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Abstract

In this note, we present a proof of the Langlands classification of the irreducible
admissible representations of reductive p-adic groups. Then we deduce certain irre-
ducibility result for parabolically induced modules from discrete series representa-

tions.
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1 Introduction

In this note, we shall prove two fundamental results in the representation theory of p-adic
groups.

The first is the Langlands classification of irreducible admissible representations of
connected reductive p-adic groups (Th. 3.5). This famous theorem had originally been
proved by Langlands for real Lie groups [9], then its p-adic group analogue was treated
independently in [5] and [IT]. But the latter contains no proof (The argument suggested
in [5, XI.2] does not work.). Silberger’s article is well-written but the key lemma [11,
Lem.5.3] is not true. Since the theorem plays a fundamental role in the harmonic analysis
on p-adic reductive groups, I think it is of some value to writing out a complete proof,
although it seems to be well-known to experts. The proof given in this note follows
Langlands’ original argument in the real case [9], while we rely in an essential way on the
infinitesimal characters for p-adic groups introduced by Bernstein [4].

In [12] IV.1], Waldspurger proved that the standard intertwining operators are rational
functions on the variety of representations. We combine this with the Langlands classifica-
tion, and show that the parabolically induced modules from discrete series representations
are irreducible on a Zariski open subset of the variety of such representations (Cor. 4.3).
Again this is well-known to experts. For example, Waldspurger himself mentioned it in his
definition of Harish-Chandra’s j and p-functions in [12] p. 48, IV.3]. Also this was used
by Bernstein and Deligne in their analysis of components (under infinitesimal characters)
of Hecke algebras [4, Prop. 3.14].

The contents of each section are as follows. In § 2, we collect elementary facts and
results on the structure of connected reductive p-adic groups and their representations.
Here we emphasize features caused by the discreteness of the valuation on the base field
(see e.g. § 2.3). Also in § 2.2, the geometry of the restricted roots, which are essential
in the proof of the Langlands classification, is reviewed from [9, § 4]. In § 3, we prove
the Langlands classification. After reviewing Langlands’ lemma on the growth behavior
of the matrix coefficients of standard modules and two geometric lemmas, the proof is
given in § 3.3. In § 4 we prove the irreducibility result. First in § 4.1, we recollect the
proof of Waldspurger’s irreducibility theorem (Th. 4.2) to emphasize the role played by
the Langlands classification. Then the irreducibility on Zariski open subsets is proved in
§4.2.

Throughout the notes, we use only basic results in the harmonic analysis on p-adic
groups, which were proved in [2], [3], [§] and §§ I.1-IV.2 of [12].

2 Preliminary
Let F be a non-archimedean local field of any characteristic. We write O, pp and | |p

for the maximal compact subring of F, its unique maximal ideal and the module of F
respectively. We write ¢ for the cardinality of the residue field of O.



2.1 Structure of G(F)

Let G be a connected reductive F-group. We fix a maximal F-split torus Ay so that its
centralizer M, is a minimal Levi subgroup of G. Write L, F for the set of F-Levi and
F-parabolic subgroups of GG, respectively, containing M,. Each P € F has a unique Levi
component M in £, while the set P(M) of P € F having M as a Levi component is finite.
For P € P(M), we write P for the element of P(M) which is opposite to P with respect
to M.

Take M € L. As usual, we have the real vector spaces ap; = Hom(X*(M)p,R),
ay; = X*(M)r ® R dual to each other, and the Harish-Chandra map Hy, : M(F) — ayp
given by

exp(x, Ha(m)) = [x(m)|r, Vx € X*(M)p.
Here, X*(M)F is the group of F-rational characters of M. We write M (F)! for the kernel
of Hy;.

We write Ag for the maximal F-split torus in the center Zg of G. The canonical
isomorphism X*(G)r ® Q = X*(Ag) ® Q (induced by restriction) combined with the

commutative diagram
X*(M)p — X*(An)

T |

X(G)r —— X"(Ag)
shows that as and af, are canonical direct summands of ay; and ag, respectively. If we
write a§, for the annihilator of X*(G)p in ay; and a$7* := X*(Ay/Ag) ® R, then we have
the direct sum decompositions
ay =a§, ®ag, al =a @l

dual to each other. We denote the a$, and ag-components of H € ay by H® and
Hg, respectively. Similarly, A\ € a3, admits a decomposition A\ = \Y @ \g, (\9 € a]\Gf,
A € CL*G)

We fix a maximal compact subgroup K of G(F') which is in good position relative to Ay.
Then we have the Iwasawa decomposition G(F') = U(F)M(F)K for any P = MU € F.
We write the corresponding decomposition of g € G(F') as g = up(g)mp(g)kp(g), where
up(g) € U(F), mp(g) € M(F) and kp(g) € K are of course not unique. We fix various
measures as in [I2]. In particular, on any subgroup H(F) C G(F), we fix an invariant
measure which assigns 1 to the subgroup H(F)NK. These satisfy the integration formulae

— —1
/G - f(g)dg = /K /M . /U . fumk)ép(m) ™" dudm dk

=y(G/M)~ /U(F) /M(F) /U(F) flumu)op(m)™" dudmdu

for any continuous compactly supported function f on G(F) and P = MU € F. Here dp
is the modular character of P(F') and

2 (G/M) = / 5p(mp (@) di.

U(F)
This constant is independent of P € P(M) as the notation suggests [12, 1.1 (3)].
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2.2 Restricted roots

We continue to take M € L. We review some elementary results on restricted roots from
[T, § 1], [9, § 4]. We write KM := K N M for any subgroup K C G and M € L.

The set of roots of Ay in G is denoted by X,,. P € P(M) determines the subset ¥p
of P-positive elements in ¥,,. The set of reduced roots in X p, that is, a € Xp such that
a/n ¢ Lp for any n > 2, is denoted by X4, Notice that ¥, spans a%;".

Suppose M = My. We know from [0, Cor. 5.8] that (X¢ = Xy, ay7") is a root system.
In particular, the set of coroots 3§ C X, (Ay) is defined. For Py € P(M,), we have the set
of simple roots Ap, in the positive system g, and write A%, for the set of corresponding

*

simple coroots. Of course, Ap, and A}, are basis of aOG’ and a§/, respectively. We write
Ap, = {@a|a € Ap} and 3}0 = {@w)Y|a € Ap,} for the basis of a5* and a$ dual to
A¥, and Ap,, respectively. We write W = WE for the Weyl group of Ay in G, which is
the Weyl group of the root system (a5, ). This acts on ay and hence on F, £. We
identify W with its fixed system of representatives in Norm(Ag, G(F)).

