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Abstract

In this note, we present a proof of the Langlands classification of the irreducible
admissible representations of reductive p-adic groups. Then we deduce certain irre-
ducibility result for parabolically induced modules from discrete series representa-
tions.
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1 Introduction

In this note, we shall prove two fundamental results in the representation theory of p-adic
groups.

The first is the Langlands classification of irreducible admissible representations of
connected reductive p-adic groups (Th. 3.5). This famous theorem had originally been
proved by Langlands for real Lie groups [9], then its p-adic group analogue was treated
independently in [5] and [11]. But the latter contains no proof (The argument suggested
in [5, XI.2] does not work.). Silberger’s article is well-written but the key lemma [11,
Lem.5.3] is not true. Since the theorem plays a fundamental role in the harmonic analysis
on p-adic reductive groups, I think it is of some value to writing out a complete proof,
although it seems to be well-known to experts. The proof given in this note follows
Langlands’ original argument in the real case [9], while we rely in an essential way on the
infinitesimal characters for p-adic groups introduced by Bernstein [4].

In [12, IV.1], Waldspurger proved that the standard intertwining operators are rational
functions on the variety of representations. We combine this with the Langlands classifica-
tion, and show that the parabolically induced modules from discrete series representations
are irreducible on a Zariski open subset of the variety of such representations (Cor. 4.3).
Again this is well-known to experts. For example, Waldspurger himself mentioned it in his
definition of Harish-Chandra’s j and µ-functions in [12, p. 48, IV.3]. Also this was used
by Bernstein and Deligne in their analysis of components (under infinitesimal characters)
of Hecke algebras [4, Prop. 3.14].

The contents of each section are as follows. In § 2, we collect elementary facts and
results on the structure of connected reductive p-adic groups and their representations.
Here we emphasize features caused by the discreteness of the valuation on the base field
(see e.g. § 2.3). Also in § 2.2, the geometry of the restricted roots, which are essential
in the proof of the Langlands classification, is reviewed from [9, § 4]. In § 3, we prove
the Langlands classification. After reviewing Langlands’ lemma on the growth behavior
of the matrix coefficients of standard modules and two geometric lemmas, the proof is
given in § 3.3. In § 4 we prove the irreducibility result. First in § 4.1, we recollect the
proof of Waldspurger’s irreducibility theorem (Th. 4.2) to emphasize the role played by
the Langlands classification. Then the irreducibility on Zariski open subsets is proved in
§ 4.2.

Throughout the notes, we use only basic results in the harmonic analysis on p-adic
groups, which were proved in [2], [3], [8] and §§ I.1-IV.2 of [12].

2 Preliminary

Let F be a non-archimedean local field of any characteristic. We write O, pF and | |F
for the maximal compact subring of F , its unique maximal ideal and the module of F ,
respectively. We write q for the cardinality of the residue field of O.
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2.1 Structure of G(F )

Let G be a connected reductive F -group. We fix a maximal F -split torus A0 so that its
centralizer M0 is a minimal Levi subgroup of G. Write L, F for the set of F -Levi and
F -parabolic subgroups of G, respectively, containing M0. Each P ∈ F has a unique Levi
component M in L, while the set P(M) of P ∈ F having M as a Levi component is finite.
For P ∈ P(M), we write P̄ for the element of P(M) which is opposite to P with respect
to M .

Take M ∈ L. As usual, we have the real vector spaces aM = Hom(X∗(M)F , R),
a∗M = X∗(M)F ⊗ R dual to each other, and the Harish-Chandra map HM : M(F ) → aM

given by
exp〈χ, HM(m)〉 = |χ(m)|F , ∀χ ∈ X∗(M)F .

Here, X∗(M)F is the group of F -rational characters of M . We write M(F )1 for the kernel
of HM .

We write AG for the maximal F -split torus in the center ZG of G. The canonical
isomorphism X∗(G)F ⊗ Q ∼→ X∗(AG) ⊗ Q (induced by restriction) combined with the
commutative diagram

X∗(M)F −−−→ X∗(AM)x y
X∗(G)F −−−→ X∗(AG)

shows that aG and a∗G are canonical direct summands of aM and aG, respectively. If we
write aG

M for the annihilator of X∗(G)F in aM and aG,∗
M := X∗(AM/AG)⊗R, then we have

the direct sum decompositions

aM = aG
M ⊕ aG, a∗M = aG,∗

M ⊕ a∗G

dual to each other. We denote the aG
M and aG-components of H ∈ aM by HG and

HG, respectively. Similarly, λ ∈ a∗M admits a decomposition λ = λG ⊕ λG, (λG ∈ aG,∗
M ,

λG ∈ a∗G).
We fix a maximal compact subgroup K of G(F ) which is in good position relative to A0.

Then we have the Iwasawa decomposition G(F ) = U(F )M(F )K for any P = MU ∈ F .
We write the corresponding decomposition of g ∈ G(F ) as g = uP (g)mP (g)kP (g), where
uP (g) ∈ U(F ), mP (g) ∈ M(F ) and kP (g) ∈ K are of course not unique. We fix various
measures as in [12]. In particular, on any subgroup H(F ) ⊂ G(F ), we fix an invariant
measure which assigns 1 to the subgroup H(F )∩K. These satisfy the integration formulae∫

G(F )

f(g) dg =

∫
K

∫
M(F )

∫
U(F )

f(umk)δP (m)−1 du dm dk

=γ(G/M)−1

∫
U(F )

∫
M(F )

∫
Ū(F )

f(umū)δP (m)−1 dū dm du

for any continuous compactly supported function f on G(F ) and P = MU ∈ F . Here δP

is the modular character of P (F ) and

γ(G/M) :=

∫
Ū(F )

δP (mP (ū)) dū.

This constant is independent of P ∈ P(M) as the notation suggests [12, I.1 (3)].
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2.2 Restricted roots

We continue to take M ∈ L. We review some elementary results on restricted roots from
[1, § 1], [9, § 4]. We write KM := K ∩M for any subgroup K ⊂ G and M ∈ L.

The set of roots of AM in G is denoted by ΣM . P ∈ P(M) determines the subset ΣP

of P -positive elements in ΣM . The set of reduced roots in ΣP , that is, α ∈ ΣP such that
α/n /∈ ΣP for any n ≥ 2, is denoted by Σred

P . Notice that ΣM spans aG,∗
M .

Suppose M = M0. We know from [6, Cor. 5.8] that (Σ0 = ΣM0 , a
G,∗
0 ) is a root system.

In particular, the set of coroots Σ∨
0 ⊂ X∗(A0) is defined. For P0 ∈ P(M0), we have the set

of simple roots ∆P0 in the positive system ΣP0 , and write ∆∨
P0

for the set of corresponding

simple coroots. Of course, ∆P0 and ∆∨
P0

are basis of aG,∗
0 and aG

0 , respectively. We write

∆̂P0 = {$α |α ∈ ∆P0} and ∆̂∨
P0

= {$∨
α |α ∈ ∆P0} for the basis of aG,∗

0 and aG
0 dual to

∆∨
P0

and ∆P0 , respectively. We write W = WG for the Weyl group of A0 in G, which is

the Weyl group of the root system (aG,∗
0 , Σ0). This acts on a0 and hence on F , L. We

identify W with its fixed system of representatives in Norm(A0, G(F )).
For general P = MU ∈ F , we choose P0 ∈ P(M0) contained in P and define ∆P :=

{(α0|aM
) |α0 ∈ ∆P0 \ ∆P M

0
}. This is independent of the choice of P0 ⊂ P . The coroot

attached to α = (α0|aM
) ∈ ∆P is defined to be (α∨0 )M ∈ aG

M . We write ∆∨
P := {α∨ |α ∈

∆P}. It follows from the M0-case that ∆P and ∆∨
P are basis of aG,∗

M and aG
M , respectively.

Notice that their dual basis are given by

∆̂∨
P := {$∨

α = $∨
α0
| (α = α0|aM

) ∈ ∆P},
∆̂P := {$α = $α0 | (α = α0|aM

) ∈ ∆P}

respectively. In general (ΣM , aG,∗
M ) is not necessarily a root system. We write W (M) =

WG(M) := Stab(M, W )/W .
We list some basic properties of restricted roots. First (Σ0, a

G,∗
0 ), a root system,

satisfies the following properties.

