
COBORDISM OF FIBERED KNOTS AND RELATED TOPICS

VINCENT BLANLŒIL AND OSAMU SAEKI

Abstract. This is a survey article on the cobordism theory of non-spherical
knots studied in [BM, B2, BS1, BMS, BS2, BS3]. Special emphasis is put
on fibered knots.

We first recall the classical results concerning cobordisms of spherical knots.
Then we give recent results on cobordisms of simple fibered (2n− 1)-knots for
n ≥ 2 together with relevant examples. We discuss the Fox-Milnor type re-
lation and show that the usual spherical knot cobordism group modulo the
subgroup generated by the cobordism classes of fibered knots is infinitely gen-
erated for odd dimensions. The pull back relation on the set of knots is also
discussed, which is closely related to the cobordism theory of knots via the
codimension two surgery theory. We also present recent results on cobordisms
of surface knots in S4 and 4-dimensional knots in S6. Finally we give some
open problems related to the subject.
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1. Introduction

1.1. History. In the early fifties Rohlin [Rh1] and Thom [Th] studied the cobor-

dism groups of manifolds. At the 1958 International Congress of Mathematicians in
Edinburgh, René Thom received a Fields Medal for his development of cobordism
theory. Then, Fox and Milnor [FM1, FM2] were the first to study cobordism of

knots, i.e., cobordism of embeddings of the circle S1 into the 3-sphere S3. Knot
cobordism is slightly different from the general cobordism, since its definition is
more restrictive. After Fox and Milnor, Kervaire [K1] and Levine [L2] studied em-
beddings of the n-sphere Sn (or homotopy n-spheres) into the (n+2)-sphere Sn+2,
and gave classifications of such embeddings up to cobordism for n ≥ 2. Moreover,
Kervaire defined group structures on the set of cobordism classes of n-spheres em-
bedded in Sn+2, and on the set of concordance classes of embeddings of Sn into
Sn+2. The structures of these groups for n ≥ 2 were clarified by Kervaire [K1],
Levine [L2, L3] and Stoltzfus [Sf ].

Note that embeddings of spheres were studied only in the codimension two case,
since in the PL category Zeeman [Ze] proved that all such embeddings in codimen-
sion greater than or equal to three are unknotted, and Stallings [Sg] proved that
it is also true in the topological category (here, one needs to assume the locally
flatness condition), provided that the ambient sphere has dimension greater than
or equal to five. In the smooth category Haefliger [Ha] proved that a cobordism of
spherical knots in codimension greater than or equal to three implies isotopy.

Milnor [M3] showed that, in a neighborhood of an isolated singular point, a
complex hypersurface is homeomorphic to the cone over the algebraic knot associ-
ated with the singularity. Hence, the embedded topology of a complex hypersurface
around an isolated singular point is given by the algebraic knot, which is a special
case of a fibered knot. After Milnor’s work, the class of fibered knots has been
recognized as an important class of knots to study. Usually algebraic knots are not
homeomorphic to spheres, and this motivated the study of embeddings of general
manifolds (not necessarily homeomorphic to spheres) into spheres in codimension
two. Moreover, in the beginning of the seventies, Lê [Lê] proved that isotopy and
cobordism are equivalent for 1-dimensional algebraic knots. Lê proved this for the
case of connected (or spherical) algebraic 1-knots, and the generalization to arbi-
trary algebraic 1-knots follows easily (for details, see §4). About twenty years later,
Du Bois and Michel [DM] gave the first examples of algebraic spherical knots that
are cobordant but are not isotopic. These examples motivated the classification of
fibered knots up to cobordism.

1.2. Contents. This article is organized as follows. In §2 we give several definitions
related to the cobordism theory of knots. The Seifert form associated with a knot
is also introduced. In §3 we review the classifications of (simple) spherical (2n−1)-
knots with n ≥ 2 up to isotopy and up to cobordism. In §4 we review the properties
of algebraic 1-knots and present the classification theorem of algebraic 1-knots up
to cobordism due to Lê [Lê]. In §5 we present the classifications of simple fibered
(2n − 1)-knots with n ≥ 3 up to isotopy and up to cobordism. The classification
up to cobordism is based on the notion of the algebraic cobordism. In order to
clarify the definition of algebraic cobordism, we give several explicit examples. We
also explain why this relation might not be an equivalence relation on the set of
bilinear forms defined on free Z-modules of finite rank. The classification of 3-
dimensional simple fibered knots up to cobordism is given in §6. In §7 we recall
the Fox-Milnor type relation on the Alexander polynomials of cobordant knots. As
an application, we show that the usual spherical knot cobordism group modulo the
subgroup generated by the cobordism classes of fibered knots is infinitely generated
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for odd dimensions. In §8 we present several examples of knots with interesting
properties in view of the cobordism theory of knots. In §9 we define the pull back
relation for knots which naturally arises from the viewpoint of the codimension two
surgery theory. We illustrate several results on pull back relations for fibered knots
using some explicit examples. Some results for even dimensional knots are given in
§10, where we explain recent results about embedded surfaces in S4 and embedded
4-manifolds in S6. Finally in §11, we give several open problems related to the
cobordism theory of non-spherical knots.1

With all the results collected in this paper, we have classifications of knots up
to cobordism in every dimension, except for the classical case of one dimensional
knots and the case of three dimensional knots. In the latter two cases, a complete
classification still remains open until now.

Throughout the article, we shall work in the smooth category unless otherwise
specified. All the homology and cohomology groups are understood to be with
integer coefficients. The symbol “∼=” denotes an (orientation preserving) diffeo-
morphism between (oriented) manifolds, or an appropriated isomorphism between
algebraic objects.

The authors would like to express their gratitude to Jean-Paul Brasselet and
Tatsuo Suwa for encouraging the authors to write this survey article on the theory
of knot cobordisms. They also would like to thank the referee for some useful
comments.

2. Several definitions

Since our aim is to study cobordisms of codimension two embeddings of general
manifolds, not necessarily homeomorphic to spheres, we define the following.

Definition 2.1. LetK be a closed n-dimensional manifold embedded in the (n+2)-
dimensional sphere Sn+2. We suppose that K is ([n/2] − 1)-connected, where for
a ∈ R, [a] denotes the greatest integer not exceeding a. (We adopt the convention
that a space is (−1)-connected if it is not empty.) Equivalently, we suppose that
K is

(k − 2)-connected if n = 2k − 1 and k ≥ 2, or
(k − 1)-connected if n = 2k and k ≥ 1.

When K is orientable, we further assume that it is oriented.2 Then we call K or
its (oriented) isotopy class an n-knot, or simply a knot.

An n-knot K is spherical if K is

(1) diffeomorphic to the n-dimensional standard sphere Sn for n ≤ 4, or
(2) a homotopy n-sphere for n ≥ 5.

Remark 2.2. We adopt the above definition of a spherical knot for n ≤ 4 in order to
avoid the difficulty related to the smooth Poincaré conjecture in dimensions three
and four.

Note that we impose the connectivity condition on the embedded submanifold
in Definition 2.1. This is motivated by the following reasons. First, a knot asso-
ciated with an isolated singularity of a complex hypersurface satisfies the above
connectivity condition as explained below. Second, if we assume that K is [n/2]-
connected, then K is necessarily a homotopy sphere so that K is spherical at least
for n 6= 3, 4. Third, the connectivity condition on K technically helps to perform
certain embedded surgeries and this simplifies the arguments in various situations.

1A “non-spherical manifold” in this article refers to a general manifold which may not neces-
sarily be a homotopy sphere.

2In this article, we always assume that n-knots are oriented if n 6= 2.
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Remark 2.3. For the case of n = 1, i.e., for the classical knot case, a 1-knot in our
sense is usually called a “link”, and a connected (or spherical) 1-knot is usually
called a “knot”.

As mentioned in §1, Definition 2.1 is motivated by the study of the topology of
isolated singularities of complex hypersurfaces. More precisely, let f : Cn+1, 0 →
C, 0 be a holomorphic function germ with an isolated singularity at the origin. If
ε > 0 is sufficiently small, then Kf = f−1(0) ∩ S2n+1

ε is a (2n − 1)-dimensional
manifold which is naturally oriented, where S2n+1

ε is the sphere in Cn+1 of radius ε
centered at the origin. Furthermore, its (oriented) isotopy class in S2n+1

ε = S2n+1

does not depend on the choice of ε (see [M3]). We call Kf the algebraic knot

associated with f . Since the pair (D2n+2
ε , f−1(0)∩D2n+2

ε ) is homeomorphic to the
cone over the pair (S2n+1

ε ,Kf ), the algebraic knot completely determines the local
embedded topological type of f−1(0) near the origin, where D2n+2

ε is the disk in
Cn+1 of radius ε centered at the origin.

In [M3], Milnor proved that algebraic knots associated with isolated singularities
of holomorphic function germs f : Cn+1, 0 → C, 0 are (2n− 1)-dimensional closed,
oriented and (n − 2)-connected submanifolds of the sphere S2n+1. This means
that algebraic knots are in fact knots in the sense of Definition 2.1. Moreover, the
complement of an algebraic knot Kf in the sphere S2n+1 admits a fibration over
the circle S1, and the closure of each fiber is a compact 2n-dimensional oriented
(n−1)-connected submanifold of S2n+1 which has Kf as boundary. This motivates
the following definition.

Definition 2.4. We say that an oriented n-knot K is fibered if there exists a
smooth fibration φ : Sn+2

r K → S1 and a trivialization τ : N(K) → K ×D2 of
a closed tubular neighborhood N(K) of K in Sn+2 such that φ|N(K)rK coincides

with π ◦ τ |N(K)rK , where π : K × (D2
r {0}) → S1 is the composition of the

projection to the second factor and the obvious projection D2
r {0} → S1. Note

that then the closure of each fiber of φ in Sn+2 is a compact (n + 1)-dimensional
oriented manifold whose boundary coincides with K. We shall often call the closure
of each fiber simply a fiber.

Furthermore, we say that a fibered n-knot K is simple if each fiber of φ is
[(n− 1)/2]-connected.

Note that an algebraic knot is always a simple fibered knot.
Let us now recall the classical definition of Seifert forms of odd dimensional

oriented knots, which were first introduced in [Se] and play an important role in
the study of knots.

First of all, for every oriented n-knot K with n ≥ 1, there exists a compact
oriented (n+ 1)-dimensional submanifold V of Sn+2 having K as boundary. Such
a manifold V is called a Seifert manifold associated with K.

For the construction of Seifert manifolds (or Seifert surfaces) associated with
1-knots, see [Rl], for example.

For general dimensions, the existence of a Seifert manifold associated with a knot
K can be proved by using the obstruction theory as follows. It is known that the
normal bundle of a closed orientable manifold embedded in a sphere in codimension

two is always trivial (see [MS, Corollary 11.4], for example). Let N(K)
τ
∼= K ×D2

be a closed tubular neighborhood of K in Sn+2, and Φ : ∂N(K)
∼=
→ K × S1 pr2

→ S1

the composite of the restriction of τ to the boundary of N(K) and the projection
pr2 to the second factor. Using the exact sequence

H1(Sn+2
r IntN(K)) → H1(∂N(K)) → H2(Sn+2

r IntN(K), ∂N(K)),
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associated with the pair (Sn+2
r IntN(K), ∂N(K)), we see that the obstruction to

extending Φ to Φ̃ : Sn+2
r IntN(K) → S1 lies in the cohomology group

H2(Sn+2
r IntN(K), ∂N(K)) ∼= Hn(S

n+2
r IntN(K)).

