on(exp(X + S)exp(—X)) = (B(w *N, S + @ + T

= ¥(B(@ ™ N,S)) (w27 By (X, 5)) ™" = palexp ),
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and
(R2(exp(=X))n) 0 exp) (V) = $(B(X,Y)) / | PaleDS)B(S V) dS
— U(B(X,Y))gmosm(Y).
Now Th.1.8 gives
tr7 (P * Oexp x) = trm (R (exp(—X))on)
= Y ol [ (RS- X))pn) oe) (V) duo (V)

O'eN(a(F))

since N € O € Np(m)*" (cf. proof of 1.12)
~ () [ DB TR duo(Y)

using the formula for ¢, o exp (see 1.11)

= cp(7) /Dm s Y(B(X,Y))measK,, dus(Y)
= measK,, - co(m) ; Y(B(X,Y))dus(Y),

where X,, := O Nw 2"N + (@"A')*. Using the description (1.12.1) of X,,, we may write
Y € %,asY = w 2"Ad(exp Z)N with Z € @"m”". Then

Y(B(X,Y)) = ¢(B(X,w " Ad(exp Z)N))

(1i3) 2e

W@ M B(X,N + 2, N+ 2'), 37 € =7l

noting b > D > 34 +3d + C + 2,
= (@ *"B(X,N))¢(w *"B(X, [Z, N]))

noting B(X, [Z, N]) = B(N, [X, Z])

— (@2 B(X, N))(w 2" By (X, 2))
= (@ ?"B(X,N)).
Hence we conclude
1
meaSKntr<7T(90n * 5eXpX)|E[Xn])
= co(m) A Y(B(X,Y))dps(Y) = ¢(w >"B(X, N))co(r)measX,,
(L2 dim Ey,]
which is (I). O
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1.14 Key injectivity

Corollary . For sufficiently large n, j : E[x,|/E;, , — Ev,y in 1.9 is injective and its
image s E‘&X.

Proof. Suppose that n is sufficiently large so that Lemma 1.13 holds.
Let j, := @At A N gl (F), J,, := expj,. Then

J, K, C G(F) is a subgroup. (1.14.1)

In fact for X; €, and V; € @™\’ (i = 1, 2) we have Y € @™\’ such that

exp XjexpYiexp Xoexp Yy L150 exp XiexpY exp X,
= exp X7 exp X5 exp(Ad(exp(—X3))Y).

Since 1.13 (i) assures that exp(Ad(exp(—X32))Y) is in K,,, we have only to show that
exp X exp Xs € J,K,,. For this we use (1.1.2) to have

1
exp X1 exp Xo = exp(X; + Xo + é[Xl,Xg] + X', 3IX' e PN NgN(F),
and

1
exp(— (X1 + X3)) exp Xj exp Xo = exp(— (X1 + X3)) exp(X; + Xo + E[Xl, Xo] + X')
(1.1.2) <[X17X2] 1 [XlaXQ]
=" exp | ——=

+ X' — < [X1 + X,

5 5 5 + X1+ X”) , 3X" e AN NGV (F).

But since

[XléXQ] € 2n/2+2b A A gN(F) C w"tPA N gN(F) C "N N gN<F),
le X" e wn+2dAl N gN(F), C wnAl7
%[Xl + X, [XléXz} +Xe o3n/2+3b A A gN(F) C "N N gN(F)

we see that
exp X1 exp Xy € exp(X; + Xy) exp(a@"A N gV (F)) € J,K,. (&)

Now 1.13 (i) allows us to extend x,, trivially on J, to a character of J,K,,. This is
well-defined by (&). Then 1.13 (ii) gives

Elxa] ={§ € E|m(j)m(k)§ = xn(k)E, Vik € I, K, }
={¢ e F|n(x) = xn(2), Vo € J, K, }.

