
Osamu Saeki

Topology of Singular Fibers of

Differentiable Maps

April 22, 2004

Springer

Berlin Heidelberg NewYork

HongKong London

Milan Paris Tokyo





To Célia





Preface

In 1999, a friend of mine, Kazuhiro Sakuma, kindly asked me to give a series
of lectures in the Kwansai Seminar on Differential Analysis, held at the Kinki
University, Japan. At that time, I was studying the global topology of differ-
entiable maps of 4-dimensional manifolds into lower dimensional manifolds.
Sakuma and I had obtained a lot of interesting results concerning the relation-
ship between the singularities of such maps and the differentiable structures
of 4-dimensional manifolds; however, our results were not based on a system-
atic theory and were not satisfactory in a certain sense. So I was trying to
construct such a systematic theory when I was asked to give lectures.

I wondered what kind of objects can reflect the global properties of man-
ifolds. “Singularity” of a differentiable map can be such an object, but it
is local in nature. I already knew that the notion of the Stein factorization
played an important role in the global study of such maps; for example, refer
to the works of Burlet–de Rham [7] or Kushner–Levine–Porto [28, 30]. Stein
factorization is constructed by considering the connected components of the
fibers of a given map.

This inspired me to consider singular fibers of differentiable maps. I
promptly started the classification of singular fibers of stable maps of ori-
entable 4-manifolds into 3-manifolds. It was not a difficult task, though quite
tedious. Then I obtained the modulo two Euler characteristic formula in terms
of the number of a certain singular fiber, by using Szűcs’s formula [55], which
Nuño Ballesteros and I had also obtained independently [36, 37]. The formula
on the number of singular fibers was so beautiful that I was very happy to be
able to present such a result in the Kwansai Seminar, in November 1999.

After attending my lectures, one of the participants, Toru Ohmoto, gave
me a very important remark. He said “Your argument is closely related to
Vassiliev’s universal complex of multi-singularities. You just increased the
number of generators for each cochain complex using the topology of singular
fibers”.

So I began to study Vassiliev’s work and at the same time began to elab-
orate my results. It took a long time to write down all the details. A preprint
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version of the whole work was finished only in the middle of 2003, when I was
staying in Strasbourg, France.

Now the acknowledgment follows. First of all, I would like to thank
Kazuhiro Sakuma and the co-organizer Shuzo Izumi for kindly asking me
to give a series of lectures at the Kwansai Seminar. I would like to thank Toru
Ohmoto for his important remark at the seminar. Without these people, this
work would have never appeared.

I would like to thank Minoru Yamamoto and Takahiro Yamamoto for
carefully reading several earlier versions of the manuscript and for pointing out
some important errors. I would also like to thank Goo Ishikawa, who gave me
invaluable comments through Takahiro Yamamoto as his supervisor. I would
also like to thank Jorge T. Hiratuka for stimulating discussions concerning
Stein factorizations of stable maps of 4-dimensional manifolds.

I would also like to thank András Szűcs for thoroughly reading an earlier
version of the manuscript and for giving me many invaluable comments, which
improved the manuscript considerably.

In January 2004, the results in this book were presented in a mini-course
given at the University of Tokyo, Japan. I would like to thank all the partici-
pants at the mini-course, who attended it with enthusiasm and posed a lot of
questions. In particular, I would like to thank Mikio Furuta for his excellent
questions with fantastic ideas: in fact, I included some of the results based
on his ideas in this book. I would also like to thank Masamichi Takase and
Keiichi Suzuoka for their invaluable comments on my mini-course. I would like
to thank Yukio Matsumoto, my ex-supervisor, for inviting me to give such a
mini-course.

I would also like to thank Vincent Blanlœil for inviting me to Strasbourg
in 2003, where I could finish the first draft of this work.

Finally, I would like to thank all the members of my family, especially to
Célia, for their patience and support during the preparation of the book.

Fukuoka,
April, 2004 Osamu Saeki
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Introduction

Let f : M → N be a proper differentiable1 map of an n-dimensional man-
ifold M into a p-dimensional manifold N . When the codimension p − n is
nonnegative, for any point y in the target N , the inverse image f−1(y) con-
sists of a finite number of points, provided that f is generic enough. Hence,
in order to study the semi-local behavior of a generic map f around (the
inverse image of) a point y ∈ N , we have only to consider the multi-germ
f : (M, f−1(y)) → (N, y). Therefore, we can use the well-developed theory of
multi-jet spaces and their sections in order to study such semi-local behaviors
of generic maps.

However, if the codimension p − n is strictly negative, then the inverse
image f−1(y) is no longer a discrete set. In general, f−1(y) forms a complex
of positive dimension n − p. Hence, we have to study the map germ f :
(M, f−1(y)) → (N, y) along a set f−1(y) of positive dimension and the theory
of multi-jet spaces is not sufficient any more. Surprisingly enough, there has
been no systematic study of such map germs in the literature, as long as the
author knows, although we can find some studies of the multi-germ of f at
the singular points of f contained in f−1(y).

In this book, we consider the codimension −1 case, i.e. the case with
n− p = 1, and classify the right-left equivalence classes of generic map germs
f : (M, f−1(y)) → (N, y) for n = 2, 3, 4. For the case n = 3, Kushner,
Levine and Porto [28, 30] classified the singular fibers of C∞ stable maps of
3-manifolds into surfaces up to diffeomorphism; however, they did not mention
a classification up to right-left equivalence (for details, see Definition 1.1 (2) in
Chap. 1). In this book, we clarify the difference between the classification up to
diffeomorphism and that up to right-left equivalence by completely classifying
the singular fibers up to these two equivalences.

Given a generic map f : M → N of negative codimension, the target
manifoldN is naturally stratified according to the right-left equivalence classes

1In this book, “differentiable” means “differentiable of class C∞”. We also use
the term “smooth”.
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Fig. 0.1. The singular fiber whose number has the same parity as the Euler char-
acteristic of the source 4-manifold M

of f -fibers. By carefully investigating how the strata are incident to each other,
we get some information on the homology class represented by a set of the
points in the target whose associated fibers are of certain types. This leads to
some limitations on the co-existence of singular fibers. For example, we show
that for a C∞ stable map of a closed orientable 4-manifold into a 3-manifold,
the number of singular fibers containing both a cusp point and a fold point is
always even.

As an interesting and very important consequence of such co-existence
results, we show that for a C∞ stable map f : M → N of a closed orientable
4-manifold M into a 3-manifold N , the Euler characteristic of the source
manifold M has the same parity as the number of singular fibers as depicted
in Fig. 0.1 (Theorem 5.1). Note that this type of result would be impossible if
we used the multi-germs of a given map at the singular points contained in a
fiber instead of considering the topology of the fibers. In other words, our idea
of essentially using the topology of singular fibers leads to new information
on the global structure of generic maps.

Furthermore, the natural stratification of the target manifold according
to the fibers enables us to generalize Vassiliev’s universal complex of multi-
singularities [58] to our case. In this book, we define such universal complexes
of singular fibers and compute the corresponding cohomology groups in certain
cases. It turns out that cohomology classes of such complexes give rise to
cobordism invariants for maps with a given set of singularities in the sense of
Rimányi and Szűcs [40].

The book is organized as follows.
In Part I, we define and study equivalence relations for singular fibers of

generic differentiable maps and carry out the classification of singular fibers
for some specific classes of maps. We use these classifications to obtain some
results on the co-existence of singular fibers, and on the relationship between
the numbers of certain singular fibers of stable maps and the topology of the
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source manifolds. We also give explicit concrete examples of such stable maps
exhibiting typical singular fibers.

In Part II, we formalize the idea used to obtain the co-existence results of
singular fibers in Part I in a more general setting. This leads to the notion of
the universal complex of singular fibers, which is a refinement of Vassiliev’s
universal complex of multi-singularities. We develop a rather detailed theory
of universal complex of singular fibers, and at the same time we give explicit
calculations based on Part I. We will see that the cohomology classes of the
universal complex of singular fibers give rise to invariants of cobordisms of sin-
gular maps in the sense of Rimányi and Szűcs [40] in the negative codimension
case.

In Part III, we give some applications of our theory to the global topology
of differentiable maps and present some further developments of the theory
given in this book.

Part I consists of six chapters, which are organized as follows.
In Chap. 1, we give precise definitions of certain equivalence relations

among the fibers of proper smooth maps, which will play essential roles in
this book.

In Chap. 2, in order to clarify our idea, we classify the fibers of proper
Morse functions on surfaces. The result itself should be folklore; however,
we give a rather detailed argument, since similar arguments will be used in
subsequent chapters.

In Chap. 3, we classify the fibers of proper C∞ stable maps of orientable 4-
manifolds into 3-manifolds up to right-left equivalence. Our strategy is to use
a combinatorial argument, for obtaining all possible 1-dimensional complexes,
together with a classification up to right equivalence of certain multi-germs
due to [11, 61]. After the classification, we will see that the equivalence up
to diffeomorphism and that up to right-left equivalence are almost equivalent
to each other in our case. Furthermore, as another consequence of the clas-
sification, we will see that two fibers of such stable maps are C0 right-left
equivalent if and only of they are C∞ right-left equivalent. This is an analogy
of Damon’s result [10] for C∞ stable map germs in nice dimensions. Further-
more, we give similar results for proper C∞ stable maps of (not necessarily
orientable) 3-manifolds into surfaces and for proper C∞ stable Morse func-
tions on surfaces. For Morse functions on surfaces, we prove the following very
important result: for two proper C∞ stable Morse functions on surfaces, they
are C0 equivalent if and only if they are C∞ equivalent.

In Chap. 4, we investigate the stratification of the target 3-manifold of
a C∞ stable map of a closed orientable 4-manifold as mentioned above and
obtain certain relations among the numbers (modulo two) of certain singular
fibers.