For general P = MU € F, we choose Py € P(M,) contained in P and define Ap :=
{(aolay) |0 € Ap, \ Apa}. This is independent of the choice of Py C P. The coroot
attached to a = (ayla,,) € Ap is defined to be (a)y € a§;. We write AY, == {aV|a €
Ap}. Tt follows from the My-case that Ap and A}, are basis of af/[’* and a{;, respectively.
Notice that their dual basis are given by

A% = {w;/ = w(\x/o (Oé = aO‘ClM) € Ap},
Ap = {w& = Way | (a = a0|aNI) < AP}

respectively. In general (3, a]\Gj*) is not necessarily a root system. We write W (M) =
WY (M) := Stab(M, W)/W.

We list some basic properties of restricted roots. First (Zo,aOG ™), a root system,
satisfies the following properties.

(a,a"y =2, (a,pY) <0, Va#peAp. (2.1)

If we set apy” = {A € aj|a’(A) >0, v € Ap}, Tap, = {A € af|@a(A) >0, a € Ap}
then we have
ap C Tap,. (2.2)
This is an easy consequence of (2.1).
Let us establish analogous properties for general ¥y,. (2.2) implies (@,, @) > 0 for
any «, 3 € Ap,. This simply restricts to

(wa,wg> >0, Va, € Ap.
Setting ap™ = {\ € a},;|a¥(\) > 0, a € Ap}, Tab = {) € a}, |m/(\) >0, a € Ap},
this amounts to the assertion
—*,+ + <%
ap’ C Tap. (2.3)
As opposed to (2.2), the inclusion is between the closures. If & = aplq,,, (ap € Ap, \Apéu),
a = (ag)y and ! € ay”* can be written as

ozé”: Z g, x5 € R.

€A
B pM



Here the coefficient x4 is given by (), w/\g/’M> = (v, wg’

wg’M = ZWEMPJ y,yY with y, > 0. Thus (2.1) implies
0

LCB = Z y7<(10,’yv> S O

’YEAPéu

M . V,M —M,+ +=M
>. Slnce wﬂ 6 apéw C apé\l;

In particular, we have for (3 = (Gola,,) # @ € Ap

(@, 8Y) = (a0, ) = Y 2(1.5) 0. (2.4)
”/EApéw
Finally we have
(a,a”)y >0, «a€Ap. (2.5)

Otherwise we have (a, 3Y) < 0 for any 5 € Ap so that a € —ag’** N +a§’* = {0}. This
contradicts a # 0.

2.3 Unramified quasi-characters

Hg allows us to associate to each A € af, ¢ a quasi-character
e’ G(F) 3 g — exp({\, Hg(g)) € C*. (2.6)

We write X(G(F)) := {e*| X € a ¢} = Homeont(G(F)/G(F)',C*) and X,(G(F)) for
its subgroup of unitary elements. If we write ag(py for the lattice Hg(G(F)) C ag and
A C ag for its dual lattice, then we have the isomorphism

a5 ¢/ 2miagm O A ¢ € X(G(F)).

This defines a C-torus structure on X (G(F)). For x € X(G(F)), we write Ry := |x| and
Sy := (Rx)~'x. Ry is identified with an element of a}, by (2.6).
Now we take M € L and consider the restriction homomorphism X (G(F)) — X(M(F)).

Lemma 2.1. For any x € X*(G)r, x(M(F)) = x(G(F)).

Proof. 1t suffices to check this in the case M = M,. We write Gy, for the derived group
of G and G,y := G/Gye for its abelianization. If we write M(‘)ie]r = My N Gyer, we have
the embedding of exact sequences

1l —— Gder - G Gab 1
1 Mg —— M G 1

Since X*(G)r = X*(Gap)r, we have only to check that the images of G(F') and My(F') in
Gap(F') coincide. For this, we take Galois cohomology to have the commutative diagram

1 — Goo(F) —— G(F) —— Gu(F) — HI(F,Gder)

T T H T

1 —— ME(F) —— My(F) —— Gu(F) —— HY(F, Mger)
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Then, what we have to show is
ker(Guy(F) = H'(F, Gaer)) = ker(Gup(F) — H'(F, Mg™)).

But since the left hand side equals the kernel of G, (F) — H(F, M{®) — H'(F, G4er), this
follows from the injectivity of H*(F, M§) — H(F, Gqer). (Notice that this last statement
is equivalent to [0, Th. 4.13, Prop. 4.7] which asserts that the minimal parabolic subgroups
are all G(F')-conjugate to each other.) O

Since X*(G)p injects into X*(M)p by restriction, we can take a basis {x;}1<i<n Of
X*(M)r so that {d;x;}i<i<, for some d; € N and 0 < r < n is a basis of X*(G)p. If
Ixi(M(F)|p = q¢™Z, (1 <i<n,m; €N), then

Gy = D Zlmilogq) ™ xi.

i=1
Now Lem. 2.1 asserts that |d;x;(G(F))|r = |dix:(M(F))|r = ¢%™% (1 <i <), so that

=3 2y
G(F) — - dim, loquz

is a direct summand of a}; . Hence X(G(F)) — X(M(F)) is injective. If we write

XY (M(F)) for the group of quasi-characters of M(F)NG(F)! trivial on M (F)!, then we
summarize the argument as the exact sequence of C-tori

1 — X(G(F)) — X(M(F)) — X“(M(F)) — 1. (2.7)

The maps are restrictions.

2.4 Representations

We freely use the results of [2], [3] and [§] on algebraic (or smooth) representations of
reductive p-adic groups, which are summarized in [I2] I]. Let us recall some of them. We
write Alg(G(F)) for the category of algebraic representations of G(F). We adopt the
convention that the isomorphism class of (7, V') is denoted by 7. If x € X(G(F)), then
we write (m,, V) for the representation 7 ® x on the space V. We write

Stab(r, X (G(F))) = {x € X(G(F))|m, ~ }.

By abuse of notation, we write (my, V3) for e* ® 7 on the space V for \ € ayrc- For P =
MU € F,we have the parabolic induction functor Alg(M (F)) > (7, V) — (I§(n), I§(V)) €
Alg(G(F)) and the Jacquet functor Alg(G(F)) > (w,V) — (7wp, Vp) € Alg(M(F)). They

are related by the Frobenius reciprocity
Homg () (m, Ig(T)) ~ Hom s (r) (mp,T).