This amounts to

Elx,] = m(¢(@™"))Elxx]
={§ e B|n(Ad(¢p(@w™))z)€ = xu(2)§, v € T, K, }
={¢ € E|n(2) = x;,(2)¢, Yo € Ad(p(w™"))(In) - K, }.
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Here x/ : Ad(¢(@w™™))(J,)K!, — C! is the trivial extension of X/, on Ad(¢(w™))(J,).
Thus for m > n, we have

(1.9.4) 1 1
I (&) = / X(k™ ) (k)€ dE
)= sV E) Ry y, < T
(1.7.4) 1

- (comst) / (V) (k)€ .
meas(V (F) N K, Ad(¢(w=™)) (I )KL, OV (F)
Suppose that & € E is contained in kerj C E(V,x). Since {Ad(¢(w™™))(Jn)K], N
V(F)}m is an increasing series of compact open subgroup of V(F) which exhausts V (F),
[BZ, 2.33] implies that there exists m € N such that

/ (k™) (k)E dk = 0.
Ad(g(e~ ™)) (T KL WV (F)

That is, § € Kerl),,, C E}, | and j is injective.
Next we calculate j(E[x}]). We have already seen that it is contained in Ef;,. Take
e EY:,, and let € € 47H(&). Then as in the proof of 1.10, we have M (£) € N such that

1)~ = Lo TR o, (T~ €l i 2 M),

Let K¢ := Stab(&, V(F) N K!,) N Kery and write

m

V(F)nK,, =[] kiKe

for the coset decomposition. Then we have

T

rE-g=———3%" /K (Nad)r (k)€ — €) da

r - measKg “ -
1=

_ WZSIQZ /K (x(B)m (ki) — €) da
- %Z X (k)€ — x(k)E),  Ym > M(€).

Since the last line is contained in E(V, x), we see that j(I,,(£)) = € for any m > M(§).
Now let &,,. .., &p be linearly independent elements in E{;}X. Putting M := sup, ;< M (&),

we set 1; := I},(&;) € E[x,]/E;,, for a choice of inverse images &; for &;. Then we have

(1) dim B}, < dim E[x}]/E),, < dim E[x,] = co(7) is finite.

(2) (By taking a basis of Ej;, as {&;}) for n > M, E[x]/E}, I EY:,, is surjective.
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1.15 Injectivity continued
Lemma . [, ,; is injective for sufficiently large n.

Proof. For the brevity, write dpu, for the measure on K,, such that yu,(K,) = 1. Then
one has

n+1nOInn+IOI

/ / / X (VX1 ()X (V)7 (16(@) ™ 1 (@)7)€ i (V) s () s (7)
- /K /K Xa (V)7 () /K Yot ()X (V)7 (0(w0) L h (@)Y )E dyr sy (B) dpin () dpin (7).

The inner integral reads
| R0 B ds (1)

- ¥

/ ot (P)Ta (V)7 (A (S 1)) (YD) )E s, (B)
4EKn11/Kps1NAd(6(w)) K, 7 Knt1NAd(@(@))Kn

putting x := Ad(¢(w™1))h,

-y

Y€K +1/Knt1NAd(¢(@))Kn /Ad(¢>(w1))(Kn+1)ﬂKn

T(Ad(e(@ ™) (1)27)€ dptn1(Ad($()) (2))-

X1 (YAd(¢(@))2)X,, (7)

Moreover if we write x = exp X (X € w™A’), we have

Xnt1(Ad((@))(2))

(B(w " 2N, Ad(¢(w)) X))
(B(w " 2Ad(p(@w )N, X)) = (B(w "N, X))
Xn (7).

Thus we obtain

n+1n o Inn—i—l o ] (f)

- [ [ b 3 / s (1) ()
n n Ad(¢(w*1))(Kn+1)ﬂKn

7€Kn+1/Kn+1ﬂAd(¢(w))Kn

m(Ad(d(w ™)) (1)27")€ dptn1 (Ad(D(w))2) dpn (') dpin ()

_ > Tali 9 [ n / el )rAd (9= ))

¥eKn+1/Knt1NAd(d(w)) K

/ o7 )7 (57 )€ dptin (AA(())) dpin (1) dpin(7)
Ad(p(w=1))(Knt1)NKn
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putting +' for xv/

- Gl [ n / gl (6(="1)))

’YEKn+1/Kn+1ﬁAd o(w))K

/ (7 )TV )E b1 (Ad(S(@))) dpin(7') dpin()
Ad(¢p(w™1))(Kny1)NKn

= > Y1 (Nttns1 (Kr NAd(6(w)K,)
Y€K n+1/Kn+1NAd(¢(w))Kn
/ / oy (@ ) 0n()T()E dpin(7) dpin(7)
= tin1 (K1 N Ad(()Ko,) > xnm)

YEKn+1/Kn+1NAd(¢(w))K

/ / (M) en ()T YA 7 dpin(y) dpin ().