〈α, α∨〉 = 2, 〈α, β∨〉 ≤ 0, ∀α 6= β ∈ ∆P0 . (2.1)

If we set a∗,+P0
:= {λ ∈ a∗0 |α∨(λ) > 0, α ∈ ∆P0}, +a∗P0

:= {λ ∈ a∗0 |$α(λ) > 0, α ∈ ∆P0}
then we have

a∗,+P0
⊂ +a∗P0

. (2.2)

This is an easy consequence of (2.1).
Let us establish analogous properties for general ΣM . (2.2) implies 〈$α, $∨

β 〉 ≥ 0 for
any α, β ∈ ∆P0 . This simply restricts to

〈$α, $∨
β 〉 ≥ 0, ∀α, β ∈ ∆P .

Setting a∗,+P := {λ ∈ a∗M |α∨(λ) > 0, α ∈ ∆P}, +a∗P := {λ ∈ a∗M |$∨
α(λ) > 0, α ∈ ∆P},

this amounts to the assertion
ā∗,+P ⊂ +ā∗P . (2.3)

As opposed to (2.2), the inclusion is between the closures. If α = α0|aM
, (α0 ∈ ∆P0\∆P M

0
),

α = (α0)M and αM
0 ∈ aM,∗

0 can be written as

αM
0 =

∑
β∈∆

PM
0

xββ, xβ ∈ R.
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Here the coefficient xβ is given by 〈αM
0 , $∨,M

β 〉 = 〈α0, $
∨,M
β 〉. Since $∨,M

β ∈ āM,+

P M
0

⊂ +āM
P M

0
,

$∨,M
β =

∑
γ∈∆M

P0

yγγ
∨ with yγ ≥ 0. Thus (2.1) implies

xβ =
∑

γ∈∆
PM
0

yγ〈α0, γ
∨〉 ≤ 0.

In particular, we have for (β = β0|aM
) 6= α ∈ ∆P

〈α, β∨〉 = 〈α0, β
∨
0 〉 −

∑
γ∈∆

PM
0

xγ〈γ, β∨0 〉 ≤ 0. (2.4)

Finally we have
〈α, α∨〉 > 0, α ∈ ∆P . (2.5)

Otherwise we have 〈α, β∨〉 ≤ 0 for any β ∈ ∆P so that α ∈ −āG,∗,+
P ∩ +āG,∗

P = {0}. This
contradicts α 6= 0.

2.3 Unramified quasi-characters

HG allows us to associate to each λ ∈ a∗G,C a quasi-character

eλ : G(F ) 3 g 7−→ exp〈λ, HG(g)〉 ∈ C×. (2.6)

We write X(G(F )) := {eλ |λ ∈ a∗G,C} = Homcont(G(F )/G(F )1, C×) and Xu(G(F )) for
its subgroup of unitary elements. If we write aG(F ) for the lattice HG(G(F )) ⊂ aG and
a∗G(F ) ⊂ a∗G for its dual lattice, then we have the isomorphism

a∗G,C/2πia∗G(F ) 3 λ
∼7−→ eλ ∈ X(G(F )).

This defines a C-torus structure on X(G(F )). For χ ∈ X(G(F )), we write <χ := |χ| and
=χ := (<χ)−1χ. <χ is identified with an element of a∗G by (2.6).

Now we take M ∈ L and consider the restriction homomorphism X(G(F )) → X(M(F )).

Lemma 2.1. For any χ ∈ X∗(G)F , χ(M(F )) = χ(G(F )).

Proof. It suffices to check this in the case M = M0. We write Gder for the derived group
of G and Gab := G/Gder for its abelianization. If we write Mder

0 := M0 ∩ Gder, we have
the embedding of exact sequences

1 −−−→ Gder −−−→ G −−−→ Gab −−−→ 1x x ∥∥∥
1 −−−→ Mder

0 −−−→ M0 −−−→ Gab −−−→ 1

Since X∗(G)F = X∗(Gab)F , we have only to check that the images of G(F ) and M0(F ) in
Gab(F ) coincide. For this, we take Galois cohomology to have the commutative diagram

1 −−−→ Gder(F ) −−−→ G(F ) −−−→ Gab(F ) −−−→ H1(F, Gder)x x ∥∥∥ x
1 −−−→ Mder

0 (F ) −−−→ M0(F ) −−−→ Gab(F ) −−−→ H1(F, Mder
0 )
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Then, what we have to show is

ker(Gab(F ) → H1(F, Gder)) = ker(Gab(F ) → H1(F, Mder
0 )).

But since the left hand side equals the kernel of Gab(F ) → H1(F, Mder
0 ) → H1(F, Gder), this

follows from the injectivity of H1(F, Mder
0 ) → H1(F, Gder). (Notice that this last statement

is equivalent to [6, Th. 4.13, Prop. 4.7] which asserts that the minimal parabolic subgroups
are all G(F )-conjugate to each other.)

Since X∗(G)F injects into X∗(M)F by restriction, we can take a basis {χi}1≤i≤n of
X∗(M)F so that {diχi}1≤i≤r for some di ∈ N and 0 ≤ r < n is a basis of X∗(G)F . If
|χi(M(F ))|F = qmiZ, (1 ≤ i ≤ n, mi ∈ N), then

a∗M(F ) =
n∑

i=1

Z(mi log q)−1χi.

Now Lem. 2.1 asserts that |diχi(G(F ))|F = |diχi(M(F ))|F = qdimiZ, (1 ≤ i ≤ r), so that

a∗G(F ) =
r∑

i=1

Z
di

dimi log q
χi

is a direct summand of a∗M(F ). Hence X(G(F )) → X(M(F )) is injective. If we write

XG(M(F )) for the group of quasi-characters of M(F )∩G(F )1 trivial on M(F )1, then we
summarize the argument as the exact sequence of C-tori

1 −→ X(G(F )) −→ X(M(F )) −→ XG(M(F )) −→ 1. (2.7)

The maps are restrictions.

2.4 Representations

We freely use the results of [2], [3] and [8] on algebraic (or smooth) representations of
reductive p-adic groups, which are summarized in [12, I]. Let us recall some of them. We
write Alg(G(F )) for the category of algebraic representations of G(F ). We adopt the
convention that the isomorphism class of (π, V ) is denoted by π. If χ ∈ X(G(F )), then
we write (πχ, Vχ) for the representation π ⊗ χ on the space V . We write

Stab(π, X(G(F ))) = {χ ∈ X(G(F )) |πχ ' π}.

By abuse of notation, we write (πλ, Vλ) for eλ ⊗ π on the space V for λ ∈ a∗M,C. For P =
MU ∈ F , we have the parabolic induction functor Alg(M(F )) 3 (π, V ) 7→ (IG

P (π), IG
P (V )) ∈

Alg(G(F )) and the Jacquet functor Alg(G(F )) 3 (π, V ) 7→ (πP , VP ) ∈ Alg(M(F )). They
are related by the Frobenius reciprocity

HomG(F )(π, IG
P (τ)) ' HomM(F )(πP , τ).

As for the composition of these functors, we know the following result [3, 2.12]. For
P = MU , P ′ = M ′U ′ ∈ F , we take a system of representatives P ′WP for WM ′\W/WM ,
so that we have the Bruhat decomposition G =

∐
w∈P ′WP

Pw−1P ′. We fix a total order

w ≤ w′ on P ′WP such that
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• G(F )≥w :=
⋃

v∈P ′WP , v≥w P (F )w−1P ′(F ) is open in G(F );

• P (F )w−1P ′(F ) is closed in G(F )≥w

with respect to the p-adic topology on G(F ). Then for (π, V ) ∈ Alg(M(F )), there is a
G(F )-invariant decreasing filtration {Fw}w∈P ′WP

of IG
P (V )P ′ , which we call the Bruhat

filtration, such that
Fw/F>w ' IM ′

w(P )M′ (w(πw−1(P ′)M ))

as an algebraic representation of M ′(F ). Notice that the isomorphism class w(πw−1(P ′)M )
is independent of the choice of the representative for w. We write (π∨, V ∨) for the con-
tragredient of (π, V ) ∈ Alg(G(F )). For (π, V ) ∈ Alg(M(F )), we have IG

P (π∨) ' IG
P (π)∨.

If (π, V ) ∈ Alg(G(F )) is admissible, (πP )∨ is isomorphic to (π∨)P̄ . In fact, this is valid
for B-admissible representations in the sense of [4].

If (π, V ) is an admissible representation of finite length of G(F ), the set JH(π) of
the elements of Π(G(F )) which appears as irreducible constituents of (π, V ) is uniquely
determined by π. Thus we may consider the Grothendieck group of the category of
admissible representations of finite length of G(F ). For such representation (π, V ), we
write [π] for its class in the Grothendieck group.