As for the composition of these functors, we know the following result [3, 2.12]. For
P = MU, P' = M'U" € F, we take a system of representatives p/Wp for WM \W/ WM,

so that we have the Bruhat decomposition G = Hwep/Wp Pw™'P'. We fix a total order

w < w' on pWp such that



b G(F)Zw = UUEP/Wp,va P(F)U}_IP/(F) Is open in G(F>a
o P(F)w 'P/(F) is closed in G(F)>

with respect to the p-adic topology on G(F'). Then for (7,V) € Alg(M(F)), there is a
G(F)-invariant decreasing filtration {Fy }we, wp, of I5(V)pr, which we call the Bruhat
filtration, such that

fw/f>w ~ IJM(;D)M/(U](Wwfl(P/)]VI))

w

as an algebraic representation of M'(F'). Notice that the isomorphism class w(m,,-1(prym)
is independent of the choice of the representative for w. We write (7", V") for the con-
tragredient of (m,V) € Alg(G(F)). For (m,V) € Alg(M(F)), we have I§(r") ~ IS (x)V.
If (m,V) € Alg(G(F)) is admissible, (wp)¥ is isomorphic to (7V)p. In fact, this is valid
for B-admissible representations in the sense of [4].

If (m,V) is an admissible representation of finite length of G(F'), the set JH(w) of
the elements of II(G(F')) which appears as irreducible constituents of (7, V') is uniquely
determined by 7. Thus we may consider the Grothendieck group of the category of
admissible representations of finite length of G(F'). For such representation (m, V'), we
write [r] for its class in the Grothendieck group.

We write II(G(F)) for the set of isomorphism classes of irreducible admissible rep-
resentations of G(F'). We have the subsets e, (G(F)) D Ilo(G(F)) of tempered and
square integrable elements of II(G(F')), respectively. We write w, for the central character
of m € II(G(F)). For any admissible representation (m, V) of G(F'), Exp(m) C [I(Ag(F))
denotes the set of its central exponents [12, 1.3]. Recall the Langlands-Casselman crite-
rion:

(1) An admissible representation (m, V') of G(F'), having a unitary central character, is
square integrable if and only if RExp(rp) C ta$* for any P € F.

(2) An admissible representation (m, V') of G(F) is tempered if and only if R€xp(7p) C
+ﬁg’* for any P € F.

In particular, parabolic induction preserves temperedness, while Jacquet functor does not.
We also need the following weak classification of irreducible tempered representation.

Proposition 2.2 ([12] Prop. 111.4.1). (i) For any m € iemp(G(F)), there exist P =
MU € F and o € y(M(F)) such that 7 is a direct summand of IS (o).

(ii) If both (P, o) and (P',o") satisfy (i), then there is w € W such that w(M) = M" and
w(o) ~o'.

Let (m,V’) be an admissible representation of finite length of M(F'), M € L. For P,
P’ € P(M), we have the intertwining integral

Jpp(m)p(g) = o(u'g)du’, ¢ € IZ(V),

/(UOU’)(F)\U’(F)

For x € X(M(F)) with o¥(Rx) >> 0, Vo € ¥p \ Epr, the defining integral of Jp/p(7y)
converges absolutely. Moreover Jp/p defined in this way on some open subset of B =
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{m | x € X(M(F))} becomes a rational function on P [I12, Th. IV.1.1]. Outside its poles,
this defines an element of Homgr) (I (V4), IS (V). Moreover for any x € X(M(F)),
there exists ¢ € IS (V,) such that Jpp(py )¢ converges and is not zero [12, IV.1 (10)]. If
further 7 is tempered, then Jp/ p(my )¢ converges at x € X (M (F)) satisfying o¥ (Rx) > 0,
Va € ¥p \ Xp [12, Prop. IV.2.1].

2.5 Infinitesimal characters

Recall that an admissible representation (7, V') of G(F) is cuspidal if its restriction to
G(F)! is finite [2]. A theorem of Harish-Chandra asserts that this is equivalent to 7p = {0}
for P # G, € F. In particular, if (p, E') is a cuspidal representation of M (F'), then for
any P, P' € P(M), the Bruhat filtration simplifies to

IE(pp)l= > wlp).

weW (M)

We write I1o(G(F')) for the subset of unitarizable cuspidal elements in I[I(G(F")). This is
contained in Ily(G(F')). For each m € II(G(F)), there there exist P. = M.U. € F and
an irreducible cuspidal representation (p,V,) of M.(F) such that 7 is isomorphic to a
subrepresentation of I (p) [3, Th. 2.5]. Then 7 appears as a subquotient of I§,(p) for
any P’ € P(M.). Moreover the pair (M., p) is determined uniquely modulo W -conjugacy
by 7 [3, Th. 2.9]. We call the W-conjugacy class the infinitesimal character of = and
denote it by Xr. Also we write Pe(m) := U per, P(Me).

If an admissible representation (7, V") of finite length of G(F) admits an irreducible
cuspidal subquotient p, then p appears both as a submodule and a quotient of 7 [2}, 3.30].
From this property we deduce the following.

Lemma 2.3. Let P = MU € F and (p,V) be an irreducible cuspidal representation of
M(F). Thenw € Il(G(F)) is a submodule of IS (p) if and only if it is a quotient of IS (p).

Proof. 7 is a submodule of I§(p) if and only if

{0} # Homgp)(m, IF(p)) =~ Homps(r(7p, p)
by Frobenius reciprocity. The above remark asserts that this is equivalent to
{0} #Homsr) (p, mp) = Hompy(r)((7p)", p”)

~Homy(p)((1")p, p") = Homepy (7", I5 ("))

~Homg(r) (15 (p), 7)
as desired. O
Using these, we can strengthen the Langlands-Casselman criterion as follows.

Lemma 2.4. (i) 7 € [I(G(F)) is square integrable if its central character is unitary and
RExp(np,) C Tap, for any P. € P(r).

(ii) 7 € II(G(F)) is tempered if its central character is unitary and RExp(np,) C Tap, for
any P. € P.(r).



Proof. (i) The condition is obviously necessary. To see the sufficiency, we take P = MU €
F and an irreducible subquotient 7 of mp, and show RExp(T) = R(w,|a,, ) € Tap. We
take (M, p) € X, and P, € P(M,) such that 7 is a submodule of I§ (p). Since p is
cuspidal, the Bruhat filtration simplifies

U5 el = Y Ubtpyw(w(puapg))l = > [aipy (w(p))].
wepWp, wewM\W
w(M:)CM
Thus 7 is a subquotient of some Iu]‘]/{PC)M(w(p)). In particular,

For any irreducible subquotient 7 of 7p, X, is a subset of X.