In Chap. 5, we combine the results obtained in Chap. 4 with the following
two results. One is a result of Fukuda [14] and the author [45] about the Euler
characteristics of the source manifold and the singular point set, and the other
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is Szűcs’ formula [55] on the number of triple points of a generic surface in
3-space (see also [36, 37]). As a result, we obtain a congruence modulo two
between the Euler characteristic of the source 4-manifold and the number of
singular fibers as depicted in Fig. 0.1.

In Chap. 6, we construct explicit examples of C∞ stable maps of closed
orientable 4-manifolds into R3. Since (4, 3) is a nice dimension pair in the
sense of Mather [32], given a 4-manifold M and a 3-manifold N , we have a
plenty of C∞ stable maps of M into N . However, it is surprisingly difficult
to give an explicit example and to give a detailed description of the struc-
ture of the fibers. Here, we carry this out, and at the same time we explicitly
construct infinitely many closed orientable 4-manifolds with odd Euler char-
acteristics which admit smooth maps into R3 with only fold singularities. In
the subsequent chapters, we will see that such explicit examples are essential
and very important in the study of singular fibers of generic maps.

Part II consists of eight chapters as follows.
In Chap. 7, we generalize the idea given in Chaps. 4 and 5 in a more

general setting to obtain certain results on the co-existence of singular fibers.
In Chap. 8, we define the universal complexes of singular fibers for proper

Thom maps with coefficients in Z2, using an idea similar to Vassiliev’s [58]
(see also [23, 38]). Our universal complexes of singular fibers are very similar
to Vassiliev’s universal complexes of multi-singularities. In fact, we construct
the complexes using the right-left equivalence classes of fibers instead of multi-
singularities, and this corresponds to increasing the generators of each cochain
group according to the topological structures of fibers. In order to use such
universal complexes in several situations, we will develop a rather detailed
theory of universal complexes of singular fibers. Here, given a set of generic
maps and a certain equivalence relation among their fibers, we will define the
corresponding universal complex of singular fibers.

In Chap. 9, we apply the general construction introduced in Chap. 8 to
a more specific situation, namely in the case of proper C∞ stable maps of
orientable 4-manifolds into 3-manifolds. For such maps, we determine the
structure of the universal complex of singular fibers with respect to a certain
equivalence relation among the fibers and compute its cohomology groups
explicitly.

In Chap. 10, we consider co-orientable fibers and construct the correspond-
ing universal complex of co-orientable singular fibers with integer coefficients.
We also give some important problems related to the theory of universal com-
plexes of singular fibers.

In Chap. 11, we define a homomorphism induced by a generic map of the
cohomology group of the universal complex of singular fibers to that of the
target manifold of the map. This corresponds to associating to a cohomology
class α of the universal complex the Poincaré dual to the homology class
represented by the set of those points over which lies a fiber appearing in
a cocycle representing α. We will see that the homomorphisms induced by
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explicit generic maps will be very useful in the study of the cohomology groups
of the universal complexes. This justifies the study developed in Chap. 6.

In Chap. 12, we define a cobordism of smooth maps with a given set of sin-
gular fibers. We will see that the homomorphism defined in Chap. 11 restricted
to a certain subgroup is an invariant of such a cobordism. Furthermore, we
will give a criterion for a certain cochain of the universal complex of singular
fibers to be a cocycle in terms of the theory of such cobordisms, and apply it to
finding a certain nontrivial cohomology class of a universal complex associated
to stable maps of 5-dimensional manifolds into 4-dimensional manifolds.

In Chap. 13, we consider cobordisms of smooth maps with a given set of
local singularities in the sense of [40]. We explain how a cohomology class of
a universal complex of singular fibers gives rise to a cobordism invariant for
such maps. Note that such cobordism relations have been thoroughly studied
in [40] in the nonnegative codimension case. Our idea provides a systematic
and new method to construct cobordism invariants for negative codimension
cases.

In Chap. 14, we give explicit examples of cobordism invariants constructed
by using the method introduced in the previous chapters. In particular, we
show that this method provides a complete invariant of fold cobordisms of
Morse functions on closed oriented surfaces.

Part III consists of two chapters as follows.
In Chap. 15, we give explicit applications of the general idea given in

Chap. 7 to the topology of certain generic differentiable maps. For example,
we study the homology classes represented by some multiple point sets of
certain generic maps. As a corollary, we show the vanishing of the Gysin
image of a Stiefel-Whitney class for smooth maps under certain dimensional
assumptions.

Finally in Chap. 16, we present some further results (without any details)
concerning the topology of singular fibers of generic maps obtained after the
first version of this book was written as a preprint.

Throughout this book, all manifolds and maps are differentiable of class
C∞. The symbol “∼=” denotes a diffeomorphism between manifolds or an
appropriate isomorphism between algebraic objects. For a spaceX , the symbol
“idX” denotes the identity map of X . For other symbols used in this book,
refer to the list starting at p. 135.





Part I

Classification of Singular Fibers





1

Preliminaries

In this chapter, we give some fundamental definitions, which will be essential
for the classification of singular fibers of generic maps of negative codimen-
sions.

Definition 1.1. (1) Let Mi be smooth manifolds and Ai ⊂ Mi be subsets,
i = 0, 1. A continuous map g : A0 → A1 is said to be smooth if for every point
q ∈ A0, there exists a smooth map g̃ : V → M1 defined on a neighborhood V of
q in M0 such that g̃|V ∩A0 = g|V ∩A0 . Furthermore, a smooth map g : A0 → A1

is a diffeomorphism if it is a homeomorphism and its inverse is also smooth.
When there exists a diffeomorphism between A0 and A1, we say that they are
diffeomorphic.1

(2) Let fi : Mi → Ni be smooth maps, i = 0, 1. For yi ∈ Ni, we say that the
fibers over y0 and y1 are diffeomorphic (or homeomorphic) if (f0)

−1(y0) ⊂M0

and (f1)
−1(y1) ⊂ M1 are diffeomorphic in the above sense (resp. homeo-

morphic in the usual sense). Furthermore, we say that the fibers over y0

and y1 are C∞ equivalent (or C0 equivalent), if for some open neighbor-
hoods Ui of yi in Ni, there exist diffeomorphisms (resp. homeomorphisms)
ϕ̃ : (f0)

−1(U0) → (f1)
−1(U1) and ϕ : U0 → U1 with ϕ(y0) = y1 which make

the following diagram commutative:

((f0)
−1(U0), (f0)

−1(y0))
�

ϕ
−−−−−→ ((f1)

−1(U1), (f1)
−1(y1))yf0

yf1
(U0, y0)

ϕ
−−−−−→ (U1, y1).

(1.1)

When the fibers over y0 and y1 are C∞ (or C0) equivalent, we also say that
the map germs f0 : (M0, (f0)

−1(y0)) → (N0, y0) and f1 : (M1, (f1)
−1(y1)) →

(N1, y1) are smoothly (or topologically) right-left equivalent. Note that then

1Note that even if A0 and A1 are diffeomorphic to each other, the dimensions of
the ambient manifolds M0 and M1 may be different.
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(f0)
−1(y0) and (f1)

−1(y1) are diffeomorphic (resp. homeomorphic) to each
other in the above sense.2

In what follows, if we just say “equivalent”, or “right-left equivalent”, then
we mean “C∞ equivalent” or “smoothly right-left equivalent”, respectively.

When y ∈ N is a regular value of a smooth map f : M → N between
smooth manifolds, we call f−1(y) a regular fiber ; otherwise, a singular fiber.

Example 1.2. If f : M → N is a proper submersion, then every fiber is reg-
ular. Furthermore, by Ehresmann’s fibration theorem [13] (for details, see
Theorem 1.4 below), the fibers over two points y0 and y1 ∈ N are equivalent,
provided that y0 and y1 belong to the same connected component of N . Thus
each equivalence class corresponds to a union of connected components of N .

Example 1.3. Suppose that f : M → N is a Thom map, which is a stratified
map with respect to Whitney regular stratifications ofM andN such that it is
a submersion on each stratum and satisfies a certain regularity condition (for
more details, refer to [15, Chapter I, §3], [12, §2.5], [9, §2], [54], for example).

Let Σ be a stratum of N of codimension κ. Take a point y ∈ Σ and let
By be a small κ-dimensional open disk in N centered at y which intersects Σ
transversely at the unique point y and is transverse to all the strata ofN . Then
by Thom’s second isotopy lemma (for example, see [15, Chapter II, §5]), we see
that the fiber of f over y is C0 equivalent to the fiber of (f |f−1(By))× idRp−κ

over y×0, where p = dimN . Thus, again by Thom’s second isotopy lemma, we
see that the fibers over any two points belonging to the same stratum Σ of N
are C0 equivalent to each other. Thus, each C0 equivalence class corresponds
to a union of strata of N .

Let us state Ehresmann’s fibration theorem [13] in a form which will be
useful in the subsequent chapters. For our purposes, we present here its relative
version (see [29, §3]). Note that a continuous map is proper if the inverse image
of a compact set is always compact.

Theorem 1.4. Let f : M → IntDp be a proper submersion of an n-
dimensional manifold M (possibly with boundary) into the interior of the

p-dimensional disk with n > p such that f |∂M : ∂M → IntDp is also a

submersion. Then for the center 0 of IntDp, the inverse image f−1(0) is a

compact (n − p)-dimensional manifold with boundary, and for an arbitrary

diffeomorphism h : f−1(0) → F onto a manifold F , there exists a diffeomor-

phism h̃ : M → F × IntDp such that the diagram

M

�

h
−−−−−→ F × IntDp

f↘ ↙π

IntDp

2Note that if the two fibers are equivalent in the above sense, then the dimensions
of the source (or target) manifolds necessarily coincide with each other.
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is commutative and that h̃|f−1(0) = h : f−1(0) → F × {0}, where π : F ×
IntDp → IntDp is the projection to the second factor.