By Alexander duality we have

Hn(Sn+2
r IntN(K)) ∼= H1(K),

which vanishes if n ≥ 4, since K is simply connected for n ≥ 4. When n ≤ 3,
we can show that by choosing the trivialization τ appropriately, the obstruction

in question vanishes. Therefore, a desired extension Φ̃ always exists. Now, for a

regular value y of Φ̃, the manifold Φ̃−1(y) is a submanifold of Sn+2 with boundary
being identified with K × {y} in K × S1. The desired Seifert manifold associated

with K is obtained by gluing a small collar K × [0, 1] to Φ̃−1(y).
When K is a fibered knot, the closure of a fiber is always a Seifert manifold

associated with K.

Definition 2.5. We say that an n-knot is simple if it admits an [(n − 1)/2]-
connected Seifert manifold.

Now let us recall the definition of Seifert forms for odd dimensional knots.

Definition 2.6. Suppose that V is a compact oriented 2n-dimensional submanifold
of S2n+1, and let G be the quotient of Hn(V ) by its Z-torsion. The Seifert form

associated with V is the bilinear form A : G × G → Z defined as follows. For
(x, y) ∈ G × G, we define A(x, y) to be the linking number in S2n+1 of ξ+ and η,
where ξ and η are n-cycles in V representing x and y respectively, and ξ+ is the
n-cycle ξ pushed off V into the positive normal direction to V in S2n+1.

By definition a Seifert form associated with an oriented (2n− 1)-knot K is the
Seifert form associated with F , where F is a Seifert manifold associated with K.
A matrix representative of a Seifert form with respect to a basis of G is called a
Seifert matrix.

Remark 2.7. Some authors define A(x, y) to be the linking number of ξ and η+
instead of ξ+ and η, where η+ is the n-cycle η pushed off V into the positive
normal direction to V in S2n+1. There is no essential difference between such a
definition and ours. However, one should be careful, since some formulas may take
different forms.

Remark 2.8. For codimension two embeddings between general manifolds, similar
invariants have been constructed by Cappell-Shaneson [CS1] and Matsumoto [Mt2,
Mt1] (see also [St]). These invariants arose as obstructions for certain codimension
two surgeries.

Let us illustrate the above definition in the case of the trefoil knot. Let us
consider the Seifert manifold V associated with this knot as depicted in Fig. 1,
where “+” indicates the positive normal direction. Note that rankH1(V ) = 2. We
denote by ξ and η the 1-cycles which represent the generators of H1(V ). Then,
with the aid of Fig. 1, we see that the Seifert matrix for the trefoil knot is given by

A =

(
−1 1

0 −1

)
.

Note that a Seifert matrix is not symmetric in general. When A is a Seifert
matrix associated with a Seifert manifold V ⊂ S2n+1 of a (2n− 1)-knot K = ∂V ,
the matrix S = A + (−1)nAT is the matrix of the intersection form for V with
respect to the same basis, where AT denotes the transpose of A (for example, see
[D]).
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Figure 1. Computing a Seifert matrix for the trefoil knot
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K0

Sn+2 × {0}

r
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K1

Sn+2 × {1}

Sn+2 × [0, 1]

Figure 2. A cobordism between K0 and K1

When a knot is fibered, its Seifert form associated with a fiber is always uni-
modular by virtue of Alexander duality (see [Kf ]). In the following, for a fibered
(2n − 1)-knot, we use the Seifert form associated with a fiber unless otherwise
specified.

Furthermore, when a (2n− 1)-knot is simple, we consider an (n− 1)-connected
Seifert manifold associated with this knot unless otherwise specified.

Let us now focus on the cobordism classes of knots.

Definition 2.9. Two n-knots K0 and K1 in Sn+2 are said to be cobordant if there
exists a properly embedded (n + 1)-dimensional manifold X of Sn+2 × [0, 1] such
that

(1) X is diffeomorphic to K0 × [0, 1], and
(2) ∂X = (K0 × {0}) ∪ (K1 × {1})

(see Fig. 2). The manifold X is called a cobordism between K0 and K1. When
the knots are oriented, we say that K0 and K1 are oriented cobordant (or sim-
ply cobordant) if there exists an oriented cobordism X between them such that
∂X = (−K0 ×{0})∪ (K1 × {1}), where −K0 is obtained from K0 by reversing the
orientation.

In Fig. 2 the manifold X ∼= K0 × [0, 1], embedded in Sn+2 × [0, 1], and its
boundary (K0 × {0}) ∪ (K1 × {1}), embedded in (Sn+2 × {0}) ∪ (Sn+2 × {1}),
are drawn by solid curves and black dots respectively, and the levels Sn+2 × {t},
t ∈ (0, 1), are drawn by dotted curves.

Recall that a manifold with boundary Y embedded in a manifold X with bound-
ary is said to be properly embedded if ∂Y = ∂X ∩ Y and Y is transverse to ∂X .

It is clear that isotopic knots are always cobordant. However, the converse is not
true in general, since the manifold X ∼= K0 × [0, 1] can be knotted in Sn+2 × [0, 1]
as depicted in Fig. 3. For explicit examples, see §8.

We also introduce the notion of concordance for embedding maps as follows.
6



rK0 rK1

Figure 3. A cobordism which is not an isotopy

Definition 2.10. Let K be a closed n-dimensional manifold. We say that two
embeddings fi : K → Sn+2, i = 0, 1, are concordant if there exists a proper
embedding Φ : K × [0, 1] → Sn+2 × [0, 1] such that Φ|K×{i} = fi : K × {i} →

Sn+2 × {i}, i = 0, 1.

Note that an embedding map ϕ : Y → X between manifolds with boundary is
said to be proper if ∂Y = ϕ−1(∂X) and Y is transverse to ∂X .

Recall that for a simple (2n−1)-knotK with an (n−1)-connected Seifert manifold
V , we have the following exact sequence

(2.1) 0 → Hn(K) → Hn(V )
S∗→ Hn(V,K) → Hn−1(K) → 0,

where the homomorphism S∗ is induced by the inclusion. Let P̃ : Hn(V,K)
∼=
→

HomZ(Hn(V ),Z) be the composite of the Poincaré-Lefschetz duality isomorphism
and the universal coefficient isomorphism. Set S = A + (−1)nAT and let S∗ :
Hn(V ) → HomZ(Hn(V ),Z) be the adjoint of S, where A is the Seifert form asso-
ciated with V . Then we see easily that the homomorphisms S∗ and S∗ are related

together by S∗ = P̃ ◦ S∗.
Cobordant knots are diffeomorphic. Hence, to have a cobordism between two

given knots, we need to have topological informations about the knots as abstract
manifolds. Since a simple fibered (2n− 1)-knot is the boundary of the closure of a
fiber, which is an (n − 1)-connected Seifert manifold associated with the knot, by
considering the above exact sequence (2.1) we can use the kernel and the cokernel
of the homomorphism S∗ to get topological data of the knot. Note that in the
case of spherical knots, these considerations are not necessary, since S∗ and S∗ are
isomorphisms.

3. Spherical knots

In this section, let us briefly review the case of spherical knots, which was studied
mainly by Kervaire and Levine.

The Seifert form is the main tool to study cobordisms of odd dimensional spher-
ical knots. In [L4] Levine described the possible modifications on Seifert forms of
a spherical simple knot corresponding to alterations of Seifert manifolds as follows.

An enlargement A′ of a square integral matrix A is defined as follows:

A′ =



A O O
α 0 0
OT 1 0


 or



A β O
OT 0 1
OT 0 0


 ,

where O is a column vector whose entries are all 0, and α (or β) is a row (resp.
column) vector of integers. In this case, we also call A a reduction of A′.

Two square integral matrices are said to be S-equivalent if they are related each
other by enlargement and reduction operations together with the congruence. We
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also say that two integral bilinear forms defined on free Z-modules of finite rank
are S-equivalent if so are their matrix representatives.

Levine [L4] proved

Theorem 3.1. For n ≥ 2, two spherical simple (2n− 1)-knots are isotopic if and

only if they have S-equivalent Seifert forms.

Remark 3.2. For spherical simple (2n− 1)-knots, we have another algebraic invari-
ant, called the Blanchfield pairing, which is closely related to the Seifert form (see
[Ke1, T]). In fact, it is known that giving an S-equivalence class of a Seifert form
is equivalent to giving an isomorphism class of a Blanchfield pairing.

Kervaire showed that the set Cn of cobordism classes of spherical n-knots has a
natural group structure. The group operation is given by the connected sum and
the inverse of a knot K is given by its mirror image with reversed orientation −K !.
We say that an n-knot K ⊂ Sn+2 is null-cobordant if it is cobordant to the trivial
knot, i.e., if there exists an (n+1)-disk Dn+1 properly embedded in the (n+3)-disk
Dn+3 such that ∂Dn+1 = K ⊂ Sn+2 = ∂Dn+3. Note that the neutral element of
Cn is the class of null-cobordant n-knots.

In the case of spherical (2n − 1)-knots Kervaire and Levine used the following
notion for integral bilinear forms.

Definition 3.3. Let A : G×G→ Z be an integral bilinear form defined on a free
Z-module G of finite rank. The form A is said to be Witt associated to 0 if the
rank m of G is even and there exists a submodule M of rank m/2 in G such that
M is a direct summand of G and A vanishes on M . Such a submodule M is called
a metabolizer for A.

The following theorem was proved by Levine [L2] (see also [K2]).

Theorem 3.4. For n ≥ 2, a spherical (2n − 1)-knot is null-cobordant if and only

if its Seifert form is Witt associated to 0.

Remark 3.5. For Blanchfield pairing (see Remark 3.2), there is also a notion of
“null-cobordism”, and we have a result similar to Theorem 3.4 (see [Ke2]).

For two spherical (2n − 1)-knots K0 and K1 with Seifert forms A0 and A1 re-
spectively, the oriented connected sum K = K0♯(−K

!
1) has A = A0 ⊕ (−A1) as the

Seifert form associated with the oriented connected sum along the boundaries of
the Seifert manifolds associated with K0 and −K !

1, where −K !
1 denotes the mirror

image of K1 with reversed orientation. Hence, as a consequence of Theorem 3.4,
we have that two spherical knots K0 and K1 are cobordant if and only if the form
A = A0 ⊕ (−A1) is Witt associated to 0. In this case we sometimes say that A0

and A1 are Witt equivalent.
For ε = ±1, let Cε(Z) be the set of all Witt equivalence classes of integral

bilinear forms A defined on free Z-modules of finite rank such that A + εAT is
unimodular (for the notation, we follow [K2]). It can be shown that Cε(Z) has a
natural abelian group structure, where the addition is defined by the direct sum.
Then we have the following.

Theorem 3.6 (Levine [L2]). Let Φn : C2n−1 → C(−1)n

(Z) be the (well-defined)
homomorphism induced by the Seifert form. Then Φn is an isomorphism for n ≥ 3.
For n = 2, Φ2 is a monomorphism whose image C+1(Z)0 is a specified subgroup of

C+1(Z) of index 2. For n = 1, Φ1 : C1 → C−1(Z) is merely an epimorphism.

Furthermore, Levine [L3] showed the following (see also Remark 7.4).

Theorem 3.7. For ε = ±1, we have

(3.1) Cε(Z) ∼= Z∞
2 ⊕ Z∞

4 ⊕ Z∞,
8



where the right hand side is the direct sum of countably many (but infinite) copies

of the cyclic groups Z, Z2 and Z4.

Note that the right hand side of (3.1) is not an unrestricted direct sum, i.e., each
element of the group is a linear combination of finitely many elements corresponding
to the generators of the factors.

