Degenerate Whittaker models for *p*-adic groups after C. Mæglin and J-L. Waldspurger *

Takuya KONNO [†] Kazuko KONNO [‡] 20, July 1998

Abstract

In this note we present a detailed account for a work of Mæglin-Waldspurger on the dimension of the space of degenerate Whittaker vectors [MW]. We hope to extend this to the twisted case. This is in order to prove that certain twisted endoscopy for GL(n) implies the (local) generic packet conjecture for many reductive groups.

Contents

1	Deg	enerate Whittaker models	2
	1.1	Some estimations	2
	1.2	The lattice Λ'	4
	1.3	The subgroup \mathbf{K}_n	6
	1.4	The unipotent subgroup attached to (N, ϕ)	6
	1.5	Remark	7
	1.6	The character χ_n	8
	1.7	Degenerate Whittaker models	10
	1.8	Character expansion	11
	1.9	System of isotypic spaces	12
	1.10		13
	1.11		14
	1.12		15

^{*}Note of the Automorphic Seminar at Kyushu University, 1998.

 $^{^\}dagger Graduate$ School of Mathematics, Kyushu University, 812-80 Hakozaki, Higashi-ku, Fukuoka, Japan $E\text{-}mail\colon$ takuya@math.kyushu-u.ac.jp

URL: http://knmac.math.kyushu-u.ac.jp/~tkonno/

The author is partially supported by the Grants-in-Aid for Scientific Research No. 12740019, the Ministry of Education, Science, Sports and Culture, Japan

[‡]JSPS Post Doctoral Fellow at Graduate School of Human and Environmental Studies, Kyoto University, 606-8501 Yoshida, Sakyo-ku, Kyoto, Japan

E-mail: kkonno@math.h.kyoto-u.ac.jp

URL: http://knmac.math.kyushu-u.ac.jp/~kkonno/

1.13		17
1.14	Key injectivity	21
1.15	Injectivity continued	23
1.16	The result	25
1.17		26

1 Degenerate Whittaker models

1.1 Some estimations

Let $F \supset \mathcal{O} \supset \mathfrak{p}_{\mathcal{F}} = (\varpi)$ be the usual notation for a non-archimedean local field of characteristic zero. Let p be the residual characteristic of F, and write $[F:\mathbb{Q}_p]=ef$ where e is the order of ramification and f is the modular degree. For $x \in \mathbb{Q}_p$, we have

$$\operatorname{ord}_F(x) = -\log_{p^f} |x|_p^{ef} = e \cdot \operatorname{ord}_{\mathbb{Q}_p}(x).$$

On the other hand, if $a \in \mathbb{N}$ then

$$\operatorname{ord}_{\mathbb{Q}_p}(a!) = \sum_{k=1}^{\lfloor \log_p a \rfloor} k \left(\left\lfloor \frac{a}{p^k} \right\rfloor - \left\lfloor \frac{a}{p^{k+1}} \right\rfloor \right) = \sum_{k=1}^{\lfloor \log_p a \rfloor} \left\lfloor \frac{a}{p^k} \right\rfloor$$
$$\leq \sum_{k=1}^{\infty} \frac{a}{p^k} = \frac{a}{p-1}.$$

These yield

$$\operatorname{ord}_{F}(a!) \le \frac{ae}{p-1}.$$
(1.1.1)

Let us consider a connected reductive F-group G. Let \mathfrak{g} be its Lie algebra. We fix a non-degenerate symmetric bilinear form $B(\,,\,)$ on $\mathfrak{g}(F)$. We need an F-group embedding $\iota: G \hookrightarrow GL(n)$. This gives a Lie F-algebra embedding $\iota: \mathfrak{g}(F) \hookrightarrow \mathfrak{gl}(n,F) = \mathbb{M}_n(F)$. Let Λ^{ι} be the \mathcal{O} -lattice $\iota^{-1}(\mathbb{M}_n(\mathcal{O}))$ of $\mathfrak{g}(F)$. Clearly we have $[\Lambda^{\iota}, \Lambda^{\iota}] \subset \Lambda^{\iota}$. Choose $A' \in \mathbb{N}$ such that $B(X,Y) \in \mathcal{O}$, for any $X, Y \in \varpi^{A'}\Lambda^{\iota}$, and set $\Lambda := \varpi^{A'}\Lambda^{\iota}$, $\widetilde{\Lambda} := \varpi^{A'}\mathbb{M}_n(\mathcal{O})$. Λ is an \mathcal{O} -lattice in $\mathfrak{g}(F)$ satisfying

(i)
$$B(\Lambda, \Lambda) \subset \mathcal{O}$$
, (ii) $[*, *] \subset *$, (iii) $\iota(*)\iota(*) \subset \widetilde{*}$.

We shall use the followings.

Lemma . (a) There exists $A \in \mathbb{N}$ such that $\exp |_{\varpi^A \Lambda}$ is injective.

(b) For
$$c \in \mathbb{N}$$
 there exists $A_1 := \sup(A, \frac{3e}{p-1} + c + 2)$ such that

$$\forall X \in \varpi^n \Lambda, \ \forall Y \in \varpi^m \Lambda, \ with \ n, \ m \ge A_1$$

$$(1.1.2)$$

$$\log(\exp X \exp Y) - (X + Y + \frac{1}{2}[X, Y]) \in \varpi^{n+m+c}\Lambda,$$

$$\forall X \in \varpi^n \Lambda \text{ with } n \ge A_1, \ \forall Y \in \varpi^m \Lambda$$
 (1.1.3)

$$\operatorname{Ad}(\exp X)Y - (Y + \operatorname{ad}(X)Y) \in \varpi^{2n + m - \left[\frac{2e}{p-1}\right]} \Lambda.$$

The term $-\left[\frac{2e}{p-1}\right]$ is unnecessary if the residual characteristic of F is not 2.

Remark . In [MW, 1.1.3], it was stated that

$$\operatorname{Ad}(\exp X)Y - (Y + \operatorname{ad}(X)Y) \in \varpi^{n+m+c}\Lambda, \quad \forall X \in \varpi^n\Lambda, \, \forall Y \in \varpi^m\Lambda,$$

instead of (1.1.3). But this is insufficient.

Proof. (a) is well-known (cf. [H]).

To prove (1.1.2) we identify $X \in \mathfrak{g}(F)$ with $\iota(X) \in \mathbb{M}_n(F)$. By symmetricity, we may assume that $n \geq m \geq A_1$. We fix $k \in \mathbb{N}$ such that

$$(k+1)(m-\frac{e}{p-1}) \ge n+m+c+1.$$

It follows from (1.1.1) that

$$\frac{X^a}{a!} \in \varpi^{na - \left[\frac{ae}{p-1}\right]} \widetilde{\Lambda} \subseteq \varpi^{\left[(n - \frac{e}{p-1})a\right]} \widetilde{\Lambda}.$$

In particular we have

$$\exp X \exp Y \in \left(1 + X + \frac{X^2}{2} + \varpi^{\left[3(n - \frac{e}{p-1})\right]} \widetilde{\Lambda}\right) \left(\sum_{j=0}^k \frac{Y^j}{j!} + \varpi^{\left[(k+1)(m - \frac{e}{p-1})\right]} \widetilde{\Lambda}\right).$$

 $2n - m \ge n \ge A_1$ gives

$$\left[3(n-\frac{e}{p-1})\right] > 3\left(n-\frac{e}{p-1}\right) - 1 > n+m+c,$$

and our choice of k implies

$$\left[(k+1)(m - \frac{e}{p-1}) \right] > (k+1)(m - \frac{e}{p-1}) - 1 \ge n + m + c.$$

Thus we obtain

$$\exp X \exp Y \in \left(1 + X + \frac{X^2}{2} + \varpi^{n+m+c}\widetilde{\Lambda}\right) \left(1 + Y + \frac{Y^2}{2} + \dots + \frac{Y^k}{k!} + \varpi^{n+m+c}\widetilde{\Lambda}\right)$$

$$= 1 + X + Y + \frac{X^2}{2} + XY + \frac{Y^2}{2} + \frac{X^2Y}{2} + \frac{XY^2}{2} + \frac{Y^3}{3!} + \dots$$

$$+ \frac{X^2Y^{k-2}}{2(k-2)!} + \frac{XY^{k-1}}{(k-1)!} + \frac{Y^k}{k!} + \varpi^{n+m+c}\widetilde{\Lambda}$$

$$= 1 + X + Y + \frac{X^2}{2} + XY + \frac{Y^2}{2} + \sum_{j=3}^k \frac{Y^j}{j!} + \varpi^{n+m+c}\widetilde{\Lambda}.$$
(*)

Note that if $j \geq 1$, $\ell \geq 2$, the choice of A_1 gives

$$\left[j\left(n-\frac{e}{p-1}\right)\right] + \left[\ell\left(m-\frac{e}{p-1}\right)\right] > j\left(n-\frac{e}{p-1}\right) + \ell\left(m-\frac{e}{p-1}\right) - 2$$

$$\geq n - \frac{e}{p-1} + 2\left(m-\frac{e}{p-1}\right) - 2 = (n+m+c) + m - \left(\frac{3e}{p-1} + c + 2\right)$$

$$\geq n + m + c.$$

On the other hand, similar estimation gives

$$\exp(X + Y + \frac{1}{2}[X, Y])$$

$$\in 1 + X + Y + \frac{[X, Y]}{2} + \sum_{j=2}^{k} \frac{1}{j} \left(X + Y + \frac{[X, Y]}{2} \right)^{j} + \varpi^{n+m+c} \widetilde{\Lambda}$$

$$= 1 + X + Y + \frac{XY - YX}{2} + \frac{X^{2} + XY + YX + Y^{2}}{2} + \sum_{j=3}^{k} \frac{Y^{j}}{j!} + \varpi^{n+m+c} \widetilde{\Lambda}.$$
(**)

(*) and (**) imply

$$\exp X \exp Y \in \exp(X + Y + \frac{[X,Y]}{2} + \varpi^{n+m+c}\widetilde{\Lambda}),$$

and the assertion follows.

For (1.1.3), we still identify X with $\iota(X)$. Note that $n \geq A_1$ implies

$$\left[3(n - \frac{e}{p-1}) \right] > 3n - \frac{3e}{p-1} - 1 \ge 2n + c + 1.$$

Thus we have

$$\operatorname{Ad}(\exp X)Y \in \left(Y + XY + \frac{X^{2}Y}{2} + \varpi^{2n+m+c+1}\widetilde{\Lambda}\right) \left(1 - X + \frac{X^{2}}{2} + \varpi^{2n+c+1}\widetilde{\Lambda}\right)$$

$$= Y + XY - YX + \frac{X^{2}Y}{2} - XYX + \frac{YX^{2}}{2} + \varpi^{2n+m+c+1}\widetilde{\Lambda}$$

$$= Y + [X, Y] + \frac{X}{2}[X, Y] - [X, Y]\frac{X}{2} + \varpi^{2n+m+c+1}\widetilde{\Lambda}.$$

Noting $X/2 \in \varpi^{n-\left[\frac{2e}{p-1}\right]}\widetilde{\Lambda}$, $[X,Y] \in \varpi^{n+m}\widetilde{\Lambda}$, we get (1.1.3).

1.2 The lattice Λ'

Let $N \in \Lambda$ be a nilpotent element. We write \mathfrak{g}^N and G^N for the centralizer of N in \mathfrak{g} and G, respectively.

Lemma . $X \in \mathfrak{g}^N(F)$ if and only if B(N, [X, Y]) = 0 for any $Y \in \mathfrak{g}(F)$.

Proof. We may assume that $\mathfrak{g} = \mathfrak{gl}(n)$ and $B(X,Y) = \operatorname{tr}(XY)$. Then the statement becomes that XN = NX if and only if $\operatorname{tr}(NXY) = \operatorname{tr}(XNY)$ (= $\operatorname{tr}(NYX)$) for any $Y \in \mathbb{M}_n(F)$. This is clear since the latter condition reads

$$B(NX, Y) = B(XN, Y), \quad \forall Y \in \mathfrak{gl}(n, F)$$

and B is non-degenerate.

Let ϕ be arbitrary element in $X_*(G)_F$ such that

$$Ad(\phi(t))N = t^{-2}N, \quad \forall t \in \mathbb{G}_m.$$

We put $\mathfrak{g}_i := \{X \in \mathfrak{g} \mid \mathrm{Ad}(\phi(t))X = t^i X, \, \forall t \in \mathbb{G}_m\}$ so that

$$\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}} \mathfrak{g}_i.$$

Since \mathfrak{g}^N is $\mathrm{Ad}(\phi(\mathbb{G}_m))$ -stable, we may choose $\mathfrak{m}\subset\mathfrak{g}$ such that

$$\mathfrak{g} = \mathfrak{g}^N \oplus \mathfrak{m},\tag{1.2.1}$$

$$\mathfrak{m}$$
 is $\mathrm{Ad}(\phi)$ -stable. (1.2.2)

We put $\mathfrak{m}_i = \mathfrak{m} \cap \mathfrak{g}_i$: $\mathfrak{m} = \bigoplus_{i \in \mathbb{Z}} \mathfrak{m}_i$.