Now take P € P.(7) such that 7pu # {0}. If we write P, := PMU, then mp, # {0} and

Exp(T) ={(Xlay ) | x € Exp(Tpi)} = {(Wolay ) |0 € JTH(Tpar)}
C{(Wolay ) o € JH(mp,)} = {(X]an ) | X € Exp(mr,)}

But by the condition, Rx =35 cr, @.0c, (g, > 0) for x € Exp(7p,), so that

§R(X|AM(F)> - (gRX>M - Z I/B(/60|alw)

Be€EAP, \APCM

belongs to Ta%*. The sufficiency is proved. (i) can be proved in the same way. O

3 Langlands classification

In this section we prove the Langlands quotient theorem for p-adic reductive groups.

3.1 Standard modules and its matrix coefficients

Recall that a standard module of G(F) is a representation of the form (I§(my), I§(Vy)),
where P = MU € F, 7 € Wyemp(M(F)) and X € a33". We write

lim f(a) =0

a—00
P

if for arbitrary small ¢, § > 0, there exists R > 0 such that |f(a)| < € for any a €
Ay (F)NG(F)! satisfying

o a(Hpy(a)) < —R, Va € ¥p;
o a(Hy(a))/B(Hpy(a)) > n, Va, 5 € Ep.

The following proposition is the analogue for p-adic groups of [9, Lem. 2.12]. The proof
is completely the same and is omitted.



Proposition 3.1. Let (I§(my), I§(V))) be a standard module. Then for ¢ € 15(Vy) and
@V € IS(VY,) we have

lim 5p(a)1/2wm (a)? <Ig(7T,\, ma)p, ")

a—00
P

=y(G/M)"H(Jpip(ma)p)(m), 9" (1)), m € M(F).
This allows us to define the so called Langlands quotient of a standard module.

Corollary 3.2. Suppose (I§(my), IS(V))) is a standard module.

(i) Any ¢ € IE (Vi) with Jpp(ma)¢ # 0 generates I5 (Vi) as a G(F)-module.

(i) In particular, the representation Jg(my) on JE (Vi) := imJp p(my) is irreducible. It is
the unique irreducible quotient of 1§ (my).

Proof. (i) Take ¢ as in the statement. It suffices to show that if ¢V € I§(VY,) satisfies
(IS(mx,9)0,¢") =0, Vg € G(F), then ¢ = 0. Applying the proposition to

0= (I3 (mn, g™ ah)g,¢") = (I5(mx, ah)é, I5 (7", 9)67),
we have

0 =y(G/M) lim p(a)"*wr, (a)"(IE (mr, ah)o, IE (Y, 9)¢")

=(Jpip(ma)d(h),¢"(9)), Vh, g € G(F).
By assumption, we can take h € G(F') such that Jpp(mx)#(h) # 0. Then we must have

0 = (Jpip(ma)d(mh), 6" () = dp(m) " (ma(m) (Jpip(mr)6(h), 6" (9)

for any m € M(F'), g € G(F). Since 7, is irreducible, this shows ¢¥ = 0.

(ii) Take any proper maximal subrepresentation V' of I§(Vy). If V!  kerJpp(my), (i)
implies V’ = I§(V,) which contradicts our choice of V. Hence V' C kerJp|p(my) and any
irreducible quotient I§(V3)/V’ has JS(V)) as a quotient. O

3.2 The order <p and a partition of aj,

We prepare some geometric properties of restricted roots which play an important role in
the proof of Langlands classification [9] § 4].

Take P = MU € F. Define an order A <p p on aj, by u € )\++a§§’*. For P, =
MU, D P, Ap, is obtained by restricting Ap \ Apa,. Thus for A, p € aj,, A <p p is
equivalent to A <p, p. We also set

* L * (1) Oév()‘> >0, Va € APl _ My *,+
oiP) = e | @ TG v L, =

The simplest case is ap(P) = a;Jr, and we have the disjoint decomposition

a,= [ ei (3.1)

PieF(M)

Here F(M) is the set of P, € F containing M.
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Lemma 3.3. a3, = [[p.qopop @0 (1)

Proof. First let us show that ah(P;), (P C P, C G) cover a}, by an induction on |Ap|.
If P is maximal, a$;" is 1-dimensional and a’(P) = ait, a%(G) = —ap", so that the
assertion is clear. For general P € F, we take A € a},. Suppose A ¢ aj(P) and take
a € Ap such that o¥(\) < 0. Let P, = M,U, D P, € F be such that Apm. = {a}.
Applying the induction hypothesis to Ay, , we find P, = M;U; D P, such that

A, = — Z 23(Blay, ) + Z Yy, Fxg >0, yy > 0.

BEA vy, #x Y€AP,

On the other hand, since a}*”* = Ra,

A aY)
AMa — < ) . — . )
(@)™ Plawe =0 =15y

Thus we have

A== ) (5—Mv) +> ww 7"" ;

BFo, €A Ly YEAP,
(A, a")
== > wh+ <<a,av> to2 <a av) >a+ > hy
BFo, €A Ly BFo, €A Ly YEAP,

The coeflicient of « is not positive by (2.4) and our assumption, hence A € ap(P;). Next
show that ap(P)), (P C P, C G) are disjoint. Suppose P, # P, contain P. We may
assume that Apwm, \ Apar, is not empty. If @ € Apa, \ Apary, then

(w2 ap(Pr)) = (w2, C‘Mzzw; ") =R,

(@M, ap(Py)) = <wZ’M2,—+afif:> = R<o,

hence a},(P;) and aj(P,) are disjoint. O

Lemma 3.4. Suppose P, P' € F contain P, € F. If A € ap (P), N € ap (P') satisfy
A 2Pc )\,, then )\M ch )\2\/[/

Proof. The hypothesis amounts to @, (\) > wi(N), Va € Ap,.
(i) If @ € Ap, \ Apur, A € ap (P) implies Ayr >p, A so that

@Y () = @Y = @ (V) = @ (M),

(ii) Suppose v € Apyr. Since Ay € apt, )M € ﬁ]}\fo "

C aPM’T and
(M \py) > 0. (3.2)

It we expand @y \p = D 5cn,, Ty, the coefficient of 3 = Bilo,,, (B: € Ap \ Apar)
satisfies

5 =(B,3) = (8. = B vwy) = (B ™) = —(Be, ™)
€ — (L., Z R>07") = Rxg

’YEAPCJW/
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by (2.4). Combining this with (3.2), we obtain

(@Y Anr — Nyp) =@M Apr) + Z rg(coy, A — Nypr)
BEA P

> Z $5<w\ﬁ/c,)\M —)\§W>.

