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Max-plus Stochastic Control and Risk-sensitivity

Bl F (B ER - f5#E)
(W.H. Fleming [ (Brown Univ., USA), S.-J.Sheu K (Academia Sinica, Taiwan) & O 3:[FE{f7%)

AGFEHTIE /A AD[ SR THREDS T VY FITHIET 57200 H® §ilffl # max-plus Wi
(idempotent HE3G) OBAN» O A2 Z LIk, HAHEOMERGIHE L TRIT A2 L2 HEL
T5., £7 max-plusEEimzFHHT 272012, T > 013 FPOMIE I N GRZERA, t € (0,7
ZWIIRZ & U CROMERWI T2 EZ 5 ¢

dX (s) = f(X(s))ds + 0"V 20(X (s)dW (s), t <s<T, X(t) =z € R™.

{W(s)} 1 d X7t Brown j##Hj, f:R" - R" o:R" — M(n,d) (M(n,d) iZn x dIT71&K) &
2. 0>0FKREVSTA—=F, ThbLI2IR/NEVETS, G2oNBE: R - RICHL
T, Freidlin-Wentzell D KRZFFICE D § - 00 & L7z & ERD K ) Rl HEE2sHfFt& % ¢

1 T
glog Ey, [/t eel(X(s))ds] — Ues;;gﬂ {t1r<11§x<le - / lv(s)] ds} (0 — o0). (1)
I Ta(s) v e L2 T)(= LA([t, T;RY) 5.2 % Z L 12k 2ROEWD SRR OMRTH %
% (5) = F(a(s) +olals)o(s), t<s<T, alt) = a. @

H>®HIfICldo € L[, T) &/ 4 XL LTifkbi, (1) I8 2HRIE B HH 0850 & BT 2
&, AT LDREE 2(s) 12DV TDORE “maxi<s<r l(z(5))" 12/ A AD TN F — “ft lv(s)|?ds”
ZEALLTHIT, I/ ARk DRI IN 558 @/%’)ﬁ%sup%%o‘(%ﬁt‘ﬂ)
3. ZOERICEWT, Q= L2, T) %/ 4 RIS 2 TEAZERL, Q) = —(1/2) [ v(s)[2ds
(ve Q) %2 "R, LRV, (1) I2B8 T 2MmRBIZABIE ©(2(+) = maxj<s<r [(z(s)) D (BEARICEIT
HARFEE &\ ) FIRT) TR EFEATRD K ) ITET -

T
BEla()] = s (2() + Qo) = s Lo -3 [ peka. @

veQ veL2[t,T]
E;f 13 max-plus JHRFE & MFIEN TV 2 ([1] 228). AGEE T (2), (3) IcHlEZmk L 2 856%
ZZ, (3) 2B L TRAMEL T 2HEZEE T 5.
LIATELIZQ LO—BOBBICKH L THERTE 228, WHOWHEICEI L THIBMZ R 7%
v, L L, FERUSHT LWL . B
a®b=max{a,b}, a®b=a+b, a,be R™ =RU{—00}

ZEATZE, ZOEHFEICELTE, 3#EEEZRFD. R-=RU{—oco} KEWTH LA - L
LTo, @ 2H& A7 DIE max-plus algebra & WEIXI, ANZRYT 2 W nDAATELAIMIER DB % 3
7L, )T 2HlHEZEZEZ 2L EIOHELH VS LHHEORMLAL KRS kiﬁ%b!
ES t, max-plus HIRHEIZ 0 U TSR S MHRHMEDYE 2 41, tower property 72 £ OMEFRG &
D% K ODWEDY 26, WERHEE PO 7 A T7Ick b H iz T & 5.
(2)IZBWTU Cc R™ Iz Al u € L°([t, T); U) ITKET 2 HEMD TR 2HEZ K9 ¢
%(s) = f(z(s),u(s)) + o(x(s),u(s))v(s), t < s <T, z(t) =z € R" (4)
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ORI HE uw e Lo([t,T;U) £/ 4 Rve L2, T %522 LRESI N5, s/ 4
AOBWICHEDITRD D E L, a: L2t,T] — L2([t,T];U) Z T u(s) = afv)(s) (t < s <
T, v e L?[t, T]) EFRT, IS5l A ZDREEIZEI L T non-anticipating TH 52X ET, Zh
W — M2 BT 5 Elliott-Kalton #klig % > CTERL T 5. AFHEIZE T % max-plus stochastic
control 1%, KDFHMEI% % Elliott-Kalton gD 727 7 A T(¢,T) THR/MULT 2[ETH 5 -