Now it follows from the above lemma that

$$B_N: \mathfrak{g} \times \mathfrak{g} \ni (X_1, X_2) \longmapsto B(N, [X_1, X_2]) \in \mathbb{G}_a$$

is an alternating form and $B_N|_{\mathfrak{m}}$ is non-degenerate. Since the definition of ϕ implies

$$B_N(\mathrm{Ad}(\phi(s))X_1, \mathrm{Ad}(\phi(s))X_2) = B(N, \mathrm{Ad}(\phi(s))[X_1, X_2])$$

= $B(\mathrm{Ad}(\phi(s^{-1}))N, [X_1, X_2]) = B(s^2N, [X_1, X_2]) = s^2B_N(X_1, X_2),$

the duality B_N is between \mathfrak{m}_i and \mathfrak{m}_{2-i} . Thus we can choose

- Basis $\{X_1, \ldots, X_k\}$ of $\bigoplus_{i=0}^{-\infty} \mathfrak{m}_i$ and $\{X_1^*, \ldots, X_k^*\}$ of $\bigoplus_{i=2}^{\infty} \mathfrak{m}_i$ dual to each other under B_N , and
- A Witt basis $\{Z_1, \ldots, Z_\ell; Z_1^*, \ldots, Z_\ell^*\}$ of \mathfrak{m}_1 for B_N ,

so that

$$B_N(X_i, X_i^*) = 1, \quad 1 \le i \le k, \qquad B_N(Z_i, Z_i^*) = 1, \quad 1 \le i \le \ell.$$

We put

$$\mathfrak{m}^{\Lambda'} = \sum_{i=1}^k \left(\mathcal{O}\mathcal{X}_{\rangle} + \mathcal{O}\mathcal{X}_{\rangle}^*\right) + \sum_{\rangle = \infty}^{\ell} \left(\mathcal{O}\mathcal{Z}_{\rangle} + \mathcal{O}\mathcal{Z}_{\rangle}^*\right)$$

and let

$$\Lambda' := \mathfrak{m}^{\Lambda'} + \sum_{i \in \mathbb{Z}} \Lambda \cap \mathfrak{g}_i^N(F), \quad \mathfrak{g}_i^N := \mathfrak{g}_i \cap \mathfrak{g}^N.$$

This is a lattice in $\mathfrak{g}(F)$, and we can take $d \in \mathbb{N}$ such that

$$\varpi^d\Lambda\subset\Lambda'\subset\varpi^{-d}\Lambda.$$

1.3 The subgroup K_n

Lemma. Fix $C \ge d - 1$. For $D \ge \sup(A_1 + d, C + 3d)$, we have the followings.

- (1) $\exp |_{\varpi^D \Lambda'} : \varpi^D \Lambda' \to \exp(\varpi^D \Lambda')$ is a bijection. $\mathbf{K}_n := \exp(\varpi^n \Lambda')$ is a subgroup of G(F) for $n \geq D$.
- (2) For $n, m \geq D, X \in \varpi^n \Lambda'$ and $Y \in \varpi^m \Lambda'$, we have

$$\log(\exp X \exp Y) - (X + Y + \frac{1}{2}[X, Y]) \in \varpi^{n+m+C} \Lambda.$$

(3) For $n \geq D$, $m \in \mathbb{Z}$, $X \in \varpi^n \Lambda'$ and $Y \in \varpi^m \Lambda'$, we have

$$\operatorname{Ad}(\exp X)Y - (Y + \operatorname{ad}(X)Y) \in \varpi^{2n+m-3d-\left[\frac{2e}{p-1}\right]} \Lambda.$$

The term $-\left[\frac{2e}{p-1}\right]$ is not necessary if the residual characteristic of F is odd.

Proof. Putting c = 2d + C, we deduce (2), (3) and the first assertion of (1) from the lemma in 1.1. We shall check that $\exp(\varpi^n \Lambda')$ is a group. For $X, Y \in \varpi^n \Lambda'$ with $n \geq D$, we need to show that $\log(\exp X \exp Y) \in \varpi^n \Lambda'$. We have from (2) that

$$\log(\exp X \exp Y) = X + Y + \frac{1}{2}[X, Y] + Z, \quad \exists Z \in \varpi^{2n + C - d} \Lambda'.$$

Then the assertion follows from

$$\frac{1}{2}[X,Y] \in \varpi^{\left[2\left(n-d-\frac{e}{p-1}\right)\right]} \Lambda \subset \varpi^{2\left(n-d-\frac{e}{p-1}\right)-d-1} \Lambda',$$

and

$$2\left(n - d - \frac{e}{p - 1}\right) - d - 1 = n + n - 3d - \frac{2e}{p - 1} - 1$$
$$\ge n + \frac{e}{p - 1} + C + 1 - d > n.$$

1.4 The unipotent subgroup attached to (N, ϕ)

We now put

$$\mathfrak{u}:=\sum_{i>0}\,\mathfrak{g}_i,\quad,\overline{\mathfrak{u}}:=\sum_{i<0}\,\mathfrak{g}_i,\quad\overline{\mathfrak{p}}:=\sum_{i\leq0}\,\mathfrak{g}_i,$$

and set $U := \exp(\mathfrak{u})$ and $\overline{P} := \operatorname{Stab}(\overline{\mathfrak{u}}, G)$. \overline{P} is a parabolic subgroup of G such that $\operatorname{Lie}\overline{P} = \overline{\mathfrak{p}}$. For $n \geq D$, we set $\mathbf{K}'_n := \operatorname{Ad}(\phi(\varpi^{-n}))\mathbf{K}_n$.

Lemma.

$$\mathbf{K}_n = (\mathbf{K}_n \cap \overline{P}(F))(\mathbf{K}_n \cap U(F)) = (\mathbf{K}_n \cap U(F))(\mathbf{K}_n \cap \overline{P}(F)).$$

Proof. Lemma.1.3 implies

$$\mathbf{K}_n \cap U(F) = \exp(\varpi^n \Lambda' \cap \mathfrak{u}(F)), \quad \mathbf{K}_n \cap \overline{P}(F) = \exp(\varpi^n \Lambda' \cap \overline{\mathfrak{p}}(F)).$$

Also the definition of Λ' gives $\Lambda' = \Lambda' \cap \overline{\mathfrak{p}}(F) \oplus \Lambda' \cap \mathfrak{u}(F)$.

Now let $g = \exp X \in \mathbf{K}_n$ $(X \in \varpi^n \Lambda')$. We can choose $Y_0 \in \varpi^n \Lambda' \cap \overline{\mathfrak{p}}(F)$ and $Z_0 \in \varpi^n \Lambda' \cap \mathfrak{u}(F)$ such that $X = Y_0 + Z_0$. If we set $y_0 := \exp Y_0$ and $z_0 := \exp Z_0$, then Lemma.1.3 (2) asserts that $g_1 := y_0^{-1} g z_0^{-1} \in \mathbf{K}_{n+1}$. Thus we can take $X_1 \in \varpi^{n+1} \Lambda'$ such that $g_1 = \exp X_1$. Take $Y_1 \in \varpi^{n+1} \Lambda' \cap \overline{\mathfrak{p}}(F)$ and $Z_1 \in \varpi^{n+1} \Lambda' \cap \mathfrak{u}(F)$ satisfying $X_1 = Y_1 + Z_1$. Again Lemma.1.3 (2) gives

$$g_1 := y_1^{-1} g_1 z_1^{-1} \in \mathbf{K}_{n+2}, \quad y_1 := \exp(Y_1), \ z_1 := \exp(Z_1).$$

By repeating this process, we can take $\{y_m \in \mathbf{K}_{n+m} \cap \overline{P}(F)\}_{m \in \mathbb{N}}$ and $\{z_m \in \mathbf{K}_{n+m} \cap U(F)\}_{m \in \mathbb{N}}$ such that

$$g_{n+m} := (y_0 \cdots y_m)^{-1} g(z_m \cdots z_0)^{-1} \in \mathbf{K}_{n+m}, \quad \forall m \in \mathbb{N}.$$

We may choose subsequences of $\{(y_0 \cdots y_m)\}_{m \in \mathbb{N}}$ and $\{(z_m \cdots z_0)\}_{m \in \mathbb{N}}$ which are convergent. We write the limit of these sequences as y and z, respectively. Then

$$y^{-1}gz^{-1} \in \bigcap_{m>0} \mathbf{K}_{n+m} = \{1\},$$

and hence g = yz with $y \in \mathbf{K}_n \cap \overline{P}(F)$, $z \in \mathbf{K}_n \cap U(F)$.

1.5 Remark

(1) Put

$$\overline{\mathbf{Q}}_n := \operatorname{Ad}(\phi(\varpi^{-n}))(\mathbf{K}_n \cap \overline{P}(F)), \quad n \ge D$$

$$\mathbf{V}_n := \operatorname{Ad}(\phi(\varpi^{-n})) \exp(\varpi^n \Lambda' \cap U(F)), \quad n \ge 0.$$

Then we have

$$\mathbf{K}_n' = \overline{\mathbf{Q}}_n \mathbf{V}_n. \tag{1.5.1}$$

Consider the two groups on the right hand side.

It follows from the definition that

$$\varpi^{n} \Lambda' \cap \overline{\mathfrak{p}}(F) = \varpi^{n} \mathfrak{m}^{\Lambda'} \cap \overline{\mathfrak{p}}(F) + \sum_{i \leq 0} \varpi^{n} \Lambda \cap \mathfrak{g}_{i}^{N}(F)$$
$$= \varpi^{n} \Big(\sum_{i=1}^{k} \mathcal{O} \mathcal{X}_{|} + \sum_{i \leq \ell} * \cap \mathfrak{g}_{i}^{N}(\mathcal{F}) \Big).$$

Thus $\{\overline{\mathbf{Q}}_n\}_{n\geq D}$ is a system of fundamental neighborhoods of 1 in $\overline{P}(F)$.

Next comes V_n . exp X belongs to V_n if and only if X lies in

$$\operatorname{Ad}(\phi(\varpi^{-n}))(\varpi^{n}\Lambda' \cap \mathfrak{u}(F))$$

$$= \operatorname{Ad}(\phi(\varpi^{-n}))\varpi^{n}\left(\sum_{j=1}^{k} \mathcal{O}\mathcal{X}_{|}^{*} + \sum_{l=\infty}^{\ell} (\mathcal{O}\mathcal{Z}_{|} + \mathcal{O}\mathcal{Z}_{|}^{*}) + \sum_{l>\infty} * \cap \mathfrak{g}_{l}^{\mathcal{N}}(\mathcal{F})\right)$$

which clearly contains

$$\begin{split} &\sum_{j=1}^k \, \varpi^{-n} \mathcal{O} \mathcal{X}_|^* + \sum_{|=\infty}^\ell \left(\mathcal{O} \mathcal{Z}_| + \mathcal{O} \mathcal{Z}_|^* \right) + * \cap \mathfrak{g}_\infty^{\mathcal{N}}(\mathcal{F}) + \sum_{\geq \in} \, \varpi^{-\backslash} * \cap \mathfrak{g}_\gamma^{\mathcal{N}}(\mathcal{F}) \\ &= \varpi^{-n} \left(\sum_{j=1}^k \, \mathcal{O} \mathcal{X}_|^* + \sum_{\geq \in} * \cap \mathfrak{g}_\gamma^{\mathcal{N}}(\mathcal{F}) \right) + \Lambda \cap \mathfrak{g}_1^N(F) + \sum_{j=1}^\ell \left(\mathcal{O} \mathcal{Z}_| + \mathcal{O} \mathcal{Z}_|^* \right). \end{split}$$

Thus V_n becomes bigger and bigger as n increases. Since

$$\sum_{i=1}^{\ell} \left(\mathcal{O}\mathcal{Z}_{|} + \mathcal{O}\mathcal{Z}_{|}^{*} \right) + * \cap \mathfrak{g}_{\infty}^{\mathcal{N}}(\mathcal{F}) = *' \cap \mathfrak{g}_{\infty}(\mathcal{F}),$$

we have

$$\bigcup_{n\geq 0} \mathbf{V}_n = \exp(\Lambda' \cap \mathfrak{g}_1(F)) \cdot U^2(F). \tag{1.5.2}$$

with $U^2(F) := \exp\left(\sum_{i \ge 2} \mathfrak{g}_i(F)\right)$.

(2) It follows form Lemma.1.3 (3) that $\mathbf{K}_m \triangleleft \mathbf{K}_n$ if $m \geq n \geq D$.

1.6 The character χ_n

We fix a non-trivial character ψ of F of order zero.

Lemma . Suppose that $n \geq D$ and the residual characteristic of F is not 2.

- (1) $\chi_n: \mathbf{K}_n \ni \exp X \mapsto \psi(B(\varpi^{-2n}N, X)) \in \mathbb{C}^1$ is a character.
- (2) Let $n \geq m \geq D$. Then $\operatorname{Stab}(\chi_n, \mathbf{K}_m)$ is contained in $\mathbf{K}_n \exp(\varpi^m \Lambda \cap \mathfrak{g}^N(F))$.