We write Π(G(F )) for the set of isomorphism classes of irreducible admissible rep-
resentations of G(F ). We have the subsets Πtemp(G(F )) ⊃ Π2(G(F )) of tempered and
square integrable elements of Π(G(F )), respectively. We write ωπ for the central character
of π ∈ Π(G(F )). For any admissible representation (π, V ) of G(F ), Exp(π) ⊂ Π(AG(F ))
denotes the set of its central exponents [12, I.3]. Recall the Langlands-Casselman crite-
rion:

(1) An admissible representation (π, V ) of G(F ), having a unitary central character, is
square integrable if and only if <Exp(πP ) ⊂ +aG,∗

P for any P ∈ F .

(2) An admissible representation (π, V ) of G(F ) is tempered if and only if <Exp(πP ) ⊂
+āG,∗

P for any P ∈ F .

In particular, parabolic induction preserves temperedness, while Jacquet functor does not.
We also need the following weak classification of irreducible tempered representation.

Proposition 2.2 ([12] Prop. III.4.1). (i) For any π ∈ Πtemp(G(F )), there exist P =
MU ∈ F and σ ∈ Π2(M(F )) such that π is a direct summand of IG

P (σ).
(ii) If both (P, σ) and (P ′, σ′) satisfy (i), then there is w ∈ W such that w(M) = M ′ and
w(σ) ' σ′.

Let (π, V ) be an admissible representation of finite length of M(F ), M ∈ L. For P ,
P ′ ∈ P(M), we have the intertwining integral

JP ′|P (π)φ(g) :=

∫
(U∩U ′)(F )\U ′(F )

φ(u′g) du′, φ ∈ IG
P (V ).

For χ ∈ X(M(F )) with α∨(<χ) >> 0, ∀α ∈ ΣP \ ΣP ′ , the defining integral of JP ′|P (πχ)
converges absolutely. Moreover JP ′|P defined in this way on some open subset of P =
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{πχ |χ ∈ X(M(F ))} becomes a rational function on P [12, Th. IV.1.1]. Outside its poles,
this defines an element of HomG(F )(I

G
P (Vχ), IG

P ′(Vχ)). Moreover for any χ ∈ X(M(F )),
there exists φ ∈ IG

P (Vχ) such that JP ′|P (ρχ)φ converges and is not zero [12, IV.1 (10)]. If
further π is tempered, then JP ′|P (πχ)φ converges at χ ∈ X(M(F )) satisfying α∨(<χ) > 0,
∀α ∈ ΣP \ ΣP ′ [12, Prop. IV.2.1].

2.5 Infinitesimal characters

Recall that an admissible representation (π, V ) of G(F ) is cuspidal if its restriction to
G(F )1 is finite [2]. A theorem of Harish-Chandra asserts that this is equivalent to πP = {0}
for P 6= G, ∈ F . In particular, if (ρ, E) is a cuspidal representation of M(F ), then for
any P , P ′ ∈ P(M), the Bruhat filtration simplifies to

[IG
P (ρ)P ′ ] =

∑
w∈W (M)

w(ρ).

We write Π0(G(F )) for the subset of unitarizable cuspidal elements in Π(G(F )). This is
contained in Π2(G(F )). For each π ∈ Π(G(F )), there there exist Pc = McUc ∈ F and
an irreducible cuspidal representation (ρ, Vρ) of Mc(F ) such that π is isomorphic to a
subrepresentation of IG

Pc
(ρ) [3, Th. 2.5]. Then π appears as a subquotient of IG

P ′
c
(ρ) for

any P ′
c ∈ P(Mc). Moreover the pair (Mc, ρ) is determined uniquely modulo W -conjugacy

by π [3, Th. 2.9]. We call the W -conjugacy class the infinitesimal character of π and
denote it by Xπ. Also we write Pc(π) :=

⋃
(Mc,ρ)∈Xπ

P(Mc).

If an admissible representation (π, V ) of finite length of G(F ) admits an irreducible
cuspidal subquotient ρ, then ρ appears both as a submodule and a quotient of π [2, 3.30].
From this property we deduce the following.

Lemma 2.3. Let P = MU ∈ F and (ρ, V ) be an irreducible cuspidal representation of
M(F ). Then π ∈ Π(G(F )) is a submodule of IG

P (ρ) if and only if it is a quotient of IG
P̄

(ρ).

Proof. π is a submodule of IG
P (ρ) if and only if

{0} 6= HomG(F )(π, IG
P (ρ)) ' HomM(F )(πP , ρ)

by Frobenius reciprocity. The above remark asserts that this is equivalent to

{0} 6=HomM(F )(ρ, πP ) ' HomM(F )((πP )∨, ρ∨)

'HomM(F )((π
∨)P̄ , ρ∨) ' HomG(F )(π

∨, IG
P̄ (ρ∨))

'HomG(F )(I
G
P̄ (ρ), π)

as desired.

Using these, we can strengthen the Langlands-Casselman criterion as follows.

Lemma 2.4. (i) π ∈ Π(G(F )) is square integrable if its central character is unitary and
<Exp(πPc) ⊂ +a∗Pc

for any Pc ∈ Pc(π).
(ii) π ∈ Π(G(F )) is tempered if its central character is unitary and <Exp(πPc) ⊂ +ā∗Pc

for
any Pc ∈ Pc(π).
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Proof. (i) The condition is obviously necessary. To see the sufficiency, we take P = MU ∈
F and an irreducible subquotient τ of πP , and show <Exp(τ) = <(ωτ |AM (F )) ∈ +a∗P . We
take (Mc, ρ) ∈ Xπ and Pc ∈ P(Mc) such that π is a submodule of IG

Pc
(ρ). Since ρ is

cuspidal, the Bruhat filtration simplifies

[IG
Pc

(ρ)P ] =
∑

w∈P WPc

[IM
w(Pc)M (w(ρw−1(Pc)M ))] =

∑
w∈W M\W
w(Mc)⊂M

[IM
w(Pc)M (w(ρ))].

Thus τ is a subquotient of some IM
w(Pc)M (w(ρ)). In particular,

For any irreducible subquotient τ of πP , Xτ is a subset of Xπ.

Now take PM
c ∈ Pc(τ) such that τP M

c
6= {0}. If we write Pc := PM

c U , then πPc 6= {0} and

Exp(τ) ={(χ|AM (F )) |χ ∈ Exp(τP M
c

)} = {(ωσ|AM (F )) |σ ∈ JH(τP M
c

)}
⊂{(ωσ|AM (F )) |σ ∈ JH(πPc)} = {(χ|AM (F )) |χ ∈ Exp(πPc)}.

But by the condition, <χ =
∑

βc∈∆Pc
xβcβc, (∃xβc > 0) for χ ∈ Exp(πPc), so that

<(χ|AM (F )) = (<χ)M =
∑

βc∈∆Pc\∆PM
c

xβ(βc|aM
)

belongs to +aG,∗
P . The sufficiency is proved. (ii) can be proved in the same way.

3 Langlands classification

In this section we prove the Langlands quotient theorem for p-adic reductive groups.

3.1 Standard modules and its matrix coefficients

Recall that a standard module of G(F ) is a representation of the form (IG
P (πλ), I

G
P (Vλ)),

where P = MU ∈ F , π ∈ Πtemp(M(F )) and λ ∈ a∗,+P . We write

lim
a→

P
∞

f(a) = 0

if for arbitrary small ε, δ > 0, there exists R > 0 such that |f(a)| < ε for any a ∈
AM(F ) ∩G(F )1 satisfying

• α(HM(a)) < −R, ∀α ∈ ΣP ;

• α(HM(a))/β(HM(a)) > η, ∀α, β ∈ ΣP .

The following proposition is the analogue for p-adic groups of [9, Lem. 2.12]. The proof
is completely the same and is omitted.
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Proposition 3.1. Let (IG
P (πλ), I

G
P (Vλ)) be a standard module. Then for φ ∈ IG

P (Vλ) and
φ∨ ∈ IG

P (V ∨
−λ) we have

lim
a→̄

P
∞

δP (a)1/2ωπλ
(a)−1〈IG

P (πλ, ma)φ, φ∨〉

=γ(G/M)−1〈(JP̄ |P (πλ)φ)(m), φ∨(1)〉, m ∈ M(F ).

This allows us to define the so called Langlands quotient of a standard module.

Corollary 3.2. Suppose (IG
P (πλ), I

G
P (Vλ)) is a standard module.

(i) Any φ ∈ IG
P (Vλ) with JP̄ |P (πλ)φ 6= 0 generates IG

P (Vλ) as a G(F )-module.
(ii) In particular, the representation JG

P (πλ) on JG
P (Vλ) := imJP̄ |P (πλ) is irreducible. It is

the unique irreducible quotient of IG
P (πλ).