Remark 3.8. Michel [Mc] showed that for n ≥ 1, spherical algebraic (2n−1)-knots
have infinite order in C2n−1, provided that the associated holomorphic function
germ has an isolated singularity at the origin and is not non-singular. Note, how-
ever, that they are not independent. See Remark 4.2.

For n = 1, Φ1 : C1 → C−1(Z) is far from being an isomorphism. The non-
triviality of the kernel of this epimorphism was first shown by Casson-Gordon [CG].
The classification of spherical 1-knots up to cobordism is still an open problem.
Moreover, for spherical 1-knots, we have also the important notion of a ribbon

knot (see, for example, [Rl]). Ribbon knots are null-cobordant. It is still an open
problem whether the converse is true or not.

For even dimensions, we have the following vanishing theorem.

Theorem 3.9 (Kervaire [K1]). For all n ≥ 1, C2n vanishes.

Let C̃n be the group of concordance classes of embeddings into Sn+2 of

(1) the n-dimensional standard sphere Sn for n ≤ 4, or
(2) homotopy n-spheres for n ≥ 5.

In [K1] Kervaire showed that the natural surjection i : C̃n → Cn is a group homo-
morphism.

Let us denote by Θn the group of h-cobordism classes of smooth oriented ho-
motopy n-spheres, and by bPn+1 the subgroup of Θn consisting of the h-cobordism
classes represented by homotopy n-spheres which bound compact parallelizable
manifolds [KM]. Then we have the following

Theorem 3.10 (Kervaire [K1]). For n ≤ 5 we have C̃n ∼= Cn, and for n > 6 we

have the short exact sequence

0 → Θn+1/bPn+2 → C̃n
i
→ Cn → 0.

Note that for n ≥ 4, Θn+1/bPn+2 is a finite abelian group. For details, see [KM].

4. Cobordism of algebraic 1-knots

As has been pointed out in the previous section, the classification of 1-knots up
to cobordism is still unsolved. However, for algebraic 1-knots, a classification is
known as follows.

Consider an algebraic 1-knot K associated with a holomorphic function germ
f : C2, 0 → C, 0 of two variables with an isolated critical point at the origin. Note
that K is naturally oriented. Let us further assume that K is spherical. Then it
is known that K is an iterated torus knot [Br]. An iterated torus knot is a knot
obtained from a torus knot by an iteration of the cabling operation (for example, see
[Rl]). Furthermore, the relevant operations are always “positive” cablings, which
is peculiar to algebraic knots.

For a knot, the fundamental group of its complement in the ambient sphere
is called the knot group. In [Z1] Zariski explicitly gave generators and relations
of the knot group of a spherical algebraic 1-knot. When two spherical algebraic
1-knots are isotopic, they have isomorphic knot groups. Although the converse
is not true for general spherical (not necessarily algebraic) 1-knots, it was proved
that two spherical algebraic 1-knots with isomorphic knot groups are isotopic (see
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[Bu1, Z1, Re, Lê]). Furthermore, Burau [Bu1] proved that two spherical algebraic
1-knots with the same Alexander polynomial are isotopic. For a definition of the
Alexander polynomial, see §7. It is known that the Alexander polynomial of a
spherical 1-knot is determined by its knot group (see, for example, [CF]).

For general algebraic 1-knots which are not necessarily spherical, the following is
known. Let K = K1∪K2∪· · ·∪Ks and L = L1∪L2∪· · ·∪Lt be algebraic 1-knots,
where Ki, 1 ≤ i ≤ s, and Lj , 1 ≤ j ≤ t, are components of K and L respectively.
Then K and L are isotopic if and only if s = t, Ki is isotopic to Li, 1 ≤ i ≤ s, and
the linking number of Ki and Kj coincides with that of Li and Lj for i 6= j, after
renumbering the indices if necessary (for example, see [Re]). It is also known that
the multi-variable Alexander polynomial classifies algebraic 1-knots [Bu2, Re, Y].

As to the classification of algebraic 1-knots up to cobordism, we have the fol-
lowing result due to Lê [Lê]. Let K and L be two cobordant spherical algebraic
1-knots. Let us denote their Alexander polynomials by ∆K(t) and ∆L(t) respec-
tively, where we normalize them so that their degree 0 terms are positive. In [FM2],
Fox and Milnor proved that then there exists a polynomial f(t) ∈ Z[t] such that
∆K(t)∆L(t) = tdf(t)f(1/t), where d is the degree of f(t) (for details, see §7 of the
present survey). Using this, one can conclude that the product of the Alexander
polynomials of two cobordant spherical algebraic 1-knots is a square in Z[t]. In
fact, Lê [Lê] proved that two cobordant spherical algebraic 1-knots have the same
Alexander polynomial, and hence the following holds.

Theorem 4.1 ([Lê]). Two cobordant spherical algebraic 1-knots are isotopic.

For general (not necessarily spherical) algebraic 1-knots, since the linking num-
bers between the components are cobordism invariants, we see that the same con-
clusion as in Theorem 4.1 holds also for the general case of not necessarily spherical
algebraic 1-knots.

Remark 4.2. It has been shown that the images of the cobordism classes of spherical
algebraic 1-knots by Φ1 : C1 → C−1(Z) are not independent. An explicit example
is given in [LM].

5. Cobordism of simple fibered (2n− 1)-knots

In this section, we will give the classification of simple fibered (2n− 1)-knots up
to cobordism for n ≥ 3.

Let us first recall that Durfee [D] and Kato [Kt] independently proved an ana-
logue of Theorem 3.1 for (not necessarily spherical) simple fibered knots as follows.
Recall that Seifert forms associated with simple fibered knots are unimodular.

Theorem 5.1. For n ≥ 3, there is a one-to-one correspondence between the isotopy

classes of simple fibered (2n − 1)-knots in S2n+1 and the isomorphism classes of

integral unimodular bilinear forms, where the correspondence is given by the Seifert

form.

Note that isomorphism classes of integral bilinear forms correspond to congru-
ence classes of integral square matrices.

The study of cobordism of (not necessarily spherical) odd dimensional simple
fibered knots cannot be done by a direct generalization of the results proved by
Kervaire and Levine for spherical (2n− 1)-knots with n ≥ 2, since we have to con-
sider the topological data contained in the kernel and the cokernel of the intersection
form of the fiber (see the exact sequence (2.1)).

For n ≥ 3, Du Bois and Michel [DM] constructed the first examples of spherical
algebraic (2n−1)-knots which are cobordant but are not isotopic. Hence, algebraic
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knots of dimension greater than or equal to five do not have the nice behavior of
algebraic 1-knots, since the notion of cobordism and isotopy are distinct.

Moreover, there exist plenty of examples of knots, not necessarily spherical nor
algebraic, which are cobordant but are not isotopic for any dimension. For example,
for the dimension one, the square knot, which is the connected sum of the right
hand and the left hand trefoil knots, is cobordant to the trivial knot, but is not
isotopic to it. (For more explicit examples, see §8.)

Using Seifert forms, we have a complete characterization of cobordism classes of
simple fibered knots as follows (see [BM, B1, B3]).

Theorem 5.2 ([BM]). For n ≥ 3, two simple fibered (2n− 1)-knots are cobordant

if and only if their Seifert forms are algebraically cobordant.

The definition of algebraically cobordant forms will be given later in this section.

Remark 5.3. Related results had been obtained by Vogt [V1, V2], who proved
that if two simple (not necessarily fibered) (2n − 1)-knots, n ≥ 3, are cobordant,
then their Seifert forms are Witt equivalent and satisfy certain properties which
are weaker than the algebraic cobordism. Conversely, if two simple (2n− 1)-knots,
n ≥ 3, with torsion free homologies have algebraically cobordant Seifert forms, then
they are cobordant.

In Theorem 5.2 the condition on the integer n is only used to prove the sufficiency,
and we have the following theorem which is valid for all odd dimensions.

Theorem 5.4 ([BM]). For n ≥ 1, two cobordant simple fibered (2n−1)-knots have

algebraically cobordant Seifert forms.

Furthermore, the following holds for (not necessarily fibered) simple knots.

Theorem 5.5 ([BM]). For n ≥ 3, two simple (2n−1)-knots are cobordant if their

Seifert forms associated with (n − 1)-connected Seifert manifolds are algebraically

cobordant.

To define the algebraic cobordism, we first need to fix some notations and def-
initions. Let A be the set of all bilinear forms defined on free Z-modules of finite
rank. Set ε = (−1)n. Let A : G × G → Z be a bilinear form in A. We denote
by AT the transpose of A, by S the ε-symmetric form A + εAT associated with
A, by S∗ : G → G∗ the adjoint of S with G∗ being the dual HomZ(G,Z) of G,
and by S : G × G → Z the ε-symmetric non-degenerate form induced by S on
G = G/KerS∗. For a submodule M of G, we denote by M the image of M in G by
the natural projection map. A submodule M of a free Z-module G of finite rank is
said to be pure if G/M is torsion free, or equivalently if M is a direct summand of
G. For a submodule M of a free Z-module G of finite rank, we denote by M∧ the
smallest pure submodule of G which contains M .

Definition 5.6 ([BM]). Let Ai : Gi×Gi → Z, i = 0, 1, be two bilinear forms in A.
Set G = G0 ⊕G1, A = A0 ⊕ (−A1), Si = Ai + εATi and S = A+ εAT . We say that
A0 is algebraically cobordant to A1 if there exist a metabolizer M for A in the sense
of Definition 3.3 with M pure in G, an isomorphism ψ : KerS∗

0 → KerS∗
1 , and an

isomorphism θ : Tors(CokerS∗
0) → Tors(CokerS∗

1) which satisfy the following two
conditions:

(c1) M ∩ KerS∗ = {(x, ψ(x)) : x ∈ KerS∗
0} ⊂ KerS∗

0 ⊕ KerS∗
1 = KerS∗,

d(S∗(M)∧) = {(y, θ(y)) : y ∈ Tors(CokerS∗
0 )}(c2)

⊂ Tors(CokerS∗
0 ) ⊕ Tors(CokerS∗

1 ) = Tors(CokerS∗),

where d is the quotient mapG∗ → CokerS∗ and “Tors” means the torsion subgroup.
11



In the above situation, we also say that A0 and A1 are algebraically cobordant

with respect to ψ and θ.

Recall that the knot cobordism is an equivalence relation. Furthermore, any
unimodular matrix can be realized as a Seifert matrix associated with a simple
fibered (2n− 1)-knot, n ≥ 3. Therefore, Theorem 5.2 implies the following

Theorem 5.7. Algebraic cobordism is an equivalence relation on the set of uni-

modular forms.

Example 5.8. In [BM, Theorem 1], it is claimed that the algebraic cobordism is
an equivalence relation on the whole set of integral bilinear forms A. However, this
may be not true as explained below.

Let us consider the three matrices

A0 =




0 4 −2 −3
−4 0 −2 1
2 2 0 −1
3 −1 0 0


 , A1 =




0 4 1 2
−4 0 1 −2
−1 −1 0 0
−2 2 −1 0




and

A2 =




0 4 −6 1
−4 0 −2 −1
6 2 0 1
−1 1 0 0


 ,

which are given in [V2, p. 45]. We identify Ai with the corresponding bilinear form
Ai : Gi ×Gi → Z with Gi ∼= Z4, i = 0, 1, 2. Set

m1 = (0, 0, 1, 0, 0, 0, 2, 0) ∈ G0 ⊕G1,

m2 = (0, 1, 0, 2, 0, 0, 0, 1) ∈ G0 ⊕G1,

m3 = (1, 0, 0, 0, 1, 0, 0, 0) ∈ G0 ⊕G1,

m4 = (0, 1, 0, 0, 0, 1, 0, 0) ∈ G0 ⊕G1,

n1 = (0, 0, 2, 0, 0,−1, 1, 0) ∈ G1 ⊕G2,

n2 = (0, 0, 0, 1, 0, 0, 0,−2) ∈ G1 ⊕G2,

n3 = (1, 0, 0, 0, 1, 0, 0, 0) ∈ G1 ⊕G2,

n4 = (0, 1, 0, 0, 0, 1, 0, 0) ∈ G1 ⊕G2.