Proof. (1) If we write $X, X' \in \varpi^n \Lambda'$ in the form

$$X = \sum_{j=1}^{k} \varpi^{n}(x_{j}^{*}X_{j}^{*} + x_{j}X_{j}) + \sum_{j=1}^{\ell} \varpi^{n}(z_{j}Z_{j} + z_{j}^{*}Z_{j}^{*}) + \varpi^{n}Z,$$

$$X' = \sum_{j=1}^{k} \varpi^{n}(x'_{j}^{*}X_{j}^{*} + x'_{j}X_{j}) + \sum_{j=1}^{\ell} \varpi^{n}(z'_{j}Z_{j} + z'_{j}^{*}Z_{j}^{*}) + \varpi^{n}Z',$$

with $x_j, x_j^*, z_j, z_j^*, x_j', x_j'^*, z_j', z_j'^* \in \mathcal{O}$ and $Z, Z' \in \Lambda \cap \mathfrak{g}^N(F)$, then we have

$$B_N(X, X') = \varpi^{2n} \left(\sum_{j=1}^k \left(x_j x_j'^* - x_j^* x_j' \right) + \sum_{j=1}^\ell \left(z_j z_j'^* - z_j^* z_j' \right) \right) \in \mathfrak{p}_F^{2n}.$$

That is, $\psi(B(\varpi^{-2n}N, [X, X'])) = 1$ for $X, X' \in \varpi^n \Lambda'$. Now for $X, Y \in \varpi^n \Lambda'$, we have

$$\chi_n(\exp X \exp Y) \stackrel{1.3}{=}^{(2)} \psi \circ B(\varpi^{-2n}N, X + Y + \frac{1}{2}[X, Y] + \varpi^{2n+C}\Lambda)$$
$$= \psi \circ B(\varpi^{-2n}N, X + Y)\psi \circ B(N, \varpi^C\Lambda).$$

The assertion follows from $B(N, \Lambda) \in \mathcal{O}$.

(2) Suppose that $\exp X_0 \in \operatorname{Stab}(\chi_n, \mathbf{K}_m)$, $(X_0 \in \varpi^m \Lambda')$. We can write $X_0 = Y_0 + Z_0$, $Y_0 \in \varpi^m \mathfrak{m}^{\Lambda'}$, $Z_0 \in \varpi^m \Lambda \cap \mathfrak{g}^N(F)$. We have

$$\chi_n(\operatorname{Ad}(\exp(-Z_0)) \exp X) = \psi \circ B(\varpi^{-2n}N, \operatorname{Ad}(\exp(-Z_0))X)$$
$$= \psi \circ B(\varpi^{-2n}\operatorname{Ad}(\exp Z_0)N, X) = \psi \circ B(\varpi^{-2n}N, X)$$
$$= \chi_n(\exp X)$$

Thus we can replace $\exp X_0$ by $\exp X_0 \exp(-Z_0)$. It follows from 1.3 (2) that

$$\exp X_0 \exp(-Z_0) = \exp(Y_0 + \frac{[Y_0, -Z_0]}{2} + Z), \quad \exists Z \in \varpi^{2m+C} \Lambda$$
$$\in \exp(Y_0 + \varpi^{2m-3d} \Lambda').$$

 $m \geq C + 3d$ assures that 2m - 3d > m + C. Thus if we set $X_1 := \log(\exp X_0 \exp(-Z_0))$, it can be written as $X_1 = Y_1 + Z_1$ with $Y_1 \in \varpi^m \mathfrak{m}^{\Lambda'}$ and $Z_1 \in \varpi^{m+C} \Lambda \cap \mathfrak{g}^N(F)$. Again we can replace $\exp X_1$ by

$$\exp X_1 \exp(-Z_1) = \exp(Y_1 + \frac{[Y_1, -Z_1]}{2} + Z'), \quad \exists Z' \in \varpi^{2m+2C} \Lambda$$

$$\in \exp(Y_1 + \varpi^{2m+C-3d} \Lambda').$$

We have $X_2 := \log(\exp X_1 \exp(-Z_1)) = Y_2 + Z_2$ with $Y_2 \in \varpi^m \mathfrak{m}^{\Lambda'}$, $Z_2 \in \varpi^{m+2C} \Lambda \cap \mathfrak{g}^N(F)$. By repeating this process we obtain, for any $r \in \mathbb{N}$,

$$\exp X_0 = \exp X_r \exp Z_{r-1} \cdots \exp Z_0,$$

$$X_r = Y_r + Z_r, \quad Y_r \in \varpi^m \mathfrak{m}^{\Lambda'}, \ Z_r \in \varpi^{m+rC} \Lambda \cap \mathfrak{g}^N(F).$$

Thus, if we take $Z \in \varpi^m \Lambda \cap \mathfrak{g}^N(F)$ such that $\exp Z$ is the limit of a convergent subsequence of $\{\exp Z_r \cdots \exp Z_0\}_{r \in \mathbb{N}}$, then $Y := \log(\exp X_0 \exp(-Z))$ is in $\varpi^m \mathfrak{m}^{\Lambda'}$.

Now let $Y \in \varpi^m \mathfrak{m}^{\Lambda'}$ be such that $\exp Y \in \operatorname{Stab}(\chi_n, \mathbf{K}_m)$. Since 1.3 (3) gives

$$\chi_n(\operatorname{Ad}(\exp Y)\exp X) = \psi(B(\varpi^{-2n}N, X + [Y, X] + Z_{X,Y})), \quad \exists Z_{X,Y} \in \varpi^{2m+n-3d}\Lambda,$$

this is equivalent to

$$B_N(Y,X) + B(N,Z_{X,Y}) \in \mathfrak{p}_F^{2n}, \quad \forall X \in \varpi^n \Lambda'.$$
 (*)

If 2m-3d < n, this forces us to have $B_N(Y,X) \in -B(N,Z_{X,Y}) + \varpi^{2n}\mathcal{O} \subset \mathfrak{p}_{\mathcal{F}}^{\in \updownarrow + \backslash -\ni \lceil}$. $\mathfrak{m}^{\Lambda'}$ is self-dual with respect to B_N and this implies that $Y \in \varpi^{2m-3d}\mathfrak{m}^{\Lambda'}$. By repeating this argument, one may assume that $Y \in \varpi^k\mathfrak{m}^{\Lambda'}$ with $2k-3d \geq n$. Then $B(N,Z_{X,Y}) \in B(N,\varpi^{2n}\Lambda) \subset \varpi^{2n}\mathcal{O}$. Thus (*) becomes

$$B_N(Y,X) \in \mathfrak{p}_F^{2n}, \quad \forall X \in \varpi^n \Lambda'.$$

Now the self-duality of $\mathfrak{m}^{\Lambda'}$ gives $Y \in \varpi^n \Lambda'$.

1.7 Degenerate Whittaker models

Let $N \in \mathfrak{g}(F)$ be a nilpotent element and take $\phi \in X_*(G)_F$ as above. Put $V = \exp(\mathfrak{g}_1 \cap \mathfrak{g}^N)U^2$. We observe that

$$U(F) > V(F) > U^{2}(F). \tag{1.7.1}$$

(Clear because $U(F)/U^2(F)$ is abelian.) We define

$$\chi: V(F) \ni \exp X \longmapsto \psi(B(N,X)) \in \mathbb{C}^1.$$

Then

$$\chi$$
 is a character stable under $U(F)$. (1.7.2)

Proof. Since B is $\operatorname{Ad}(\phi)$ -invariant, its restriction to $\mathfrak{g}_i(F) \times \mathfrak{g}_j(F)$ is identically zero unless i+j=0. Writing $X=X_1+X_{\geq 2},\ X'=X'_1+X'_{\geq 2}\in \operatorname{Lie}V(F),\ (X_1,\ X'_1\in\mathfrak{g}_1^N(F),\ X_{\geq 2},\ X'_{\geq 2}\in \sum_{i\geq 2}\mathfrak{g}_i(F))$, we have

$$\chi(\exp X \exp X') = \psi \left(B(N, X + X' + \frac{[X_1, X_1']}{2} + \sum_{j \ge 3} Y_j) \right), \exists Y_j \in \mathfrak{g}_j(F)$$

$$\stackrel{N \in \mathfrak{g}_2(F)}{=} \chi(\exp X) \chi(\exp X') \psi \left(\frac{B_N(X_1, X_1')}{2} \right)$$

$$= \chi(\exp X) \chi(\exp X').$$

Thus χ is a character.

Next take $X=X_1+X_{\geq 2}\in \mathrm{Lie}V(F)$ as above and $Y=Y_1+Y_{\geq 2}\in U(F),$ $(Y_1\in\mathfrak{g}_1(F),$ $Y_{\geq 2}\in \mathrm{Lie}U^2(F)).$ Then

$$\chi(\operatorname{Ad}(\exp Y) \exp X) = \psi \circ B(N, \operatorname{Ad}(\exp Y)X) = \psi \circ B(N, \operatorname{Ad}(1 + Y + \frac{Y^2}{2} + \dots)X)$$

$$= \psi \circ B(N, X + [Y, X] + Z), \quad \exists Z \in \sum_{i \ge 3} \mathfrak{g}_i(F)$$

$$= \chi(\exp X)\psi(B_N(Y_1, X_1)) = \chi(\exp X),$$

since $X_1 \in \mathfrak{g}^N(F)$.

$$N \in \mathfrak{g}_{-2}(F)$$
 gives
$$\chi|\exp(\mathfrak{g}_1^N(F)) = \mathbf{1}. \tag{1.7.3}$$

Now let (π, E) be an admissible representation of G(F) [BZ]. We introduce the spaces [BZ]

$$E(V,\chi) := \operatorname{Span}\{\pi(v)\xi - \chi(v)\xi \mid v \in V(F), \xi \in E\}, \quad E_{V,\chi} := E/E(V,\chi),$$

$$E(U^2,\chi) := \operatorname{Span}\{\pi(u)\xi - \chi(u)\xi \mid u \in U^2(F), \xi \in E\}, \quad E_{U^2,\chi} := E/E(U^2,\chi).$$

We set

$$\mathcal{H}_{\mathcal{N}} = \mathcal{H}_{\mathcal{N},\phi} := \begin{cases} \mathcal{H}(\mathfrak{m}_{\infty}(\mathcal{F}), \psi \circ \mathcal{B}_{\mathcal{N}}) & \text{if } \mathfrak{m}_{1} \neq \{0\}, \\ \mathbb{C}^{1} & \text{otherwise.} \end{cases}$$

Here $\mathcal{H}(\mathfrak{m}_{\infty}(\mathcal{F}), \psi \circ \mathcal{B}_{\mathcal{N}})$ is the Heisenberg group $\mathfrak{m}_1(F) \times \mathbb{C}^1$ with the multiplication law:

$$(X, z)(Y, w) = (X + Y, zw\psi(B_N(X, Y))), \quad X, Y \in \mathfrak{m}_1(F), z, w \in \mathbb{C}^1.$$

Then the map

$$p_N: U(F) \ni \exp(X_1 + X_{\geq 2}) \longmapsto (X_1; \psi(B(N, X_{\geq 2}))) \in \mathcal{H}_N$$

is a surjective homomorphism with the kernel ker χ . Write ρ_N for the Schrödinger representation of $\mathcal{H}(\mathfrak{m}_{\infty}(\mathcal{F}), \psi \circ \mathcal{B}_{\mathcal{N}})$ if $\mathfrak{m}_1 \neq 0$ and the identity representation of \mathbb{C}^1 otherwise. (1.7.2) assures that U(F) acts on $E_{V,\chi}$ by $\rho_N \circ p_N$. We define the space of degenerate Whittaker vectors with respect to (N, ϕ) by

$$\mathcal{W}_{\mathcal{N},\phi}(\pi) := \operatorname{Hom}_{\mathcal{U}(\mathcal{F})}(\rho_{\mathcal{N}} \circ \mathcal{V}, \mathcal{E}_{\mathcal{V},\chi}).$$

We write $\mathcal{N}(\mathfrak{g}(\mathcal{F}))$ for the set of nilpotent $\mathrm{Ad}(G(F))$ -orbits in $\mathfrak{g}(F)$. Define $\mathcal{N}_{\mathrm{Wh}}(\pi)$ for the subset of $\mathcal{N}(\mathfrak{g}(\mathcal{F}))$ consisting of those \mathfrak{O} with $\mathcal{W}_{\mathcal{N},\phi}(\pi) \neq \{\prime\}$ for some $N \in \mathfrak{O}$ and ϕ .

From now on, we assume that N is in the lattice Λ . Set

$$\mathfrak{m}_1^{\Lambda'} := \mathfrak{m}_1(F) \cap \Lambda', \quad \mathbf{L} = \exp \mathfrak{m}_1^{\Lambda'}.$$

Since $\mathfrak{m}_1^{\Lambda'}$ is a self-dual lattice in $\mathcal{H}_{\mathcal{N}}/\mathbb{C}^{\infty}$, $\mathfrak{m}_1^{\Lambda'} \times \mathbb{C}^1$ is a maximal abelian subgroup in $\mathcal{H}_{\mathcal{N}}$. Hence it follows from the definition of ρ_N that

$$\mathcal{W}_{\mathcal{N},\phi}(\pi) \simeq \mathcal{E}_{\mathcal{V},\chi}^{\mathbf{L}}.$$
 (1.7.4)

1.8 Character expansion

Now suppose that π is irreducible. The following theorem is due to Howe in the case of GL(n) and Harish-Chandra in general.