ﬁCGApC \AP({VII

As was seen in (i), the right hand side is non-negative. ]

3.3 Langlands classification
Now we prove the result of this section.

Theorem 3.5. (i) For any irreducible admissible representation (w,V') of G(F'), there
exist P= MU € F, 7 € Wyemp(M(F)) and X € a3* such that m ~ JS(7y).
(ii) The triple (P, T, \) is uniquely determined by m up to W -conjugacy.
Proof. (i) We first choose P and A. We fix Py € P(M,) and write F(Fp) for the set of
Py-standard parabolic subgroups of G. Also set P.(w, Fy) := P.(m) NF(F,). For each p €
Up.cp.(r.py) RExP(p,) there exists a unique P, € F(Fy) such that p € af (F,) (Lem. 3.3).
Take A € Up.cp.(r.p,) RExp(mp,) such that Ay, € ap. is maximal with respect to the
order >p,, and set P := Py, A\ := Ay € aps". Next choose 7. Take P. € P.(r, Py) such
that RExp(mp,) contains A. Since P O P,, we have Exp(mp) D {(X|ay )| x € Exp(np,)}
Notice that these two sets might not coincide because Jacquet modules along PM of some
irreducible constituents of 75 can be zero. Anyway we find y € Exp(mp) such that
Rx = Ala,, = A. The weak x-isotypic subspace Vp , of Vp is an M (F)-submodule. Let
(7, V;) be such that (7, V7,) is an irreducible subrepresentation of V5 . .

Let us prove that (P, 7,\) satisfies the condition of (i). Combining Frobenius reci-
procity and duality for Jacquet modules, we have

{0} #Homy () (7, 7p) = Homas () ((77)p, 75 ) = Homgr (", I5(7Y)))
~Homg(r) (15 (13), 7).
Thus 7 is an irreducible quotient of I§(7y). We still have to prove that (7, V;) is tempered.
By construction its central character wT is unitary. Thanks to Lem. 2.4, it suffices to
verify RExp(T P,M) C — P’M for any P/ € P.(r, PM). For this, we write P! := P/MU €
P.(m, Py) and take x € Ea:p( ) We need to check fox = > 5.\ bt xg[3 for some x5 < 0.

Take the parabolic subgroup P D (Q = LN) D P! such that AP,L ={B € Apu [z5> 0}
Also we find P D P, D P! for which Ry + A € apc,(Pl) From definition, we have

%X—i—)\zpc/ Z g+ A

ﬁEAPé]M\APéL

Thus Lem. 3.4 gives

Rx+ M zr (D wpB+A) =A=Aw

ﬁEAPéA{ \APéL
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But since e*y € Exp(T, sar) C Exp(mp,), our choice of A implies
(Rx)ar, + A= Rx+ M <p Ay = A

Hence (x)a, = 0 so that 25 <0 for any 3 € Apw.
(ii) Suppose two triples (P,7,)\) and (P’,7',X) as in the theorem satisfy JG (7)) =~
7~ JS(7},). We may assume both P and P’ contain Py. By Prop. 2.2, we have Py =

MUy C P and o € IIy(My(F)) such that 7 is a direct summand of I3}, (o). Moreover [3,
d

Th. 2.5] assures that there exists P. = M.U. C Py, p € lg(M.(F)) and u € a%j’* such
that o is a submodule of Ig?c}d (pu), equivalently (Lem. 2.3), a quotient of [i?‘}d (pu)-

{0} # Homr, (e (0, 111, () = Homy, ) (0 004, )

Mg,* 4 .
Py Also writing A :=

A+ p, ™ is a quotient of I (py). Similarly for (P, 7/, X) we take P .C P,C P, 6 o€
IL(ML(F)), pf € Ho(ML(F)) and p/ € —+quf\’4Z. Since I§ (p,) and [%(PL') share the

P
irreducible constituent 7, there is w; € W such that

combined with the Langlands-Casselman criterion gives yu € —"a

wi(M.) = M., wi(p) ~p, wi(A)=A. (3.3)

Next the Bruhat filtration gives

M/
[IJ%(UA)PC/]: Z [Iw((}gd)Mé('LU(O-)\,w*l(PC’)Md))]
wEPéWpd
= Z [w(%fl(Pg)M«z)w(A)]-
weW/WMd
w(Ma)DM,

Notice that, thanks to (3.3) and the vanishing of the Jacquet modules of cuspidal repre-
sentations, the terms of w with w(Py)™e # M’ vanish. On the other hand,

{0} # Homg(r) (I

(Pp), ™) ~ Homery (w15 (07 /) = Hompgy iy (), 0/ )
~ Homz, 7y (prr, Tp1),

so that p), € JH(mp,) C JH(IE, (0x)p;). Thus p)y, € v(JH(0,-1(pyma))u(n) for some v €
W/WMa with v(My) D M. But since I (o) is tempered,

RExp(IG(0) = |J  RExp(w(o,i(pyma))
weW/WMd
w(Md)DMé

is contained in —ta%*. Thus A’ < pr v(A). Moreover, taking P O P! such that v(\) €

ap,(P1), we obtain

)\, SPé U<>\)M17 )\/ SPO U()\)Ml (34>
from Lem. 3.4. Now we claim the following. We fix a W-invariant positive definite
symmetric bilinear form (|) and write || || for the associated norm.

13



Claim 3.5.1. If \, N € a5™" satisfy A <p, N, then ||\ < [|V].

Proof. Recall that the coroot a" of a € Ap, is identified with 2a/||a||? by (| ) [7, VL.1.1
Lem. 2], so that
o]l

2

5a,ﬂ; a, B € APO' (35)

(a|wg) =

A, X are written as

A= Z ygog, N = Z Ys@s,  Ys, Yz > 0,
BEAR, BEAR,

and the assumption on them is

=+ Z Ta, Ty > 0.

OLEAPO

Hence the claim follows from

AX) =M+ Y zayslalws) = AP+ D vl o >HAH2

a,BEAR, a€Ap,
v H
AN =IVIP+ D mayhlalms) = IIMP = D zavhrs— <IN
a, BEAR, a€Ap,

[]

Since a$;* and a)* are spanned by Ap, \ A py and Apa, respectively, (3.5) in the

above proof assures that a¢ a and aOG’* are orthogonal to each other under (| ). Applying
this and the claim to (3.4), we obtain

IXT< Hlo)an F < Tlo) = (1AL (3.6)

Replacing the role of (P, 7, A) and (P, 7', \’), we obtain the reverse inequality and hence
IAll = [|N]|. This together with (3.6) implies v(A) = v(A)p, € afﬁ;*’*. Thanks to (3.1),
this and A € a}, force P, = v(P). Since P, and P are both Py-standard, we conclude
P = P, and v € WM. In particular (3.4) reads X' <p, A. Again replacing (P, 7, \) and
(P', 7', X)), we also have A <p, X, hence A =\, P = P'.