Then we see that the subgroup generated by m1,m2,m3,m4 of G0 ⊕ G1 gives a
metabolizer for A0 ⊕ (−A1), and that the subgroup generated by n1, n2, n3, n4 of
G1 ⊕G2 gives a metabolizer for A1 ⊕ (−A2). Furthermore, it is easy to check that
Ai and Ai+1 are algebraically cobordant for ε = +1 with respect to the “identity”

Z ⊕ Z ⊕ 0 ⊕ 0 = KerS∗
i → KerS∗

i+1 = Z ⊕ Z ⊕ 0 ⊕ 0,

i = 0, 1, where Si = Ai +ATi , i = 0, 1, 2.
However, in [V2] it is shown that A0 and A2 are not algebraically cobordant

with respect to the “identity”.
In the proof given in [BM, pp. 38–39], it is shown that if Ai and Ai+1 are

algebraically cobordant with respect to ψi, i = 0, 1 (see Definition 5.6 (c1)), then
A0 and A2 are algebraically cobordant with respect to ψ1 ◦ψ0. So, this contradicts
Vogt’s result mentioned above.

In fact, in general we may not have the direct sum decomposition Gi = KerS∗
i ⊕

Ti, i = 0, 1, 2, mentioned in the proof given in [BM, p. 39].
Presumably, the above example would show that the algebraic cobordism is not

an equivalence relation on the set of general (not necessarily unimodular) integral
bilinear forms defined on free Z-modules of finite rank. Since the relation introduced
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by Vogt [V2] and that of Definition 5.6 are slightly different, we do not know at
present if the relation of algebraic cobordism is an equivalence relation or not.

Remark 5.9. For general forms which are not necessarily unimodular, we can con-
sider the equivalence relation generated by the algebraic cobordism, called the weak

algebraic cobordism. Then by using Theorem 5.5,3 we can show that if two sim-
ple (2n − 1)-knots, n ≥ 3, have weakly algebraically cobordant Seifert forms with
respect to (n− 1)-connected Seifert manifolds, then they are cobordant.

Furthermore, we can prove the following. A simple (2n − 1)-knot is said to be
C-algebraically fibered if its Seifert form is algebraically cobordant to a unimodular
form (see [BS1]). Then, two simple C-algebraically fibered (2n− 1)-knots, n ≥ 3,
are cobordant if and only if their Seifert forms are weakly algebraically cobordant.
We do not know if this is true for all simple (2n− 1)-knots, n ≥ 3.

Let Ai be Seifert forms associated with (n − 1)-connected Seifert manifolds Vi
of simple (2n− 1)-knots Ki, i = 0, 1, and S∗

i the adjoint of the intersection form of
Vi. Since we have the exact sequence

0 = Hn+1(Vi,Ki) → Hn(Ki) → Hn(Vi)
S∗

i−→ Hn(Vi,Ki)

→ Hn−1(Ki) → Hn−1(Vi) = 0

associated with the pair (Vi,Ki), where we identify Hn(Vi,Ki) with the dual of
Hn(Vi) (see (2.1)), KerS∗

i and CokerS∗
i are naturally identified with Hn(Ki) and

Hn−1(Ki) respectively.
As remarked before, in the case of a spherical knot K we have Hn(K) =

Hn−1(K) = 0, and the intersection form is an isomorphism. Hence the algebraic
cobordism for Seifert forms associated with spherical simple knots is reduced to the
Witt equivalence, and Theorem 5.2 follows from the classical result of Kervaire and
Levine (see Theorem 3.4 and the paragraph just after Remark 3.5).

In order to clarify the relation of algebraic cobordism, we present here several
examples.

Example 5.10. (1) Let us consider any integral bilinear form A in A such that
A + εAT is unimodular. Then, A⊕ (−A) is always algebraically cobordant to the
zero form.

(2) Let us consider the integral bilinear forms A0 and A1 represented by the
matrices (

1 1
0 6

)
and

(
2 −1
−2 4

)

respectively, which are given in [K2, p. 93]. Then it is easy to check that the sub-
group of Z4 generated by (3, 1, 3, 0)T and (0, 1, 2, 1)T is a metabolizer forA0⊕(−A1).
Since Ai − ATi are unimodular, i = 0, 1, we see that A0 and A1 are algebraically
cobordant for ε = −1. Note that A0 and A1 are not congruent to each other.

(3) The following example is a generalization of those given in [BMS]. Let us
consider the two matrices

A0 =

(
p2 1
−1 0

)
and A1 =

(
q2 1
−1 0

)
,

which are identified with the corresponding integral bilinear forms, where p and q
are odd integers with 1 ≤ p < q. Note that they are both unimodular and

S0 = A0 + εAT0 = S1 = A1 + εAT1 =

(
0 2
−2 0

)
,

3Here, we also need the fact that every form in A can be realized as the Seifert form of a simple
(2n − 1)-knot.
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where ε = −1. Let us show that A0 and A1 are algebraically cobordant in the sense
of Definition 5.6 for ε = −1.

Let r be the greatest common divisor of p and q and set p = rp′ and q = rq′.
Furthermore, set m = (q′, 0, p′, 0)T and m′ = (0, p′, 0, q′)T . Then it is easy to see
that the submodule M of Z4 generated by m and m′ constitutes a metabolizer
for A = A0 ⊕ (−A1). Since S0 = S1 are non-degenerate, we have only to verify
condition (c2) of Definition 5.6.

Set S = S0 ⊕ (−S1) = A − AT . Let S∗ : Z4 → Z4, S∗
0 : Z2 → Z2 and

S∗
1 : Z2 → Z2 be the adjoints of S, S0 and S1 respectively. It is easy to see that

CokerS∗
0 = CokerS∗

1 is naturally identified with Z2 ⊕ Z2. Furthermore, we have

S∗(m) = mTS = (0, 2q′, 0,−2p′) and S∗(m′) = (m′)TS = (−2p′, 0, 2q′, 0).

Therefore, S∗(M)∧, the smallest direct summand of Z4 containing S∗(M), is the
submodule of Z4 generated by (0, q′, 0,−p′) and (−p′, 0, q′, 0). Hence, for the nat-
ural quotient map d : Z4 → CokerS∗ = (Z2 ⊕ Z2) ⊕ (Z2 ⊕ Z2), we have

d(S∗(M)∧) = {(x, x) : x ∈ CokerS∗
0 = Z2 ⊕ Z2},

since ImS∗
i is generated by (2, 0) and (0, 2), i = 0, 1, and ImS∗ is generated by

(2, 0, 0, 0), (0, 2, 0, 0), (0, 0, 2, 0) and (0, 0, 0, 2). Therefore, we conclude that the
unimodular matrices A0 and A1 are algebraically cobordant.

Note that A0 and A1 are not congruent, since there exists an element x ∈ Z2

such that xTA0x = p2, while such an element does not exist for A1.

Let us give a sketch of the proof of Theorem 5.2. Let K0 = ∂F0 and K1 = ∂F1

be two simple fibered (2n− 1)-knots with n ≥ 3 with fibers F0 and F1 respectively.
Denote by A0 and A1 the Seifert forms associated with F0 and F1 respectively.

To prove the necessity in Theorem 5.2, we first suppose that K0 ⊂ S2n+1 × {0}
and K1 ⊂ S2n+1×{1} are cobordant. Then we see that the union of the cobordism
and the fibers bound a compact oriented (2n+1)-dimensional manifoldW embedded
in S2n+1 × [0, 1] by using the obstruction theory as in §2. Using the kernel of
the homomorphism induced by the inclusion F0 ∪ F1 → W , we can construct a
metabolizer for A0 ⊕ (−A1) which fulfills all the conditions in the definition of
algebraic cobordism. (For this we need to have that A0 and A1 are unimodular,
which is guaranteed since K0 and K1 are fibered.) We refer to [BM] for details.

For sufficiency we suppose that A0 and A1 are algebraically cobordant with
respect to a metabolizer M . We consider Fi to be embedded in S2n+1×{i}, i = 0, 1,
and denote by F the connected sum F = F0♯F1 embedded in S2n+1 × [0, 1]. Note
that we naturally have Hn(F ) = Hn(F0) ⊕ Hn(F1). Then, since n ≥ 3, we can
show that one can perform embedded surgeries on the connected sum of Seifert
manifolds in S2n+1 × [0, 1] so that we obtain a simply connected submanifold X of
S2n+1 × [0, 1] with ∂X = (K0 × {0})

∐
(K1 × {0}) and H∗(X,Ki) = 0 for i = 0, 1.

According to Smale’s h-cobordism theorem [Sm2, M2] we have X ∼= K0 × [0, 1],
and thus X gives a cobordism between K0 and K1. This is where we need to have
(2n−1)-dimensional knots with n ≥ 3, since the h-cobordism theorem is valid only
for dimX ≥ 6.

The crucial point in the proof is to see that the technical conditions imposed
on the metabolizer in Definition 5.6 give a strategy to perform the right embedded
surgeries. For details, see [BM, B3].

6. 3-Dimensional knots

In this section, we deal with 3-dimensional knots.4 This case is much more
difficult than that of higher dimensional knots, since the dimension of the Seifert

4In the following, all 3-knots will be oriented.
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manifolds associated with 3-knots is equal to four. The topology of 4-dimensional
manifolds is exceptional, and the usual technics like the Whitney trick [W2] used
in the case of higher dimensional manifolds are not available any more.

The algebraic cobordism of Seifert forms is a necessary condition for the exis-
tence of a cobordism between two simple fibered (2n − 1)-knots for all n ≥ 1 (see
Theorem 5.4). Furthermore, two isotopic simple fibered (2n−1)-knots have isomor-
phic Seifert forms for all n ≥ 1 (for example, see [D, Kt, S1]). However, it is known
that there exist 3-dimensional simple fibered knots which are abstractly diffeomor-
phic and have isomorphic Seifert forms but which are not isotopic (see Example 6.1
below). This shows that the one-to-one correspondence between the isotopy classes
of knots and the isomorphism classes of Seifert forms stated in Theorem 5.1 does
not hold for n = 2. In fact, these fibered 3-knots are even not cobordant (see Re-
mark 6.7). Hence, for 3-dimensional knots, isotopy classes and cobordism classes
must be characterized by new equivalence relations. Isotopy classes of 3-knots were
studied in [S1, S2, S4] (see also [Hi]). For cobordism classes we will define a new
equivalence relation. For this we need to use Spin structures on manifolds.

Recall that a Spin structure on a manifold X means the homotopy class of a
trivialization of TX ⊕ εN over the 2-skeleton X(2) of X , where TX denotes the
tangent bundle and εN is a trivial vector bundle of dimension N sufficiently large.
Note that X admits a Spin structure if and only if its second Stiefel-Whitney class
w2(X) ∈ H2(X ;Z2) vanishes and that if it admits, then the set of all Spin structures
on X is in one-to-one correspondence with H1(X ;Z2).