= su ®x5avs 571 Tvszs
_vengT]{/[nT]l( (), []( ))d 2/15 |()|d} (5)

T f[f?T] 1(z(s), a[v](s))ds = ess.sup;<,<q L(z(s), a[v](s)), (s) 1& (4) D u(s) = afv](s) IR
T5RET 5, RoBETFEIEERICE T (5) D o IZBIT 5 R/IME

V(t,z)= inf J(t
(t, @) L (t, ;)

ZR T 5 2 EDHEARWFETH 2. AGHEETITHBEBEGR CEE R 7 4 — PNy JIRIEZ2 &8y
77 ZAT(T) ZH71i2%E L, dynamic programming D7 A 7 7 % T V(t, z) D3R DHEZS
FAEA (quasi-variational inequality) O—R M E 25 2 L 2Hd T 5 ¢

milr}max {(?t/ + H(z,VV (t,z)),l(x,u) — V(t,x)} =0in (0,7) x R",
ue

V(T,z) =minl(x,u), z € R".
uelU

2 2T HY(w,p) = max,cpa{(f(z,u) + oz, u)v) - p— (1/2)*} T 5.

E 512 (1) ICHEZHAAALRIEZ D 72012, 7 4 VY —(F SHERER (Q, 7, P, {F)) 128
WTRDMERM D IR %2 EZ S ¢

dX (s) = f(X(s),U(s))ds + 0" 20(X (), U(s))dW (s), t < s < T, X(t) =z € R".

(W (s)} & {F.}-Brown 3B, U(-) = {U(s)} ZHIEEREZ L, UICiizls {F,}-FEHATH
WELE 2. FPMIECE LC

T
Jo(t,x;U(+)) = By {/ eel(X(s)’U(s))ds]
t
ZEAL, Iz U()={U(s)} icBAL TmAMbd 2 [HiE

%%z% H 2 F e TN TR OREIZEBEL 7 7 A > 2B 2 RIS § 2 iR

- HERMEEBHELTED, 0 > oo & L& EREFRIIIFFICY X 7 AR (risk-averse) 75 f&
E%W%:k%%%?%.ﬁ%ﬁ?uwa z), BLXOZDORBER V) (t, ) = (1/6) log Uy(t, ) B3
Tt 7z Ry 2@ U T, MEWEERIC B ) 2 A R ZE ez w5 2 LItk D

Vo(t,z) = ~log Uy(t, z) — V(t,2) (6 — o0)

0
23(0,T) x R" - Tay 87 b —HRIKOFEIRTRAZYT 5 2 L 2HiET 5.
SEXHR

[1] W.H. Fleming, Max-plus stochastic processes, Appl. Math. Optim., 49 (2004), 159-181.



Perturbation of rough linear differential equations

Antoine Lejay (INRIA)

We show existence and uniqueness of a solution of a perturbation of a rough
linear equation, which means a perturbation of a linear equation in the sense of
rough paths. This have potential application for studying perturbation of rough

differential equations.
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In this talk, I will talk about a detailed asymptotic behavior of the eigenvalues of the Laplacian
associated with the Brownian motion on the Sierpinski carpet (Figure 1). All the results are valid
for any generalized Sierpinski carpets modeled on [0, 1]d, d > 2, but we confine ourselves to the
case of the usual Sierpinski carpet for simplicity.

Let {F,}ics, S := {1,...,8}, be a family of similitudes on R? as described in Figure 2 below,
where the whole square denotes [0,1]2. The Sierpinski carpet K is defined as the self-similar set
associated with {F;};cs, that is, the unique non-empty compact subset of R? such that K =
Uses Fi(K). Let Vo :=[0,1]*\ (0,1)? (Figure 2), which should be regarded as the boundary of K:
In fact, Vj is the smallest subset of K that satisfies F;(K)NF;(K) = F;(Vo) N F;(Vp) for any distinct
i,j € S. As #Vy = oo, K is infinitely ramified. We also set Vi := | J;c g Fi(Vo) (see Figure 3).