Theorem ([HC]). There exists a neighborhood U_{π} of 1 in G(F) and a finite set of complex numbers $\{c_{\mathfrak{O}}(\pi)\}_{{\mathfrak{O}}\in\mathcal{N}(\mathfrak{g}(\mathcal{F}))}$ such that

$$\operatorname{tr}\pi(f) = \sum_{\mathfrak{O} \in \mathcal{N}(\mathfrak{g}(\mathcal{F}))} c_{\mathfrak{O}}(\pi) \int_{\mathfrak{O}} f(\widehat{\exp X}) d_{\mu_{\mathfrak{O}}}(X), \quad \forall f \in C_c^{\infty}(U_{\pi}).$$

Here, $\widehat{f(\exp X)}$ is the Fourier transform

$$\mathcal{F}_{\psi \circ \mathcal{B}}(\{ \circ \exp)(\mathcal{X}) := \int_{\mathfrak{g}(\mathcal{F})} \{ (\exp \mathcal{Y}) \psi(\mathcal{B}(\mathcal{X}, \mathcal{Y})) \mid \mathcal{Y}.$$

The constants $c_{\mathfrak{O}}(\pi)$ depend on the choice of various measures. We fix the relevant measures as follows. We fix the measure on $\mathfrak{g}(F)$ self-dual with respect to $\psi \circ B$. The measure on G(F) is chosen so that the Jacobian of exp has absolute value one near 0. For each $\mathfrak{O} \in \mathcal{N}(\mathfrak{g}(\mathcal{F}))$ and $N \in \mathfrak{O}$, the tangent space of \mathfrak{O} at N is

$$T_N \mathfrak{O} \simeq \operatorname{Span} \{ \operatorname{ad}(X) N \mid X \in \mathfrak{g}(F) \} \simeq \mathfrak{g}(F) / \mathfrak{g}^N(F) \simeq \mathfrak{m}(F).$$

On this we fix a measure self-dual with respect to $\psi \circ B_N$. This determines the invariant measure $\mu_{\mathfrak{D}}$ on \mathfrak{D} .

We write $\mathcal{N}_{\mathcal{B}}(\pi)$ for the set of nilpotent orbits $\mathfrak{O} \in \mathcal{N}(\mathfrak{g}(\mathcal{F}))$ such that $c_{\mathfrak{O}}(\pi) \neq 0$.

1.9 System of isotypic spaces

From now on, we suppose that the residual characteristic of F is not 2. For $n \geq D$, we introduce

$$\chi'_n: \mathbf{K}'_n \stackrel{\mathrm{Ad}(\phi(\varpi^n))}{\longrightarrow} \mathbf{K}_n \stackrel{\chi_n}{\longrightarrow} \mathbb{C}^1$$

and

$$E[\chi_n] := \{ \xi \in E \mid \pi(k)\xi = \chi_n(k)\xi \,\forall k \in \mathbf{K}_n \}$$

$$E[\chi'_n] := \{ \xi \in E \mid \pi(k)\xi = \chi'_n(k)\xi \,\forall k \in \mathbf{K}'_n \}.$$

Of course we have $E[\chi'_n] = \pi(\phi(\varpi^{-n}))E[\chi_n]$. We also define for $m, n \geq D$

$$I_{n,m}: E[\chi_n] \ni \xi \longmapsto \frac{1}{\operatorname{meas} \mathbf{K}_m} \int_{\mathbf{K}_m} \overline{\chi_m(k)} \pi(k\phi(\varpi^{m-n})) \xi \, dk \in E[\chi_m],$$

$$I'_{n,m}: E[\chi'_n] \ni \xi \longmapsto \frac{1}{\operatorname{meas} \mathbf{K}'_m} \int_{\mathbf{K}'_m} \overline{\chi'_m(k)} \pi(k) \xi \, dk \in E[\chi'_m],$$

$$I_n: E \ni \xi \longmapsto \frac{1}{\operatorname{meas} \mathbf{K}_n} \int_{\mathbf{K}_n} \overline{\chi_n(k)} \pi(k) \xi \, dk \in E[\chi_n],$$

$$I'_n: E \ni \xi \longmapsto \frac{1}{\operatorname{meas} \mathbf{K}'_n} \int_{\mathbf{K}'_n} \overline{\chi'_n(k)} \pi(k) \xi \, dk \in E[\chi'_n].$$

The following diagram obviously commutes:

$$E[\chi_n] \xrightarrow{I_{n,m}} E[\chi_m]$$

$$\pi(\phi(\varpi^{-n})) \downarrow \qquad \qquad \downarrow \pi(\phi(\varpi^{-m}))$$

$$E[\chi'_n] \xrightarrow{I'_{n,m}} E[\chi'_m]$$

$$(1.9.1)$$

Also we remark that

$$\chi'_{n}|_{\overline{\mathbf{Q}}_{n}} = 1, \quad \chi_{n}|_{\overline{P}(F)\cap\mathbf{K}_{n}} = 1,
\chi'_{n}|_{\mathbf{L}} = 1 \quad \text{(note that } \mathbf{L} \subset \mathbf{V}_{n}, \, \forall n\text{)}
\chi'_{n}|_{V(F)\cap\mathbf{K}'_{n}} = \chi|_{V(F)\cap\mathbf{K}'_{n}}.$$
(1.9.2)

These are clear from above.

Now we have for $m > n, \, \xi \in E[\chi'_n]$

$$I'_{n,m}(\xi) = \frac{1}{\operatorname{meas} \mathbf{K}'_m} \int_{\mathbf{K}'_m} \overline{\chi'_m(k)} \pi(k) \xi \, dk = \frac{1}{\operatorname{meas} \mathbf{K}'_m} \int_{\overline{\mathbf{Q}}_m \mathbf{V}_m} \overline{\chi'_m(k)} \pi(k) \xi \, dk$$
$$= \frac{1}{\operatorname{meas} \mathbf{V}_m} \int_{\mathbf{V}_m} \overline{\chi'_m(k)} \left(\frac{1}{\operatorname{meas} \overline{\mathbf{Q}}_m} \int_{\overline{\mathbf{Q}}_m} \overline{\chi'_m(k')} \pi(kk') \xi \, dk' \right) dk$$

since $\overline{\chi'_m(k')} = 1$ by (1.9.2) and $\xi \in E[\chi'_n]$ is invariant under $\overline{\mathbf{Q}}_m \subset \overline{\mathbf{Q}}_n$,

$$= \frac{1}{\text{meas} \mathbf{V}_m} \int_{\mathbf{V}_m} \overline{\chi'_m(k)} \pi(k) \xi \, dk.$$

Noting

$$\mathbf{V}_m = \mathbf{K}_m' \cap U(F), \quad V = \exp(\mathfrak{g}_1^N) \cdot U^2, \quad \mathbf{V}_m = (V(F) \cap \mathbf{K}_m') \times \mathbf{L}, \tag{1.9.3}$$

we see that the above becomes

$$I'_{n,m}(\xi) = \frac{1}{\text{meas} \mathbf{V}_{m}} \int_{V(F)\cap\mathbf{K}'_{m}} \int_{\mathbf{L}} \overline{\chi'_{m}(k\ell)} \pi(k\ell) \xi \, dk \, d\ell$$

$$\stackrel{(1.9.2)}{=} \frac{1}{\text{meas} \mathbf{V}_{m}} \int_{V(F)\cap\mathbf{K}'_{m}} \int_{\mathbf{L}} \overline{\chi'_{m}(k)} \pi(k) \xi \, dk \, d\ell \quad (\xi \in E[\chi'_{n}])$$

$$= \frac{1}{\text{meas}(V(F)\cap\mathbf{K}'_{m})} \int_{V(F)\cap\mathbf{K}'_{m}} \overline{\chi'_{m}(k)} \pi(k) \xi \, dk$$

$$\stackrel{(1.9.2)}{=} \frac{1}{\text{meas}(V(F)\cap\mathbf{K}'_{m})} \int_{V(F)\cap\mathbf{K}'_{m}} \overline{\chi(k)} \pi(k) \xi \, dk, \quad \forall \xi \in E[\chi'_{n}].$$

$$(1.9.4)$$

Since $V(F) \cap \mathbf{K}'_m$ grows larger as m increases, we see that $\ker I'_{n,m} \subset \ker I'_{n,\ell}$ if $m \leq \ell$. We put

$$E'_{n,\chi} := \bigcup_{m>n} \ker I'_{n,m}.$$

Then it follows from (1.9.4) and [BZ, 2.33] that $E'_{n,\chi} \subset E(V,\chi)$ and the map

$$j: E/E'_{n,\chi} \longrightarrow E_{V,\chi}$$
 (1.9.5)

is well-defined.

1.10

Lemma. If $W_{\mathcal{N},\phi}(\pi) \neq \prime$, then $E[\chi_n]$ and $E[\chi'_n]$ are non-zero for sufficiently large n.

Proof. Since $(\mathcal{W}_{\mathcal{N},\phi}(\pi) \simeq \mathcal{E}^{\mathbf{L}}_{\mathcal{V},\chi}) \neq \prime$, we can choose $\xi \in E$ whose image in $E_{V,\chi}$ is non-zero and belongs to $E^{\mathbf{L}}_{V,\chi}$. Take $M \in \mathbb{N}$ such that

- $M \ge D$, and
- ξ is $\overline{\mathbf{Q}}_M$ -invariant.

Then we have for $m \geq M$,

$$I'_{m}(\xi) = \frac{1}{\operatorname{meas}\mathbf{K}'_{m}} \int_{\mathbf{K}'_{m}} \overline{\chi'_{m}(k)} \pi(k) \xi \, dk \stackrel{(1.9.2)}{=} \frac{1}{\operatorname{meas}\mathbf{K}'_{m}} \int_{\mathbf{V}_{m}} \overline{\chi'_{m}(v)} \pi(vq) \, dq \, dv$$

$$= \frac{1}{\operatorname{meas}\mathbf{K}'_{m}} \int_{\mathbf{V}_{m}} \overline{\chi'_{m}(v)} \pi(v) \left(\int_{\overline{\mathbf{Q}}_{m}} \pi(q) \xi \, dq \right) \, dv$$

$$\stackrel{m \geq M}{=} \frac{1}{\operatorname{meas}\mathbf{V}_{m}} \int_{\mathbf{V}_{m}} \overline{\chi'_{m}(v)} \pi(v) \xi \, dv$$

$$\stackrel{(1.9.3)}{=} \frac{1}{\operatorname{meas}\mathbf{V}_{m}} \int_{\mathbf{L}} \int_{V(F)\cap\mathbf{K}'_{m}} \overline{\chi'_{m}(k)} \pi(\ell k) \xi \, dk \, d\ell$$

$$\stackrel{(1.9.2)}{=} \frac{1}{\operatorname{meas}\mathbf{V}_{m}} \int_{\mathbf{L}} \pi(\ell) \left(\int_{V(F)\cap\mathbf{K}'_{m}} \overline{\chi(k)} \pi(k) \xi \, dk \right) \, d\ell.$$

$$(\dagger)$$

Our choice of ξ assures that $\pi(\ell)\xi - \xi$ belongs to $E(V,\chi) \subset E(U^2,\chi)$ for any $\ell \in \mathbf{L}$. By [BZ, 2.33], we can take M sufficiently large so that

$$\int_{U^2(F)\cap \mathbf{K}'_m} \overline{\chi(k)} \pi(k) (\pi(\ell)\xi - \xi) \, dk = 0, \quad \forall m \ge M, \, \forall \ell \in \mathbf{L},$$

since $U^2(F) \cap \mathbf{K}'_m$ exhausts $U^2(F)$ as m increases and $\mathrm{Span}\{\pi(\ell)\xi \mid \ell \in \mathbf{L}\}$ is finite dimensional. This gives

$$\int_{V(F)\cap\mathbf{K}'_{m}} \overline{\chi(k)}\pi(k)(\pi(\ell)\xi - \xi) dk$$

$$= \int_{\Lambda\cap\mathfrak{g}_{1}^{N}(F)} \int_{U^{2}(F)\cap\mathbf{K}'_{m}} \overline{\chi(\exp X \cdot k)}\pi(\exp X \cdot k)(\pi(\ell)\xi - \xi) dk dX$$

$$= \int_{\Lambda\cap\mathfrak{g}_{1}^{N}(F)} \pi(\exp X) \int_{U^{2}(F)\cap\mathbf{K}'_{m}} \overline{\chi(k)}\pi(k)(\pi(\ell)\xi - \xi) dk dX = 0$$

for any $m \geq M$ and $\ell \in \mathbf{L}$. Since \mathbf{L} normalizes $V(F) \cap \mathbf{K}'_m$, this is equivalent to saying that the inner integral on the right hand side of (\dagger) is $\pi(\mathbf{L})$ -invariant. We conclude

$$I'_m(\xi) = \frac{1}{\operatorname{meas}(V(F) \cap \mathbf{K}'_m)} \int_{V(F) \cap \mathbf{K}'_m} \overline{\chi(k)} \pi(k) \xi \, dk.$$

Since $\xi \notin E(V, \chi)$, [BZ, 2.33] implies

$$0 \neq \int_{V(F) \cap \mathbf{K}'_m} \overline{\chi(k)} \pi(k) \xi \, dk = \text{meas}(V(F) \cap \mathbf{K}'_m) I'_m(\xi).$$

Thus $I_m'(\xi) \in E[\chi_n']$ cannot be zero.

1.11

Proposition. If $W_{\mathcal{N},\phi}(\pi) \neq I$, then there exists $\mathfrak{D} \in \mathcal{N}_{\mathcal{B}}(\pi)$ (cf. 1.8) such that $N \in \overline{\mathfrak{D}}$ (the closure in the usual p-adic topology).