Let K be an oriented 3-knot, with a Seifert manifold V , embedded in S5. Then
K has a natural normal 2-framing ν = (ν1, ν2) in S5 such that the first normal
vector field ν1 is obtained as the inward normal vector field of K = ∂V in V .
The homotopy class of this 2-framing does not depend on the choice of the Seifert
manifold V . ThenK carries a tangent 3-framing on its 2-skeletonK(2) such that the
juxtaposition with the above 2-framing gives the standard framing of S5 restricted
to K(2) up to homotopy. This means that K carries a natural Spin structure, which
is determined uniquely up to homotopy. Furthermore, this Spin structure coincides
with that induced from the Seifert manifold V , which is endowed with the natural
Spin structure induced from S5.

In the case of 3-knots, Spin structures must be considered as the following ex-
ample shows.

Example 6.1. Let K0 and K1 be the simple fibered 3-knots which are abstractly
diffeomorphic to S1×Σg, constructed in [S4, Proposition 3.8], where Σg is the closed
connected orientable surface of genus g ≥ 2. They have the property that their
Seifert forms are isomorphic, but that there exists no diffeomorphism between K0

and K1 which preserves their Spin structures. Consequently they are not isotopic.

In order to study cobordisms of 3-knots, we will use some results valid only for
3-dimensional manifolds without torsion on the first homology group. Hence, we
define

Definition 6.2 ([BS1]). We say that a 3-knot K is free if H1(K) is torsion free
over Z.

Moreover, for free knots we do not need to consider condition (c2) in the defini-
tion of the algebraic cobordism (see Definition 5.6), which simplifies the argument.

Definition 6.3 ([BS1]). Consider two simple 3-knots K0 and K1. Let A0 and A1

be the Seifert forms of K0 and K1 respectively with respect to 1-connected Seifert
manifolds. We say that the pairs (K0, A0) and (K1, A1) are Spin cobordant (for
simplicity, we also say that the Seifert forms A0 and A1 are Spin cobordant) if there
exists an orientation preserving diffeomorphism h : K0 → K1 such that
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(1) h preserves their Spin structures,
(2) A0 and A1 are algebraically cobordant with respect to h∗ : H2(K0) →

H2(K1) and h∗|TorsH1(K0) : TorsH1(K0) → TorsH1(K1), where we identify
H2(Ki) and H1(Ki) with KerS∗

i and CokerS∗
i respectively (see the exact

sequence (2.1)) and Si = Ai +ATi , i = 0, 1.

Note that if K0 and K1 are free 3-knots, then we do not need to consider condi-
tion (c2) of Definition 5.6 and hence the isomorphism h∗|TorsH1(K0) in the above
definition.

In [BS1] we proved the following.

Theorem 6.4. Two simple fibered free 3-knots are cobordant if and only if their

Seifert forms with respect to 1-connected fibers are Spin cobordant.

Remark 6.5. Note that in the case of homology 3-spheres embedded in S5, the
corresponding result had been obtained in [S3].

Since the cobordism for knots is an equivalence relation, the Spin cobordism is
an equivalence relation on the set of Seifert forms of simple fibered free 3-knots
with respect to 1-connected Seifert manifolds.

Let us show that the Spin cobordism is a necessary condition for the existence
of a knot cobordism between given two simple fibered 3-knots. Let K0 and K1 be
two cobordant simple fibered 3-knots with fibers F0 and F1 respectively. Denote
by X ∼= K0× [0, 1] a submanifold of S5× [0, 1] which gives a cobordism between K0

and K1, and set N = F0 ∪X ∪ (−F1). By classical obstruction theory as described
in §2, we see that the closed oriented 4-manifold N ⊂ S5 × [0, 1] is the boundary
of a compact oriented 5-dimensional submanifold W of S5 × [0, 1]. Using a normal
2-framing of X in S5 × [0, 1] induced from the inward normal vector field along
N = ∂W in W , we see that the diffeomorphism h between K0 and K1 induced by
X preserves their Spin structures.

Moreover, in [BM], it has been shown that the two forms A0 and A1, associated
with the fibers, are algebraically cobordant with respect to h∗ : H2(K0) → H2(K1)
and h∗|TorsH1(K0) : TorsH1(K0) → TorsH1(K1).

Finally we get the following result, in which the knots may not necessarily be
free.

Proposition 6.6 ([BS1]). If two simple fibered 3-knots are cobordant, then their

Seifert forms with respect to 1-connected fibers are Spin cobordant.

Remark 6.7. In Example 6.1 above, the Seifert forms ofK0 and K1 are algebraically
cobordant, but are not Spin cobordant. Hence they cannot be cobordant by Propo-
sition 6.6 (or Theorem 6.4). Example 6.1 shows that Spin structures are essential
in the theory of cobordisms of 3-knots as well.

We have another example as follows.

Example 6.8. Let P be a non-trivial orientable S1-bundle over the closed connected
orientable surface of genus g ≥ 2. Note that H1(P ) is not torsion free in general.
For every positive integer n, let K1,K2, . . . ,Kn be the simple fibered 3-knots con-
structed in [S4, Theorem 3.1] which are all abstractly diffeomorphic to P . They
have the property that their fibers are all diffeomorphic and their Seifert forms are
isomorphic to each other, but any such isomorphism restricted to H2(Ki) cannot
be realized by a diffeomorphism. Thus, the Seifert forms of Ki, i = 1, 2, . . . , n, are
algebraically cobordant to each other, but are not Spin cobordant. Hence they are
not cobordant by Proposition 6.6, which is valid also for non-free simple fibered
3-knots.
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Using the 5-dimensional stable h-cobordism theorem due to Lawson [La] and
Quinn [Q] together with Boyer’s work [Bo], we also have the following theorem, in
which the 3-knots are simple and free, but may not be fibered.

Theorem 6.9 ([BS1]). Consider two simple free 3-knots in S5. If their Seifert

forms with respect to 1-connected Seifert manifolds are Spin cobordant, then they

are cobordant.

The proof of the above theorem is very technical and complicated, and we refer
to [BS1] for details. Finally Proposition 6.6 and Theorem 6.9 imply Theorem 6.4.

Remark 6.10. Some of the results in [BS1] depend on the possibly erroneous hy-
pothesis that the algebraic cobordism is an equivalence relation on the whole set of
integral bilinear forms. However, all the results are valid if we replace the algebraic
cobordism with the weak algebraic cobordism as introduced in Remark 5.9 and the
Spin cobordism with the equivalence relation generated by the Spin cobordism.

7. Fox-Milnor type relation

In [FM2] Fox and Milnor showed that the Alexander polynomials of two cobor-
dant 1-knots should satisfy a certain property. In this section, we explain this
property for odd dimensional knots and present an application to the cobordism
classes of spherical fibered knots.

In the following, for a polynomial f(t) ∈ Z[t], we set

f∗(t) = tdf(t−1),

where d is the degree of f(t). We say that a polynomial f(t) ∈ Z[t] is symmetric if
f∗(t) = ±taf(t) for some a ∈ Z.

Let K be either a spherical (2n− 1)-knot or a simple (2n− 1)-knot with Seifert
matrix A. As mentioned before, we still assume that A is associated with an
(n− 1)-connected Seifert manifold when K is simple. Then the polynomial

∆K(t) = det(tA+ (−1)nAT )

is called the Alexander polynomial of K (see [Al, L1]). It is known to be an
isotopy invariant of K up to a multiple of ±ta, a ∈ Z. For fibered knots, we
use (unimodular) Seifert matrices with respect to fibers so that the Alexander
polynomial is well-defined up to a multiple of ±1 and has leading coefficient ±1.
Note that the Alexander polynomial of a knot is always symmetric.

The following relation is called the Fox-Milnor type relation (for proofs, see
[L2, BM], for example).

Proposition 7.1. Let K0 and K1 be two (2n−1)-knots which are both spherical or

both simple. If they are cobordant, then there exists a polynomial f(t) ∈ Z[t] such

that

(7.1) ∆K0
(t)∆K1

(t) = ±taf(t)f∗(t)

for some a ∈ Z.

For example, in [DM], Du Bois and Michel showed that the algebraic knots
constructed in [Sz] are in fact not cobordant by exploiting the Fox-Milnor type
relation.

Let us show that the above relation, although very simple, gives us a lot of
information on the cobordism of knots.

Let us recall that Cn denotes the cobordism group of spherical n-knots. Let us
denote by Fn the subgroup of Cn generated by the cobordism classes of fibered
knots. Note that Fn coincides with the set of all cobordism classes which contain
a fibered knot.
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Then we can prove the following proposition by using the Fox-Milnor type rela-
tion. Although it might be implicit in the works of Levine [L2, L3], Kervaire [K2]
and Stoltzfus [Sf ], here we give a detailed proof in order to clarify how to apply
the Fox-Milnor type relation.

Proposition 7.2. The group Cn/Fn is infinitely generated if n is odd.

Proof. Set n = 2k − 1. We have only to prove that (Cn/Fn) ⊗ Z2 contains Z∞
2 .

First we consider the case where k is odd. For each positive integer p, set
∆p(t) = pt2 + (1 − 2p)t + p. Note that ∆p(t) is irreducible over Z. According
to Levine (see [L2]), there exists a simple spherical (2k − 1)-knot Kp in S2k+1

whose Alexander polynomial ∆Kp
(t) is equal to ∆p(t). Let [Kp] denote the class in

(Cn/Fn)⊗Z2 = (Cn/Fn)/2(Cn/Fn) = Cn/(Fn+2Cn) represented by Kp. In order
to show that (Cn/Fn)⊗Z2 contains Z∞

2 , we have only to show that {[Kp]}p≥2 are
linearly independent over Z2.

Suppose that Kp1♯Kp2♯ · · · ♯Kpℓ
is cobordant to L♯L♯L′, where p1, p2, . . . , pℓ are

distinct positive integers with pi ≥ 2, L is a spherical (2k − 1)-knot, and L′ is a
spherical fibered (2k − 1)-knot. Then by Proposition 7.1 we have

∆Kp1
(t)∆Kp2

(t) · · ·∆Kpℓ
(t)∆L(t)2∆L′(t) = ±taf(t)f∗(t)

for some a ∈ Z and f(t) ∈ Z[t].
Since ∆Kpi

(t) are irreducible and symmetric, each ∆Kpi
(t) should appear an even

number of times in the irreducible decomposition of f(t)f∗(t). Therefore, ∆Kpi
(t)

should divide ∆L′(t), since ∆Kp1
(t),∆Kp2

(t), . . . ,∆Kpℓ
(t) are pairwise relatively

prime.
On the other hand, since L′ is fibered, its Seifert matrix is unimodular and

hence ∆L′(t) has leading coefficient ±1. This is a contradiction, since the leading
coefficient of ∆Kpi

(t) is equal to pi ≥ 2.

Therefore, {[Kp]}p≥2 ⊂ (Cn/Fn) ⊗ Z2 are linearly independent over Z2.

When k is even, by considering the polynomial ∆̃p(t) = pt4 − (2p − 1)t2 + p,
p ≥ 2, instead of ∆p(t) in the above argument, we get the desired conclusion. This
completes the proof. �

Remark 7.3. The above polynomials ∆p(t) and ∆̃p(t) were used by Kervaire in
[K1, Théorème III.12] for showing that C2k−1 is infinitely generated.

Remark 7.4. When k is even, every degree two symmetric polynomial which arises
as the Alexander polynomial of a (2k − 1)-knot is reducible. In fact, in [L2], it is
mentioned that such a polynomial should be of the form

a(a+ 1)t2 − (2a(a+ 1) + 1)t+ a(a+ 1) = (at− (a+ 1))((a+ 1)t− a).

The degree two symmetric polynomial constructed in [L3, p. 109] for ε = 1 is also
reducible, and it seems that the proof of Theorem 3.7 (or [L3, Theorem, p. 108])
given there should appropriately be modified.