F~ | Fg | F5 Hr| He| M5

Fg Fy =V | ks ra[—V7
F1 F2 F3 1| 2] K3

Figure 1 the Sierpinski carpet Figure 2 Figure 3

Framework 1 (Barlow-Bass, Kusuoka-Zhou) (1) Let V be the self-similar measure on K with
weight (1/8,...,1/8), that is, the unique Borel probability measure on K satisfying v(K,) =
(1/8)*! for any w € Unmenugoy 8™ where Fyy := Fy, 0 -+ 0 Fy,,, Ky = Fy(K) and [w] := m for
w=wi...w, €S meNU{0}.

(2) There exists a (unique good) strong local regular Dirichlet form (€, F) on L?(K,v) such that

1
E(u,v) = Z —E&(uoF;,voF;), wu,v€EF (SSDF)
ies”
for some r € (0,1). By r < 1, it can be shown that F C C(K). We also set 7 := 8/r.

This Dirichlet space (£ := (K, S, {F;}ics),v,E, F,r) is the framework of our study. Note that 7 is
the time scaling factor for the corresponding diffusion process.

Definition 1 (The eigenvalue counting function and the (spectral) partition function)
Let {AV},cn be the eigenvalues of the non-negative self-adjoint operator —A (‘Laplacian’) on
L?(K,v) associated with (£, F). We define the eigenvalue counting function Ny by Nn(x) :=
#{n e N| A, <z}, x € [0,00), and the (spectral) partition function Zn by

Zn(t) =) et = e "™dNpn(u) = Tr(e*) = / py (z,z)dv(z), t>0, (1)
neN [0,00) K
*JSPS Research Fellows DC (20-6088): Supported by Japan Society for the Promotion of Science




where {p)};~¢ denotes the (unique) jointly continuous heat kernel, i.e. the integral kernel of e*4.

Let Fp := {u € F | uly, = 0} and Fy, := {u € F | uly; = 0}. For b € {D,V1}, let N}
and Z, be the eigenvalue counting function and the partition function, respectively, associated
with (€| zx7,, Fp). The following result has been obtained by B. M. Hambly [1]. (Below dimp de-
notes Box-counting dimension with respect to the Euclidean metric, which is also called Minkowski
dimension.)

Theorem 2 There exists a (log T)-periodic continuous function Go : R — (0, 00) such that,
forbe {N,D}, ast | 0,

Zy(t) =t~/ Go(log t™!) + Ot~/ %), (2)
where dy :=log3 8 = dimg K and d,, := logg 7. Note that df/dw =log. 8 and 1 = dimp V.
Theorem 2 is proved by showing Zp(t) < t—% /% (easily proved from the self-similarity) and
(0<)Zp(t) — Zy; (t) < e1t™ Y% te(0,1], (3)

via the sub-Gaussian heat kernel upper bound. Since Zy, = 8Zp(7t) by the self-similarity of the
diffusion (8: the number of cells, 7: time scaling factor), (3) immediately yields

0 < t4/dw Z5(t) — (7t)¥ /% Zp(1t) < et~/ ¢ e (0,1], (4)

which is the essense of the statement of Theorem 2. Moreover, by having a closer look at the
asymptotic behavior of Zp(t) — Zy, (t), we have the following main theorem of this talk.

Theorem 3 (K., in preparation) There exist (log T)-periodic continuous functions Gy :
R—R,k=1,2 and c € (0,00) such that G; < 0 and, ast | 0,

Zp(t) =t~ 4/ Go(logt™) +t /%G (logt™) + Go(logt ™) + o(exp(ct—*dwl—l ). (5)

Here the existence of G, for example, follows by showing the existence of a periodic function G}
such that
Zp(t) — Zv, (t) =t/ * G (logt™") +O(1) ast |0, (6)

whereas G < 0 follows from the fact that Zp(t) — Zy; (t) > cat=1/% 3¢y > 0, hence
=4/ % Go(logt™) — Zp(t) <t~V ast |0 (7)

(see Kajino [2]). Finally, we remark that the similar (or more detailed) result is valid for any
generalized Sierpinski carpet Kgsc C R?, as follows.