Proof. (i) Take φ as in the statement. It suffices to show that if φ∨ ∈ IG
P (V ∨

−λ) satisfies
〈IG

P (πλ, g)φ, φ∨〉 = 0, ∀g ∈ G(F ), then φ∨ = 0. Applying the proposition to

0 = 〈IG
P (πλ, g

−1ah)φ, φ∨〉 = 〈IG
P (πλ, ah)φ, IG

P (π∨−λ, g)φ∨〉,

we have

0 =γ(G/M) lim
a→

P
∞

δP (a)1/2ωπλ
(a)−1〈IG

P (πλ, ah)φ, IG
P (π∨−λ, g)φ∨〉

=〈JP̄ |P (πλ)φ(h), φ∨(g)〉, ∀h, g ∈ G(F ).

By assumption, we can take h ∈ G(F ) such that JP̄ |P (πλ)φ(h) 6= 0. Then we must have

0 = 〈JP̄ |P (πλ)φ(mh), φ∨(g)〉 = δP (m)−1/2〈πλ(m)(JP̄ |P (πλ)φ(h)), φ∨(g)〉

for any m ∈ M(F ), g ∈ G(F ). Since πλ is irreducible, this shows φ∨ = 0.
(ii) Take any proper maximal subrepresentation V ′ of IG

P (Vλ). If V ′ 6⊂ kerJP̄ |P (πλ), (i)
implies V ′ = IG

P (Vλ) which contradicts our choice of V ′. Hence V ′ ⊂ kerJP̄ |P (πλ) and any
irreducible quotient IG

P (Vλ)/V
′ has JG

P (Vλ) as a quotient.

3.2 The order ≤P and a partition of a∗M

We prepare some geometric properties of restricted roots which play an important role in
the proof of Langlands classification [9, § 4].

Take P = MU ∈ F . Define an order λ ≤P µ on a∗M by µ ∈ λ + +āG,∗
P . For P1 =

M1U1 ⊃ P , ∆P1 is obtained by restricting ∆P \ ∆P M1 . Thus for λ, µ ∈ a∗M1
, λ ≤P µ is

equivalent to λ ≤P1 µ. We also set

a∗P (P1) :=

{
λ ∈ a∗M

∣∣∣∣ (i) α∨(λ) > 0, ∀α ∈ ∆P1

(ii) $∨,M1
α (λ) ≤ 0, ∀α ∈ ∆P M1

}
= −+āM1,∗

P M1
⊕ a∗,+P1

.

The simplest case is a∗P (P ) = a∗,+P , and we have the disjoint decomposition

a∗M =
∐

P1∈F(M)

a∗,+P1
. (3.1)

Here F(M) is the set of P1 ∈ F containing M .
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Lemma 3.3. a∗M =
∐

P1;G⊃P1⊃P a∗P (P1).

Proof. First let us show that a∗P (P1), (P ⊂ P1 ⊂ G) cover a∗M by an induction on |∆P |.
If P is maximal, aG,∗

M is 1-dimensional and a∗P (P ) = a∗,+P , a∗P (G) = −ā∗,+P , so that the
assertion is clear. For general P ∈ F , we take λ ∈ a∗M . Suppose λ /∈ a∗P (P ) and take
α ∈ ∆P such that α∨(λ) ≤ 0. Let Pα = MαUα ⊃ P , ∈ F be such that ∆P Mα = {α}.
Applying the induction hypothesis to λMα , we find P1 = M1U1 ⊃ Pα such that

λMα = −
∑

β∈∆
PM1

, 6=α

xβ(β|aMα
) +

∑
γ∈∆P1

yγ$γ, ∃xβ ≥ 0, yγ > 0.

On the other hand, since aMα,∗
M = Rα,

λMα =
〈λ, α∨〉
〈α, α∨〉

α, β|aMα
= β − 〈β, α∨〉

〈α, α∨〉
α.

Thus we have

λ =−
∑

β 6=α,∈∆
PM1

xβ

(
β − 〈β, α∨〉

〈α, α∨〉
α

)
+

∑
γ∈∆P1

yγ$γ +
〈λ, α∨〉
〈α, α∨〉

α

=−
∑

β 6=α,∈∆
PM1

xββ +
( 〈λ, α∨〉
〈α, α∨〉

+
∑

β 6=α,∈∆
PM1

xβ
〈β, α∨〉
〈α, α∨〉

)
α +

∑
γ∈∆P1

yγ$γ.

The coefficient of α is not positive by (2.4) and our assumption, hence λ ∈ a∗P (P1). Next
show that a∗P (P1), (P ⊂ P1 ⊂ G) are disjoint. Suppose P1 6= P2 contain P . We may
assume that ∆P M2 \∆P M1 is not empty. If α ∈ ∆P M2 \∆P M1 , then

〈$∨,M2
α a∗P (P1)〉 = 〈$∨,M2

α , aM2,∗,+
P

M2
1

〉 = R>0,

〈$∨,M2
α , a∗P (P2)〉 = 〈$∨,M2

α ,−+āM2,∗
P M2

〉 = R≤0,

hence a∗P (P1) and a∗P (P2) are disjoint.

Lemma 3.4. Suppose P , P ′ ∈ F contain Pc ∈ F . If λ ∈ a∗Pc
(P ), λ′ ∈ a∗Pc

(P ′) satisfy
λ ≥Pc λ′, then λM ≥Pc λ′M ′.

Proof. The hypothesis amounts to $∨
α(λ) ≥ $∨

α(λ′), ∀α ∈ ∆Pc .
(i) If α ∈ ∆Pc \∆P M′

c
, λ ∈ a∗Pc

(P ) implies λM ≥Pc λ so that

$∨
α(λM) ≥ $∨

α(λ) ≥ $∨
α(λ′) = $∨

α(λ′M ′).

(ii) Suppose α ∈ ∆P M′
c

. Since λM ∈ a∗,+P , (λM)M ′ ∈ āM ′,∗,+
P M′

c
⊂ +āM ′,∗

P M′
c

and

〈$∨,M ′

α , λM〉 ≥ 0. (3.2)

If we expand $∨
α,M ′ =

∑
β∈∆P ′ xβ$∨

β , the coefficient of β = βc|aM′ , (βc ∈ ∆Pc \ ∆P M′
c

)
satisfies

xβ =〈β, $∨
α〉 = 〈βc − βM ′

c , $∨
α〉 = −〈βM ′

c , $∨,M ′

α 〉 = −〈βc, $
∨,M ′

α 〉

∈ − 〈βc,
∑

γ∈∆
PM′

c

R≥0γ
∨〉 = R≥0
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by (2.4). Combining this with (3.2), we obtain

〈$∨
α , λM − λ′M ′〉 =〈$∨,M ′

α , λM〉+
∑

β∈∆P ′

xβ〈$∨
β , λM − λ′M ′〉

≥
∑

βc∈∆Pc\∆PM′
c

xβ〈$∨
βc

, λM − λ′M ′〉.

As was seen in (i), the right hand side is non-negative.

3.3 Langlands classification

Now we prove the result of this section.

Theorem 3.5. (i) For any irreducible admissible representation (π, V ) of G(F ), there
exist P = MU ∈ F , τ ∈ Πtemp(M(F )) and λ ∈ a∗,+P such that π ' JG

P (τλ).
(ii) The triple (P, τ, λ) is uniquely determined by π up to W -conjugacy.

Proof. (i) We first choose P and λ. We fix P0 ∈ P(M0) and write F(P0) for the set of
P0-standard parabolic subgroups of G. Also set Pc(π, P0) := Pc(π)∩F(P0). For each µ ∈⋃

Pc∈Pc(π,P0) <Exp(πP̄c
) there exists a unique Pµ ∈ F(P0) such that µ ∈ a∗P0

(Pµ) (Lem. 3.3).

Take Λ ∈
⋃

Pc∈Pc(π,P0) <Exp(πP̄c
) such that ΛMΛ

∈ a∗,+PΛ
is maximal with respect to the

order ≥P0 , and set P := PΛ, λ := ΛM ∈ a∗,+P . Next choose τ . Take Pc ∈ Pc(π, P0) such
that <Exp(πP̄c

) contains Λ. Since P ⊃ Pc, we have Exp(πP̄ ) ⊃ {(χ|AM (F )) |χ ∈ Exp(πP̄c
)}.

Notice that these two sets might not coincide because Jacquet modules along P̄M
c of some

irreducible constituents of πP̄ can be zero. Anyway we find χ ∈ Exp(πP̄ ) such that
<χ = Λ|aM

= λ. The weak χ-isotypic subspace VP̄ ,χ of VP̄ is an M(F )-submodule. Let
(τ, Vτ ) be such that (τλ, Vτ,λ) is an irreducible subrepresentation of VP̄ ,χ.