The above theorem can be proved as follows. We first construct a set of
p vector fields on M projecting to the standard coordinate vector fields of
IntDp, by using the partition of unity. Then by using the integral curves of
the vector fields, we can construct the diffeomorphism h̃−1. (Here, we use the
assumption that f is proper in order to guarantee the existence of required
integral curves.) The diffeomorphism h−1 : F → f−1(0) corresponds to the
initial values of the integral curves. For details, see [6, §8.12], for example.





2

Singular Fibers of Morse Functions on Surfaces

Let us begin by the simplest case; namely, that of Morse functions on surfaces.
Let M be a smooth surface and f : M → R a proper Morse function.

For its critical points c1, c2, . . . ∈ M , we assume that f(ci) 6= f(cj) for i 6= j:
i.e., we assume that each fiber of f contains at most one critical point. This
is equivalent to saying that f is C∞ stable (see, for example, [12, §4.3], [16,
Chapter III, §2B]), so we often call such an f a stable Morse function.

By the Morse Lemma, at each critical point ci, f is C∞ right equivalent
to the function germ of the form

(x, y) 7→ ±x2 ± y2 + f(ci)

at the origin. In particular, each singular fiber contains exactly one of the
following two:

(1) a component consisting of just one point (corresponding to a local mini-
mum or maximum),

(2) a “crossing point” which has a neighborhood diffeomorphic to

{(x, y) ∈ R2 : x2 − y2 = 0, x2 + y2 < 1}

(corresponding to a saddle point).

Since f is proper, each fiber of f is compact. Furthermore, for each regular
point q ∈M , the fiber through q is a regular 1-dimensional submanifold near
the point. Hence the component of a singular fiber of f containing a critical
point should be diffeomorphic to one of the three figures as depicted in Fig. 2.1
by a combinatorial reason.

More precisely, we can show the following.

Theorem 2.1. Let f : M → R be a proper stable Morse function on a surface

M . Then the fiber over each critical value in R is equivalent to one of the

three types of fibers as depicted in Fig. 2.2. Furthermore, two singular fibers

of distinct types are not equivalent to each other even after taking the union

with regular circle components.
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Fig. 2.1. List of diffeomorphism types of singular fibers for Morse functions on
surfaces

PSfrag replacements

(1)

(2)

(3)

Fig. 2.2. List of equivalence classes of singular fibers for Morse functions on surfaces

Note that the source manifolds depicted in Fig. 2.2 are all open and have
finitely many connected components. In particular, the source manifold of
Fig. 2.2 (3) is diffeomorphic to the union of the once punctured open Möbius
band and some copies of S1 ×R.

Proof of Theorem 2.1. If the corresponding critical point c ∈ M is a local
minimum or a local maximum, then the singular fiber is equivalent to that of
Fig. 2.2 (1) by the Morse Lemma together with Ehresmann’s fibration theorem
[13] (see Theorem 1.4 in §1).

Suppose that c is a saddle point. By the Morse Lemma, the function germ
of f at c is right equivalent to the function germ of f1 : (x, y) 7→ x2−y2 at the
origin up to a constant: i.e., there exists a diffeomorphism ϕ̃1 : V → V1 such
that ϕ̃1(c) = (0, 0) and f1 ◦ ϕ̃1 = f − f(c) on V , where V is a neighborhood
of c in M and V1 is a neighborhood of the origin in R2 of the form
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Fig. 2.3. The neighborhood V0

V1 = {(x, y) ∈ R2 : x2 + y2 ≤ ε, |f1(x, y)| < δ}

for 1 >> ∃ε >> ∃δ > 0. In particular, there exists a diffeomorphism ϕ̃0 :
V → V0 such that ϕ̃0(c) = c0 and f0 ◦ ϕ̃0 = f + (f0(c0) − f(c)) on V , where
f0 is the Morse function as in Fig. 2.2 (2) or (3), which will be chosen later,
c0 is the critical point of f0, and V0 is the corresponding neighborhood of c0
(see Fig. 2.3). Note that the maps

f |∂V ∩f−1((f(c)−δ,f(c)+δ)) : ∂V ∩ f−1((f(c) − δ, f(c) + δ))

→ (f(c) − δ, f(c) + δ) (2.1)

and

(f0)|∂V0∩(f0)−1((f0(c0)−δ,f0(c0)+δ)) : ∂V0 ∩ (f0)
−1((f0(c0) − δ, f0(c0) + δ))

→ (f0(c0) − δ, f0(c0) + δ) (2.2)

are proper submersions.
Since a Morse function is a submersion outside of the critical points, the

closure of f−1(f(c)) r V in M is a compact 1-dimensional smooth manifold
whose boundary consists exactly of four points, and hence it is diffeomorphic
to the disjoint union of two arcs and some circles. Therefore, f−1(f(c)) is
diffeomorphic to the disjoint union of (2) or (3) of Fig. 2.1 and some circles
by a purely combinatorial reason. At this stage, we choose f0 to be the Morse
function as in Fig. 2.2 (2) (or (3)) if the component of f−1(f(c)) containing
c is diffeomorphic to (2) (resp. (3)) of Fig. 2.1. Furthermore, we choose the
number of trivial circle bundle components appropriately.

When the component of f−1(f(c)) containing c is diffeomorphic to (3) of
Fig. 2.1, we see easily that the diffeomorphism

ϕ̃0|f−1(f(c))∩V : f−1(f(c)) ∩ V → (f0)
−1(f0(c0)) ∩ V0 (2.3)

between the local fibers extends to a diffeomorphism between the whole fibers
f−1(f(c)) and (f0)

−1(f0(c0)). In the case of Fig. 2.1 (2), this is not necessarily
true (for example, see Fig. 2.4). If such an extension does not exist, then we
modify the diffeomorphism ϕ̃0 by composing it with a self-diffeomorphism of V
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Fig. 2.4. A diffeomorphism
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ϕ0 : V → V0

corresponding to the diffeomorphism h1 : V1 → V1 defined by (x, y) 7→ (y, x)
such that f1 ◦ h1 = −f1. Note that then we have f0 ◦ ϕ̃0 = r ◦ f , where
r : R → R is the reflection defined by x 7→ f0(c0)+f(c)−x. Then we see that
the diffeomorphism (2.3) between the local fibers extends to one between the
whole fibers (see Fig. 2.4).

Since the maps (2.1) and (2.2) are proper submersions, we see that f
(resp. f0) restricted to f−1((f(c)−δ, f(c)+δ))− IntV (resp. (f0)

−1((f0(c0)−
δ, f0(c0) + δ)) − IntV0) is a smooth fibration over an open interval by virtue
of the relative version of Ehresmann’s fibration theorem (Theorem 1.4). Fur-
thermore, the diffeomorphism ϕ̃0 : V → V0 can be extended to a fiber pre-
serving diffeomorphism between f−1((f(c)−δ, f(c)+δ)) and (f0)

−1((f0(c0)−
δ, f0(c0) + δ)). Hence we have the desired result.

The last statement in the theorem is clear. This completes the proof. ut

Remark 2.2. Let c ∈ M be a critical point of a proper stable Morse function
f : M → R on a surface M . Then for δ > 0 sufficiently small, the difference

b0(f
−1(f(c) + δ)) − b0(f

−1(f(c) − δ))

is equal to ±1 if c is of type (1) or (2), and is equal to 0 if c is of type (3), where
b0 denotes the 0-th betti number, or equivalently, the number of connected
components.

Now let us examine the relationship among the numbers of singular fibers
of the above three types. For a stable Morse function f : M → R on a closed
surface M , let 0odd denote the closure of the set

{y ∈ R : y is a regular value and b0(f
−1(y)) is odd}.

It is easy to see that 0odd is a finite disjoint union of closed intervals. Fur-
thermore, a point y ∈ R is in ∂0odd if and only if y is a critical value of type
(1) or (2). Since the number of boundary points of a finite disjoint union of
closed intervals is always even, we obtain the following.
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Proposition 2.3. Let f : M → R be a stable Morse function on a closed

surface M . Then the total number of singular fibers of types (1) and (2) is

always even.

Since the number of singular fibers is equal to the number of critical points,
it has the same parity as the Euler characteristic χ(M) of the source surface
M . Thus, we have the following.

Corollary 2.4. Let f : M → R be a stable Morse function on a closed surface

M . Then the Euler characteristic χ(M) of M has the same parity as the

number of singular fibers of type (3).

Since a neighborhood of a singular fiber of type (3) is nonorientable, we
immediately obtain the following special case of the Poincaré duality, using
the fact that every closed surface admits a stable Morse function.

Corollary 2.5. Every orientable closed surface has even Euler characteristic.

By analyzing the singular fibers of type (3), we can also give an interesting
proof for the following well-known fact.1

Proposition 2.6. For a closed surface M , we always have

w1(M)2 = w2(M) ∈ H2(M ;Z2),

where wi(M) denotes the i-th Stiefel Whitney class of M .

Proof. Without loss of generality, we may assume that M is connected.
Let f : M → R be an arbitrary stable Morse function on the surface M .

Recall that a singular fiber of type (3) is a union of two nonsingular circles
which intersect each other transversely, and that the tubular neighborhood
of each of the two circles is a Möbius band. Note that if we cut the regular
neighborhood of such a singular fiber along one of the two circles, then we get
an orientable surface.

Let us take one of the two circles from each singular fiber of type (3) of f ,
and let C be their union. Let us denote by C ′ the union of the complementary
circles. The surfaces M r C or M r C ′ may still be nonorientable. However,
we can take a union C̃ (or C̃ ′) of some components of regular fibers of f so

that M r (C ∪ C̃) (resp. M r (C ′ ∪ C̃ ′)) is orientable. We may assume that

C̃ (or C̃ ′) has the minimal number of circle components with this property.