Proof. By Lemma 1.10 we may suppose that $E[\chi_n] \neq 0$, for sufficiently large n. Put

$$\varphi_n(x) := \begin{cases} \chi_n(x)^{-1} & \text{if } x \in \mathbf{K}_n, \\ 0 & \text{otherwise.} \end{cases}$$

Then the theory of elementary idempotents implies

$$\dim E[\chi_n] = \frac{1}{\operatorname{meas} \mathbf{K}_n} \operatorname{tr} \pi(\varphi_n).$$

We shall apply 1.8 to this. We note

$$\widehat{\varphi_n \circ \exp}(X) = \int_{\mathfrak{g}(F)} \varphi_n(\exp Y) \psi(B(X,Y)) \, dY$$

$$= \int_{\varpi^n \Lambda'} \chi_n(\exp(-Y)) \psi(B(X,Y)) \, dY$$

$$= \int_{\varpi^n \Lambda'} \psi(B(\varpi^{-2n}N, -Y) + B(X,Y)) \, dY$$

$$= \int_{\varpi^n \Lambda'} \psi(B(X - \varpi^{-2n}N, Y)) \, dY$$

$$= \begin{cases} \operatorname{meas}(\varpi^n \Lambda') & \text{if } X \in \varpi^{-2n}N + (\varpi^n \Lambda')^*, \\ 0 & \text{otherwise.} \end{cases}$$

Here $(\varpi^n \Lambda')^*$ denotes the dual lattice of $\varpi^n \Lambda'$. Then Theorem 1.8 gives

$$\sum_{\mathfrak{O}\in\mathcal{N}_{\mathcal{B}}(\pi)} c_{\mathfrak{O}}(\pi) \int_{\mathfrak{O}} \widehat{\varphi_n \circ \exp(X)} \, d\mu_{\mathfrak{O}}(X) = \operatorname{tr}\pi(\varphi_n) = \operatorname{meas} \mathbf{K}_n \operatorname{dim} E[\chi_n] \neq 0.$$

Thus there must be $\mathfrak{O} \in \mathcal{N}_{\mathcal{B}}(\pi)$ such that $\mathfrak{O} \cap \varpi^{-2n}N + (\varpi^n\Lambda')^*$ is non-empty. Or equivalently,

$$\mathfrak{O} \cap N + \varpi^{2n} (\varpi^n \Lambda')^* \neq \emptyset, \quad \forall n >> 0$$

since $\mathfrak O$ is invariant under multiplication by $(F^{\times})^2$. But because $\{\varpi^{2n}(\varpi^n\Lambda')^* \mid n \in \mathbb N\}$ form a fundamental system of neighborhoods of 0 in $\mathfrak g(F)$, we deduce $N \in \overline{\mathfrak O}$.

1.12

We define a partial order $\mathfrak{O} \geq \mathfrak{O}'$ on $\mathcal{N}(\mathfrak{g}(\mathcal{F}))$ by $\overline{\mathfrak{O}} \supset \overline{\mathfrak{O}}'$. For each subset $S \subset \mathcal{N}(\mathfrak{g}(\mathcal{F}))$, we write S^{\sup} for the set of maximal elements in S with respect to this partial order.

Lemma. Suppose $N \in \mathfrak{O} \in \mathcal{N}_{\mathcal{B}}(\pi)^{\sup}$. Then dim $E[\chi_n] = c_{\mathfrak{O}}(\pi)$ for sufficiently large n.

Proof. As in the proof of Prop.1.11, we have

$$\dim E[\chi_n] = \frac{1}{\operatorname{meas} \mathbf{K}_n} \operatorname{tr} \pi(\varphi_n) = \sum_{\mathfrak{O}' \in \mathcal{N}_{\mathcal{B}}(\pi)} c_{\mathfrak{O}'}(\pi) \int_{\mathfrak{O}' \cap (\varpi^{-2n}N + (\varpi^n\Lambda')^*)} d\mu_{\mathfrak{O}'}(X).$$
 (†)

The last integral does not vanish only if $N \in \overline{\mathfrak{D}}'$. If $N \in \overline{\mathfrak{D}}'$ then $\overline{\mathfrak{D}}' \cap \mathfrak{D} \neq \emptyset$ and the maximality of \mathfrak{D} implies $\mathfrak{D}' = \mathfrak{D}$. Thus (\dagger) becomes

$$\dim E[\chi_n] = c_{\mathfrak{O}}(\pi)\mu_{\mathfrak{O}}(\mathfrak{O} \cap (\varpi^{-2n}N + (\varpi^n\Lambda')^*)).$$

Let us calculate $\mu_{\mathfrak{D}}(\mathfrak{X}_n)$ for sufficiently large n, where $\mathfrak{X}_n = \mathfrak{D} \cap (\varpi^{-2n}N + (\varpi^n\Lambda')^*)$. The map $G(F)/G^N(F) \ni g \xrightarrow{\sim} \mathrm{Ad}(g)N \in \mathfrak{D}$ gives

$$G(F)\phi(\varpi^n)/G^N(F)\ni g\phi(\varpi^n)\stackrel{\sim}{\longmapsto} \operatorname{Ad}(g)\varpi^{-2n}N\in\mathfrak{O}.$$

Since $\operatorname{Ad}(g)\varpi^{-2n}N \in \varpi^{-2n}N + (\varpi^n\Lambda')^*$ if and only if

$$\operatorname{Ad}(g)N - N \in \varpi^{2n}(\varpi^n\Lambda')^* = \varpi^n\Lambda'^*,$$

we have

$$\mathfrak{X}_n = \{ \operatorname{Ad}(g\phi(\varpi^n)) N \mid g \in G(F)/G^N(F), \operatorname{Ad}(g)N - N \in \varpi^n \Lambda'^* \}.$$

Next we note that $\{\varpi^n \Lambda'^*\}_{n \in \mathbb{N}}$ is a system of fundamental neighborhoods of 0 in $\mathfrak{g}(F)$. It follows that

$$\{g \in G(F)/G^N(F) \mid \operatorname{Ad}(g)N - N \in \varpi^n \Lambda'^*\}, \quad n >> 0$$

form a system of fundamental neighborhoods of 1 in $G(F)/G^N(F)$. Thus noting the decomposition $\mathfrak{g}(F) = \mathfrak{g}^N(F) \oplus \mathfrak{m}(F)$, for any $a \geq D$, we can take $M \in \mathbb{N}$ such that

$$\mathfrak{X}_n \subset \mathrm{Ad}(\exp(\varpi^a \mathfrak{m}^{\Lambda'})\phi(\varpi^n))N, \quad \forall n \geq M.$$

We shall calculate \mathfrak{X}_n with $n \geq M$. Suppose $X \in \varpi^a \mathfrak{m}^{\Lambda'}$ satisfies $\operatorname{Ad}(\exp(X)\phi(\varpi^n))N \in \mathfrak{X}_n$. Then $Z := \operatorname{Ad}(\exp X)N - N \in \varpi^n \Lambda'^*$ and

$$\psi \circ B(\varpi^{-2n} \operatorname{Ad}(\exp X)N, Y) = \psi \circ B(\varpi^{-2n}(N+Z), Y)$$
$$= \psi \circ B(\varpi^{-2n}N, Y)\psi \circ B(\varpi^{-2n}Z, Y)$$
$$= \psi \circ B(\varpi^{-2n}N, Y), \quad \forall Y \in \varpi^n \Lambda'.$$

In other words, $\exp X$ is in $\operatorname{Stab}(\chi_n, \mathbf{K}_a) \subset \mathbf{K}_n \exp(\varpi^a \Lambda \cap \mathfrak{g}^N(F))$ (Lem.1.6 (2)). Thus we may write $\exp X = \exp Y \exp Z$ with $Y \in \varpi^n \Lambda'$, $Z \in \varpi^a \Lambda \cap \mathfrak{g}^N(F)$. But then it follows from (1.1.2) with c = 2d + C that

$$X \in Y + Z + \frac{1}{2}[Y, Z] + \varpi^{n+a+C+d}\Lambda \cap \varpi^a \mathfrak{m}^{\Lambda'} \subset \varpi^n \mathfrak{m}^{\Lambda'}.$$

That is, $\mathfrak{X}_n \subset \{\operatorname{Ad}(\exp X\phi(\varpi^n))N \mid X \in \varpi^n\mathfrak{m}^{\Lambda'}\}$. Conversely, if $X \in \varpi^n\mathfrak{m}^{\Lambda'}$, then (1.1.3) gives

$$\operatorname{Ad}(\exp X)N - N \in [X, N] + \varpi^{2n - 2d - \left[\frac{2e}{p - 1}\right]} \Lambda.$$

Since $(\Lambda')^*$ is a fixed lattice of $\mathfrak{g}(F)$, we have $\varpi^{n-2d-\left[\frac{2e}{p-1}\right]}\Lambda\subset (\Lambda')^*$ for sufficiently large n. Moreover in each simple component of $\mathfrak{g}(F)$, we have

$$B(\varpi^{-n}[X,N],Y) = \varpi^{-n} \operatorname{tr}(XNY - NXY) = \varpi^{-n} \operatorname{tr}(NYX - NXY)$$
$$= \varpi^{-n} \operatorname{tr}(N \cdot [Y,X]) = B(N,[Y,\varpi^{-n}X])$$
$$= B_N(Y,\varpi^{-n}X) \in B_N(\mathfrak{m}^{\Lambda'},\mathfrak{m}^{\Lambda'})$$
$$\subset \mathcal{O}, \quad \forall \mathcal{Y} \in *'.$$

That is, $\varpi^{-n}[X,N] \in (\Lambda')^*$ and we obtain $\operatorname{Ad}(\exp X)N - N \in \varpi^n(\Lambda')^*$. We conclude

$$\mathfrak{X}_n = \{ \operatorname{Ad}(\exp X\phi(\varpi^n)) N \mid X \in \varpi^n \mathfrak{m}^{\Lambda'} \}.$$
 (1.12.1)

We now have

$$\dim E[\chi_n] = c_{\mathfrak{O}}(\pi)\mu_{\mathfrak{O}}(\mathfrak{X}_n) = c_{\mathfrak{O}}(\pi)\operatorname{meas}[\mathbf{K}_n\phi(\varpi^n)G^N(F)/G^N(F)]$$

$$= c_{\mathfrak{D}}(\pi) \operatorname{meas}[(\mathbf{K}_{n}/\mathbf{K}_{n} \cap G^{N}(F))\phi(\varpi^{n})]$$

$$= c_{\mathfrak{D}}(\pi) \operatorname{meas}[\operatorname{Ad}(\phi(\varpi^{-n}))(\mathbf{K}_{n}/\mathbf{K}_{n} \cap G^{N}(F))]$$

$$= c_{\mathfrak{D}}(\pi) |\det(\operatorname{Ad}(\phi(\varpi^{-n}))|\mathfrak{g}(F)/\mathfrak{g}^{N}(F))| \operatorname{meas}(\mathbf{K}_{n}/\mathbf{K}_{n} \cap G^{N}(F)).$$

Noting that dim $\mathfrak{m} = \dim \mathfrak{m}_1 + \sum_{i \geq 2} 2 \dim \mathfrak{m}_i$, we have

$$\det(\operatorname{Ad}(\phi(\varpi^{-n}))|\mathfrak{g}(F)/\mathfrak{g}^{N}(F)) = \det(\operatorname{Ad}(\phi(\varpi^{-n}))|\mathfrak{m})$$

$$= \left|\varpi^{-n\dim\mathfrak{m}_{1}} \cdot \prod_{i\geq 2} \varpi^{-ni\dim\mathfrak{m}_{i}} \cdot \varpi^{-n(2-i)\dim\mathfrak{m}_{i}}\right|$$

$$= \left|\varpi^{-n\dim\mathfrak{m}}\right|.$$

Also it follows from the choice of our measures in 1.8 that

$$\operatorname{meas}(\mathbf{K}_n/\mathbf{K}_n \cap G^N(F)) = \operatorname{meas}(\varpi^n \mathfrak{m}^{\Lambda'}) = |\varpi^{n \dim \mathfrak{m}}|.$$

We obtain dim $E[\chi_n] = c_{\mathfrak{O}}(\pi)$.

1.13

Lemma. Let $N \in \mathfrak{O} \in \mathcal{N}_{\mathcal{B}}(\pi)^{\sup}$ be as above. Take b > D and $X \in \varpi^{[n/2]+b}\Lambda \cap \mathfrak{g}^N(F)$. Then

- (i) $\exp X \in \text{Norm}(\mathbf{K}_n, G(F)), \exp X \in \text{Stab}(\chi_n, G(F)).$
- (ii) In particular, $\pi(\exp X)$ preserves $E[\chi_n]$. Moreover $\pi(\exp X)|E[\chi_n] = \operatorname{id}$ for sufficiently large n.

Proof. (i) If $Y \in \varpi^n \Lambda'$, we have

$$Ad(\exp X)\exp Y = \exp(Y + [X, Y] + Z),$$

where $Z \in \varpi^{2[n/2]+2b-d+n}\Lambda \subset \varpi^n\Lambda'$. Also we have $[X,Y] \in [\varpi^{[n/2]+b}\Lambda, \varpi^{n-d}\Lambda] \subset \varpi^{n+[n/2]+b-d}\Lambda \subset \varpi^n\Lambda'$. Thus $\exp X \in \text{Norm}(\mathbf{K}_n, G(F))$. The latter assertion follows from

$$\chi_n(\operatorname{Ad}(\exp X) \exp Y) = \psi(B(\varpi^{-2n}N, Y + [X, Y] + Z))$$

= $\psi(N(\varpi^{-2n}N, Y))\psi(\varpi^{-2n}B_N(X, Y))\psi(B(\varpi^{-2n}N, Z))$
= $\chi_n(\exp Y),$

for $Y \in \varpi^n \Lambda'$. Note that $B_N(X,Y) = 0$ because $X \in \mathfrak{g}^N(F)$. Also $B(\varpi^{-2n}N,Z) \in \varpi^{-2n+2[n/2]+2b-d+n}\mathcal{O} \subset \varpi^{\in [\backslash/\in]-\backslash+\in\mathcal{C}+\nabla\lceil\mathcal{O}]}$.