Let us prove that (P, τ, λ) satisfies the condition of (i). Combining Frobenius reci-
procity and duality for Jacquet modules, we have

{0} 6=HomM(F )(τλ, πP̄ ) ' HomM(F )((π
∨)P , τ∨−λ) ' HomG(F )(π

∨, IG
P (τ∨−λ))

'HomG(F )(I
G
P (τλ), π).

Thus π is an irreducible quotient of IG
P (τλ). We still have to prove that (τ, Vτ ) is tempered.

By construction its central character ωτ is unitary. Thanks to Lem. 2.4, it suffices to
verify <Exp(τ

P̄ ′M
c

) ⊂ −+āM,∗
P ′

c
M for any P ′

c
M ∈ Pc(τ, P

M
0 ). For this, we write P ′

c := P ′
c
MU ∈

Pc(π, P0) and take χ ∈ Exp(τ
P̄ ′M

c
). We need to check <χ =

∑
β∈∆

P ′
c
M

xββ for some xβ ≤ 0.

Take the parabolic subgroup P ⊃ (Q = LN) ⊃ P ′
c such that ∆P ′

c
L = {β ∈ ∆P ′

c
M |xβ > 0}.

Also we find P ⊃ P1 ⊃ P ′
c for which <χ + λ ∈ a∗P ′

c
(P1). From definition, we have

<χ + λ ≥P ′
c

∑
β∈∆

P ′
c
M \∆

P ′
c
L

xββ + λ.

Thus Lem. 3.4 gives

(<χ + λ)M1 ≥P ′
c

( ∑
β∈∆

P ′
c
M \∆

P ′
c
L

xββ + λ
)

M
= λ = ΛM .
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But since eλχ ∈ Exp(τ
λ,P̄ ′M

c
) ⊂ Exp(πP̄ ′

c
), our choice of Λ implies

(<χ)M1 + λ = (<χ + λ)M1 ≤P ′
c
ΛM = λ.

Hence (<χ)M1 = 0 so that xβ ≤ 0 for any β ∈ ∆P ′
c
M .

(ii) Suppose two triples (P, τ, λ) and (P ′, τ ′, λ′) as in the theorem satisfy JG
P (τλ) '

π ' JG
P ′(τ ′λ′). We may assume both P and P ′ contain P0. By Prop. 2.2, we have Pd =

MdUd ⊂ P and σ ∈ Π2(Md(F )) such that τ is a direct summand of IM
P M

d
(σ). Moreover [3,

Th. 2.5] assures that there exists Pc = McUc ⊂ Pd, ρ ∈ Π0(Mc(F )) and µ ∈ aMd,∗
Mc

such

that σ is a submodule of IMd

P̄
Md
c

(ρµ), equivalently (Lem. 2.3), a quotient of IMd

P
Md
c

(ρµ).

{0} 6= HomMd(F )(σ, IMd

P̄
Md
c

(ρµ)) ' HomMc(F )(σP̄
Md
c

, ρµ)

combined with the Langlands-Casselman criterion gives µ ∈ −+aMd,∗
P

Md
c

. Also writing Λ :=

λ + µ, π is a quotient of IG
Pc

(ρΛ). Similarly for (P ′, τ ′, λ′) we take P ′
c ⊂ P ′

d ⊂ P ′, σ′ ∈
Π2(M

′
d(F )), ρ′ ∈ Π0(M

′
c(F )) and µ′ ∈ −+a

M ′
d,∗

P
′M′

d
c

. Since IG
Pc

(ρµ) and IG
P ′

c
(ρ′µ′) share the

irreducible constituent π, there is w1 ∈ W such that

w1(Mc) = M ′
c, w1(ρ) ' ρ′, w1(Λ) = Λ′. (3.3)

Next the Bruhat filtration gives

[IG
Pd

(σλ)P̄ ′
c
] =

∑
w∈P̄ ′

c
WPd

[I
M ′

c

w(Pd)M′
c
(w(σλ,w−1(P̄ ′

c)
Md ))]

=
∑

w∈W/W Md

w(Md)⊃M ′
c

[w(σw−1(P̄ ′
c)

Md )w(λ)].

Notice that, thanks to (3.3) and the vanishing of the Jacquet modules of cuspidal repre-
sentations, the terms of w with w(Pd)

M ′
c 6= M ′

c vanish. On the other hand,

{0} 6= HomG(F )(I
G
P ′

c
(ρ′Λ′), π) ' HomG(F )(π

∨, IG
P ′

c
(ρ′

∨
−Λ′)) ' HomM ′

c(F )(π
∨
P ′

c
, ρ′

∨
−Λ′)

' HomMc′ (F )(ρ
′
Λ′ , πP̄ ′

c
),

so that ρ′Λ′ ∈ JH(πP̄ ′
c
) ⊂ JH(IG

Pd
(σλ)P̄ ′

c
). Thus ρ′Λ′ ∈ v(JH(σv−1(P̄ ′

c)
Md ))v(λ) for some v ∈

W/WMd with v(Md) ⊃ M ′
c. But since IG

Pd
(σ) is tempered,

<Exp(IG
Pd

(σ)) =
⋃

w∈W/W Md

w(Md)⊃M ′
c

<Exp(w(σw−1(P̄ ′
c)

Md ))

is contained in −+āG,∗
P ′

c
. Thus Λ′ ≤P ′

c
v(λ). Moreover, taking P1 ⊃ P ′

c such that v(λ) ∈
a∗P ′

c
(P1), we obtain

λ′ ≤P ′
c
v(λ)M1 , λ′ ≤P0 v(λ)M1 (3.4)

from Lem. 3.4. Now we claim the following. We fix a W -invariant positive definite
symmetric bilinear form ( | ) and write ‖ ‖ for the associated norm.
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Claim 3.5.1. If λ, λ′ ∈ āG,∗,+
P0

satisfy λ ≤P0 λ′, then ‖λ‖ ≤ ‖λ′‖.

Proof. Recall that the coroot α∨ of α ∈ ∆P0 is identified with 2α/‖α‖2 by ( | ) [7, VI.1.1
Lem. 2], so that

(α|$β) =
‖α‖2

2
δα,β, α, β ∈ ∆P0 . (3.5)

λ, λ′ are written as

λ =
∑

β∈∆P0

yβ$β, λ′ =
∑

β∈∆P0

y′β$β, yβ, y′β ≥ 0,

and the assumption on them is

λ′ = λ +
∑

α∈∆P0

xαα, xα ≥ 0.

Hence the claim follows from

(λ|λ′) =‖λ‖2 +
∑

α, β∈∆P0

xαyβ(α|$β) = ‖λ‖2 +
∑

α∈∆P0

xαyα
‖α‖2

2
≥ ‖λ‖2,

(λ|λ′) =‖λ′‖2 +
∑

α, β∈∆P0

xαy′β(α|$β) = ‖λ‖2 −
∑

α∈∆P0

xαy′α
‖α‖2

2
≤ ‖λ′‖2.

Since aG,∗
M and aM,∗

0 are spanned by ∆̂P0 \ ∆̂P M
0

and ∆P M
0

, respectively, (3.5) in the

above proof assures that aG,∗
M and aG,∗

0 are orthogonal to each other under ( | ). Applying
this and the claim to (3.4), we obtain

‖λ′‖ ≤ ‖v(λ)M1‖ ≤ ‖v(λ)‖ = ‖λ‖. (3.6)

Replacing the role of (P, τ, λ) and (P ′, τ ′, λ′), we obtain the reverse inequality and hence
‖λ‖ = ‖λ′‖. This together with (3.6) implies v(λ) = v(λ)M1 ∈ aG,∗,+

P1
. Thanks to (3.1),

this and λ ∈ a∗P force P1 = v(P ). Since P1 and P are both P0-standard, we conclude
P = P1 and v ∈ WM . In particular (3.4) reads λ′ ≤P0 λ. Again replacing (P, τ, λ) and
(P ′, τ ′, λ′), we also have λ ≤P0 λ′, hence λ = λ′, P = P ′.

We still have to show τ ' τ ′. Since π ' JG
P (τ ′λ) is a submodule of IG

P̄
(τ ′λ), we have

HomM(F )(I
G
P (τλ)P̄ , τ ′λ) ' HomG(F )(I

G
P (τλ), I

G
P̄ (τ ′λ)) 6= {0}.