8. Examples

In this section, we review some examples constructed in [B2, BMS, BS1].
First we construct non-spherical 3-knots which are cobordant but are not iso-

topic.

Example 8.1 ([BS1]). A stabilizer is a simple fibered spherical 3-knot whose fiber
F is diffeomorphic to (S2×S2)♯(S2×S2)r IntD4. Such a stabilizer does exist (see
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[S2, §4]). Moreover, we denote by KS a stabilizer with Seifert matrix

A =




0 1 0 1
0 0 1 0
0 −1 0 0
−1 0 1 0




with respect to a basis of H2(F ) denoted by a1, a2, a3, a4 (see [S1, p. 600] or [S4,
§10]).

Since A is not congruent to the zero form, KS is a non-trivial 3-knot.
Moreover, the submodule generated by a1 and a3 is a metabolizer for A, and

one can perform embedded surgeries on the two cycles a1 and a3, represented by
two embedded 2-spheres in F . The result of this embedded surgery in D6 is a
4-dimensional disk properly embedded in D6 with KS as boundary. Thus KS is
null-cobordant, i.e., it is cobordant to the trivial spherical 3-knot.

Then consider any simple fibered 3-knot K which is not spherical. The two
simple fibered 3-knots K♯KS and K are not isotopic, since the ranks of the second
homology groups of their fibers are distinct. However, these knots are cobordant.

In the following example, we construct non-spherical simple fibered (2n−1)-knots
with n ≥ 3 which are cobordant but are not isotopic. These knots are constructed
using algebraic knots.

Example 8.2 ([B2]). Let Ki, with i = 0, 1, be the spherical algebraic (2n−1)-knots,
n ≥ 3, associated with the isolated singularity at 0 of the polynomial functions
hi : (Cn+1, 0) → (C, 0) defined by

hi(x0, x1, . . . , xn) = gi(x0, x1) + xp2 + xq3 +

n∑

k=4

x2
k

with

g0(x0, x1) = (x0 − x1)
(
(x2

1 − x3
0)

2 − xs+6
0 − 4x1x

(s+9)/2
0

)

(
(x2

0 − x5
1)

2 − xr+10
1 − 4x0x

(r+15)/2
1

)
,

and

g1(x0, x1) = (x0 − x1)
(
(x2

1 − x3
0)

2 − xr+14
0 − 4x1x

(r+17)/2
0

)

(
(x2

0 − x5
1)

2 − xs+2
1 − 4x0x

(s+7)/2
1

)
,

where s ≥ 11, s 6= r + 8, s and r are odd, and p and q are distinct prime numbers
which do not divide the product 330(30+ r)(22 + s) (see [DM, p. 166]). Note that
the algebraic knots Ki associated with hi are spherical for i = 0, 1. It has been
shown in [DM] that the algebraic knots K0 and K1 are cobordant but are not
isotopic.

Now let L be the algebraic (2n− 1)-knot associated with the isolated singularity
at 0 of the polynomial function f : (Cn+1, 0) → (C, 0) defined by

f(x0, x1, . . . , xn) =

n∑

k=0

x2
k.

Note that L is not spherical.
Let us consider the connected sums Li = Ki♯L, i = 0, 1, which are simple fibered

(2n− 1)-knots. Then in [B2] it has been shown that L0 and L1 are cobordant but
are not isotopic.

Note that according to [A, Theorem 4, p. 117], the knots L0 and L1, which are
connected sums of two algebraic knots, are not algebraic.
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Let K be a knot. A stabilization of K is the operation of taking the connected
sum K♯KS for some null-cobordant spherical knot KS . As the above examples
show, stabilization is a natural way to construct knots that are cobordant but are
not isotopic. We have other types of constructions as follows.

Example 8.3. The matrices given in Example 5.10 (2) give two spherical simple
(2n− 1)-knots with n ≥ 3 odd which are cobordant but are not isotopic. Similarly,
the matrices given in Example 5.10 (3) give two simple fibered non-spherical (2n−
1)-knots with n ≥ 3 odd which are cobordant but are not isotopic.

9. Pull back relation for knots

For cobordisms of non-spherical knots, Yukio Matsumoto asked the following
question.

(Q) If two non-spherical knots (of sufficiently high dimension) are simple homotopy

equivalent as abstract manifolds, then are they cobordant after taking connected

sums with some spherical knots? In other words, consider the action of the spherical

knot cobordism group on the set of cobordism classes of codimension two embeddings

of manifolds of a fixed simple homotopy type into a sphere. Then, is the action

transitive?

According to the codimension two surgery theory [Mt2], the answer to the above
question is affirmative provided that the material knots satisfy some connectivity
conditions and that one of them is obtained as the inverse image of the other one
by a certain degree one map between the ambient spheres. This motivates the
following definition.

Definition 9.1 ([BMS]). Let K0 and K1 be oriented m-knots in Sm+2. We say
that K0 is a pull back of K1 if there exists a degree one smooth map g : Sm+2 →
Sm+2 with the following properties:

(1) g is transverse to K1,
(2) g−1(K1) = K0,
(3) g|K0

: K0 → K1 is an orientation preserving simple homotopy equivalence.

In this case, we write K0 ≻ K1. We say that two m-knots are pull back equivalent

if they are equivalent with respect to the equivalence relation generated by the pull
back relation.

The following properties are direct consequences of the previous definition.

(1) K ≻ K for any m-knot K.
(2) K0 ≻ K1 and K1 ≻ K2 imply K0 ≻ K2 for any m-knots K0,K1 and K2.
(3) K0 ≻ K1 and K ′

0 ≻ K ′
1 imply K0♯K

′
0 ≻ K1♯K

′
1 for any m-knots K0, K

′
0,

K1 and K ′
1.

Furthermore, if we restrict ourselves to spherical m-knots, then it is not difficult
to see that the trivial m-knot KU is the minimal element, i.e., K ≻ KU for every
spherical m-knot K, where KU is defined to be the isotopy class of the boundary
of an (m+ 1)-dimensional disk embedded in Sm+2.

Here are some basic results on the pull back relation for simple fibered (2n− 1)-
knots, n ≥ 3.

Theorem 9.2 ([BMS]). Let K0 and K1 be simple fibered (2n− 1)-knots in S2n+1

with n ≥ 3. If K0 ≻ K1 and K1 ≻ K0, then K0 is isotopic to K1. In other words,

the relation “≻” defines a partial order for simple fibered (2n− 1)-knots in S2n+1

for n ≥ 3.
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Theorem 9.3 ([BMS]). Let K0 and K1 be simple fibered (2n− 1)-knots in S2n+1

with n ≥ 3. Then K0 ≻ K1 if and only if there exists a spherical simple fibered

(2n− 1)-knot Σ in S2n+1 such that K0 is isotopic to the connected sum K1♯Σ.

Remark 9.4. For n = 1, Theorem 9.3 does not hold5. Let K1 be a non-trivial
spherical prime fibered 1-knot in S3 and K0 a spherical prime satellite fibered 1-
knot with companion K1, where their fibering structures are compatible. Then we
can show that K0 ≻ K1. However, K0 is not isotopic to the connected sum K1♯Σ
for any non-trivial 1-knot Σ. Note that such a construction does not give a counter
example to Theorem 9.3 for n ≥ 3, since such a satellite knot in higher dimensions
is always a connected sum by virtue of Theorem 5.1.

Let K0 and K1 be two simple fibered (2n−1)-knots with n ≥ 3. By Theorem 9.3
if K0 is pull back equivalent to K1, then they are cobordant after taking connected
sums with some spherical knots. In the following proposition, we show that the
converse is not true in general.

Proposition 9.5 ([BMS]). For every odd integer n ≥ 3, there exists a pair

(K0,K1) of simple fibered (2n− 1)-knots with the following properties:

(1) the knots K0 and K1 are cobordant, but

(2) the knots K0 and K1 are not pull back equivalent.

Proof. Let us consider the two matrices A0 and A1 given in Example 5.10 (3).
By Theorem 5.1, there exists a simple fibered (2n − 1)-knot Ki which realizes

Ai as its Seifert form with respect to the fiber, i = 0, 1. By Theorem 5.5, K0 and
K1 are cobordant.

Let us now show that K0 and K1 are not pull back equivalent. By Theorem 9.3,
we have only to show that for any spherical simple fibered (2n− 1)-knots Σ0 and
Σ1 in S2n+1, K0♯Σ0 is never isotopic to K1♯Σ1.

Since Ki♯Σi is a fibered knot, we can consider the monodromy on the n-th
homology group of the fiber, i = 0, 1. Let us denote by Hi the monodromy matrix

of Ki♯Σi and by Ãi its Seifert matrix with respect to the same basis. Here, we
choose a basis which is the union of a basis of the homology of the fiber for Ki

and that for Σi. It is known that Hi = (−1)n+1Ã−1
i ÃTi (for example, see [D]).

Therefore, we have

H0 =

(
−1 0
2p2 −1

)
⊕H ′

0 and H1 =

(
−1 0
2q2 −1

)
⊕H ′

1,

where H ′
i is the monodromy matrix of Σi, i = 0, 1.

Let us consider Ker ((I +Hi)
2), where I is the unit matrix, i = 0, 1. Since Σi are

spherical knots, the monodromy matricesH ′
i cannot have eigenvalue −1. Therefore,

Ker ((I +Hi)
2) corresponds exactly to the homology of the fiber of Ki.

Suppose that K0♯Σ0 is isotopic to K1♯Σ1. Then the Seifert form of K0♯Σ0

restricted to Ker ((I +H0)
2) should be isomorphic to that of K1♯Σ1 restricted to

Ker ((I +H1)
2). This means that A0 should be congruent to A1. However, as we

saw in Example 5.10 (3), this is a contradiction. Thus, we conclude that K0 and
K1 are not pull back equivalent. �

Let us now give some examples of pairs of knots which are diffeomorphic but not
cobordant even after taking connected sums with (not necessarily simple or fibered)
spherical knots. For this, we use the following proposition (see [BMS, V2]).

Proposition 9.6. Let K0 and K1 be simple fibered (2n − 1)-knots with fibers F0

and F1 respectively, n ≥ 3. For i = 0, 1, we denote by I(Ki) the image of the

5The authors are indebted to Shicheng Wang for the construction in this remark.
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homomorphism Hn(Ki) → Hn(Fi) induced by the inclusion. If K0♯Σ0 and K1♯Σ1

are cobordant for some spherical knots Σ0 and Σ1, then the Seifert forms of K0 and

K1 restricted to I(K0) and I(K1), respectively, are isomorphic to each other.

In the following example we give a pair of diffeomorphic knots for which their
connected sums with any spherical knots are never cobordant. This answers ques-
tion (Q) mentioned at the beginning of this section negatively.

Example 9.7 ([BMS]). Let us consider the following unimodular matrices:

A0 =

(
0 1

(−1)n+1 0

)
and A1 =




0 0 1 0
0 0 0 1

(−1)n+1 0 0 1
0 (−1)n+1 0 0


 .

Then, for every integer n ≥ 3, there exist simple fibered (2n−1)-knots Ki in S2n+1

whose Seifert matrices are given by Ai, i = 0, 1. Note that if we denote their fibers
by Fi, i = 0, 1, then F1 is orientation preservingly diffeomorphic to F0♯(S

n × Sn).
In particular, K0 and K1 are orientation preservingly diffeomorphic to each other.

It is easy to verify that the Seifert form restricted to I(K1) is the zero form,
while it is not zero for K0. Hence, by Proposition 9.6, K0♯Σ0 is never cobordant to
K1♯Σ1 for any spherical (not necessarily simple or fibered) knots Σ0,Σ1.