(ii) We first modify the assertion. Take $H \in \mathfrak{g}(F)$ such that $\mathrm{ad}(H)N = 2N$.

Claim . B([H, N], X) = 0.

Proof. We may decompose \mathfrak{g} as $\mathfrak{g} = \bigoplus_{i=0}^r \mathfrak{g}_i$, where $\mathfrak{g}_0 = \mathfrak{z}$ is the center and each \mathfrak{g}_i is a simple Lie algebra. We note that this decomposition is orthogonal with respect to $B(\,,\,)$. In fact, we have

$$B([X_i, Y_i], X_j) = B(X_i, [Y_i, X_j]) = B(X_i, 0) = 0$$

for any X_i , $Y_i \in \mathfrak{g}_i(F)$, $X_j \in \mathfrak{g}_j(F)$, $1 \le i \le r$, $0 \le j \le r$, $i \ne j$. But since \mathfrak{g}_i $(1 \le i \le r)$ are simple, it is spanned by the elements $[X_i, Y_i]$ $(X_i, Y_i \in \mathfrak{g}_i(F))$. Thus the decomposition is orthogonal.

We write $N = \sum_{i=1}^r N_i$, $X = \sum_{i=0}^r X_i$ and $H = \sum_{i=0}^r H_i$, where N_i , X_i and H_i belong to $\mathfrak{g}_i(F)$. Then

$$B([H, N], X) = B(\sum_{i,j=0}^{r} [H_i, N_j], \sum_{i=0}^{r} X_i) = B(\sum_{i=1}^{r} [H_i, N_i], \sum_{i=0}^{r} X_i)$$
$$= \sum_{i=1}^{r} B([H_i, N_i], X_i).$$

Thus we are reduced to the case when \mathfrak{g} is simple.

Now we fix an embedding of F-Lie algebras $\mathfrak{g}(F) \ni X \hookrightarrow \widetilde{X} \in \mathfrak{gl}(n,F)$ in such a way that

$$B(X,Y) = \operatorname{tr} \widetilde{X} \widetilde{Y}$$

holds. We conclude

$$B([H, N], X) = \widetilde{\operatorname{tr}[H, N]}\widetilde{X} = \widetilde{\operatorname{tr}}\widetilde{H}\widetilde{N}\widetilde{X} - \widetilde{\operatorname{tr}}\widetilde{N}\widetilde{H}\widetilde{X}$$
$$= \widetilde{\operatorname{tr}}\widetilde{N}\widetilde{X}\widetilde{H} - \widetilde{\operatorname{tr}}\widetilde{N}\widetilde{H}\widetilde{X} = B(N, [X, H]) = B_N(X, H)$$
$$= 0$$

This claim implies $B(N,X) = \frac{1}{2}B([H,N],X) = 0$ and hence

$$\psi(B(\varpi^{-2n}N, X)) = 1. \tag{1.13.1}$$

Next we note that if n is sufficiently large, $\exp X$ belongs to a compact open subgroup \mathbf{K}_m for some m. Considering $\pi|_{\mathbf{K}_m}$ as a unitary representation of \mathbf{K}_m , we see that $\pi(\exp X)|E[\chi_n]$ is a unitary operator. In particular, $\pi(\exp X)|E[\chi_n] = \mathrm{id}$ if and only if

$$\operatorname{tr}\pi(\exp X)|E[\chi_n] = \dim E[\chi_n].$$
 (†)

We recall the function φ_n from the proof of Prop. 1.11. Usual calculation shows that $\pi(\varphi_n)$ is the meas \mathbf{K}_n -multiple of the \mathbf{K}_n -equivariant projector onto $E[\chi_n]$. Moreover we have $(\delta_{\exp X})$ is the Dirac distribution at $\exp X$)

$$\pi(\varphi_n * \delta_{\exp X})\xi = \max \mathbf{K}_n \pi(\exp X)\xi, \quad \xi \in E[\chi_n].$$
 (1.13.2)

Using (1.13.2), the formula (†) to be shown becomes

$$\frac{1}{\operatorname{meas} \mathbf{K}_n} \operatorname{tr}(\pi(\varphi_n * \delta_{\exp X}) | E[\chi_n]) = \dim E[\chi_n]. \tag{\ddagger}$$

18

To prove this, we calculate $\operatorname{tr}\pi(\varphi_n * \delta_{\exp X})|E[\chi_n]$ by means of Th.1.8. Write R_c^{∞} for the right regular representation of G(F) on $C_c^{\infty}(G(F))$. We know that [BZ, 1.25]

$$\varphi_n * \delta_{\exp X} = R_c^{\infty}(\exp(-X))\varphi_n.$$

Calculate the Fourier transform:

$$((R_c^{\infty}(\exp(-X))\varphi_n)\circ \exp)^{\wedge}(Y) = \int_{\mathfrak{g}(F)} \varphi_n(\exp T \exp(-X))\psi(B(T,Y)) dT.$$

The integrand is not zero only if $\exp T \in \mathbf{K}_n \exp X$. Lem.1.3 (2) gives

$$\log(\exp Y \exp X) = X + Y + \frac{1}{2}[Y, X] + Z, \quad Z \in \varpi^{[n/2] + b - d + n + C}\Lambda,$$

and hence

$$\varpi^n \Lambda' \ni S \longmapsto \exp(X + S) \in \mathbf{K}_n \exp X$$

is a bijection. (Note that $\exp |_{X+\varpi^n\Lambda'}$ is injective for sufficiently large n.) Thus we have

$$((R_c^{\infty}(\exp(-X))\varphi_n) \circ \exp)^{\wedge}(Y)$$

$$= \psi(B(X,Y)) \int_{\mathfrak{g}(F)} \varphi_n(\exp(X+S) \exp(-X)) \psi(B(S,Y)) dS.$$

As in the proof of (1.1.2), we have

$$\exp(X+S) = 1 + X + S + \frac{X^2 + XS + SX + S^2}{2} + \frac{X^3}{6} + \varpi^{2n+1}\Lambda,$$
$$\exp(-X) = 1 - X + \frac{X^2}{2} - \frac{X^3}{6} + \varpi^{2n+1}\Lambda,$$

and hence

$$\exp(X+S)\exp(-X) = 1 - X + X + S + \frac{X^2}{2} - X^2 - SX + \frac{X^2}{2} + \frac{XS + SX}{2} + \frac{S^2}{2} - \frac{X^3}{6} + \frac{X^3}{2} + \frac{SX^2}{2} - \frac{X^3}{2} - \frac{XSX}{2} - \frac{SX^2}{2} - \frac{S^2X}{2} + \frac{X^3}{6} + \varpi^{2n+1}\Lambda$$

$$= 1 + S + \frac{[X,S]}{2} + \frac{S^2}{2} + \varpi^{2n+1}\Lambda.$$

Also we have

$$\exp(S + \frac{[X,S]}{2}) \in 1 + S + \frac{[X,S]}{2} + \frac{S^2}{2} + \varpi^{2n+1}\Lambda.$$

This enables us to take $T' \in \varpi^{2n+1}\Lambda$ such that

$$\exp(X+S)\exp(-X) = \exp(S + \frac{[X,S]}{2} + T').$$

In particular we have

$$\varphi_n(\exp(X+S)\exp(-X)) = \psi(B(\varpi^{-2n}N, S + \frac{[X,S]}{2} + T'))^{-1}$$
$$= \psi(B(\varpi^{-2n}N, S))^{-1}\psi(\varpi^{-2n}2^{-1}B_N(X, S))^{-1} = \varphi_n(\exp S),$$

and

$$((R_c^{\infty}(\exp(-X))\varphi_n) \circ \exp)^{\wedge}(Y) = \psi(B(X,Y)) \int_{\mathfrak{g}(F)} \varphi_n(\exp S) \psi(B(S,Y)) dS$$
$$= \psi(B(X,Y)) \widehat{\varphi_n \circ \exp(Y)}.$$

Now Th.1.8 gives

$$\operatorname{tr}\pi(\varphi_n * \delta_{\exp X}) = \operatorname{tr}\pi(R_c^{\infty}(\exp(-X))\varphi_n)$$
$$= \sum_{\mathfrak{O}' \in \mathcal{N}(\mathfrak{g}(\mathcal{F}))} c_{\mathfrak{O}'}(\pi) \int_{\mathfrak{O}'} ((R_c^{\infty}(\exp(-X))\varphi_n) \circ \exp)^{\wedge}(Y) \, d\mu_{\mathfrak{O}'}(Y)$$

since $N \in \mathfrak{O} \in \mathcal{N}_{\mathcal{B}}(\pi)^{\sup}$ (cf. proof of 1.12)

$$= c_{\mathfrak{D}}(\pi) \int_{\mathfrak{D}} \psi(B(X,Y)) (\widehat{\varphi_n \circ \exp})(Y) d\mu_{\mathfrak{D}}(Y)$$

using the formula for $\widehat{\varphi_n \circ \exp}$ (see 1.11)

$$= c_{\mathfrak{O}}(\pi) \int_{\mathfrak{O} \cap \varpi^{-2n} N + (\varpi^n \Lambda')^*} \psi(B(X, Y)) \operatorname{meas} \mathbf{K}_n \, d\mu_{\mathfrak{O}}(Y)$$

$$= \operatorname{meas} \mathbf{K}_n \cdot c_{\mathfrak{O}}(\pi) \int_{\mathfrak{X}_n} \psi(B(X, Y)) \, d\mu_{\mathfrak{O}}(Y),$$

where $\mathfrak{X}_n := \mathfrak{O} \cap \varpi^{-2n} N + (\varpi^n \Lambda')^*$. Using the description (1.12.1) of \mathfrak{X}_n , we may write $Y \in \mathfrak{X}_n$ as $Y = \varpi^{-2n} \mathrm{Ad}(\exp Z) N$ with $Z \in \varpi^n \mathfrak{m}^{\Lambda'}$. Then

$$\psi(B(X,Y)) = \psi(B(X, \varpi^{-2n} \operatorname{Ad}(\exp Z)N))$$

$$\stackrel{(1.1.3)}{=} \psi(\varpi^{-2n} B(X, N + [Z, N] + Z')), \quad \exists Z' \in \varpi^{2n - 2d - \left[\frac{2e}{p - 1}\right]} \Lambda$$

noting $b \ge D \ge \frac{3e}{p-1} + 3d + C + 2$,

$$= \psi(\varpi^{-2n}B(X,N))\psi(\varpi^{-2n}B(X,[Z,N]))$$

noting B(X, [Z, N]) = B(N, [X, Z]) $= \psi(\varpi^{-2n}B(X, N))\psi(\varpi^{-2n}B_N(X, Z))$ $= \psi(\varpi^{-2n}B(X, N)).$

Hence we conclude

$$\begin{split} \frac{1}{\mathrm{meas}\mathbf{K}_n} \mathrm{tr}(\pi(\varphi_n * \delta_{\exp X}) | E[\chi_n]) \\ &= c_{\mathfrak{D}}(\pi) \int_{\mathfrak{X}_n} \psi(B(X,Y)) \, d\mu_{\mathfrak{D}}(Y) = \psi(\varpi^{-2n}B(X,N)) c_{\mathfrak{D}}(\pi) \mathrm{meas}\mathfrak{X}_n \\ &\stackrel{(1.13.1)}{=} \dim E[\chi_n] \end{split}$$

which is (\ddagger) .

1.14 Key injectivity

Corollary. For sufficiently large $n, j : E[\chi'_n]/E'_{n,\chi} \to E_{V,\chi}$ in 1.9 is injective and its image is $E^{\mathbf{L}}_{V,\chi}$.

Proof. Suppose that n is sufficiently large so that Lemma 1.13 holds.