Comparing this with the Bruhat filtration formula

[IG
P (τλ)P̄ ] =

∑
w∈P̄ WP

[IM
w(P )M (w(τw−1(P̄ )M )w(λ))],

we see
τ ′λ ∈ JH

(
IM
w(P )M (w(τw−1(P̄ )M )w(λ))

)
, ∃w ∈ P̄ WP . (3.7)
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But the temperedness of IG
P (τ) implies <Exp(IM

w(P )M (w(τw−1(P̄ )M ))) is contained in−+aG,∗
P ⊂

−+aG,∗
P0

, that is, λ ≤P0 w(λ). Again applying the above claim and the argument just after
it, we have

‖λ‖ ≤ ‖w(λ)Mw‖ ≤ ‖w(λ)‖ = ‖λ‖,

where Pw = MwUw ∈ F(P0) is such that w(λ) ∈ a∗P0
(Pw). But this shows w(λ) =

w(λ)Mw ∈ aG,∗,+
Pw

and thus w(P ) = Pw. Again noting that P and Pw are standard, this
forces Pw = P , w ∈ WM . Now (3.7) reads τ ′λ ∈ JH(τλ), hence τ ′ ' τ . (Q.E.D)

4 Some irreducibility results

In this section we give several applications of Th. 3.5 or rather Prop. 3.1. We first deduce
a theorem of Waldspurger on irreducibility of parabolically induced modules.

4.1 A theorem of Waldspurger

We need the following lemma.

Lemma 4.1. Suppose P = MU ∈ F is maximal and ρ ∈ Π0(M(F )). Then there
exists a Zariski open dense subset ΞP (ρ) ⊂ X(M(F )) such that IG

P (ρχ) is irreducible for
χ ∈ ΞP (ρ).

Proof. It suffices to construct a proper Zariski closed subset Z(ρ) ∈ X(M(F )) which
contains any χ ∈ X(M(F )) such that IG

P (ρχ) is reducible. Recall the exact sequence
(2.7). We have IG

P (ρχω) ' IG
P (ρχ)ω for ω ∈ X(G(F )), so that the reducibility of IG

P (ρχ)
depends only on the image χG of χ ∈ X(M(F )) in XG(M(F )). Let us construct a
Zariski closed proper subset ZG(ρ) ⊂ XG(M(F )) which contains all χG such that IG

P (ρχ)
is reducible. We consider the cases χG ∈ XG

unit(M(F )) and χG /∈ XG
unit(M(F )) separately.

First suppose χG ∈ XG
unit(M(F )). By multiplying <χ−1 ∈ X(G(F )) to χ if necessary,

we may assume that χ ∈ Xunit(M(F )). Since ρχ ∈ Π0(M(F )) ⊂ Π2(M(F )), IG
P (ρχ) is

reducible only if w(ρχ) ' ρχ for some element w 6= 1, ∈ W (M) [12, Prop. IV.2.2]. Such
w is unique if it exists because P is maximal, and we must have w(P ) = P̄ . If IG

P (ρχµ) is
reducible at some other χµ ∈ Xunit(M(F )), then we must have w(ρχµ) ' (ρχ)w(µ) ' ρχµ

so that
w(µ)µ−1 ∈ Stab(ρχ, X(M(F ))). (4.1)

We know from [4, 2.2] that Stab(ρχ, X(M(F ))) is a finite group, and hence χµ ∈ X(M(F ))
satisfying (4.1) form a proper Zariski closed subset Z0(ρ) ⊂ X(M(F )).

Next assume χG /∈ XG
unit(M(F )). If we write α for the unique element of ∆P , then we

have α∨(<χ) = α∨(<χG) 6= 0. First consider the case α∨(<χ) > 0. Then IG
P (ρχ) admits

a unique irreducible quotient JG
P (ρχ) = imJP̄ |P (ρχ) (Cor. 3.2), so that IG

P (ρχ) is reducible
if and only if δG

P (ρχ) := kerJP̄ |P (ρχ) is non-trivial. At such χ ∈ X(G(F )), the Jacquet
modules of JG

P (ρχ) and δG
P (ρχ) are calculated as follows. Note that the infinitesimal

characters of these representations consist of the W -conjugates of (M, ρχ), so that at
least one of the Jacquet modules along P and P̄ does not vanish.
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(1) If P and P̄ are conjugate, w(P ) = P̄ assures both δG
P (ρχ)P and JG

P (ρχ)P do not
vanish. From the Bruhat filtration formula [IG

P (ρχ)P ] = ρχ + w(ρ)w(χ), either

(δG
P (ρχ)P , JG

P (ρχ)P ) ' (ρχ, w(ρ)w(χ))

or (w(ρ)w(χ), ρχ) occurs. Since the latter combined with Lem. 2.4 forces JG
P (ρχ) ∈

Π2(G(F )) and contradicts the uniqueness of the Langlands data (Th. 3.5 (ii)), we
must have the former.

(2) Otherwise, W (M) is trivial and the Bruhat filtration formula becomes IG
P (ρχ)P '

IG
P (ρχ)P̄ ' ρχ. Thus we have either

δG
P (ρχ)P ' JG

P (ρχ)P̄ ' ρχ

or δG
P (ρχ)P̄ ' JG

P (ρχ)P ' ρχ. The latter possibility does not occur by the same
reasoning as in (1), hence the former holds.

Now we recall some construction from the proof of [12, Th. IV.1.1]. If we write BM

for the polynomial ring of the C-torus X(M(F )), each m ∈ M(F ) determines an element
bm : X(M(F )) 3 χ 7→ χ(m) ∈ C× of B×

M . This gives the universal character :

µBM
: M(F ) 3 m 7−→ bm ∈ B×

M .

of M(F ). Using this, we define the BM -admissible representations (in the sense of [4,
1.7])

(ρB := ρ⊗ µBM
, VB := V ⊗C BM)

of M(F ), and (IG
P (ρB), IG

P (VB)) of G(F ). Now the rationality of JP̄ |P (ρχ) is equivalent
to the existence of a homomorphism J ∈ HomG(F ),BM

(IG
P (VB), IG

P̄
(VB)) of BM -admissible

representations and b ∈ BM such that

b(χ)JP̄ |P (ρχ)φχ = J(φ)χ, ∀χ ∈ X(M(F )), φ ∈ IG
P (VB).

Here φχ denotes the localization of φ at χ.
Applying the Jacquet functor to this J , we obtain JP ∈ HomM(F ),BM

(IG
P (VB)P , IG

P̄
(VB)P ).

The Bruhat filtration F•,P of IG
P (VB)P is defined. We take a non-zero element v ∈ F1,P '

VB and consider JP (v). We note

(3) χ 7→ JP (v)χ is a polynomial function on X(M(F )). Moreover, (1), (2) above show
that JP (v) has a zero at χ with α∨(<χ) > 0 if IG

P (ρχ) is reducible.

(4) JP̄ |P (ρχ) is an isomorphism at χ ∈ Xunit(M(F )) where ρχ is G-regular. Thus JP (v) ∈
IG
P̄

(VB)P is not zero.

(4) combined with the commutative diagram

IG
P (Vχω)

JP̄ |P (ρχω)
−−−−−−→ IG

P̄
(Vχω)y y

IG
P (Vχ)ω

ω◦JP̄ |P (ρχ)◦ω−1

−−−−−−−−−→ IG
P̄

(Vχ)ω
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shows that the set of χG ∈ XG(M(F )) such that χ is a zeros of χ 7→ JP (v)χ is a proper
Zariski closed subset Z+(ρ)G of XG(M(F )). By (3), the set of χG ∈ X(M(F )) such that
α∨(<χ) > 0 and IG

P (ρχ) is reducible is contained in this Z+(ρ)G.
Finally, we consider the case α∨(<χ) < 0. Since the reducibility of IG

P (ρχ) is equiva-
lent to that of the contragredient IG

P (ρ∨χ−1), the proper Zariski closed subset Z−(ρ)G :=

(Z+(ρ∨)G)−1 ⊂ XG(M(F )) contains those χ with α∨(<χ) < 0 such that IG
P (ρχ) is re-

ducible.
We conclude that the set of χG ∈ XG(M(F )) where IG

P (ρχ) is reducible, is contained
in the Zariski closed subset

Z(ρ)G := Z0(ρ)G ∪ Z+(ρ)G ∪ Z−(ρ)G.

Now we are able to prove the following irreducibility theorem of Waldspurger.

Theorem 4.2 ([10] Th. 3.2). For P = MU ∈ F and an irreducible admissible represen-
tation (π, V ) of M(F ), there exists a neighborhood U of 0 in a∗M,C such that the following
holds. IG

P (πλ) is irreducible for any λ ∈ U such that α∨(<λ) 6= 0, ∀α ∈ ΣM .