Note that for this example, we have Hn−1(Ki) ∼= Z⊕ Z, i = 0, 1.

Let us give another kind of an example together with an argument using the
Alexander polynomial.

Example 9.8 ([BMS]). Let us consider the unimodular matrices

A0 =

(
1 1
0 1

)
and A1 =




1 1 1 1
0 1 0 0
−1 0 0 1
−1 0 0 0




and their associated simple fibered (2n−1)-knots Ki, i = 0, 1, with n ≥ 4 even. As
in Example 9.7 we see that K0 and K1 are orientation preservingly diffeomorphic
to each other.

Now, suppose that for some spherical (2n − 1)-knots Σi, i = 0, 1, K0♯Σ0 is
cobordant to K1♯Σ1. We may assume that Σ0 and Σ1 are simple. The Alexander
polynomials of K0 and K1 are given by

∆K0
(t) = det(tA0 +AT0 ) = t2 + t+ 1

and

∆K1
(t) = det(tA1 +AT1 ) = −(t4 + t3 − t2 + t+ 1)

respectively. Both of these polynomials are irreducible over Z. If K0♯Σ0 is cobor-
dant to K1♯Σ1, then by Proposition 7.1, we must have a Fox-Milnor type relation

(9.1) ∆K0
(t)∆Σ0

(t)∆K1
(t)∆Σ1

(t) = ±taf(t)f∗(t)

for some a ∈ Z and f(t) ∈ Z[t], where ∆Σi
(t) denotes the Alexander polynomial of

Σi, i = 0, 1.
Note that we have |∆K0

(1)| = |∆K1
(1)| = 3 and |∆Σ0

(1)| = |∆Σ1
(1)| = 1. Since

∆K0
(t) is irreducible of degree 2, and ∆K1

(t) is irreducible of degree 4, the relation
(9.1) leads to a contradiction.

Hence, K0♯Σ0 is not cobordant toK1♯Σ1 for any spherical (not necessarily simple
or fibered) (2n − 1)-knots Σ0,Σ1. In this example we have Hn−1(Ki) ∼= Z3, for
i = 0, 1.
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10. Even dimensional knots

In this section, we study cobordism classes of non-spherical 2n-knots for n = 1, 2.
Recall that in [K1] Kervaire showed that C2n, the cobordism group of spherical

2n-knots in S2n+2, is trivial for all n ≥ 1. In particular, any two such knots are
cobordant. For n ≥ 3, Vogt [V1, V2] showed that two 2n-knots in S2n+2 are
cobordant if and only if they have the same n-th Betti number. Note that the
technics used by Vogt are only available for 2n ≥ 6, since it is difficult to perform
embedded surgeries in low dimensions, and the h-cobordism theorem is not available
for low dimensions.

10.1. Cobordism of surfaces in S4. In [K1] Kervaire proved that a 2n-sphere
embedded in S2n+2 = ∂(D2n+3) is the boundary of a (2n + 1)-disk properly em-
bedded in D2n+3. This implies that C2n is trivial.

Although there is no group structure on the set of cobordism classes of non-
spherical 2-knots, we have a similar result. In fact we show that any connected,
closed and orientable surface embedded in S4 is the boundary of an orientable
handlebody properly embedded in the disk D5. When the surface is non-orientable,
it is the boundary of a non-orientable handlebody properly embedded in D5 if and
only if the Euler number of the normal bundle vanishes.

Recall that the normal Euler number of an orientable surface embedded in S4

always vanishes (see [MS]). Let us recall the definition of the normal Euler number
of a closed non-orientable surface M embedded in S4, where S4 is considered to
be oriented. (Throughout this section, we use the letter “M” for 2n-knots rather
than “K”, since the letter “K” will be used for another purpose.) The tubular
neighborhood N of M may be regarded as a normal disk bundle over M . Let

p : M̃ →M be the orientation double cover of M . Consider the induced bundle Ñ

over M̃ so that we have the commutative diagram

Ñ
ep

−−−−→ N
y

y

M̃
p

−−−−→ M.

We orient Ñ so that the induced map p̃ : Ñ → N preserves the orientations. The

normal Euler number e(M) of the surface M is then defined by e(M) = (M̃ ·M̃)/2,

where M̃ ·M̃ denotes the self-intersection number of M̃ in Ñ , which is always even.
Let us denote byNg the closed connected non-orientable surface of non-orientable

genus g. For a closed connected non-orientable surface M ∼= Ng embedded in S4,
it is known that e(M) ∈ {−2g, 4 − 2g, 8 − 2g, . . . , 2g}. Furthermore, all the values
in the set can be realized as the normal Euler number of some Ng embedded in S4

(see [W1, Ms, Km]).
In [BS2] we characterized those closed connected surfaces embedded in S4 which

are the boundary of a handlebody properly embedded in D5. For this purpose, we
need to use Pin− structures on manifolds.

A Pin− structure on a manifold X is the homotopy class of a trivialization of
TX ⊕ detTX ⊕ εN over the 2-skeleton X(2) of X , where TX denotes the tangent
bundle, detTX denotes the orientation line bundle, and εN is a trivial vector bundle
of dimension N sufficiently large. A Pin− structure is equivalent to a Spin structure
when X is orientable.

When M is a closed surface embedded in S4, there is a canonical Pin− structure
defined on M . More precisely, since M is characteristic, i.e., as a submanifold of
S4 it represents the Z2 homology class dual to the second Stiefel-Whitney class of
S4, there exists a unique Spin structure on S4

r M which cannot be extended to
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any normal 2-disk of M . This Spin structure on S4
r M induces a unique Pin−

structure on M (see [KT1]).
We denote byHg the orientable handlebody of dimension three which is obtained

by gluing g orientable 1-handles to a 0-handle. The boundary of Hg is the closed
connected orientable surface of genus g, denoted by Σg. Furthermore, we denote by
Ig the non-orientable handlebody of dimension three which is obtained by gluing g
non-orientable 1-handles to a 0-handle. Then the boundary of Ig is identified with
N2g. In the following we will denote by Kg the handlebody Hg or Ig.

Definition 10.1 ([BS2]). Let M be a closed connected surface embedded in S4.
Suppose that M has genus g if M is orientable and 2g if M is non-orientable. Let
ψ : ∂Kg →M be a diffeomorphism. We say that ψ is Pin− compatible if the Pin−

structure on ∂Kg induced by ψ extends through Kg.

When M is oriented, there always exists a compact oriented 3-dimensional sub-
manifold V of S4 such that ∂V = M as oriented manifolds (see, for example, [E]).
Such a manifold V is again called a Seifert manifold associated with M (see the
definition of Seifert manifolds associated with odd dimensional knots in §2). When
M is non-orientable, a compact 3-dimensional submanifold V of S4 with ∂V = M
is also called a Seifert manifold. Such a (non-orientable) Seifert manifold exists for
M if and only if e(M) = 0 (see [GL, Km]). When a surface M admits a Seifert
manifold V , the unique Spin structure on S4 induces a Pin− structure on V and this
induces a Pin− structure on M , which coincides with the Pin− structure described
above (see [Fi]).

In [BS2] we proved the following theorem.

Theorem 10.2. Let M be a closed connected surface embedded in S4 = ∂D5, and

ψ : ∂Kg → M a diffeomorphism, where Kg denotes the 3-dimensional handlebody

with g 1-handles. Then, there exists an embedding ψ̃ : Kg → D5 with ψ̃|∂Kg
= ψ if

and only if e(M) = 0 and ψ is Pin− compatible.

Remark 10.3. Since every closed connected 3-dimensional manifold admits a Hee-
gaard splitting of genus g ≥ 0, as a consequence of Theorem 10.2 we have a new
proof of Rohlin’s theorem [Rh2] on the existence of an embedding of an arbitrary
closed 3-dimensional manifold into R5 (see also [Wl, WZ] and [GM, p. 90]). For
details, see [BS2].

Let us give a sketch of a proof of Theorem 10.2. First, it is easy to see that
the vanishing of e(M) and the Pin− compatibility of ψ are necessary conditions.
The proof of the sufficiency is based on embedded surgeries inside the disk D5 on a
Seifert manifold V of M . To do that we start with the abstract closed 3-manifold
V ′ = V ∪ψ Kg obtained by attaching V and Kg along their boundaries by using ψ.

Since the 3-dimensional cobordism group ΩSpin
3 (resp. ΩPin−

3 ) of Spin (resp. Pin−)
manifolds is trivial (see [M1], [K1, Lemme III.7, p. 265], [GM, p. 91], [MK] or [Ki]

for ΩSpin
3 , and [ABP, KT1, KT2] for ΩPin−

3 ), there exists a compact (oriented if
so is M) Pin− 4-manifold W such that ∂W = V ′ as (oriented) Pin− manifolds. Let
f be a Morse function f : W → [0, 1] which extends the projection to the second
factor ∂W = (V × {0}) ∪ψ (∂Kg × [0, 1]) ∪ (Kg × {1}) → [0, 1]. Note that f can
be chosen so that all its critical values lie in the interval (ε, 1 − ε) for ε > 0 small
enough. Moreover, we may assume that the critical points have index 1, 2 or 3.

Consider the handlebody decomposition of W associated with this Morse func-
tion. We can remove handles of index 1 and 3 using modifications described by
Wallace in [Wc], respecting the Pin− structure. Then we get a new (oriented)
Pin− manifold W ′ such that ∂W = ∂W ′. Since the handlebody decomposition of
the manifold W ′ has only handles of index 2, we can attach the handles to V × [0, 1]
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inside D5 to get an embedding of W ′ into D5. Finally we have a proper embedding
of Kg

∼= (∂Kg × [0, 1]) ∪ (Kg × {1}) ⊂ ∂W ′ into the disk D5 such that ∂Kg = M .
As a corollary to Theorem 10.2 we have

Corollary 10.4 ([BS2]). Let M be a closed connected surface embedded in S5 =
∂D5. Then there exists a 3-dimensional handlebody embedded in D5 such that its

boundary coincides with M if and only if e(M) = 0.

Using Theorem 10.2, we can characterize cobordism classes of closed connected
surfaces embedded in S4 as follows.

Theorem 10.5 ([BS2]). Let M0 and M1 be two closed connected surfaces embedded

in S4. Then they are cobordant if and only if they are diffeomorphic as abstract

manifolds and have the same normal Euler number.

Remark 10.6. The above theorem in the orientable case is proved by Ogasa [O],
although his proof is slightly different from ours explained below.

When two closed connected surfaces embedded in S4 are cobordant, it is clear
that they are diffeomorphic as abstract manifolds and have the same normal Euler
number (for details, see [BS2]). Thus we have the necessity in Theorem 10.5.

For the sufficiency, start with two closed connected surfaces M0 and M1 in S4

which are diffeomorphic as abstract manifolds and have the same normal Euler
number. In the following, we consider the case whereM0 and M1 are non-orientable
of non-orientable genus g. (For the orientable case, the proof is similar. For details,
see [BS2].)

By changing M0 and M1 by isotopies, we may assume that for a 4-disk D4 in
S4, we have M0 ∩D

4 = M1 ∩D
4 = D2 and (D4, D2) is the standard disk pair. Set

∆ = (S4
r IntD4) × [0, 1] ∼= D5 and

M̃ = (M0 r IntD2) ∪ (∂D2 × [0, 1]) ∪ (M1 r IntD2) = M !
0♯M1 ⊂ ∂∆,

where M !
0 denotes the mirror image of M0. Since e(M0) = e(M1), we have e(M̃) =

0. Furthermore, one can prove that there exists a Pin− compatible diffeomorphism

between ∂((Ng r IntD2) × [0, 1]) ∼= ∂Ig and M̃ which sends (Ng r IntD2) × {i}
diffeomorphically onto Mi r IntD2.