We still have to show 7 ~ 7. Since m ~ J§(7}) is a submodule of I§(7}), we have

HomM(F)(Ig(T)\)Pa Ty = HOIHG(F)U?VA% Ig(ﬁ)) # {0}.

Comparing this with the Bruhat filtration formula
Rl = D Unipp (w(T i pp)u)],
wepWp
we see

7‘)\ S JH(]w(P)M (W(Tw—l(p)M)w()\))), Jw € pr. (37)
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But the temperedness of I (7) implies %ci’mp(lﬁpw (w(Ty-1(pyar))) is contained in —+a$* ¢
—+a§;'0’*, that is, A <p, w(A). Again applying the above claim and the argument just after
it, we have

A< lw ), | < flw ) [F= 11T

where P, = MU, € F(I%) is such that w(\) € ap (P,). But this shows w(\) =
w(N) g, € ag:’+ and thus w(P) = P,. Again noting that P and P, are standard, this
forces P, = P, w € WM. Now (3.7) reads 75 € JH(7y), hence 7/ ~ 7. (Q.E.D)

4 Some irreducibility results

In this section we give several applications of Th. 3.5 or rather Prop. 3.1. We first deduce
a theorem of Waldspurger on irreducibility of parabolically induced modules.

4.1 A theorem of Waldspurger

We need the following lemma.

Lemma 4.1. Suppose P = MU € F is mazimal and p € Ilo(M(F)). Then there
exists a Zariski open dense subset Ep(p) C X(M(F)) such that 1§ (p,) is irreducible for

X € Ep(p).

Proof. Tt suffices to construct a proper Zariski closed subset Z(p) € X(M(F')) which
contains any x € X (M(F)) such that I§(p,) is reducible. Recall the exact sequence
(2.7). We have IS (p,.) =~ IS (py). for w € X(G(F)), so that the reducibility of I§(p,)
depends only on the image Y of x € X(M(F)) in X¢(M(F)). Let us construct a
Zariski closed proper subset Z%(p) C X%(M(F)) which contains all ¢ such that I§(p,)
is reducible. We consider the cases X € XS, (M(F)) and x¢ ¢ X%, (M(F)) separately.

First suppose Y € X¢..(M(F)). By multiplying ®x~! € X(G(F)) to x if necessary,
we may assume that x € Xy (M(F)). Since p, € Ho(M(F)) C IL(M(F)), IS(p,) is
reducible only if w(p,) =~ p, for some element w # 1, € W (M) [12, Prop. IV.2.2]. Such
w is unique if it exists because P is maximal, and we must have w(P) = P. If I§(p,,) is
reducible at some other yp € Xynit(M(F)), then we must have w(pyu) =~ (Py)w(p) = Pxu
so that

w(p)u~ € Stab(p,, X (M(F))). (4.1)

We know from [4, 2.2] that Stab(p,, X (M (F'))) is a finite group, and hence xyu € X (M(F))
satisfying (4.1) form a proper Zariski closed subset Z%(p) C X (M (F)).

Next assume ¢ ¢ X&. (M (F)). If we write a for the unique element of Ap, then we
have ¥ (Ry) = aV(RxY) # 0. First consider the case o (Rx) > 0. Then I5(p,) admits
a unique irreducible quotient J§(p,) = imJp p(py) (Cor. 3.2), so that I§(p,) is reducible
if and only if 05 (py) := kerJp|p(py) is non-trivial. At such x € X(G(F)), the Jacquet
modules of JS(p,) and 0%(p,) are calculated as follows. Note that the infinitesimal
characters of these representations consist of the W-conjugates of (M, p,), so that at
least one of the Jacquet modules along P and P does not vanish.
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(1) If P and P are conjugate, w(P) = P assures both 6%(p,)p and JS(p,)p do not
vanish. From the Bruhat filtration formula [I§(py)p] = py + w(p)w(y), either

(5g<Px)Pa Jg(PX>P) >~ (py w(p>w(x))

or (w(p)w(y): px) occurs. Since the latter combined with Lem. 2.4 forces J&(p,) €
II,(G(F)) and contradicts the uniqueness of the Langlands data (Th. 3.5 (ii)), we
must have the former.

(2) Otherwise, W (M) is trivial and the Bruhat filtration formula becomes I$(p,)p =~
IS(py)p = py- Thus we have either

5g(Px)P = JE(PX)P = Px

or 84(py)p =~ JS(py)p = py. The latter possibility does not occur by the same
reasoning as in (1), hence the former holds.

Now we recall some construction from the proof of [I12, Th. IV.1.1]. If we write By,
for the polynomial ring of the C-torus X (M (F')), each m € M(F') determines an element
by, : X(M(F)) 3 x — x(m) € C* of By;. This gives the universal character:

s, : M(F)>m+— b, € By

of M(F). Using this, we define the By-admissible representations (in the sense of [4]
1.7))

(pB == p® pup,, Ve =V ®c By)
of M(F), and (I§(pp),15(Vp)) of G(F). Now the rationality of Jp p(py) is equivalent
to the existence of a homomorphism J € Homg ), p,, (15 (Vp), I§(Vp)) of By-admissible
representations and b € B, such that

b(X)Ipip(p )by = J(0)x, VX € X(M(F)), ¢ € I5(Vp).

Here ¢, denotes the localization of ¢ at .

Applying the Jacquet functor to this .J, we obtain Jp € Hom(r), 5, (15 (Ve)p, IS (Ve) p).
The Bruhat filtration F, p of Ig(VB) p is defined. We take a non-zero element v € F; p >~
Vg and consider Jp(v). We note

(3) x — Jp(v)y is a polynomial function on X (M (F)). Moreover, (1), (2) above show
that Jp(v) has a zero at y with a(Rx) > 0 if I§(p,) is reducible.

(4) Jpip(py) is an isomorphism at x € Xyt (M (F)) where p, is G-regular. Thus Jp(v) €
I§(Vp)p is not zero.

(4) combined with the commutative diagram

J'| (Pxw)
]Jg(vxw) R fg(wa)
woJpp(p Jow ™1
190). 18
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shows that the set of X € X%(M(F)) such that y is a zeros of x — Jp(v), is a proper
Zariski closed subset Z(p)¥ of XY(M(F)). By (3), the set of x¥ € X(M(F)) such that
¥ (Ry) > 0 and I§(p,) is reducible is contained in this Z*(p)©.