Then C ∪ C̃ (or C ′ ∪ C̃ ′) represents a homology class in H1(M ;Z2) Poincaré
dual to w1(M) ∈ H1(M ;Z2).

Let [M ] ∈ H2(M ;Z2) denote the fundamental class of the surfaceM . Then
the number 〈w1(M)2, [M ]〉 ∈ Z2 is equal to the modulo 2 intersection number

of C ∪ C̃ and C ′ ∪ C̃ ′ in M . By construction, we see easily that this is equal

1The author is indebted to Mikio Furuta for the idea of the proof.
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to the number of singular fibers of type (3) modulo 2. By Corollary 2.4 this
coincides with the Euler characteristic of M modulo 2, and hence with the
number 〈w2(M), [M ]〉 ∈ Z2. SinceM is connected, this implies that w1(M)2 =
w2(M). This completes the proof. ut

Note that in the above proof, we did not use the classification theorem of
closed surfaces.

Remark 2.7. Let M be a closed connected nonorientable surface of nonori-
entable genus g: i.e., M is homeomorphic to the connected sum of g copies of
the real projective plane RP 2. Then the number of singular fibers of type (3)
of a stable Morse function on M is always less than or equal to g, since M
can contain at most g disjointly embedded Möbius bands.

In fact, we have the following.2

Proposition 2.8. Let M be a closed connected nonorientable surface of

nonorientable genus g. Then for every

k ∈ {n ∈ Z : 0 ≤ n ≤ g and n ≡ χ(M)(= 2 − g) (mod 2)},

there exists a stable Morse function f : M → R which has exactly k singular

fibers of type (3).

Proof. It is easy to construct a Morse function f1 : RP 2 → R on the real
projective plane with exactly three critical points. Then the singular fiber
passing through the critical point of index 1 is of type (3) and the other
singular fibers are of type (1). Furthermore, let f ′

0 : T 2 → R be the standard
height function on the 2-dimensional torus. It is a stable Morse function with
exactly four critical points, whose indices are equal to 0, 1, 1 and 2. Let c
be a component of the regular fiber over a value between the two values of
the critical points of index 1. Cutting T 2 along c and pasting the two circle
boundaries by an orientation reversing diffeomorphism, we obtain a Klein
bottle K2 and a stable Morse function f0 : K2 → R. By construction, f0 has
no singular fibers of type (3).

For a given integer k as in the proposition, set ` = (g − k)/2. Then by
taking the “connected sum” of k copies of f1 : RP 2 → R and ` copies of
f0 : K2 → R, we obtain a stable Morse function on M with exactly k singular
fibers of type (3). (Here, before performing a “connected sum” of two Morse
functions, we add a constant to one of the functions so that the minimum of
a function is greater than the maximum of the other function. For details, see
[46].) This completes the proof. ut

Remark 2.9. All the results in this chapter are valid also for maps into circles.

2This is an answer to a question of András Szűcs. The author would like to thank
him for such an interesting question.
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We end this chapter by an exercise, which can be solved by almost the
same argument as in this chapter. The author hopes that the reader will
enjoy solving it!

Exercise 2.10. Classify the singular fibers of proper stable Morse functions
on 3-dimensional manifolds.





3

Classification of Singular Fibers

In this chapter, we consider proper C∞ stable maps of orientable 4-manifolds
into 3-manifolds, and classify their singular fibers up to the equivalences de-
scribed in Definition 1.1. As a consequence, we see that two such fibers are
C0 equivalent if and only if they are C∞ equivalent. We also study singular
fibers of C∞ stable maps of surfaces and 3-manifolds and show that two stable
Morse functions on a surface are C0 right-left equivalent if and only if they
are C∞ right-left equivalent.

3.1 Stable Maps of 4-Manifolds into 3-Manifolds

Let M be a 4-manifold and N a 3-manifold. The following characterization of
C∞ stable maps M → N is well-known.

Proposition 3.1. A proper smooth map f : M → N of a 4-manifold M
into a 3-manifold N is C∞ stable if and only if the following conditions are

satisfied.

(i) For every q ∈ M , there exist local coordinates (x, y, z, w) and (X,Y, Z)
around q ∈ M and f(q) ∈ N respectively such that one of the following

holds:

(X ◦ f, Y ◦ f, Z ◦ f)

=





(x, y, z), q: regular point,
(x, y, z2 + w2), q: definite fold point,
(x, y, z2 − w2), q: indefinite fold point,
(x, y, z3 + xz − w2), q: cusp point,
(x, y, z4 + xz2 + yz + w2), q: definite swallowtail,
(x, y, z4 + xz2 + yz − w2), q: indefinite swallowtail.

(ii) Set S(f) = {q ∈ M : rank dfq < 3}, which is a regular closed 2-
dimensional submanifold of M under the above condition (i). Then, for
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Fig. 3.1. Multi-germs of f |S(f)

every r ∈ f(S(f)), f−1(r) ∩ S(f) consists of at most three points and the

multi-germ

(f |S(f), f
−1(r) ∩ S(f))

is right-left equivalent to one of the six multi-germs as described in Fig. 3.1:
(1) represents a single immersion germ which corresponds to a fold point,

(2) and (4) represent normal crossings of two and three immersion germs,

respectively, each of which corresponds to a fold point, (3) corresponds to a

cusp point, (5) represents a transverse crossing of a cuspidal edge as in (3)
and an immersion germ corresponding to a fold point, and (6) corresponds

to a swallowtail.

Remark 3.2. According to du Plessis and Wall [12, 60], if (n, p) is in the nice
range in the sense of Mather [32], a proper smooth map between manifolds
of dimensions n and p is C∞ stable if and only if it is C0 stable. Hence, the
above proposition gives a characterization of C0 stable maps of 4-manifolds
into 3-manifolds as well, since (4, 3) is in the nice range.

Let q be a singular point of a proper C∞ stable map f : M → N of
a 4-manifold M into a 3-manifold N . Then, using the above local normal
forms, it is easy to describe the diffeomorphism type of a neighborhood of q
in f−1(f(q)). More precisely, we easily get the following local characterizations
of singular fibers.
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Fig. 3.2. Neighborhood of a singular point in a singular fiber

Lemma 3.3. Every singular point q of a proper C∞ stable map f : M → N
of a 4-manifold M into a 3-manifold N has one of the following neighborhoods

in its corresponding singular fiber (see Fig. 3.2):

(1) isolated point diffeomorphic to {(x, y) ∈ R2 : x2 + y2 = 0}, if q is a

definite fold point,

(2) union of two transverse arcs diffeomorphic to {(x, y) ∈ R2 : x2 −y2 = 0},
if q is an indefinite fold point,

(3) cuspidal arc diffeomorphic to {(x, y) ∈ R2 : x3 − y2 = 0}, if q is a cusp

point,

(4) isolated point diffeomorphic to {(x, y) ∈ R2 : x4 + y2 = 0}, if q is a

definite swallowtail,

(5) union of two tangent arcs diffeomorphic to {(x, y) ∈ R2 : x4 − y2 = 0}, if

q is an indefinite swallowtail.

Note that in Fig. 3.2, both the black dot (1) and the black square (4) repre-
sent an isolated point; however, we use distinct symbols in order to distinguish
them.

For the local nearby fibers, we have the following.

Lemma 3.4. Let f : M → N be a proper C∞ stable map of a 4-manifold

M into a 3-manifold N and q ∈ S(f) a singular point such that f−1(f(q)) ∩
S(f) = {q}. Then the local fibers near q are as in Fig. 3.3:

(1) q is a definite fold point,

(2) q is an indefinite fold point,

(3) q is a cusp point,

(4) q is a definite swallowtail,

(5) q is an indefinite swallowtail,

where each 0- or 1-dimensional object represents a portion of the fiber over

the corresponding point in the target and each 2-dimensional object represents

f(S(f)) ⊂ N near f(q).

In the following, we assume that the 4-manifold M is orientable. Then we
get the following classification of singular fibers.
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Fig. 3.3. Local degenerations of fibers
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Theorem 3.5. Let f : M → N be a proper C∞ stable map of an orientable 4-
manifold M into a 3-manifold N . Then, every singular fiber of f is equivalent

to the disjoint union of one of the fibers as in Fig. 3.4 and a finite number

of copies of a fiber of the trivial circle bundle. Furthermore, no two fibers

appearing in the list are equivalent to each other even after taking the union

with regular circle components.

In Fig. 3.4, κ denotes the codimension of the set of points in N whose
corresponding fibers are equivalent to the relevant one. For details, see Re-
mark 3.7. Furthermore, I∗, II∗ and III∗ mean the names of the corresponding
singular fibers, and “/” is used only for separating the figures. Note that we
have named the fibers so that each connected fiber has its own digit or let-
ter, and a disconnected fiber has the name consisting of the digits or letters
of its connected components. Hence, the number of digits or letters in the
superscript coincides with the number of connected components.

It is not difficult to describe the behavior of the map on a neighborhood
of each singular fiber in Fig. 3.4. This can also be regarded as a degeneration
of fibers around the singular fiber, or a deformation of the singular fiber. In
Figs. 3.5–3.8 are depicted the nearby fibers for four of the 27 singular fibers
(Fig. 3.3 (1) and (4) can also be regarded as the deformations of the singular
fibers of types I0 and IIIc respectively).1 Since we are assuming that the source
4-manifold is orientable, the singular fiber as in Fig. 2.1 (3) never appears in
the degenerations.