Theorem 4 (E'Go > 0: Hambly [1, Theorem 4.1], the others: K., in preparation) There
exist continuous (log 7)-periodic functions G : R — R, 0 < k < d and ¢ € (0,00) such that
Go>0,G1<0and ast |0,

d

Zp(t) = Yt~ /%Gy (logt™) + O (exp(ct™ 7-1)), (8)
k=0

where dj, := dimp (KGSC N{zx1 ==z = 0}) for 0 < k <d.
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ON DOUBLY FELLER PROPERTY

Z.-Q. Chen and K. Kuwae

University of Washington and Kumamoto University

1. MAIN THEOREM

Let X = (Q, Foo, Ft, Xt,(,Py,x € E) be a strong Markov process on a locally compact
separable metric space E. Let 0 be a point added to E so that Ey := E U {0} is the
one-point compactification of E. The point 9 also serves as the cemetery point for X.
Recall that X is said to have Feller property if P;(Cso(E)) C Coo(E) for every ¢ > 0 and
limi—oo || Pif — flloo = 0 for every f € Coo(E), where {P;;t > 0} defined by P, f(z) :=
E.[f(X}:)] is the semigroup of X. Here C(FE) is the space of continuous functions on E
that vanishes at infinity and || f||c := sup,ep |f(x)]. The space of bounded continuous
functions on E will be denoted as Cy(E). The process X is said to have strong Feller
property if Py(By(E)) C Cy(E) for every t > 0. We say X (or its transition semigroup) has
doubly Feller property if it has both Feller and strong Feller property. Clearly the above
terminology can be formulated for any semigroup {7},¢ > 0} acting on By(E).
Let {Z;,t > 0} be a positive multiplicative functional of X. It defines a semigroup

(1) Tif(x) == By [Ze f(Xy)] fort >0 and f > 0.
For an open subset B of E, we also define a semigroup TtB by
(2) TP f(x) = B, [Zif(Xy) : t < 78] fort >0 and f >0 on B,

where 75 = inf{t > 0 | Xy ¢ B} is the first exit time from B. Let B*(E) be the o-
field of universally measurable subsets of E' and denote by B;(E) the family of bounded
universally measurable functions on E. Note that T3 f € B*(E) when f is Borel measurable
(T, f is Borel for Borel function f if Z; is Fy-measurable). An open set B(C E) is said to
be regular if P, (7 = 0) =1 for any x € B¢ = E \ B. Fix an open set B.
(3) %irré supE; [|Z; — 1] : t < 7p] =0 for any relatively compact open set D C B,
—VYzeD
(4) sup sup E;[Z; : s < 71B] < 00 for some (and hence for every) t > 0,
s€l0,t] z€B
and for V¢ > 0, 3p > 1 (which may depend on t) such that
(5) supE, [Z7 1t < 1] < .
TEB

The following theorem extends [1].

Theorem 1.1 ([2]). Let X be a doubly Feller process and B an open set in E. Suppose
that (3) holds and that

(6)  for ¥t >0 and compact set K C B, 3p > 1 such that sup E, [Z¥ : t < 15| < .
€K

Then {TP,t > 0} defined by (1) has strong Feller property. Assume further that (4) and
(5) hold for every t > 0, B is reqular and that lim;_o Ex[|Z; — 1| : t < 78] = 0 for every
x € B. Then {TP,t >0} has Feller property.
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Corollary 1.1 ([2]). Let X be a doubly Feller process and assume (3) holds. Let B an

open reqular set. Suppose that

(7)  3p > 1 such that sup sup Ex[ZF : s < 7] < oo for some (hence every) t > 0.
se[0,t] z€B

Then {TtB;t > 0} has doubly Feller property. If in addition, B is relatively compact, then

TBg € Coo(B) for everyt >0 and g € By(B).

2. FEYNMAN-KAC TRANSFORM

A positive additive functional (PAF in short) A is said to be of Dynkin class if
sup,ep Ez[A4;] < 0o for some ¢ > 0, or equivalently, sup,cp E;[[; e~ *dA] < oo for some
a > 0. A PAF A is said to be of Kato class (resp. of extended Kato class or generalized
Kato class) if lim;_,o sup,c g Ex[A¢] = 0 (resp. limy— g sup,cp Ez[A:] < 1); or equivalently,
lima—oo SUppep Bzl [y~ ™" dA;] = 0 (resp. limg—oo sup,ep Eo[ [y e *dAy] < 1). A PAF
A is said to be of local Kato class if for each compact set K, a PAF 1xA defined by
(1gA) = fot 1x(Xs—)dAs is of Kato class. For a PAF A, let Exp(A); be the Stieltjes

exponential of A, that is, Exp(A); is the unique solution of Z; of Z; =1+ f]o 1 Zs_dA,.