Proof. For (Mc, ρ) ∈ Xπ, there exists Pc ∈ P(Mc) contained in P such that π is isomorphic
to a submodule of IM

P M
c

(ρ). Then [IG
P (πλ)] is contained in IG

Pc
(ρλ) so that (Mc, ρλ) ∈ Xτ

for any irreducible subquotient τ of IG
P (πλ). In particular we can take P ′

c ∈ P(Mc) such
that

HomMc(F )(τP ′
c
, ρλ) ' HomG(F )(τ, I

G
P ′

c
(ρλ)) 6= 0.

On the other hand Bruhat filtration asserts that

[IG
P (πλ)P ′

c
] =

∑
w∈P ′

c
WP

[IMc

w(P )Mc (w(πλ,w−1(P ′
c)

M ))]

=
∑

w∈W/W M

w(M)⊃Mc

[w(πλ,w−1(P ′
c)

M )].
(4.2)

Claim 4.2.1. We can take a neighborhood U of 0 in a∗M,C sufficiently small, so that the
set of irreducible constituents of w(πλ,w−1(P ′

c)
M ), (w ∈ W/WM , w(M) ⊃ Mc) are disjoint

to each other at any λ ∈ U satisfying α∨(<λ) 6= 0, ∀α ∈ ΣM .

Proof. If there are no such neighborhood, we can take a sequence {λn}n∈N in a∗M,C which
converges to 0 such that

• α∨(<λn) 6= 0, ∀α ∈ ΣM ;

• For any n ∈ N, there exist w1 6= w2 ∈ W/WM which satisfies the condition of (4.2)
such that w1(πλ,w−1

1 (P ′
c)

M ) and w2(πλ,w−1
2 (P ′

c)
M ) share a same irreducible constituent.
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By replacing {λn}n∈N with its subsequence, we may assume that w1, w2 are independent
of n. Since the Bruhat filtration gives

[wi(I
M
P M

c
(ρ)w−1

i (P ′
c)

M )wi(λ)] =
∑

w∈W M/W Mc

w(Mc)=w−1
i (Mc)

[wi(w(ρ))wi(λ)]

=
∑

w∈W M (Mc)

[w(ρ)wi(λ)],

for each n ∈ N, we find v1, v2 ∈ WM(Mc) such that

v1(ρ)w1(λn) ' v2(ρ)w2(λn).

Again taking some subsequence, we can assume vi are independent of n. The set of
w1(λn)− w2(λn) satisfying this equality is finite modulo 2πia∗Mc(F ) by [4, 1.6], and hence

discrete in a∗M,C. As {λn}n∈N tends to 0, this implies v1(ρ) ' v2(ρ) and in particular, for
sufficiently large n ∈ N, we have

w1(λn) = w2(λn).

Now since α∨(<λn) 6= 0, ∀α ∈ ΣM , <λn belongs to a uniquely determined chamber
a∗,+P ′ in a∗M . Then the above equality implies that w−1

1 w2 preserves a∗,+P ′ , or equivalently
w−1

1 w2 ∈ WM . This is a contradiction.

Now let λ ∈ U be as in the claim. For (IG
P (πλ), I

G
P (Vλ)) to be irreducible, it suffices

that its irreducible submodule (τ, Vτ ) is isomorphic to IG
P (πλ).

Claim 4.2.2. IG
P (πλ) ' τ if and only if [w(πw−1(P ′

c)
M )w(λ)] ⊂ [τP ′

c
] for any P ′

c ∈ P(Mc)
and w ∈ W/WM satisfying w(M) ⊃ Mc.

Proof. Since we have chosen λ ∈ U as in the claim, the condition is equivalent to [τP ′
c
] ⊃

[IG
P (πλ)P ′

c
], ∀P ′

c ∈ P(Mc). This amounts to the vanishing of the Jacquet modules of
IG
P (Vλ)/Vτ along any P ′

c ∈ P(Mc). Thanks to [4, 2.5], this implies IG
P (Vλ)/Vτ = {0}.

Since the condition of this claim can be rewritten as [w−1(τP ′
c
) = τw−1(P ′

c)
] ⊃ [πλ,w−1(Pc′ )

M ],
replacing P ′

c for w−1(P ′
c), it suffices to show the following.

Claim 4.2.3. If λ ∈ U satisfies α∨(<λ) 6= 0, ∀α ∈ ΣM , then [τP ′
c
] ⊃ [πλ,P ′

c
M ] for any

M ′
c ∈ LM which is G(F )-conjugate to Mc and P ′

c ∈ P(M ′
c).

Let us prove this by induction on d(P ′
c, P

′
c
MU), where d(P, P ′) denotes the number of

walls between the chambers a∗,+P and a∗,+P ′ . When P ′
c = P ′

c
MU ,

{0} 6= HomG(F )(τ, I
G
P (πλ)) ' HomM(F )(τP , πλ)

gives πλ ⊂ [τP ] and hence [πλ,P ′
c
M ] ⊂ [(τP )P ′

c
MU ] = [τP ′

c
].

Next suppose d(P ′
c, P

′
c
MU) = d > 0 and take P ′′

c ∈ P(M ′
c) such that d(P ′

c, P
′′
c ) = 1,

d(P ′′
c , P ′

c
MU) = d − 1. Then ΣP ′

c
MU \ ΣP ′

c
= (ΣP ′

c
MU \ ΣP ′′

c
) t (ΣP ′′

c
\ ΣP ′

c
) is disjoint to

18



ΣP ′
c
M so that ΣP ′

c
M = ΣP ′

c
M ∩ ΣP ′′

c
= ΣP ′′

c
M . That is, P ′

c
M = P ′′

c
M . This combined with

the induction hypothesis gives

[τP ′′
c
] ⊃ [πλ,P ′′

c
M ] = [πλ,P ′

c
M ].

What is left to show is that we can replace P ′′
c with P ′

c in the left hand side. Noting that
the appearing representations are all cuspidal, we have only to show that if (M ′

c, ρ
′) ∈

XIG
P (π) = W.Xπ, the multiplicities of ρ′λ in [τP ′′

c
] and [τP ′

c
] are equal.

Claim 4.2.4. If (M ′
c, ρ

′
λ) ∈ Xτ with ρ′ ∈ Π0(M

′
c(F )) (i.e. ρ′ is unitarizable) and λ ∈ U

satisfies the condition of the theorem, then the multiplicities of ρ′λ in [τP ′′
c
] and [τP ′

c
] are

equal.

Proof. We write α ∈ ∆P ′
c

for the unique element of Σred
P ′

c
\ Σred

P ′′
c
. Let M1 ∈ L(M ′

c) be such
that ∆P ′

c
M1 = {α} and set P1 := M1 · U ′

c. Then P1 ∈ F(M1) contains P ′
c. Also noting

Σred
P ′′

c
= (Σred

P ′
c
\ {α}) t {−α}, we have

{(β|aM1
) 6= 0 | β ∈ Σred

P ′′
c
} = {(β|aM1

) | β 6= −α, ∈ Σred
P ′′

c
} = Σred

P1

so that P ′′
c ⊂ P1. It is enough to prove that

The multiplicities of ρ′λ in [σP ′
c
M1 ] and [σP ′′

c
M1 ] are equal for any irreducible

constituent σ of τP1 .

Since PM1(M ′
c) = {P ′

c
M1 , P ′′

c
M1}, either σP ′

c
M1 or σP ′′

c
M1 does not vanish so that we may

assume σP ′
c
M1 6= 0. Any irreducible quotient of σP ′

c
M1 is of the form w(ρ′λ), (∃w ∈ W (M ′

c)),

and Frobenius reciprocity shows that σ is a submodule of IM1

P ′
c
M1

(w(ρ′)w(λ)). Thanks

to Lemma 4.1, IM1

P ′
c
M1

(w(ρ′)χ) is irreducible at χ in some Zariski open dense subset of

X(M ′
c(F )), and hence the theorem is valid for IM1

P ′
c
M1

(w(ρ′)µ), (µ ∈ a∗M ′
c,C). Now since

P ′
c
M = P ′′

c
M and P ′

c
M1 6= P ′′

c
M1 , αM = α|aM

6= 0 belongs to ΣM . In particular, for
λ ∈ U as in the theorem, w(α)∨(w(λ)) = α∨(λ) = α∨M(λ) 6= 0. This means, by choosing
U appropriately small, that if λ ∈ U satisfies the condition of the theorem then so is
w(λ) but IG

P (πλ) replaced with IM1

Pc′
M1

(w(ρ′)w(λ)). Hence IM1

Pc′
M1

(w(ρ′)w(λ)) is irreducible

and isomorphic to σ. Thus we conclude

[σP ′
c
M1 ] = [IM1

P ′
c
M1

(w(ρ′)w(λ))P ′
c
M1 ] = [IM1

P ′
c
M1

(w(ρ′)w(λ))P ′′
c

M1 ] = [σP ′′
c

M1 ].