Remark 3.6. Each singular fiber described in Fig. 3.4 can be realized as a
component (or as a union of some components) of a singular fiber of some
C∞ stable map of a closed orientable 4-manifold into R3. This can be seen
as follows. Given a singular fiber, we can first realize it semi-locally; i.e.,
we can construct a proper C∞ stable map of an open 4-manifold M0 into
R3 such that its image coincides with the open unit disk in R3 and that it
has the given singular fiber over the center. Such a map can be constructed,
for example, by using a 2-parameter deformation of smooth functions on an
orientable surface: in this case, the open 4-manifold M0 is diffeomorphic to
the product of an open orientable surface and an open 2-disk (for example,
refer to the construction in Chap. 6 using Fig. 6.3). Then we can extend the
map to a smooth map of a closed orientable 4-manifold M containing M0 into
R3. Perturbing the extended map slightly, we obtain a desired stable map.
In fact, we can choose an arbitrary closed orientable 4-manifold as the source
manifold M of the desired map.

Proof of Theorem 3.5. Let us take a point y ∈ f(S(f)). We will first
show that the union of the components of f−1(y) containing singular points is
diffeomorphic to one of the fibers listed in Fig. 3.4 in the sense of Definition 1.1
(2).

1The degenerations of fibers around all the singular fibers are described in detail
by colorful and beautiful figures in [20].
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Fig. 3.4. List of singular fibers of proper C∞ stable maps of orientable 4-manifolds
into 3-manifolds
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Fig. 3.5. Degeneration of fibers around the fiber of type II3

If y corresponds to Fig. 3.1 (1), then f−1(y) contains exactly one singular
point, which is a fold point. Thus, by an argument similar to that in the
proof of Theorem 2.1, we see that the component of f−1(y) containing the
singular point is diffeomorphic to one of the three figures of Fig. 2.1. If a fiber
as in Fig. 2.1 (3) appears, then the 4-manifold M must contain a punctured
Möbius band times D2, and hence is nonorientable. Since we have assumed
that M is orientable, this does not occur. Hence, we see that the singular fiber
f−1(y) is diffeomorphic to the disjoint union of I0 (or I1) and a finite number
of nonsingular circles.

If y corresponds to Fig. 3.1 (2), then f−1(y) contains exactly two singular
points, say q1 and q2, which are fold points. Since they have neighborhoods as
in Lemma 3.3 (1) or (2) in f−1(y), and since f is a submersion outside of the
singular points, we see that there are only a finite number of possibilities for
the diffeomorphism type of the union of the components of f−1(y) containing
q1 and q2: for example, if both q1 and q2 are indefinite fold points, then it is
obtained from two copies of the figure as in Fig. 3.2 (2) by connecting their
end points by four arcs. Then we can use Lemma 3.4 to obtain the nearby
fibers of each possible singular fiber: for example, for the singular fiber of type
II3, see Fig. 3.5. Excluding the possibilities such that a singular fiber as in
Fig. 2.1 (3) appears as a nearby fiber, we get the fibers II00, II01, II11, II2 and
II3.

By similar combinatorial arguments, we obtain the following singular
fibers:
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Fig. 3.6. Degeneration of fibers around the fiber of type III8

(1) if y corresponds to Fig. 3.1 (3), then we obtain IIa,

(2) if y corresponds to Fig. 3.1 (4), then we obtain III000, III001, III011, III111,

III02, III03, III12, III13, III4, III5, III6, III7 and III8,

(3) if y corresponds to Fig. 3.1 (5), then we obtain III0a, III1a and IIIb,

(4) if y corresponds to Fig. 3.1 (6), then we obtain IIIc, IIId and IIIe.

Thus we have proved that every singular fiber is diffeomorphic to one of
the fibers listed in the theorem.

In order to complete the proof of the first half of the theorem, we have
only to show that if two singular fibers are diffeomorphic to each other, then
they are C∞ equivalent in the sense of Definition 1.1 (2), except for the two
types of fibers I0 and IIIc.

Let fi : Mi → Ni, i = 0, 1, be proper C∞ stable maps of orientable 4-
manifolds into 3-manifolds. Let us take yi ∈ fi(S(fi)) ⊂ Ni. Suppose that the
singular fibers over y0 and y1 are diffeomorphic to each other.

If the singular fibers over y0 and y1 are of type I0, then let qi ∈ S(fi) ∩
(fi)

−1(yi) be the unique singular point on the fibers. Since qi are definite
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Fig. 3.7. Degeneration of fibers around the fiber of type IIIb

fold points, there exist neighborhoods Vi of qi in Mi, Ui of yi in Ni and
diffeomorphisms ϕ̃0 : (V0, q0) → (V1, q1) and ϕ : (U0, y0) → (U1, y1) which
make the following diagram commutative:

(V0, q0)
�

ϕ0
−−−−−→ (V1, q1)yf0

yf1
(U0, y0)

ϕ
−−−−−→ (U1, y1).

Furthermore, by taking the neighborhoods sufficiently small, we may assume
that (Ui, Ui ∩ fi(S(fi))) is as described in Fig. 3.1 (1), that Vi is a connected
component of (fi)

−1(Ui), Ui ∼= IntD3, Vi ∼= IntD4, and (fi)
−1(yi)∩Vi = {qi}.

Then the maps

fi|(fi)−1(Ui)rVi
: (fi)

−1(Ui) r Vi → Ui, i = 0, 1

are proper submersions and their fibers are disjoint unions of the same number
of copies of the circle. Hence, by Ehresmann’s fibration theorem, the diffeo-
morphism ϕ̃0 : (V0, q0) → (V1, q1) extends to a diffeomorphism

ϕ̃ : ((f0)
−1(U0), (f0)

−1(y0)) → ((f1)
−1(U1), (f1)

−1(y1))

so that the diagram (1.1) in Chap. 1 commutes. Hence, the fibers over y0 and
y1 are equivalent.
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Fig. 3.8. Degeneration of fibers around the fiber of type IIIe

The same argument works when the fibers over y0 and y1 are of type IIIc.
When the fibers over y0 and y1 are of type I1, we can imitate the above

argument for the case of I0; however, we cannot take Vi to be a connected
component of (fi)

−1(Ui), since the relevant singular points are indefinite fold
points. So, we first take Vi sufficiently small, and then imitate the proof of
Theorem 2.1. More precisely, we modify the diffeomorphisms ϕ̃0 : V0 → V1

and ϕ : U0 → U1, if necessary, by using self-diffeomorphisms of V0 and U0

corresponding to those defined by (x, y, z, w) 7→ (x, y, w, z) and (X,Y, Z) →
(X,Y,−Z) respectively with respect to the coordinates as in Proposition 3.1
(i) so that the diffeomorphism

ϕ̃0 : (f0)
−1(y0) ∩ V0 → (f1)

−1(y1) ∩ V1

extends to one between the whole fibers (f0)
−1(y0) and (f1)

−1(y1). Then
we use the relative version of Ehresmann’s fibration theorem to extend the
diffeomorphism ϕ̃0 : V0 → V1 to a fiber preserving diffeomorphism between
(f0)

−1(U0) and (f1)
−1(U1). Hence, the fibers over y0 and y1 are equivalent.

The same argument works when the fiber over yi contains exactly one
singular point: namely, for the cases of IIa, IIId and IIIe.
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Now suppose that the fibers over y0 and y1 are of type II00. Then there exist
neighborhoods Ui of yi such that the sets Ui ∩ fi(S(fi)) are as in Fig. 3.1 (2).
In particular, there exists a diffeomorphism ϕ : (U0, y0) → (U1, y1) between
the neighborhoods Ui of yi such that

ϕ(U0 ∩ f0(S(f0))) = U1 ∩ f1(S(f1)).

Note that we can describe the degeneration of the fibers of fi over Ui using
Lemma 3.4 (for the case of II3, see Fig. 3.5). Then we see that the diffeomor-
phism ϕ can be chosen so that it preserves the diffeomorphism types of the
fibers: i.e., we may assume that (f0)

−1(y) is diffeomorphic to (f1)
−1(ϕ(y)) for

all y ∈ U0. Put (fi)
−1(yi) ∩ S(fi) = {qi, q′i}, where qi and q′i are definite fold

points. Then the multi-germs

ϕ ◦ f0 : ((f0)
−1(U0), {q0, q

′
0}) → (U1, y1)

and
f1 : ((f1)

−1(U1), {q1, q
′
1}) → (U1, y1)

have the same discriminant set germ (f1(S(f1)), y1) and they satisfy the as-
sumption of [11, (0.6) Theorem]. Hence they are right equivalent; i.e., there
exists a diffeomorphism ϕ̃0 : (V0, {q0, q′0}) → (V1, {q1, q′1}) between sufficiently
small neighborhoods V0 and V1 of {q0, q

′
0} and {q1, q

′
1} respectively such that

f1 ◦ ϕ̃0 = ϕ ◦ f0 : (V0, {q0, q
′
0}) → (U1, y1)

(see also [61]). Then the rest of the proof is the same as that in the case of I0.
When the fibers over y0 and y1 are of type II01, put (fi)

−1(yi) ∩ S(fi) =
{qi, q′i}, where qi is a definite fold point and q′i is an indefinite fold point. Then
we can imitate the above argument to obtain a diffeomorphism ϕ between
neighborhoods Ui of yi and a diffeomorphism ϕ̃0 between neighborhoods Vi
of {qi, q′i} such that f1 ◦ ϕ̃0 = ϕ ◦ f0 on V0. If we choose the diffeomorphism
ϕ so that it preserves the diffeomorphism types of the fibers, then we see
easily that the diffeomorphism ϕ̃0 between the local fibers (f0)

−1(y0)∩V0 and
(f1)

−1(y1)∩V1 necessarily extends to one between the whole fibers (f0)
−1(y0)

and (f1)
−1(y1); in other words, we do not need to modify ϕ̃0 or ϕ as in the

proof of Theorem 2.1. Then the rest of the proof is the same as that in the
case of I1.

A similar argument works also in the cases of II11, III000, III001, III011,
III111, III0a and III1a.