Theorem 2.1. Let A be a PAF of local and extended Kato class. Suppose that a PAF B
defined by By := ZO<s<t(AA3)2 is of Dynkin class. Put Z; := Exp(A);. Let B an open
reqular set. Then (3) and (7) hold for Z and B. Consequently, {TB,t > 0} defined by (2)
has doubly Feller property provided X is doubly Feller.

3. GIRSANOV TRANSFORM

Assume that X is an m-symmetric doubly Feller process, where m is a positive Radon
measure on F with full support and that the Dirichlet form (€, F) of X is regular on
L?(E;m). We fix a continuous locally square integrable MAF M¢ and a Borel function
¢: Eygx Eyg — R with ¢(x,y) > —1 for all z,y € Ey and ¢(z,z) = 0 for x € Ey. We write
N()(z) = fEa Y(x,y)N(z,dy), where N(z,dy) is the kernel of Lévy system (N, H). We
use fu(pey to denote the Revuz measure of (M€). Let Si be the class of smooth measures
in the strict sense (see [3]).

Lemma 3.1. Suppose N(¢—log(1+¢))um € S1 and assume that v := N(¢2)MH—|—%;L<MC>
is a Radon measure of extended Kato class. Then there exists a locally square integrable
MAF M? of purely discontinuous type such that AM{ = ¢(X;_, X;) t €]0, 00[ P,-a.s.

Theorem 3.1. Assume that log(1 + ¢) is bounded on K x E for each compact set K
and v = N(¢*)ppg + %M(Mc> is a positive Radon measure of local and extended Kato
class. Put Z; := Exp(M)y, the solution of Doléan-Dade SDE Z, = 1 + f]o,t] Zs_dMy for
My == M{ + M. Then (3) and (7) hold for Z and for every regular open set B. In
particular, Z is a martingale under the conditions. Consequently, {TP ,t > 0} defined by
(1) has doubly Feller property.
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ON GENERAL PERTURBATIONS OF SYMMETRIC MARKOV
PROCESSES

Z.-Q. Chen, P. J. Fitzsimmons, K. Kuwae and T.-S. Zhang
University of Washington, UCSD, Kumamoto University and University of Manchester

1. MAIN RESULTS

Let X = (Q, Foo, Ft, Xt,(,Py,x € E) be an m-symmetric Hunt process on a locally
compact metric space E, whose associated Dirichlet form (€, F) is regular in L?(E;m), and
that m is a positive Radon measure on E with full topological support. Let Ey := FU{0}
be the one point compactification of E and €2 the totality of right-continuous, left-limited
sample paths from [0, 00[ to Ey that hold the value 0 once attaining it. For any w € ,
we set X¢(w) := w(t). Let ((w) := inf{t > 0 | X;(w) = 0} be the life time of X. For a
Borel subset B of E, 7p := inf{t > 0 | X; ¢ B} (the exit time of B) is an (F;)-stopping
time. The transition semigroup {P; : t > 0} of X is defined by P f(z) := E;[f(Xy)] =
E.[f(Xy) :t < (], t >0 Let (£,F) be the associated Dirichlet form with X. A positive
continuous additive functional (PCAF in abbreviation) of X (call it A) determines a
measure v = v4 on the Borel subsets of E. [, f(z)v(dz) =1 limy_ot 'E, [fot f(Xs) dAs},
in which f : F — [0,00] is Borel measurable. The measure v is necessarily smooth, in
the sense that v charges no exceptional set and there is an £-nest {F}} of closed subsets
of E such that v(F);) < oo for each n € N. In the sequel we refer to this bijection
between smooth measures and PCAFs as the Revuz correspondence, and to v as the
Revuz measure of A”. We write K(X) for the Kato class smooth measures and define
Ko(X) ={reK(X) | v(F) < oo}. If M is a locally square-integrable (local) martingale
additive functional on [0, ([ (with respect to X), then the process (M) (the predictable
quadratic variation of M) is a PCAF, and the associated Revuz measure is denoted by
peary- More generally, if M* is the martingale part in the Fukushima decomposition of
u € F, then (M*, M) is a CAF locally of bounded variation, and we have the associated
Revuz measure pupsu a7y, which is locally the difference of smooth (positive) measures.
Now let M and M be two locally square-integrable local martingale additive functionals
(MAFSs) on [0,¢[, and let A be a CAF locally of bounded variation with (signed) Revuz
measure p. By the discussion of the preceding paragraph, there is a nest {F}} such that
Le, (o) + g+ lul) € Ko(X) for all n. Our main results concern the form perturbation