Finally, we consider the case a"(RY) < 0. Since the reducibility of I§(p,) is equiva-
lent to that of the contragredient Iﬁ(p;(/,l), the proper Zariski closed subset Z~(p)¢ :=
(ZH(p¥)9)"t € XE(M(F)) contains those x with av(Ry) < 0 such that I§(p,) is re-
ducible.

We conclude that the set of Y € X%(M(F)) where I§(p,) is reducible, is contained
in the Zariski closed subset

Z(p)% = Z%p) U Z(p) U Z ().

Now we are able to prove the following irreducibility theorem of Waldspurger.

Theorem 4.2 ([10] Th. 3.2). For P = MU € F and an irreducible admissible represen-
tation (m, V') of M(F), there exists a neighborhood U of 0 in a}, - such that the following
holds. 1§ (my) is irreducible for any A € U such that oV (RN) # 0, Va € Iy

Proof. For (M., p) € Xy, there exists P. € P(M.) contained in P such that 7 is isomorphic
to a submodule of 184, (p). Then [I§(m,)] is contained in I§ (py) so that (M, py) € X:

for any irreducible subquotient 7 of I§(my). In particular we can take P’ € P(M.) such
that

Homyy, (r) (TPCH pr) = HomG(F)(T7 Igg (pa)) # 0.
On the other hand Bruhat filtration asserts that
LEm)rl = Y aoyue (@ u-1e))]

wEPé Wp

= Z [w(ﬁ)\7w—1(pcl)1\l>].

weW/wM
w(M)DM,.

(4.2)

Claim 4.2.1. We can take a neighborhood U of 0 in ay; ¢ sufficiently small, so that the
set of wrreducible constituents of w(my ,-1(pyn), (w € W/WM, w(M) D M,) are disjoint
to each other at any X\ € U satisfying a¥ (RN) # 0, Voo € Xy

Proof. If there are no such neighborhood, we can take a sequence {\, },en in aj; ¢ which
converges to 0 such that

a’(R\,) # 0, Ya € 3y

e For any n € N, there exist w; # wy € W/WM which satisfies the condition of (4.2)
such that wy (my ,,-1(pyar) and wa(my -1 pyyar) share a same irreducible constituent.
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By replacing {\, }nen with its subsequence, we may assume that wy, we are independent
of n. Since the Bruhat filtration gives

[wi(I%w (P)w;l(PL{)M)wi(A)] = Z [wi(w(p))w;(v)]
weWM jWMe
w(Me)=w; ! (M)

= Z [w(p>w1(>\)]7

wGWM(Mc)

for each n € N, we find vy, v, € WM(M,) such that

V1(P) w1 (An) = V2(P)ws(An)-

Again taking some subsequence, we can assume v; are independent of n. The set of
wi(An) — w2(Ay,) satistying this equality is finite modulo 2miay, ) by [4, 1.6], and hence
discrete in aj, . As {An}nen tends to 0, this implies vy(p) = v2(p) and in particular, for
sufficiently large n € N, we have

Now since oY (RA,) # 0, YVa € Xy, R\, belongs to a uniquely determined chamber

a?f in aj,. Then the above equality implies that w; "w, preserves a};’f , or equivalently

wy twy € WM, This is a contradiction. [l

Now let A € U be as in the claim. For (I§(my),I5(VA)) to be irreducible, it suffices
that its irreducible submodule (7, V;) is isomorphic to I§ (7).

Claim 4.2.2. I§(my\) ~ 7 if and only if [w(my-1(prya)wn)] C [Tp:] for any P, € P(M,)
and w € W/WM satisfying w(M) D M.,.

Proof. Since we have chosen A € U as in the claim, the condition is equivalent to [7p/] D
[[G(mx)p], VP, € P(M.). This amounts to the vanishing of the Jacquet modules of
I§(V))/V; along any P! € P(M,.). Thanks to [4, 2.5], this implies I$(V))/V, = {0}. O

Since the condition of this claim can be rewritten as [w™" (7p) = Tw-1(py] D [Trw-1(p, M),
replacing P’ for w™(P!), it suffices to show the following.

Claim 4.2.3. If A € U satisfies " (RN) # 0, Va € Sy, then [tp] D [y pu] for any
M! € LM which is G(F)-conjugate to M. and P. € P(M)).

Let us prove this by induction on d(P, PéMU ), where d(P, P") denotes the number of
walls between the chambers a3 and a5, When P/ = P'MU,

{O} # HomG(F) (T7 [ch(ﬂ')\» = HomM(F) (TP’ 7T/\)

gives my C [rp] and hence [my pv] C [(7p) piys] = [751].
Next suppose d(P/, PMU) = d > 0 and take P’ € P(M?) such that d(P!, P") = 1,
d(P!, PC’MU) =d—1. Then Xpuy \ Epr = (Zpmy \ pr) U (Xpy \ Epy) is disjoint to

18



S par 50 that Lpar = Ypur N pr = Xpenr. That is, P = P"™. This combined with
the induction hypothesis gives

[7py] D [y ] = [y pra].

What is left to show is that we can replace P! with P! in the left hand side. Noting that
the appearing representations are all cuspidal, we have only to show that if (M/ p') €
Xc(m = W.X;, the multiplicities of p in [7pr] and [7p/] are equal.

Ig(m) A ¢ ¢

Claim 4.2.4. If (M., p)) € X, with p' € Ilo(M.(F)) (i.e. p' is unitarizable) and X € U
satisfies the condition of the theorem, then the multiplicities of p\ in [Tpr] and [Tp] are
equal.

Proof. We write a € Ap: for the unique element of Ered \ Eljﬁf Let My € L(M]) be such
that Appn = {a} and set Py := M; - U;. Then P € F(M;) contains P!. Also noting

Sied = (958 {a}) U {—a}, we have

{(Blaas,) # 018 € ZEI} = {(Blay,) | B # —r, € By} = X3!
so that P/ C P;. It is enough to prove that

The multiplicities of p) in [opan] and [opyn] are equal for any irreducible
constituent o of 7p,.

Since PM(M!) = {PM P"™M'} either o pMy O O pyary does not vanish so that we may
assume opon 7 0. Any 1rredu(:1ble quotient of o pon 18 of the form w(p)), (Jw € W (M),

and Frobenius reciprocity shows that ¢ is a submodule of I priy (w(p )wery)- Thanks

to Lemma 4.1, I g{}wl (w(p')y) is irreducible at x in some Zariski open dense subset of

X (M!(F)), and hence the theorem is valid for I, (w(p'),), (n € ajyc)- Now since

PMy
PM — prMoand PM £ P g = ala, # 0 belongs to ¥y, In particular, for
A € U as in the theorem, w(a)¥(w(N)) = ¥(\) = a);(A) # 0. This means, by choosing
U appropriately small, that if A € U satisfies the condition of the theorem then so is
w(A) but I§(my) replaced with ]I];/I}MI (w(p')wny). Hence Ig ary (W(P")w(ny) 1s irreducible
and isomorphic to o. Thus we conclude

[Upgf‘/fl] [I%}vu(w(Pl)w(AﬁPng] U%}wl(w(Pl)w(AﬂPng]:[UPC"Ml]-

This finishes the proof of the theorem.