When the fibers over y0 and y1 are of type II2, we can use almost the same
argument. The only difference is that we have to choose the diffeomorphism
ϕ̃0 : V0 → V1 so that the diffeomorphism

ϕ̃0 : (f0)
−1(y0) ∩ V0 → (f1)

−1(y1) ∩ V1

between the local fibers extends to a diffeomorphism between the whole fibers
(f0)

−1(y0) and (f1)
−1(y1). For this, we can use the self-diffeomorphisms of
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each of the neighborhoods of the indefinite fold points corresponding to those
defined by (x, y, z, w) 7→ (x, y,±z,±w) with respect to the coordinates as in
Proposition 3.1 (i). More precisely, we modify ϕ̃0 using these diffeomorphisms
as we did in the case of I1. Note that here, ϕ is chosen so that it preserves
the diffeomorphism types of the fibers, and is fixed. Therefore, we cannot
use the self-diffeomorphisms corresponding to those defined by (x, y, z, w) 7→
(x, y,±w,±z).

We can use similar arguments also in the cases of II3, III02, III03, III12,
III13, III4, III5, III6, III7, III8 and IIIb.

In the above argument, we note the following. When the fibers over y0 and
y1 are of type III02, III03, III12, III13, III4 or III7, put (fi)

−1(yi) ∩ S(fi) =
{qi, q′i, q

′′
i }. We name them so that

ϕ(f0(V0j ∩ S(f0))) = f1(V1j ∩ S(f1))), j = 1, 2, 3,

where Vi is the disjoint union of Vi1, Vi2 and Vi3 which are neighborhoods
of qi, q

′
i and q′′i respectively. Then we see easily that the correspondence

q0 7→ q1, q
′
0 7→ q′1, q

′′
0 7→ q′′1 coincides with that given by ϕ̃0 and extends to

a diffeomorphism between the whole fibers (f0)
−1(y0) and (f1)

−1(y1), since
ϕ preserves the diffeomorphism types of the fibers. (For the cases of II2, II3,
III5, III6 and III8, we do not need such an argument by virtue of their sym-
metries. For the case of IIIb, we do not need it either because the two singular
points contained in a fiber are of different types.) Therefore, we can apply the
argument above.

The second half of the theorem is clear. This completes the proof of The-
orem 3.5. ut

Remark 3.7. Let f : M → N be a proper C∞ stable map of an orientable
4-manifold M into a 3-manifold N and F the type of one of the singular fibers
appearing in Fig. 3.4. We define F(f) to be the set of points y ∈ N such
that the fiber f−1(y) over y is equivalent to the disjoint union of F and some
copies of a fiber of the trivial circle bundle. As the above proof shows, each
F(f) is a submanifold of N , provided that it is nonempty, and its codimension
is denoted by κ(F), which is called the codimension of the singular fiber of
type F (or the codimension of the disjoint union of F and some copies of a
fiber of the trivial circle bundle). See Fig. 3.4 for the codimension of each
singular fiber. Note that the target manifold N is naturally stratified into
these submanifolds.

Remark 3.8. As the proof of Theorem 3.5 shows, two singular fibers of proper
C∞ stable maps of orientable 4-manifolds into 3-manifolds are diffeomorphic
if and only if they are C∞ equivalent, except for the singular fibers of types
I0 and IIIc.

Furthermore, we also have the following.

Corollary 3.9. Two fibers of proper C∞ stable maps of orientable 4-manifolds

into 3-manifolds are C∞ equivalent if and only if they are C0 equivalent.
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Proof. We have only to prove the statement for arbitrary two fibers in the list
given in Theorem 3.5. Suppose that two fibers are C0 equivalent. Then the
degenerations of the fibers around the singular fibers are also topologically
equivalent, and their nearby fibers must be homeomorphic. It is not difficult
to check that this implies that the two fibers are of the same C∞ type. ut

Remark 3.10. Recall that Damon [10] (see also [9]) has shown that for nice
dimensions, two C∞ stable map germs are topologically right-left equivalent
if and only if they are smoothly right-left equivalent. The above corollary
shows that this is also true for C∞ stable map germs along fibers for the
dimension pair (4, 3), which is in the nice range, as long as the source manifold
is orientable. (In fact, this is also true for the dimension pairs (2, 1) and
(3, 2) without the orientability hypothesis. See Chap. 2 and Corollary 3.16
below.) Note that even for nice dimensions, this statement for map germs
along fibers is not true in general. For example, we can construct two proper
Morse functions of 8-dimensional manifolds such that one of them has the
standard 7-dimensional sphere as its regular fibers, and that the other has
a homotopy 7-sphere not diffeomorphic to the standard 7-sphere [33] as its
regular fibers. Then the map germs along (nonsingular) fibers are topologically
right-left equivalent, but not smoothly right-left equivalent.

Remark 3.11. Let us denote by 0 the smooth right-left equivalence class of
a connected regular fiber. Furthermore, for a fiber of type F and a positive
integer n, we denote by Fn the smooth right-left equivalence class of the fiber
consisting of a fiber of type F and some copies of a fiber of the trivial circle
bundle such that the total number of connected components is equal to n.
If we classify the fibers of proper C∞ stable maps of orientable 4-manifolds
into 3-manifolds up to homeomorphism in the sense of Definition 1.1 (2), then
we get a smaller list than that given in Theorem 3.5. In fact, we have the
following, where “≈” means a homeomorphism:

(1) I0n ≈ IIIcn for n ≥ 1,

(2) I0n ≈ IIIcn ≈ III0an for n ≥ 2,

(3) I1n ≈ IIIbn ≈ IIIdn ≈ IIIen for n ≥ 1,

(4) I1n ≈ IIIbn ≈ IIIdn ≈ IIIen ≈ III1an for n ≥ 2,

(5) III6n ≈ III8n for n ≥ 1,

(6) IIan ≈ 0n for n ≥ 1.

Furthermore, it is not difficult to see that the above fibers exhaust all the repe-
titions of the homeomorphism types in the list of smooth right-left equivalence
classes of fibers.

Remark 3.12. Suppose that a smooth map f : M → N between smooth man-
ifolds is given. For two points q, q′ ∈M , we define q ∼f q

′ if f(q) = f(q′) and
q and q′ belong to the same connected component of an f -fiber. We define
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Wf = M/∼f to be the quotient space and qf : M → Wf the quotient map.
Then it is easy to see that there exists a unique continuous map f : Wf → N
such that the diagram

M
f

−−−−−→ N

qf
↘ ↗f

Wf

is commutative. The space Wf or the above commutative diagram is called
the Stein factorization of f (see [30]). It is known that if f is a topologically
stable map, then Wf is a polyhedron and all the maps appearing in the above
diagram are triangulable (for details, see [20]).

Kushner, Levine and Porto [28, 30] have determined the local structures of
Stein factorizations of proper C∞ stable maps of 3-manifolds into surfaces by
using their classification of singular fibers. Similarly, by using our classification
of singular fibers, we can determine the local structures of Stein factorizations
of proper C∞ stable maps of orientable 4-manifolds into 3-manifolds. For
details, see [20].

Remark 3.13. In [63, 64], a similar classification of singular fibers of proper
C∞ stable maps of possibly nonorientable 4-manifolds into 3-manifolds is
obtained.

3.2 Stable Maps of Surfaces and 3-Manifolds

In this section, let us mention similar classifications of singular fibers of proper
C∞ stable Morse functions on surfaces and those of proper C∞ stable maps
of 3-manifolds into surfaces. Let us begin by the following remark.

Remark 3.14. We can obtain a classification of singular fibers of proper C∞

stable maps of orientable 3-manifolds into surfaces similar to Theorem 3.5.
The list we get is nothing but the singular fibers with κ = 1 and 2 in Fig. 3.4.
The list itself was already obtained by Kushner, Levine and Porto [28, 30],
although they did not describe explicitly the equivalence relation for their
classification.

In fact, we can easily get the following list of C∞ right-left equivalence
classes of singular fibers for proper C∞ stable maps of (not necessarily ori-
entable) 3-manifolds into surfaces. Details are left to the reader.

Theorem 3.15. Let f : M → N be a proper C∞ stable map of a 3-manifold

M into a surface N . Then, every singular fiber of f is equivalent to the disjoint

union of one of the fibers as in Fig. 3.9 and a finite number of copies of a fiber

of the trivial circle bundle. Furthermore, no two fibers in the list are equivalent

to each other even after taking the union with regular circle components.
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Fig. 3.9. List of singular fibers of proper C∞ stable maps of 3-manifolds into
surfaces

Note that the above list itself is mentioned in the introduction of [30]. As a
corollary to Theorems 2.1 and 3.15, we get the following, which we can prove
by an argument similar to that in the proof of Corollary 3.9. Details are left
to the reader.

Corollary 3.16. Let us consider two fibers of proper C∞ stable Morse func-

tions on surfaces, or two fibers of proper C∞ stable maps of 3-manifolds into

surfaces. Then, the following conditions are equivalent to each other.

(1) They are diffeomorphic.

(2) They are C0 equivalent.

(3) They are C∞ equivalent.

We warn the reader that the fibers as depicted in Fig. 2.1 (2) and (3) (or

the fibers Ĩ1 and Ĩ2) are homeomorphic to each other, although they are not
C0 equivalent nor diffeomorphic to each other. Compare these results with
Remark 3.8 and Corollary 3.9.

As an important consequence of the above mentioned result, we show the
following.
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Corollary 3.17. Let f0 : M0 → N0 and f1 : M1 → N1 be two proper C∞

stable maps of surfaces into 1-dimensional manifolds. Then, the maps f0 and

f1 are C0 right-left equivalent if and only if they are C∞ right-left equivalent.

Proof. Suppose that f0 and f1 are C0 right-left equivalent so that we have
homeomorphisms ϕ̃ : M0 → M1 and ϕ : N0 → N1 satisfying f1 ◦ ϕ̃ = ϕ ◦
f0. Since f0(S(f0)) and f1(S(f1)) are discrete sets and ϕ sends f0(S(f0))
homeomorphically onto f1(S(f1)), we see that there exists a diffeomorphism
ψ : N0 → N1 which approximates ϕ such that ψ|f0(S(f0)) = ϕ|f0(S(f0)).