Let $j_n := \varpi^{[n/2]+b} \Lambda \cap \mathfrak{g}_1^N(F)$, $J_n := \exp j_n$. Then

$$\mathbf{J}_n \mathbf{K}_n \subset G(F)$$
 is a subgroup. (1.14.1)

In fact for $X_i \in \mathfrak{j}_n$ and $Y_i \in \varpi^n \Lambda'$ (i = 1, 2) we have $Y \in \varpi^n \Lambda'$ such that

$$\exp X_1 \exp Y_1 \exp X_2 \exp Y_2 \stackrel{1.13(i)}{=} \exp X_1 \exp Y \exp X_2$$
$$= \exp X_1 \exp X_2 \exp(\text{Ad}(\exp(-X_2))Y).$$

Since 1.13 (i) assures that $\exp(\operatorname{Ad}(\exp(-X_2))Y)$ is in \mathbf{K}_n , we have only to show that $\exp X_1 \exp X_2 \in \mathbf{J}_n \mathbf{K}_n$. For this we use (1.1.2) to have

$$\exp X_1 \exp X_2 = \exp(X_1 + X_2 + \frac{1}{2}[X_1, X_2] + X'), \quad \exists X' \in \varpi^{2[n/2] + 2b} \Lambda \cap \mathfrak{g}^N(F),$$

and

$$\exp(-(X_1 + X_2)) \exp X_1 \exp X_2 = \exp(-(X_1 + X_2)) \exp(X_1 + X_2 + \frac{1}{2}[X_1, X_2] + X')$$

$$\stackrel{(1.1.2)}{=} \exp\left(\frac{[X_1, X_2]}{2} + X' - \frac{1}{2}[X_1 + X_2, \frac{[X_1, X_2]}{2} + X'] + X''\right), \quad \exists X'' \in \varpi^{2[n/2] + 2b} \Lambda \cap \mathfrak{g}^N(F).$$

But since

$$\left. \begin{array}{l} \frac{[X_1,X_2]}{2} \in \varpi^{2[n/2]+2b}\Lambda \cap \mathfrak{g}^N(F) \subset \varpi^{n+b}\Lambda \cap \mathfrak{g}^N(F) \subset \varpi^{n+2d}\Lambda' \cap \mathfrak{g}^N(F), \\ X', \ X'' \in \varpi^{n+2d}\Lambda' \cap \mathfrak{g}^N(F), \\ \frac{1}{2}[X_1+X_2,\frac{[X_1,X_2]}{2}+X'] \in \varpi^{3[n/2]+3b}\Lambda \cap \mathfrak{g}^N(F) \subset \varpi^{n+2d}\Lambda' \cap \mathfrak{g}^N(F) \end{array} \right\} \subset \varpi^n\Lambda',$$

we see that

$$\exp X_1 \exp X_2 \in \exp(X_1 + X_2) \exp(\varpi^n \Lambda' \cap \mathfrak{g}^N(F)) \subset \mathbf{J}_n \mathbf{K}_n.$$

Now 1.13 (i) allows us to extend χ_n trivially on \mathbf{J}_n to a character of $\mathbf{J}_n\mathbf{K}_n$. This is well-defined by (\clubsuit) . Then 1.13 (ii) gives

$$E[\chi_n] = \{ \xi \in E \mid \pi(j)\pi(k)\xi = \chi_n(k)\xi, \, \forall jk \in \mathbf{J}_n\mathbf{K}_n \}$$

= \{ \xi \in E \ \pi(x)\xi = \chi_n(x)\xi, \, \forall x \in \mathbf{J}_n\mathbf{K}_n \}.

This amounts to

$$E[\chi'_n] = \pi(\phi(\varpi^{-n}))E[\chi_n]$$

$$= \{ \xi \in E \mid \pi(\operatorname{Ad}(\phi(\varpi^{-n}))x)\xi = \chi_n(x)\xi, \ x \in \mathbf{J}_n\mathbf{K}_n \}$$

$$= \{ \xi \in E \mid \pi(x)\xi = \chi'_n(x)\xi, \ \forall x \in \operatorname{Ad}(\phi(\varpi^{-n}))(\mathbf{J}_n) \cdot \mathbf{K}'_n \}.$$

Here χ'_n : $\mathrm{Ad}(\phi(\varpi^{-n}))(\mathbf{J}_n)\mathbf{K}'_n \to \mathbb{C}^1$ is the trivial extension of χ'_n on $\mathrm{Ad}(\phi(\varpi^{-n}))(\mathbf{J}_n)$. Thus for $m \geq n$, we have

$$I'_{n,m}(\xi) \stackrel{\text{(1.9.4)}}{=} \frac{1}{\max(V(F) \cap \mathbf{K}'_m)} \int_{V(F) \cap \mathbf{K}'_m} \chi(k^{-1}) \pi(k) \xi \, dk$$

$$\stackrel{\text{(1.7.4)}}{=} \frac{1}{\max(V(F) \cap \mathbf{K}'_m)} \cdot (\text{const}) \int_{\operatorname{Ad}(\phi(\varpi^{-m}))(\mathbf{J}_m) \mathbf{K}'_m \cap V(F)} \chi(k^{-1}) \pi(k) \xi \, dk.$$

Suppose that $\xi \in E$ is contained in ker $j \subset E(V,\chi)$. Since $\{\operatorname{Ad}(\phi(\varpi^{-m}))(\mathbf{J}_m)\mathbf{K}'_m \cap$ V(F)_m is an increasing series of compact open subgroup of V(F) which exhausts V(F), [BZ, 2.33] implies that there exists $m \in \mathbb{N}$ such that

$$\int_{\mathrm{Ad}(\phi(\varpi^{-m}))(\mathbf{J}_m)\mathbf{K}_m'\cap V(F)} \chi(k^{-1})\pi(k)\xi \, dk = 0.$$

That is, $\xi \in \operatorname{Ker} I'_{n,m} \subset E'_{n,\chi}$ and j is injective. Next we calculate $j(E[\chi'_n])$. We have already seen that it is contained in $E^{\mathbf{L}}_{V,\chi}$. Take $\overline{\xi} \in E_{V,\chi}^{\mathbf{L}}$ and let $\xi \in j^{-1}(\overline{\xi})$. Then as in the proof of 1.10, we have $M(\xi) \in \mathbb{N}$ such that

$$I'_{m}(\xi) - \xi = \frac{1}{\operatorname{meas}(V(F) \cap \mathbf{K}'_{m})} \int_{V(F) \cap \mathbf{K}'_{m}} (\overline{\chi(k)} \pi(k) \xi - \xi) \, dk, \quad \forall m \ge M(\xi).$$

Let $\mathbf{K}_{\xi} := \operatorname{Stab}(\xi, V(F) \cap \mathbf{K}'_m) \cap \operatorname{Ker} \chi$ and write

$$V(F) \cap \mathbf{K}'_m = \coprod_{i=1}^r k_i \mathbf{K}_{\xi}$$

for the coset decomposition. Then we have

$$I'_{m}(\xi) - \xi = \frac{1}{r \cdot \text{meas} \mathbf{K}_{\xi}} \sum_{i=1}^{r} \int_{\mathbf{K}_{\xi}} (\overline{\chi(k_{i}x)} \pi(k_{i}x)\xi - \xi) dx$$
$$= \frac{1}{r \cdot \text{meas} \mathbf{K}_{\xi}} \sum_{i=1}^{r} \int_{\mathbf{K}_{\xi}} (\overline{\chi(k_{i})} \pi(k_{i})\xi - \xi) dx$$
$$= \frac{1}{r} \sum_{i=1}^{r} \overline{\chi(k_{i})} (\pi(k_{i})\xi - \chi(k_{i})\xi), \quad \forall m \geq M(\xi).$$

Since the last line is contained in $E(V,\chi)$, we see that $j(I'_m(\xi)) = \overline{\xi}$ for any $m \ge M(\xi)$. Now let $\overline{\xi}_1, \dots, \overline{\xi}_T$ be linearly independent elements in $E^{\mathbf{L}}_{V,\chi}$. Putting $M := \sup_{1 \le i \le T} M(\xi_i)$, we set $\eta_i := I'_n(\xi_i) \in E[\chi'_n]/E'_{n,\chi}$ for a choice of inverse images ξ_i for $\overline{\xi}_i$. Then we have

- (1) $\dim E_{V,\chi}^{\mathbf{L}} \leq \dim E[\chi'_n]/E'_{n,\chi} \leq \dim E[\chi_n] = c_{\mathfrak{O}}(\pi)$ is finite.
- (2) (By taking a basis of $E_{V,\chi}^{\mathbf{L}}$ as $\{\xi_i\}$) for $n \geq M$, $E[\chi'_n]/E'_{n,\chi} \xrightarrow{j_n} E_{V,\chi}^{\mathbf{L}}$ is surjective.

1.15 Injectivity continued

Lemma . $I_{n,n+1}$ is injective for sufficiently large n.

Proof. For the brevity, write $d\mu_n$ for the measure on \mathbf{K}_n such that $\mu_n(\mathbf{K}_n) = 1$. Then one has

$$\begin{split} &I_{n+1,n} \circ I_{n,n+1} \circ I_{n}(\xi) \\ &= \int_{\mathbf{K}_{n}} \int_{\mathbf{K}_{n+1}} \int_{\mathbf{K}_{n}} \overline{\chi}_{n}(\gamma) \overline{\chi}_{n+1}(h) \overline{\chi}_{n}(\gamma') \pi(\gamma \phi(\varpi)^{-1} h \phi(\varpi) \gamma') \xi \, d_{\mu_{n}}(\gamma') \, d_{\mu_{n+1}}(h) \, d_{\mu_{n}}(\gamma) \\ &= \int_{\mathbf{K}_{n}} \int_{\mathbf{K}_{n}} \overline{\chi}_{n}(\gamma) \pi(\gamma) \int_{\mathbf{K}_{n+1}} \overline{\chi}_{n+1}(h) \overline{\chi}_{n}(\gamma') \pi(\phi(\varpi)^{-1} h \phi(\varpi) \gamma') \xi \, d_{\mu_{n+1}}(h) \, d\mu_{n}(\gamma') \, d\mu_{n}(\gamma). \end{split}$$

The inner integral reads

$$\int_{\mathbf{K}_{n+1}} \overline{\chi}_{n+1}(h) \overline{\chi}_{n}(\gamma') \pi(\phi(\varpi)^{-1} h \phi(\varpi) \gamma') \xi \, d_{\mu_{n+1}}(h)
= \sum_{\dot{\gamma} \in \mathbf{K}_{n+1}/\mathbf{K}_{n+1} \cap \mathrm{Ad}(\phi(\varpi)) \mathbf{K}_{n}} \int_{\mathbf{K}_{n+1} \cap \mathrm{Ad}(\phi(\varpi)) \mathbf{K}_{n}} \overline{\chi}_{n+1}(\dot{\gamma} h) \overline{\chi}_{n}(\gamma') \pi(\mathrm{Ad}(\phi(\varpi^{-1})) (\dot{\gamma} h) \gamma') \xi \, d_{\mu_{n+1}}(h)$$

putting $x := \operatorname{Ad}(\phi(\varpi^{-1}))h$,

$$= \sum_{\dot{\gamma} \in \mathbf{K}_{n+1}/\mathbf{K}_{n+1} \cap \mathrm{Ad}(\phi(\varpi))\mathbf{K}_n} \int_{\mathrm{Ad}(\phi(\varpi^{-1}))(\mathbf{K}_{n+1}) \cap \mathbf{K}_n} \overline{\chi}_{n+1} (\dot{\gamma} \mathrm{Ad}(\phi(\varpi))x) \overline{\chi}_n(\gamma')$$

$$\pi(\mathrm{Ad}(\phi(\varpi^{-1}))(\dot{\gamma})x\gamma')\xi \, d\mu_{n+1}(\mathrm{Ad}(\phi(\varpi))(x)).$$

Moreover if we write $x = \exp X$ $(X \in \varpi^n \Lambda')$, we have

$$\chi_{n+1}(\operatorname{Ad}(\phi(\varpi))(x)) = \psi(B(\varpi^{-2n-2}N, \operatorname{Ad}(\phi(\varpi))X))$$

= $\psi(B(\varpi^{-2n-2}\operatorname{Ad}(\phi(\varpi^{-1}))N, X)) = \psi(B(\varpi^{-2n}N, X))$
= $\chi_n(x)$.

Thus we obtain

$$I_{n+1,n} \circ I_{n,n+1} \circ I_{n}(\xi)$$

$$= \int_{\mathbf{K}_{n}} \int_{\mathbf{K}_{n}} \overline{\chi}_{n}(\gamma) \pi(\gamma) \sum_{\dot{\gamma} \in \mathbf{K}_{n+1}/\mathbf{K}_{n+1} \cap \operatorname{Ad}(\phi(\varpi))\mathbf{K}_{n}} \int_{\operatorname{Ad}(\phi(\varpi^{-1}))(\mathbf{K}_{n+1}) \cap \mathbf{K}_{n}} \overline{\chi}_{n+1}(\dot{\gamma}) \overline{\chi}_{n}(x\gamma')$$

$$\pi(\operatorname{Ad}(\phi(\varpi^{-1}))(\dot{\gamma})x\gamma') \xi \, d\mu_{n+1}(\operatorname{Ad}(\phi(\varpi))x) \, d\mu_{n}(\gamma') \, d\mu_{n}(\gamma)$$

$$= \sum_{\dot{\gamma} \in \mathbf{K}_{n+1}/\mathbf{K}_{n+1} \cap \operatorname{Ad}(\phi(\varpi))\mathbf{K}_{n}} \overline{\chi}_{n+1}(\dot{\gamma}) \int_{\mathbf{K}_{n}} \int_{\mathbf{K}_{n}} \varphi_{n}(\gamma) \pi(\gamma) \pi(\operatorname{Ad}(\phi(\varpi^{-1}))\dot{\gamma})$$

$$\int_{\operatorname{Ad}(\phi(\varpi^{-1}))(\mathbf{K}_{n+1}) \cap \mathbf{K}_{n}} \varphi_{n}(x\gamma') \pi(x\gamma') \xi \, d\mu_{n+1}(\operatorname{Ad}(\phi(\varpi))x) \, d\mu_{n}(\gamma') \, d\mu_{n}(\gamma)$$

putting γ' for $x\gamma'$

$$= \sum_{\dot{\gamma} \in \mathbf{K}_{n+1}/\mathbf{K}_{n+1} \cap \operatorname{Ad}(\phi(\varpi))\mathbf{K}_{n}} \overline{\chi}_{n+1}(\dot{\gamma}) \int_{\mathbf{K}_{n}} \int_{\mathbf{K}_{n}} \varphi_{n}(\gamma) \pi(\gamma) \pi(\operatorname{Ad}(\phi(\varpi^{-1}))\dot{\gamma})$$