This finishes the proof of the theorem.

4.2 Irreducibility of induced modules from discrete series

Finally we deduce the following irreducibility result for induced from discrete series rep-
resentations.
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Corollary 4.3. For P = MU ∈ F and an irreducible square-integrable representation
(σ, E) of M(F ), there exists a Zariski open dense subset ΞP (σ) ⊂ X(M(F )) such that
IG
P (σχ) is irreducible at any χ ∈ ΞP (σ).

Remark 4.4. The special case of cuspidal σ of the corollary was used in the proof of [4,
3.12], which describes the general structure of isotypic components of a Hecke algebras
under infinitesimal characters. Also this result is used in the construction of j and hence
µ-functions in [12].

Proof. As in the proof of Lemma 4.1, it suffices to construct a proper Zariski closed subset
ZP (π) ∈ X(M(F )) which contains all the χ such that IG

P (σχ) is reducible. Regarding the
decomposition (3.1), we divide the argument according to P1 ∈ F(M) for which <χ ∈ a∗,+P1

.
Writing P1 = M1U1 for the Levi decomposition with M1 ∈ L, we take P ′

1 ∈ P(M1)
which contains P so that IG

P (σχ) ' IG
P ′

1
(IM1

P M1
(σχ)). We first consider the reducibility of

IM1

P M1
(σχ). If we write ZM1

w (π) for the set of χ ∈ X(M(F )) such that w(σχ) ' σχ, then it

follows from [12, Prop. IV.2.2] that IM1

P M1
(σχ) is reducible only if χ belongs to

ZM1(σ) :=
⋃

w 6=1,∈W M1 (M)

ZM1
w (σ).

As in the proof of Lemma 4.1, if χ ∈ ZM1
w (σ) then µχ ∈ ZM1

w (σ) if and only if w(µ)µ−1 ∈
Stab(σ, X(M(F ))). Since Stab(σ, X(M(F ))) is contained in the finite set Stab(Xσ, X(M(F ))),
we find that ZM1

w (σ) and ZM1(σ) are proper Zariski closed subset of X(M(F )).
Next consider χ /∈ ZM1(σ) (always with <χ ∈ a∗,+P1

). We can write it as µλ, (µ ∈
Xunit(M(F )), λ ∈ X(M1(F ))). Set (τ, V ) := (IM1

P M1
(σµ), IM1

P M1
(Eµ)).

(i) If P ′
1 = P1 then IG

P (πχ) ' IG
P1

(τλ). Since τ ∈ Πtemp(M1(F )) and <λ ∈ a∗,+P1
,

imJP̄1|P1
(τλ) is irreducible (Cor. 3.2). In particular, IG

P1
(τλ) is reducible if and only if

kerJP̄1|P1
(τλ) is non-trivial.

(ii) For general P ′
1, we have d(P1, P

′
1) + d(P ′

1, P̄1) = d(P1, P̄1) so that the functional
equation

JP̄1|P1
(τλ) = JP̄1|P ′

1
(τλ) ◦ JP ′

1|P1
(τλ)

holds [12, IV.1 (12)]. As was remarked in (i), imJP̄1|P1
(τλ) is irreducible. Thus IG

P (σχ) '
IG
P ′

1
(τλ) is reducible only if either

(1) imJP ′
1|P1

(τλ) is a proper submodule of IG
P ′

1
(Vλ), or

(2) kerJP̄1|P ′
1
(τλ) 6= {0}.

Let us prove that (1) is equivalent to

(1)′ kerJP ′
1|P1

(τλ) 6= {0}.
In fact, for Pc = McUc ∈ Pc(τλ), Bruhat filtration gives

[IG
Pc

(IG
P ′

1
(Vλ)Pc)] =[IG

Pc

( ∑
w∈W/W M1

w(M1)⊃Mc

w(Vλ,w−1(Pc)M1 )
)
]

=
∑

w∈W/W M1

w(M1)⊃Mc

[IG
Pc

(w(Vλ,w−1(Pc)M1 ))],
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and hence the functor ϕMc : π 7→
⊕

Pc∈P(Mc)
IG
Pc

(σPc) of [4, 2.5] applied to IG
P ′

1
(Vλ) yields

[ϕMc(I
G
P ′

1
(Vλ))] =

∑
Pc∈P(Mc)

∑
w∈W/W M1

w(M1)⊃Mc

[IG
Pc

(w(Vλ,w−1(Pc)M1 ))].

Notice that this is independent of P ′
1 ∈ P(M1). Thanks to [4, 2.5], (1) amounts to the

non-vanishing of ϕMc

(
IG
P ′

1
(Vλ)/im(JP ′

1|P1
(τλ))

)
. But since [ϕMc(I

G
P ′

1
(Vλ))] = [ϕMc(I

G
P1

(Vλ))],

this is equivalent to kerϕMc(JP ′
1|P1

(τλ)) 6= {0}, which again by [4, 2.5] amounts to (1)′.
In any case, we have seen that the reducibility of IG

P (πχ) implies kerJP̄1|P1
(τλ) 6= {0}.

If we write P ′ := PM1U1, P ′′ := PM1Ū1, we have the commutative diagram

IG
P1

(Vλ)
JP̄1|P1

(τλ)
−−−−−−→ IG

P̄1
(Vλ)y y

IG
P (Eχ)

J
PM1 Ū1|P

(σχ)

−−−−−−−−→ IG
P M1 Ū1

(Eχ)

from the definition of the intertwining operator. Then the non-vanishing of kerJP̄1|P1
(τλ)

is equivalent to that of kerJP ′′|P ′(σχ).
Let (Mc, ρ) ∈ Xσ. As in the proof of Lem. 4.1, we take J ∈ HomG(F ),BM

(IG
P ′(VB), IG

P ′′(VB))
and b ∈ BM such that

b(χ)JP ′′|P ′(σχ) = J(φ)χ, ∀χ ∈ X(M(F )), φ ∈ IG
P ′(VB).

Consider the image

JPc ∈ HomMc(F ),BM
(IG

P ′(VB)Pc , I
G
P ′′(VB)Pc)

of J under the Jacquet functor along Pc ∈ P(Mc).
If P ′

c ∈ P(Mc) is such that σ is a submodule of IM
P ′

c
M (ρ), then each gradation of the

Bruhat filtration {Fw,Pc}w∈PcWP ′ of IG
P ′(VB)Pc is contained in the corresponding gradation

of the Bruhat filtration {F̃v,Pc}v∈W (Mc) of IG
P (IM

P ′
c
M (ρ)χ) ' IG

P ′
c
(ρχ)Pc :

[GrwF•,Pc ] ⊂
∑

v∈W (Mc)

v∈W McwW M

[GrvF̃•,Pc ], GrvF̃•,Pc ' v(ρχ).

Put

Ωw := {v ∈ WMcwWM/WMc | F̃v,Pc ∩ Fw,Pc 6⊂ F̃>v,Pc}, Ω :=
∐

w∈W Mc\W/W M

Ωw.

For each v ∈ Ω, we fix a representative ξv ∈ F̃v,Pc \ F̃>v,Pc of GrvF̃•,Pc , and consider
JPc(ξv) ∈ IG

P ′′(VB)Pc , (Pc ∈ P(Mc), v ∈ Ω).
Suppose kerJP ′′|P ′(σχ) 6= {0}. Then at least one of its Jacquet modules (kerJP ′′|P ′(σχ))Pc ,

(∃Pc ∈ P(Mc)) is not trivial [4, 2.5]. Since GrvF̃•,Pc ' v(ρχ) is irreducible, this implies
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that ξv,χ ∈ kerJPc,χ for some v ∈ Ω. In other words, the set of χ ∈ X(M(F )) such that
<χ ∈ a∗,+P1

and at which IG
P (σχ) is reducible is contained in

Z+
P (σ) := {χ ∈ X(M(F )) | JPc(ξv)χ = 0, ∃Pc ∈ P(Mc), v ∈ Ω}

Notice that this is independent of P1. Furthermore, it follows from the rationality of
JPc(ξv) and Th. 4.2 that this is a proper Zariski closed subset of X(M(F )).

Finally we obtain a proper Zariski closed subset

ZP (σ) := Z+
P (σ) ∪

⋃
M1∈L(M)

ZM1(σ)

which contains all χ at which IG
P (σχ) is reducible.
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