According to Theorem 10.2 we can embed Ig in ∆ so that M !
0♯M1 = ∂Ig. The

cobordism between M0 and M1 is then obtained by gluing back D4 × [0, 1] to ∆
and by replacing Ig ∼= (Ng r IntD2) × [0, 1] by Ng × [0, 1].

As a consequence of Theorem 10.5 we have that two closed connected orientable
surfaces embedded in S4 are cobordant if and only if they have the same genus.
Hence, the monoid of cobordism classes of closed connected orientable surfaces
embedded in S4 is isomorphic to the monoid of non-negative integers Z≥0.

Let us consider non-orientable surfaces. First note that by adding the cobordism
class of an embedding of S2 into S4 to the associative groupoid (or the associative
magma or the semigroup) of cobordism classes of closed connected non-orientable
surfaces embedded in S4, we get a monoid denoted by N. We can also describe
the monoid structure of N as follows. Let RP 2

+ (or RP 2
−) be the projective plane

standardly embedded in S4 with normal Euler number being equal to +2 (resp. −2)
(see [HK]). For a pair of non-negative integers (k, l) such that k + l ≥ 1, let Mk,l

be the non-orientable surface embedded in S4 obtained by taking the connected
sum of k copies of RP 2

+ and l copies of RP 2
−. Then we have e(Mk,l) = 2(k − l)

and the genus of Mk,l is equal to k + l. Hence, the set of non-orientable surfaces
{Mk,l : k, l ∈ Z, k, l ≥ 0, k + l ≥ 1} constitutes a complete set of representatives
of the cobordism classes of closed connected non-orientable surfaces embedded in
S4. Therefore, N is isomorphic to the monoid of pairs of non-negative integers
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Z≥0 × Z≥0. If we denote by [M ] the cobordism class of a closed connected non-
orientable surface M embedded in S4, and by g(M) the genus of M , then the
isomorphism N → Z≥0 × Z≥0 is given by mapping [M ] to

(
2g(M) + e(M)

4
,
2g(M) − e(M)

4

)
.

10.2. Concordance of embeddings of a surface. In this subsection, we consider
the concordance classification of embeddings of closed connected surfaces into S4.
For the definition of the concordance, see Definition 2.10.

Examining the proof of Theorem 10.5 carefully, we see that the following char-
acterization of concordant embeddings of surfaces into S4 holds.

Theorem 10.7 ([BS2]). Let Σ be a closed connected surface. Two embeddings

of Σ into S4 are concordant if and only if the Pin− structures induced by these

embeddings coincide and the normal Euler numbers of these embeddings coincide.

When the knots are spherical of dimension two, the notions of cobordism and
concordance coincide with each other, since every diffeomorphism of S2 which pre-
serves the orientation is isotopic to the identity [Sm1]. However, when g ≥ 1, for
an arbitrary embedding f : Σg → S4 there exists an orientation preserving diffeo-

morphism h : Σg → Σg which does not preserve the Pin− structure induced by
f . Therefore, the embeddings f ◦ h and f are not concordant. This means that
contrary to the spherical case, the notions of cobordism and concordance differ for
orientable surfaces of genus g ≥ 1.

The group of orientation preserving diffeomorphisms of a closed connected ori-
ented surface acts transitively on the set of Pin− structures with trivial Brown
invariant (see, for example, [BS2]). This set is naturally identified with the set
of Spin structures with trivial Arf invariant, since the surface is assumed to be
orientable. This implies that the number of concordance classes of embeddings
of a closed connected oriented surface is equal to the number of Spin structures
with trivial Arf invariant on this surface. According to [J] this number is equal to
2g−1(2g + 1), where g is the genus of the surface. If we denote by ωg the number
of concordance classes of embeddings of Σg, then we have ωg = 2g−1(2g + 1).

Let us denote by νg the number of concordance classes of embeddings of the
closed connected non-orientable surface Ng of non-orientable genus g. According to
[Ms, Km], the set of possible normal Euler numbers for such embeddings coincides
with {−2g, 4− 2g, 8 − 2g, . . . , 2g}. Hence, we have

νg =

g∑

i=0

νg,−2g+4i,

where νg,−2g+4i denotes the number of concordance classes of embeddings of Ng
into S4 with normal Euler number equal to −2g + 4i. Moreover, according to
[KT1, Theorem 6.3], νg,−2g+4i is equal to the number of Pin− structures with
Brown invariant equal to −g + 2i modulo 8. Such numbers can be calculated as in
Table 1 (see [DP]).

Using the values given in Table 1, we get

νg =

{
2g−2(g + 1) if g is odd,

2g−2(g + 1) + 2(g−2)/2 if g is even.

10.3. Cobordism of 4-knots. In the study of cobordism of embeddings of even
dimensional manifolds, the only case which remains to be studied is the case of
4-dimensional manifolds embedded in S6. In [BS3] we proved the following
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β g: odd g: even

0 0 2(g−2)/2(2(g−2)/2 + 1)

1 2(g−3)/2(2(g−1)/2 + 1) 0

2 0 2g−2

3 2(g−3)/2(2(g−1)/2 − 1) 0

4 0 2(g−2)/2(2(g−2)/2 − 1)

5 2(g−3)/2(2(g−1)/2 − 1) 0

6 0 2g−2

7 2(g−3)/2(2(g−1)/2 + 1) 0

Table 1. Number of Pin−structures on the non-orientable surface
Ng with Brown invariant β ∈ Z8

Theorem 10.8. Let M be a closed simply connected 4-dimensional manifold. Then

all the embeddings of M into S6 are concordant.

In particular, two 4-knots in S6, i.e., two closed simply connected 4-dimensional
manifolds embedded in S6, are (oriented) cobordant if and only if they are ab-
stractly (orientation preservingly) diffeomorphic to each other.

One can prove Theorem 10.8 by imitating the proofs of Theorems 10.2 and 10.5,
and the proof is based essentially on Kervaire’s original idea [K1].

Remark 10.9. It is known that a closed connected orientable 4-dimensional manifold
M can be embedded in S6 if and only if it is Spin and its signature vanishes (see
[CS2]). If in addition M is simply connected, then it can be embedded in S6 if and
only if it is homeomorphic to a connected sum of some copies of S2 × S2 by the
homeomorphism classification of closed simply connected 4-dimensional manifolds
due to Freedman [Fr].

Remark 10.10. By Park [P], for any sufficiently large odd integer m, there exist
infinitely many smooth manifolds which are all homeomorphic to the connected
sum of m copies of S2 × S2 but which are not diffeomorphic to each other. Let us
denote by O4 the monoid of (oriented) cobordism classes of closed simply connected
4-manifolds embedded in S6, and by Z≥0 the monoid of non-negative integers.
Then the homomorphism ϕ : O4 → Z≥0 which associates to a 4-knot one half of its
second Betti number is an epimorphism. The above result of Park shows that this
homomorphism is far from being an isomorphism. Compare this with the result
of Vogt [V1, V2]: the corresponding homomorphism O2n → Z≥0 for n ≥ 3 is
an isomorphism, where O2n denotes the monoid of (oriented) cobordism classes of
2n-knots in S2n+2.

Remark 10.11. When n 6= 2, for an arbitrary 2n-knot M , its orientation reversal
−M is oriented cobordant to M . For n = 2, there exists a closed 4-dimensional
manifold N homeomorphic to a connected sum of some copies of S2 ×S2 such that
N is not oriented diffeomorphic to −N . In fact, by Kotschick [Ko2], every simply
connected compact complex surface of general type which is Spin and has vanishing
signature gives such an example. Such a complex surface has been constructed by
Moishezon and Teicher [MT1, MT2, Ko1]. Hence, there exists a closed simply
connected oriented 4-dimensional manifold embedded in S6 which is not oriented
cobordant to its orientation reversal.
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11. Open problems

To conclude this survey article, we would like to list some open problems.

Problem 11.1. In Definition 2.1, if we remove the connectivity condition on the em-
bedded manifolds, then is it still possible to characterize their isotopy and cobordism
classes?

Problem 11.2. Construct efficient invariants of algebraic cobordism.

Problem 11.3. Is the algebraic cobordism an equivalence relation on the whole set
of integral bilinear forms?

See Theorem 5.7, Example 5.8, Remarks 5.9 and 6.10 for the above problem.

Problem 11.4. Is it true that two simple (2n − 1)-knots, n ≥ 3, are cobordant if
and only if their Seifert forms associated with (n − 1)-connected Seifert manifolds
are weakly algebraically cobordant? In particular, is there a pair of two simple
(2n−1)-knots, n ≥ 3, which are cobordant, but whose Seifert forms are not (weakly)
algebraically cobordant?

Note that for C-algebraically fibered simple knots, the above equivalence is true
(see Remark 5.9).

Problem 11.5. Is the Spin cobordism of Seifert forms associated with non-free 3-
knots a sufficient condition of cobordism?

Problem 11.6. Does Theorem 9.3 (a characterization of the pull back relation for
simple fibered (2n− 1)-knots) hold for n = 2?

As noted in Remark 9.4, the above characterization does not hold for n = 1.

Problem 11.7. Let us fix an oriented simple homotopy type (or an oriented dif-
feomorphism type) of manifolds, and consider the set of all embeddings of such
manifolds into a sphere in codimension two. Then, does there exist a minimal
element with respect to the pull back relation?

As mentioned in §9, for spheres, the trivial knot is such a minimal element.

Problem 11.8. Is Cn/Fn isomorphic to Z∞
2 ⊕ Z∞

4 ⊕ Z∞ for odd n? Determine the
group structure of Fn for odd n. Is Fn a direct summand of Cn?

Problem 11.9. Is the multiplicity of a complex holomorphic function germ at an
isolated singular point a cobordism invariant of the associated algebraic knot?

This is known to be true for the case of algebraic 1-knots. See also [Z2].

Problem 11.10. Let us consider Brieskorn type polynomials of the form

za1

1 + za2

2 + · · · + z
an+1

n+1 .

If two algebraic knots associated with Brieskorn type polynomials are cobordant,
then do their exponents coincide?

A related result is obtained in [S3]. Note that the associated Seifert matrix has
been explicitly determined (for example, see [Sk]). It is also known that two alge-
braic (2n−1)-knots associated with Brieskorn polynomials with the same Alexander
polynomial have the same exponents [YS].

Problem 11.11. Two fibered n-knots in Sn+2 are said to be fibered cobordant if there
exists a cobordism X ⊂ Sn+2 × [0, 1] between them whose complement Sn+2

rX
fibers over the circle in a sense similar to Definition 2.4. Is there a pair of two
fibered knots which are cobordant but are not fibered cobordant?
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[Se] H. Seifert, Über das Geschlecht von Knoten, Math. Ann. 110 (1935), 571–592.
[Sm1] S. Smale, Diffeomorphisms of the 2-sphere, Proc. Amer. Math. Soc. 10 (1959), 621–626.
[Sm2] S. Smale, On the structure of manifolds, Amer. J. Math. 84 (1962), 387–399.
[St] J. R. Smith, Complements of codimension-two submanifolds. III. Cobordism theory, Pa-

cific J. Math. 94 (1981), 423–484.
[Sg] J. Stallings, On topologically unknotted spheres, Ann. of Math. 77 (1963), 490–503.
[Sf ] N. W. Stoltzfus, Unraveling the integral knot concordance group, Mem. Amer. Math. Soc.

12, No. 192, 1977.
[Sz] S. Szczepanski, Cobordism of algebraic knots, Invent. Math. 96 (1989), 185–204.
[Th] R. Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv.
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