$$= \sum_{\dot{\gamma} \in \mathbf{K}_{n+1}/\mathbf{K}_{n+1} \cap \operatorname{Ad}(\phi(\varpi))\mathbf{K}_{n}} \overline{\chi}_{n+1}(\dot{\gamma}) \mu_{n+1}(\mathbf{K}_{n+1} \cap \operatorname{Ad}(\phi(\varpi))\mathbf{K}_{n})$$

$$= \sum_{\dot{\gamma} \in \mathbf{K}_{n+1}/\mathbf{K}_{n+1} \cap \operatorname{Ad}(\phi(\varpi))\mathbf{K}_{n}} \overline{\chi}_{n+1}(\dot{\gamma}) \mu_{n+1}(\mathbf{K}_{n+1} \cap \operatorname{Ad}(\phi(\varpi))\mathbf{K}_{n})$$

$$= \mu_{n+1}(\mathbf{K}_{n+1} \cap \operatorname{Ad}(\phi(\varpi))\mathbf{K}_{n}) \sum_{\dot{\gamma} \in \mathbf{K}_{n+1}/\mathbf{K}_{n+1} \cap \operatorname{Ad}(\phi(\varpi))\mathbf{K}_{n}} \overline{\chi}_{n+1}(\dot{\gamma})$$

$$\times \int_{\mathbf{K}_{n}} \int_{\mathbf{K}_{n}} \varphi_{n}(\gamma) \varphi_{n}(\gamma') \pi(\gamma \operatorname{Ad}(\phi(\varpi^{-1}))\dot{\gamma} \cdot \gamma') \xi \, d\mu_{n}(\gamma') \, d\mu_{n}(\gamma).$$

noting $\operatorname{Ad}(\phi(\varpi^{-1}))\mathbf{K}_{n+1} \subset \operatorname{Norm}(\mathbf{K}_n, G(F))$ for n >> 0 (cf. 1.5 (2)), we put $\gamma := \operatorname{Int}(\operatorname{Ad}(\phi(\varpi^{-1}))\dot{\gamma})^{-1}(\gamma)$

$$= \mu_{n+1}(\mathbf{K}_{n+1} \cap \operatorname{Ad}(\phi(\varpi))\mathbf{K}_{n}) \sum_{\dot{\gamma} \in \mathbf{K}_{n+1}/\mathbf{K}_{n+1} \cap \operatorname{Ad}(\phi(\varpi))\mathbf{K}_{n}} \overline{\chi_{n+1}(\dot{\gamma})}$$

$$\int_{\mathbf{K}_{n}} \int_{\mathbf{K}_{n}} \varphi_{n}(\operatorname{Int}(\operatorname{Ad}(\phi(\varpi^{-1}))\dot{\gamma})(\gamma))\varphi_{n}(\gamma')\pi(\operatorname{Ad}(\phi(\varpi^{-1}))(\dot{\gamma}) \cdot \gamma\gamma')\xi \, d\mu_{n}(\gamma') \, d\mu_{n}(\gamma)$$

$$= \mu_{n+1}(\mathbf{K}_{n+1} \cap \operatorname{Ad}(\phi(\varpi))\mathbf{K}_{n}) \sum_{\dot{\gamma} \in \mathbf{K}_{n+1}/\mathbf{K}_{n+1} \cap \operatorname{Ad}(\phi(\varpi))\mathbf{K}_{n}} \overline{\chi_{n+1}(\dot{\gamma})}\pi(\operatorname{Ad}(\phi(\varpi^{-1}))(\dot{\gamma}))$$

$$\int_{\mathbf{K}_{n}} \int_{\mathbf{K}_{n}} \overline{\chi_{n}(\operatorname{Int}(\operatorname{Ad}(\phi(\varpi^{-1}))\dot{\gamma})(\gamma) \cdot \gamma')}\pi(\gamma\gamma')\xi \, d\mu_{n}(\gamma') \, d\mu_{n}(\gamma).$$

Putting $\gamma \gamma' = \gamma'$, this double integral becomes

$$\int_{\mathbf{K}_{n}} \int_{\mathbf{K}_{n}} \overline{\chi_{n}(\operatorname{Int}(\operatorname{Ad}(\phi(\varpi^{-1}))\dot{\gamma})\gamma \cdot \gamma^{-1}\gamma')} \pi(\gamma') \xi \, d\mu_{n}(\gamma') \, d\mu_{n}(\gamma)$$

$$= \int_{\mathbf{K}_{n}} \operatorname{Int}(\operatorname{Ad}(\phi(\varpi^{-1}))(\dot{\gamma}^{-1})) \overline{\chi}_{n} \cdot \chi_{n}(\gamma) \, d\mu_{n}(\gamma) \cdot \int_{\mathbf{K}_{n}} \overline{\chi_{n}(\gamma')} \pi(\gamma') \xi \, d\mu_{n}(\gamma')$$

$$= \begin{cases}
I_{n}(\xi) & \text{if } \operatorname{Ad}(\phi(\varpi^{-1}))(\dot{\gamma}) \in \operatorname{Stab}(\chi_{n}, G(F)), \\
0 & \text{otherwise.}
\end{cases}$$

Thus we conclude

$$I_{n+1,n} \circ I_{n,n+1} \circ I_n(\xi) = \mu_{n+1}(\mathbf{K}_{n+1} \cap \operatorname{Ad}(\phi(\varpi))\mathbf{K}_n) \sum_{\substack{\dot{\gamma} \in \mathbf{K}_{n+1}/\operatorname{Ad}(\phi(\varpi))\mathbf{K}_n \cap \mathbf{K}_{n+1} \\ \dot{\gamma} \in \operatorname{Ad}(\phi(\varpi))\operatorname{Stab}(\chi_n, G(F))}} \overline{\chi_{n+1}(\dot{\gamma})} \pi(\operatorname{Ad}(\phi(\varpi^{-1}))(\dot{\gamma})) I_n(\xi).$$

In the sum above we see

$$\operatorname{Ad}(\phi(\varpi^{-1}))\dot{\gamma} \in \operatorname{Ad}(\phi(\varpi^{-1}))(\mathbf{K}_{n+1}) \cap \operatorname{Stab}(\chi_n, G(F))$$

$$= \exp(\operatorname{Ad}(\phi(\varpi^{-1}))(\varpi^{n+1}\Lambda')) \cap \operatorname{Stab}(\chi_n, G(F))$$

$$\subset \exp(\varpi^{[n/2]+b}\Lambda') = \mathbf{K}_{[n/2]+b} \cap \operatorname{Stab}(\chi_n, G(F))$$

$$\stackrel{1.6(2)}{\subset} \exp(\varpi^{[n/2]+b}\Lambda \cap \mathfrak{g}^N(F))\mathbf{K}_n.$$

We may suppose that $\operatorname{Ad}(\phi(\varpi^{-1}))\dot{\gamma} = \exp X$ with $X \in \varpi^{[n/2]+b}\Lambda \cap \mathfrak{g}^N(F)$. We apply 1.13 (ii) to have $\pi(\operatorname{Ad}(\phi(\varpi^{-1}))\dot{\gamma})I_n(\xi) = I_n(\xi)$. Moreover

$$\chi_{n+1}(\dot{\gamma}) = \psi(B(\varpi^{-2n-2}N, \text{Ad}(\phi(\varpi))X)) = \psi(B(\varpi^{-2n}N, X)) \stackrel{(1.13.1)}{=} 1$$

because $X \in \mathfrak{g}^N(F)$. We obtain

$$I_{n+1} \circ I_{n,n+1} \circ I_n(\xi) = \mu_{n+1}(\mathbf{K}_{n+1} \cap \operatorname{Ad}(\phi(\varpi))\mathbf{K}_n) \times \sum_{\substack{\dot{\gamma} \in \mathbf{K}_{n+1}/\operatorname{Ad}(\phi(\varpi))(\mathbf{K}_n) \cap \mathbf{K}_{n+1} \\ \dot{\gamma} \in \operatorname{Ad}(\phi(\varpi))\operatorname{Stab}(\chi_n, G(F))}} I_n(\xi)$$

$$= \kappa I_n(\xi)$$

for some non-zero constant κ . Thus $I_{n+1,n} \circ I_{n,n+1}$ is injective and so is $I_{n,n+1}$.

1.16 The result

Theorem . Let (π, E) be an irreducible admissible representation of G(F). Then

$$\mathcal{N}_{\mathcal{B}}(\pi)^{\text{sup}} = \mathcal{N}_{\text{Wh}}(\pi)^{\text{sup}}.$$

Proof. Take $\mathfrak{O} \in \mathcal{N}_{\mathcal{B}}(\pi)^{\sup}$, $N \in \mathfrak{O} \cap \Lambda$ and $\phi : \mathbb{G}_m \to G$ such that $\mathrm{Ad}(\phi(t))N = t^{-2}N$. Then 1.14 implies

$$\mathcal{W}_{\mathcal{N},\phi}(\pi) \stackrel{(1.7.4)}{\simeq} \mathcal{E}_{\mathcal{V},\chi}^{\mathbf{L}} \neq \mathbf{V}$$

if and only if $E[\chi'_n]/E'_{n,\chi} \neq 0$ for any sufficiently large n. Since $\mathfrak{O} \in \mathcal{N}_{\mathcal{B}}(\pi)^{\sup}$, we have

$$0 \neq c_{\mathfrak{O}}(\pi) \stackrel{1.12}{=} \dim E[\chi_n] = \dim E[\chi'_n].$$

Now we take n sufficiently large so that 1.15 holds. Then noting (1.9.1),

$$I'_{n,m} = I'_{n,n+1} \circ \cdots \circ I'_{m-1,m}$$

is injective and hence $E'_{n,\chi} = \{0\}$. Thus $E[\chi'_n]/E'_{n,\chi} \neq 0$, and we have shown that $\mathcal{N}_{\mathcal{B}}(\pi)^{\sup} \subset \mathcal{N}_{\mathrm{Wh}}(\pi)$.

Let $\mathfrak{O} \in \mathcal{N}_{Wh}(\pi)$. Prop.1.11 assures that for $N \in \mathfrak{O}$, there exists $\mathfrak{O}' \in \mathcal{N}_{\mathcal{B}}(\pi)^{\sup}$ such that $N \in \overline{\mathfrak{O}}'$. This implies that $\overline{\mathfrak{O}} \subset \overline{\mathfrak{O}}'$. The previous paragraph asserts that $\mathfrak{O}' \in \mathcal{N}_{Wh}(\pi)$. In particular, if $\mathfrak{O} \in \mathcal{N}_{Wh}(\pi)^{\sup}$, the maximality implies $\mathfrak{O} = \mathfrak{O}'$. Hence $\mathcal{N}_{Wh}(\pi)^{\sup} \subset \mathcal{N}_{\mathcal{B}}(\pi)^{\sup}$.

Conversely, take $\mathfrak{O} \in \mathcal{N}_{\mathcal{B}}(\pi)^{\sup}$. Then it is contained in $\mathcal{N}_{\operatorname{Wh}}(\pi)$, and we can take $\mathfrak{O}' \in \mathcal{N}_{\operatorname{Wh}}(\pi)^{\sup} \subset \mathcal{N}_{\mathcal{B}}(\pi)^{\sup}$ such that $\overline{\mathfrak{O}} \subset \overline{\mathfrak{O}}'$. Since $\mathfrak{O}, \mathfrak{O}' \in \mathcal{N}_{\mathcal{B}}(\pi)^{\sup}$, we have $\mathfrak{O} = \mathfrak{O}' \in \mathcal{N}_{\operatorname{Wh}}(\pi)^{\sup}$.

1.17

Corollary. Let $\mathfrak{O} \in \mathcal{N}_{\mathcal{B}}(\pi)^{\sup}$. Then we have $c_{\mathfrak{O}}(\pi) = \dim \mathcal{W}_{\mathcal{N},\phi}(\pi)$ for any choice of $N \in \mathfrak{O}$ and ϕ .

Proof. Let $n \in \mathbb{N}$ be sufficiently large and $\mathfrak{O} \in \mathcal{N}_{\mathcal{B}}(\pi)^{\sup} = \mathcal{N}_{\operatorname{Wh}}(\pi)^{\sup}$. Then

$$\dim \mathcal{W}_{\mathcal{N},\phi}(\pi) \stackrel{(1.7.4)}{=} \dim E_{V,\chi}^{\mathbf{L}} \stackrel{1.14}{=} \dim E[\chi'_n]/E'_{\chi,n}$$

$$= \dim E[\chi'_n]/\bigcup_{m>n} \ker(I'_{n,m}) \stackrel{1.15}{=} \dim E[\chi_n]$$

$$\stackrel{1.12}{=} c_{\mathfrak{D}}(\pi).$$

References

[BZ] I.N. Bernstein and A.V. Zelevinskii, Representations of the group GL(n, F) where F is a non-archimedean local field, Russian Math. Surveys 31:3 (1976), pp. 1–68.

[HC] Harish-Chandra, Admissible invariant distributions on reductive p-adic groups, Collected Works, vol. 4.

[H] Howe, R. Kirillov theory for compact p-adic groups, Pacific J. Math. **73** (1977), no. 2, 365–381.

[MW] C. Mæglin and J.-L. Waldspurger, Modèles de Whittaker dégénérés pour des groupes p-adiques, Math. Zeit 196 (1987) pp. 427–452.