Then by Corollary 3.16 together with the proof of Theorem 2.1, we see
that for each point y ∈ f0(S(f0)), there exist a small neighborhood Uy of y

in N0 and a diffeomorphism ψ̃y : (f0)
−1(Uy) → (f1)

−1(Uy′) such that the
diagram

((f0)
−1(Uy), (f0)

−1(y))

�

ψy

−−−−−→ ((f1)
−1(Uy′), (f1)

−1(y′))yf0
yf1

(Uy, y)
ψ

−−−−−→ (Uy′ , y
′)

is commutative, where y′ = ψ(y) and Uy′ = ψ(Uy) is a neighborhood of

y′ in N1. Here, we choose the diffeomorphism ψ̃y so that it approximates
ϕ̃|(f0)−1(Uy).

Since the collection of homeomorphisms ϕ̃|(f0)−1(Uy), y ∈ f0(S(f0)), ex-
tends to a homeomorphism ϕ̃ such that f1 ◦ ϕ̃ = ϕ ◦ f0, the collection of
diffeomorphisms ψ̃y, y ∈ f0(S(f0)), also extends to a homeomorphism ψ̃ such

that f1 ◦ ψ̃ = ψ ◦ f0.
Now it is well-known that two C∞ S1-bundles are C0 equivalent if and

only if they are C∞ equivalent. This is true also for C∞ bundles with fiber
a union of finite copies of S1. Hence the homeomorphism ψ̃ above can be
chosen to be a diffeomorphism. Hence, the C∞ maps f0 and f1 are C∞ right-
left equivalent to each other. This completes the proof. ut

The author does not know the answer to the following problem.

Problem 3.18. Let f0 : M0 → N0 and f1 : M1 → N1 be two proper C∞ sta-
ble maps of orientable 4-manifolds into 3-manifolds (or two proper C∞ stable
maps of 3-manifolds into surfaces). If f0 and f1 are C0 right-left equivalent,
then are they C∞ right-left equivalent?

For the above problem and Corollary 3.17, refer to [9, §4], for example.
Note that there have been known a lot of examples of 4-manifold pairs which
are mutually homeomorphic, but are not diffeomorphic. If the answer to the
above problem is affirmative, then such 4-manifolds would not admit C∞

stable maps that are C0 right-left equivalent. (This suggests a possibility of
constructing an invariant for 4-manifolds, from the viewpoint of singularity
theory, that can detect the differentiable structures. For the construction of
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such an invariant, we have only to use the topological structures of stable
maps.)

Let us recall the following example which is closely related to Problem 3.18.

Example 3.19. A smooth map f : M → N between manifolds of dimensions
n and p with n ≥ p is called a special generic map if it has only definite
fold points as its singularities (for example, see [43]). Sakuma and the author
have found some examples of pairs (M1,M2) of smooth closed 4-dimensional
manifolds with the following properties (see [44, 48, 49]).

(1)M1 and M2 are homeomorphic.
(2)M1 admits a special generic map into R3.
(3)M2 does not admit a special generic map into R3.

In other words, M1 admits a stable map into R3 whose singular fibers are all
of type I0, II00 or III000, while M2 does not admit such a stable map, even
though they are homeomorphic to each other.





4

Co-existence of Singular Fibers

Let f : M → N be a C∞ stable map of a closed orientable 4-manifold into a
3-manifold. In this chapter, we consider a natural stratification of N induced
by the equivalence classes of fibers of f , and obtain some relations among the
numbers of singular fibers of codimension three.

Let f : M → N be a C∞ stable map of a closed orientable 4-manifold M
into a 3-manifold N and F the equivalence class of one of the singular fibers
appearing in Fig. 3.4. We define F(f) to be the set of points y ∈ N such that
the fiber f−1(y) over y is equivalent to the union of F and some copies of a
fiber of the trivial circle bundle. Furthermore, we define Fo(f) (resp. Fe(f))
to be the subset of F(f) consisting of the points y ∈ N such that b0(f

−1(y))
is odd (resp. even), where b0 denotes the number of connected components.
We denote the closures of F(f), Fo(f), and Fe(f) in N by F(f), Fo(f), and
Fe(f), respectively. It is easy to see that each of F(f), Fo(f), or Fe(f) is a
(3 − κ)-dimensional subcomplex of N , where κ is the codimension of F. In
particular, if the codimension κ is equal to two, then Fo(f) and Fe(f) are
finite graphs embedded in N . Their vertices correspond to points over which
lies a singular fiber with κ = 3. For a singular fiber F′ of κ = 3, the degree
of the vertex corresponding to F′

o(f) (or F′
e(f)) in the graph Fo(f) is given in

Table 4.1, which can be obtained by using the description of nearby fibers as
in Fig. 3.6–3.8. Note that the degrees in the graph Fe(f) can be obtained by
interchanging F′

o(f) with F′
e(f) in the table.

In the following, for a finite set X , we denote by |X | the number of its
elements. Since the sum of the degrees over all vertices is always an even
number for any finite graph,1 we obtain the following.

Proposition 4.1. Let f : M → N be a C∞ stable map of a closed orientable

4-manifold into a 3-manifold. Then the following numbers are always even.

(1) |III000(f)| + |III001(f)| + |III0ae (f)| + |IIIce(f)|.

(2) |III000(f)| + |III001(f)| + |III0ao (f)| + |IIIco(f)|.

1This is due to Euler and is said to be the oldest theorem in the graph theory.
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Table 4.1. Degree of each vertex in the graphs

II00o (f) II01o (f) II11o (f) II2o(f) II3o(f) IIa
o(f)

III000o (f) 3 0 0 0 0 0
III000e (f) 3 0 0 0 0 0

III001o (f) 1 2 0 0 0 0
III001e (f) 1 2 0 0 0 0

III011o (f) 0 2 1 0 0 0
III011e (f) 0 2 1 0 0 0

III111o (f) 0 0 3 0 0 0
III111e (f) 0 0 3 0 0 0

III02o (f) 0 2 0 1 0 0
III02e (f) 0 2 0 1 0 0

III03o (f) 0 4 0 0 1 0
III03e (f) 0 0 0 0 1 0

III12o (f) 0 0 2 1 0 0
III12e (f) 0 0 2 1 0 0

III13o (f) 0 0 4 0 1 0
III13e (f) 0 0 0 0 1 0

III4o(f) 0 0 0 3 0 0
III4e(f) 0 0 1 2 0 0

III5o(f) 0 0 0 3 0 0
III5e(f) 0 0 0 3 0 0

III6o(f) 0 0 0 3 3 0
III6e(f) 0 0 0 0 0 0

III7o(f) 0 0 0 4 1 0
III7e(f) 0 0 0 0 1 0

III8o(f) 0 0 0 0 6 0
III8e(f) 0 0 0 0 0 0

III0a
o (f) 0 1 0 0 0 1

III0a
e (f) 1 0 0 0 0 1

III1a
o (f) 0 0 1 0 0 1

III1a
e (f) 0 1 0 0 0 1

IIIb
o(f) 0 0 0 1 0 1

IIIb
e(f) 0 1 0 0 0 1

IIIc
o(f) 0 0 0 0 0 2

IIIc
e(f) 1 0 0 0 0 0

IIId
o(f) 0 0 0 0 1 2

IIId
e (f) 0 0 0 0 0 0

IIIe
o(f) 0 0 0 1 0 0

IIIe
e(f) 0 0 0 0 0 2
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(3) |III0ao (f)| + |III1ae (f)| + |IIIbe(f)|.

(4) |III0ae (f)| + |III1ao (f)| + |IIIbo(f)|.

(5) |III011(f)| + |III111(f)| + |III4e(f)| + |III1ao (f)|.

(6) |III011(f)| + |III111(f)| + |III4o(f)| + |III1ae (f)|.

(7) |III02(f)|+ |III12(f)|+ |III4o(f)|+ |III5(f)|+ |III6o(f)|+ |IIIbo(f)|+ |IIIeo(f)|.

(8) |III02(f)|+ |III12(f)|+ |III4e(f)|+ |III5(f)|+ |III6e(f)|+ |IIIbe(f)|+ |IIIee(f)|.

(9) |III03(f)| + |III13(f)| + |III6o(f)| + |III7(f)| + |IIIdo(f)|.

(10) |III03(f)| + |III13(f)| + |III6e(f)| + |III7(f)| + |IIIde(f)|.

(11) |III0a(f)| + |III1a(f)| + |IIIb(f)|.

In fact, items (1)–(10) of the above proposition correspond to the graphs

II00o (f), II00e (f), II01o (f), II01e (f), II11o (f), II11e (f), II2o(f), II2e(f), II3o(f), and

II3e(f) respectively. Item (11) corresponds to both IIao(f) and IIae (f).
Eliminating the terms of the forms |Fo(f)| and |Fe(f)|, we obtain the

following.

Corollary 4.2. Let f : M → N be a C∞ stable map of a closed orientable

4-manifold into a 3-manifold. Then the following numbers are always even.

(1) |III0a(f)| + |IIIc(f)|.

(2) |III0a(f)| + |III1a(f)| + |IIIb(f)|.

(3) |III4(f)| + |III1a(f)|.

(4) |III4(f)| + |III6(f)| + |IIIb(f)| + |IIIe(f)|.

(5) |III6(f)| + |IIId(f)|.

Remark 4.3. It is easy to see that the five numbers appearing in Corollary 4.2
are all even if and only if the following five hold.

(1) |III0a(f)| ≡ |IIIc(f)| (mod 2).

(2) |III1a(f)| ≡ |III4(f)| (mod 2).

(3) |III6(f)| ≡ |IIId(f)| (mod 2).

(4) |IIIb(f)| ≡ |III4(f)| + |IIIc(f)| (mod 2).