4.2 Irreducibility of induced modules from discrete series

Finally we deduce the following irreducibility result for induced from discrete series rep-
resentations.
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Corollary 4.3. For P = MU € F and an irreducible square-integrable representation
(0, E) of M(F), there exists a Zariski open dense subset Zp(c) C X(M(F')) such that
I§ (o) is irreducible at any x € Zp(o).
Remark 4.4. The special case of cuspidal o of the corollary was used in the proof of [4,
3.12], which describes the general structure of isotypic components of a Hecke algebras
under infinitesimal characters. Also this result is used in the construction of j and hence
p-functions in [12)].
Proof. As in the proof of Lemma 4.1, it suffices to construct a proper Zariski closed subset
Zp(m) € X(M(F)) which contains all the x such that I§(o,) is reducible. Regarding the
decomposition (3.1), we divide the argument according to P; € F(M) for which Ry € a}".
Writing P, = MU, for the Levi decomposition with M; € L, we take P € P(M;)
which contains P so that I§(o,) ~ ]chl,(l %\141 (0y)). We first consider the reducibility of
[%\141 (oy). If we write Z21 (1) for the set of x € X(M(F)) such that w(o,) ~ oy, then it

follows from [12, Prop. IV.2.2] that I (o) is reducible only if x belongs to

pPMy

ZMi(g) = U ZM(g).
w#l, eWM1i (M)
As in the proof of Lemma 4.1, if x € ZM1 (o) then px € ZM'(¢) if and only if w(pu)pu=! €
Stab(o, X (M (F'))). Since Stab(o, X (M (F'))) is contained in the finite set Stab(X,,, X (M (F"))),
we find that ZM! (o) and ZM! (o) are proper Zariski closed subset of X (M (F)).

Next consider x ¢ ZM (o) (always with Ry € ap’). We can write it as pX, (u €
Xunit(M(F)), A € X(My(F))). Set (7, V) := (Ipis, (0,), iy (Ep))-

(i) If P{ = P; then Ig(m,) ~ I§ (7). Since 7 € Iiemp(Mi(F)) and RX € a};’:r,
im.Jp, p, () is irreducible (Cor. 3.2). In particular, I§ (7,) is reducible if and only if
ker.Jp, p, (72) is non-trivial. ) )

(ii) For general P|, we have d(Pi, P]) + d(P{, P,) = d(Pi, P;) so that the functional
equation

Ipy P, (T2) = Iy pi(Th) © Jpyp (Th)
holds [12, IV.1 (12)]. As was remarked in (i), im.Jp,|p, (72) is irreducible. Thus I§(0y) ~
[IC;;,(T)\) is reducible only if either

(1) imJpy p, (72) is a proper submodule of IGI,(V)\), or
(2) kerJp, p(72) # {0}
Let us prove that (1) is equivalent to
(1)" kerJpyp (12) # {0}
In fact, for P, = M. U. € P.(7y), Bruhat filtration gives
TG0 =R (Y wVauipgm))]

weW/ WM
w(Ml)DM(,

S IR LAty

weW/ WM
w(My)DM.
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and hence the functor oar, : 7= @Dp cpr,) I (op,) of [4, 2.5] applied to [gl,(V,\) yields

o IV = D > TR w(Vyuipym)]

PeeP(Me) weW/ WM
w(My)D M,

Notice that this is independent of P} € P(M;). Thanks to [4, 2.5], (1) amounts to the
non-vanishing of ¢, (Ig{ (Va)/im(Jprp, (72))). But since [(pMC([g{(V,\))] = [ea. (15, (VA))],
this is equivalent to kergys, (Jprip (72)) # {0}, which again by [4, 2.5] amounts to (1)".

In any case, we have seen that the reducibility of I (m,) implies kerJp | p, (T2) # {0}.
If we write P’ := PMiU;, P" := PMU,;, we have the commutative diagram

Jp, 1Py (TA)
W) —=— I5(V)
JPMlUl\P(GX)
6(5) o ()

from the definition of the intertwining operator. Then the non-vanishing of kerJp,|p, (1)
is equivalent to that of kerJpn p(0oy).

Let (M., p) € X,. Asin the proof of Lem. 4.1, we take J € Homg ) p,, (15 (V5), I8, (Vs))
and b € B); such that

() Tprip(0y) = J(@)y, VX € X(M(F)), ¢ € I (V).
Consider the image

Jp, € Homuy,(r) 5y (Ig: (V) ., Tpn (Vis) )

of J under the Jacquet functor along P. € P(M..).

If P/ € P(M.) is such that o is a submodule of I%M

Bruhat filtration {F, p, fwepw,, of I S, (V) p, is contained in the corresponding gradation
of the Bruhat filtration {F, p, }vew () of IG(I%M(p)X) ~ ]gg (px)p.:

(p), then each gradation of the

GroFar]C Y [GrFup), GrFup = v(py).

’UEW(MC)
vEWMeqy WM

Put
Qo= {v € WHewW™ /WY | F, p N Fyp. & Foup}y Qi= H .

weWMe\W /WM

For each v € , we fix a representative &, € ﬁupc \ﬁ>v7pc of Grvj-:.,pc, and consider
Jpc(fv) S Ig,,(VB)pC, (P S 7)( ) v E Q)

Suppose kerJpr p(0y) # {0}. Then at least one of its Jacquet modules (kerJprp/(oy))p,,
(3P. € P(M,.)) is not trivial [4, 2.5]. Since Gr,F. p, =~ v(p,) is irreducible, this implies

21



that &, € kerJp, , for some v € Q. In other words, the set of x € X (M (F')) such that
Rx € ap" and at which g (o) is reducible is contained in

Z%(0) = {x € X(M(F))| Jp,(&,)x = 0, 3P, € P(M.), v € Q}

Notice that this is independent of P;. Furthermore, it follows from the rationality of
Jp.(€,) and Th. 4.2 that this is a proper Zariski closed subset of X (M (F)).
Finally we obtain a proper Zariski closed subset

Zp(o) =Zf(o)U | Z"(o)

MieL(M)

which contains all y at which I§ (o) is reducible. O
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