noting Ad(¢(@w™1))K,y1 € Norm(K,,G(F)) for n >> 0 (cf. 1.5 (2)), we put v :=
Int(Ad(¢(@™))9) 7' (7)

= fin1 (K1 N Ad(d(@))K,) > Xn+1(7)

Y€K n+1/Knt1NAd(d(w))Kn
/ / (Tt (Ad(6())3) (1)) pn () (A (D)) (3) - 17)E dpin(7') dptn ()
— tin1 (K1 N Ad(6())K,,) > m (Ad(g(= 1) (%))

YEKn+1/Knt1NAd(o(w))K

/ / X A (B D)3) (1) - 77 (17 )€ dptn () dpin (7).

Putting 4" = «+/, this double integral becomes

/ / T AAG@ )T 7wV dpn (1) dpn ()

:/K Int(Ad(¢(@ ) (7 ))Xn - Xn(7) ditn () - g Xn (V)7 (V)€ dpin ()
_ {ms) if Ad(¢(@™1))(4) € Stab(xn, G(F)),

0 otherwise.

Thus we conclude

Injyipnolypiio I.(§)
= fin1 (K1 NAd(p(@))K,) > X1 (V)7 (Ad(p(@ ™)) () 1a(€)

Y€K 1/Ad(¢(@)) KnNKn i1
4€Ad(d(w))Stab(xn,G(F))
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In the sum above we see

Ad(¢(@w ™))y € Ad(¢(@™")) (K1) N Stab(xs, G(F))
= exp(Ad(¢(w™))(@" " A")) N Stab(x,, G(F))
C exp(@™ZTN) = K /915 N Stab(xn, G(F))

1.6(2)
C exp(w™IHA N gV (F)K,.

We may suppose that Ad(¢(w 1)) = exp X with X € w™2*+ANgV(F). We apply 1.13
(i) to have w(Ad(¢(w™1))Y) 1. (&) = I,,(£). Moreover

(1.13.1)

Xn1(§) = Y(B(@ "N, Ad(¢(w)) X)) = ¢(B(@ "N, X)) =1
because X € gV (F). We obtain

In—i—l o In,n-‘,—l o [n(g) = Mn+1 (Kn—i-l N Ad(¢(w))Kn) X Z In(g)

YEKn+1/Ad(¢(w))(Kn)NKnt1
YeAd(¢(w))Stab(xn,G(F))

= H[n(é)

for some non-zero constant x. Thus I,,41,, © I, 41 1s injective and so is 1, ;41. ]

1.16 The result
Theorem . Let (7, E) be an irreducible admissible representation of G(F'). Then

Ng(ﬂ')sup == NWh(W)Sup.

Proof. Take O € Np(7)**, N € ONA and ¢ : G, — G such that Ad(¢(t))N =t 2N.
Then 1.14 implies

(1.7.4)
W/\/’¢(7T) ~ S\E‘,X 7é /
if and only if E[x;]/E;, , # 0 for any sufficiently large n. Since O € Np(7)*'?, we have

0 # co(m) = dim E[x,] = dim E[y,)].
Now we take n sufficiently large so that 1.15 holds. Then noting (1.9.1),

’ g /
In,m - In,n+1 0---0 Imfl,m

is injective and hence E, ~= {0}. Thus E[x,]/E,, # 0, and we have shown that
NB(T()SUP C NWh(W).

Let © € Mwn(w). Prop.1.11 assures that for N € O, there exists O’ € Np(m)s"P
such that N € ©. This implies that © C O'. The previous paragraph asserts that
9" € Nywn(r). In particular, if O € Nyy(7)*"P, the maximality implies O = O’. Hence
NWh(W)suP C NB(W)SHP.

Conversely, take O € Ng(7)*"P. Then it is contained in Mwy(7), and we can take
O € Ny (7)™ C Np(m)**P such that © C O'. Since O, O’ € Nz(7)™, we have
D=9 ¢ NWh(W)SuP. ]
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1.17

Corollary . Let © € Ng(m)*™™°. Then we have co(m) = dim Wy () for any choice of
N € O and ¢.

Proof. Let n € N be sufficiently large and O € Np(7)*"? = Ny (7)*"P. Then

dim Wy () UZY dim EY, "2 dim ENXGL]/E .
= dim E[x,]/ | ker(I},,) = dim E[x,]

m>n
122 co(m).
m
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