Q of (£, F) defined on UpFp, by
Qf9) = E() = [ 1@ iy (@)= [ a@ maaranldn) = [ f@)ae) nida
1 - [ I 902N, dyy(da),

Here ¢ and ¢ are Borel functions defined on E x F, vanishing on the diagonal and bounded
below away from —1 such that M; — M;_ = o(Xi—, Xy), ]\/Zt — ]\/it_ = P(X¢—, X3) for every
t €]0,¢[, Pyy-a.e. Let r; denote the time-reversal operator defined on the path space Q of
X as follows: For w € {t < (}, ri(w) :=w((t—s)—) if 0 < s < t and 1 (w) := w(0) if s > ¢.
Now define, for 0 <t < (,

(2) Zy = Exp(My + Al + (M, M),) - Exp(M;) o ry - (1 4+ (X, Xi-)),
1



wherein Exp denotes the familiar Doléans-Dade stochastic exponential. Finally, define
3) Tif(x) = Eqx [Z0f (X)),

One of the purpose of this talk is to establish the following extension of the results in [1].
Theorem 1.1. Let ji(ppy, 13T and |u| be of Hardy class smooth measures, and let { Fy.} be

an E-nest such that 1p, (u<M> + lp T \,u\) is in the Kato class, for each k > 1. Suppose

that the quadratic form defined on UpFr, by (1) is bounded below in the sense that there
is a constant oy > 0 such that for every f € UpFr,

(4) Qao(f, f) = 0.
Suppose also that there is a constant K such that for every f,g € UpFp,
(5) |Qao(f+9)| < K Qay (£, )"/* Qan(9,9)'%.

The formula (3) then defines a strongly continuous semigroup {T; : t > 0} of bounded
operators on L?(E;m). Conversely, if {T;,t > 0} defined by (3) is a strongly continuous
semigroup on L2(E;m) with | T;|| < e for some ag > 0, then (4) holds, provided { Fy,, k >
1} is an E-nest such that 1p, <H<M) +pan |u|) € Ko(X) for every k > 1.

The following Q on Fy is a well-defined symmetric form provided fi(ys) is of Hardy:

(© Q(f.9) = £(1,0) + 3 viaassan(E) for [, € Fy,

where ViMuy = B(Mu4Musr)- Define @(x7y) = (p(y,l') and N(]-EXE@2)($) = fE ¢(xa y)2N($7 dy)7
and write FF, j for the set of bounded elements of Fp, . Suppose N(lExEQBQ),uH is smooth

and let K be the local MAF on [0, ([ such that K; — K;— = —p(X—, Xi) — (X, Xi—)

t €]0,¢[ P-a.e. Define A(M)o = 0 and A(M) := —5(My + Myory + (X, Xo) + Ky),

t €]0,¢[ under P,,.

Theorem 1.2. Let M be a locally square-integrable MAF on [0, ([ with jump function ¢
satisfying My — My— = o(X¢—, X¢) fort €]0,([ Py,-a.e. Let {Fy} be an E-nest such that

1p, (,u<M> + N(lEXE@Q)MH) € Ko(X) for every k > 1.

Then Q defined by (6) for f,g € Uy>1 Fry b is well-defined. Suppose that (Q,Uy>1 Fryp) is
bounded below in the sense that there is a constant ag > 0 such that for every f € U, Fr, p

(7) Q(f, )+ ao(f, f)rz > 0.

Then the symmetric semigroup Pif(z) = E, [eA(M)tf(Xt)] is strongly continuous on
L*(E;m), and the associated quadratic form (C,D(C)) is the largest closed symmetric
form bounded below by —ayp that is less than (Q,Uys Frp). Conversely, if Pif(z) =
E,. [6A(M)tf(Xt)] is a strongly continuous semigroup on L?(E;m), then there is some
ag > 0 so that (7) holds.
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