(5) |IIIc(f)| + |IIId(f)| + |IIIe(f)| ≡ 0 (mod 2).

Note that the left hand side of congruence (5) is nothing but the total number
of swallowtails. Note also that item (11) of Proposition 4.1 represents the
number of cuspidal intersections as in Fig. 3.1 (5).

Remark 4.4. Adding items (2), (3), (6), (8) and (10) of Proposition 4.1, we
obtain



42 4 Co-existence of Singular Fibers

|III000(f)| + |III001(f)| + |III011(f)| + |III111(f)| + |III02(f)| + |III03(f)|

+|III12(f)| + |III13(f)| + |III4(f)| + |III5(f)| + |III7(f)|

+|IIIco(f)| + |IIIde(f)| + |IIIee(f)| ≡ 0 (mod 2).

This and congruence (1) of Remark 4.3 have also been obtained in [20] by
using methods different from ours.

Remark 4.5. By using the same method, we can obtain similar co-existence
results for singular fibers of proper C∞ stable maps of closed 3-manifolds into
surfaces. More precisely, using the notation introduced in Theorem 3.15, we
have the following.

(1) |ĨI
01

(f)| + |ĨI
a

e (f)| ≡ 0 (mod 2).

(2) |ĨI
01

(f)| + |ĨI
a

o(f)| ≡ 0 (mod 2).

(3) |ĨI
02

(f)| + |ĨI
12

(f)| + |ĨI
6
(f)| ≡ 0 (mod 2).

Details are left to the reader (compare this with Table 9.2 of Chap. 9).

We end this chapter by posing a problem.

Problem 4.6. Let S be the Z2-vector space consisting of 38-tuples of ele-
ments of Z2 such that the congruences in Proposition 4.1 hold, where each
of the 38 components corresponds to |III000o (f)|, |III000e (f)|, etc. Then, for an
arbitrary element of S, does there exist a C∞ stable map of some closed ori-
entable 4-manifold into some 3-manifold which realizes it as the parities of the
numbers of corresponding singular fibers? In other words, do the congruences
in Proposition 4.1 exhaust all the possible relations among the parities of the
numbers of singular fibers of the form Fo(f) or Fe(f)?
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Euler Characteristic of the Source 4-Manifold

In this chapter, using the co-existence results for singular fibers obtained in the
previous chapter, we study the relationship between the number of singular
fibers of a certain type and the Euler characteristic of the source 4-manifold.
In the following, χ will denote the Euler characteristic.

Let f : M → N be a C∞ stable map of a closed orientable 4-manifold into
a 3-manifold. Set

0o(f) = {y ∈ N r f(S(f)) : b0(f
−1(y)) ≡ 1 (mod 2)},

0e(f) = {y ∈ N r f(S(f)) : b0(f
−1(y)) ≡ 0 (mod 2)}.

It is easy to see that they are disjoint open sets of N . Furthermore, since M
is compact, the closure 0o(f) of 0o(f) is compact. Let y and y′ be points in
N belonging to adjacent regions of N r f(S(f)). Since M is orientable, the
difference between the numbers of components of the fibers over y and y′ is
always equal to one. Hence, we have

0o(f) ∩ 0e(f) = ∂0o(f) = ∂0e(f) = f(S(f)),

where for a subset X of a topological space, ∂X denotes X r IntX . In other
words, (N, f(S(f))) is two colorable in the sense of [36] (see also [35]).

Note that the map f |S(f) : S(f) → N is a topologically stable singular
surface in the sense of [36]. Then, for each cross cap y ∈ f(S(f)), which
corresponds to a swallowtail point of f , we can define the index Indf (y) ∈
{0, 1} by using the coloring (0o(f),0e(f)) of (N, f(S(f))). More precisely, it
is defined as in Fig. 5.1 (for details, see [36]).

Then by Szűcs’ formula [55] (see also [36, 37]), we have

T (f(S(f))) +
∑

y

Indf (y) ≡ χ(S(f)) (mod 2), (5.1)

where y runs through the cross caps of f(S(f)) corresponding to Fig. 3.1 (6),
and T (f(S(f))) denotes the number of triple points of f(S(f)) corresponding
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to Fig. 3.1 (4). On the other hand, by using the degenerations of the fibers
around the singular fibers corresponding to swallowtails as in Fig. 3.8, we
obtain the following:

Indf (y) =

{
0, if y ∈ IIIco(f) ∪ IIIdo(f) ∪ IIIee(f),

1, if y ∈ IIIce(f) ∪ IIIde(f) ∪ IIIeo(f).

Hence, applying (5.1), we have

|III000(f)| + |III001(f)| + |III011(f)| + |III111(f)| + |III02(f)| + |III03(f)|

+|III12(f)| + |III13(f)| + |III4(f)| + |III5(f)| + |III6(f)| + |III7(f)|

+|III8(f)| + |IIIce(f)| + |IIIde(f)| + |IIIeo(f)| ≡ χ(S(f)) (mod 2).

On the other hand, adding items (1), (3), (5), (7), (9) and (11) in Proposi-
tion 4.1, we obtain

|III000(f)| + |III001(f)| + |III011(f)| + |III111(f)| + |III02(f)| + |III03(f)|

+|III12(f)| + |III13(f)| + |III4(f)| + |III5(f)| + |III7(f)| + |IIIce(f)|

+|IIIdo(f)| + |IIIeo(f)| ≡ 0 (mod 2).

Adding the above two congruences, we obtain

|III6(f)| + |III8(f)| + |IIId(f)| ≡ χ(S(f)) (mod 2).

Since |III6(f)| ≡ |IIId(f)| (mod 2) by Corollary 4.2 (5), we get

|III8(f)| ≡ χ(S(f)) (mod 2).

Since we always have
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χ(S(f)) ≡ χ(M) (mod 2)

by [14, 45], we finally obtain the following theorem, which can be regarded as
a 4-dimensional version of Corollary 2.4.

Theorem 5.1. Let f : M → N be a C∞ stable map of a closed orientable

4-manifold into a 3-manifold. Then we have

χ(M) ≡ |III8(f)| (mod 2).

Remark 5.2. The above theorem holds also for C∞ stable maps of closed (not
necessarily orientable) 4-manifolds into 3-manifolds such that every fiber has
an orientable neighborhood. For example, a smooth map f : M → N between
manifolds satisfies this property if f∗w1(N) = w1(M), where w1 denotes the
first Stiefel-Whitney class. Such a map f is said to be orientable in [4].

Remark 5.3. The results in the previous and the present chapters can be gen-
eralized to C∞ stable maps of possibly nonorientable closed 4-manifolds into
3-manifolds. For details, see [63, 64] (see also Remark 3.13).

Remark 5.4. A result corresponding to Remark 2.7 does not hold for singular
fibers of types III∗ for C∞ stable maps of 4-manifolds into 3-manifolds. This
is because we can increase the number of fibers of a given type of codimension
three as much as we want. For details, see Remark 3.6.





6

Examples of Stable Maps of 4-Manifolds

In this chapter, we give explicit examples of C∞ stable maps of 4-manifolds
into R3. Note that there have already been known some explicit examples of
such stable maps that have only definite fold points as their singularities, i.e.
special generic maps (see [51, 43, 44, 48, 49]). Such maps have singular fibers
of types I0, II00, and III000, and have no other singular fibers. Furthermore,
the source 4-manifolds of such maps always have even Euler characteristics.
Here we construct more complicated maps having a singular fiber of type III8

such that the source 4-manifold has odd Euler characteristic.
Since (4, 3) is a nice dimension pair, given a 4-manifoldM and a 3-manifold

N , we know that there are plenty of C∞ stable maps of M into N . However,
there has been known no systematic method to construct an explicit example

of such a map. In this chapter we will introduce a (rather straightforward)
method to construct such maps by pasting elementary parts.

Let us first construct a C∞ stable map f : CP 2]2CP 2 → R3 which
satisfies the following properties.

(1) The map f has only fold points as its singularities.
(2) The singular set S(f) is the union of three 2-sphere components consist-

ing of definite fold points and a projective plane component consisting of
indefinite fold points.

(3) The discriminant set f(S(f)) is a disjoint union of three embedded 2-
spheres and the Boy surface in R3 (see Fig. 6.1).

(4) The fibers of f can be completely described (details will be given in
Fig. 6.2).

Recall that the Boy surface P , which is the image of an immersion RP 2
#

R3, is constructed by attaching a 2-disk as in the right hand side of Fig. 6.1
to the image of an immersion of the Möbius band as in the left hand side of
Fig. 6.1, from the front side.

Note that R3
r P consists exactly of two regions. Let S0 be a 2-sphere

embedded in the unbounded region of R3
r P such that the bounded region

of R3
rS0 contains P . Furthermore, let S1 and S2 be two disjoint concentric
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Fig. 6.1. Boy surface

2-spheres embedded in the bounded region of R3
rP such that S2 is contained

in the bounded region of R3
rS1. Note that R3

r (P ∪S0 ∪S1 ∪S2) consists
exactly of five regions and that P∪S0∪S1∪S2 naturally induces a stratification
of R3: we have five strata of dimension three, seven strata of dimension two,
three strata of dimension one, and one stratum of dimension zero. Let us
denote by Aij the strata of dimension i. We enumerate them as follows (see
Fig. 6.2):

(1) the closure of A2
j contains A0

1 ∪ A1
j , j = 1, 2, 3, and the closure of A2

4

contains A0
1 ∪ A

1
1 ∪ A

1
2 ∪A

1
3,

(2) A2
5 = S0, A

2
6 = S1, A

2
7 = S2,

(3) A3
1 is the unbounded region of R3

r S0,

(4) A3
2 is the region between S0 and the Boy surface,

(5) A3
3 is the region between the Boy surface and S1,

(6) A3
4 is the region between S1 and S2, and

(7) A3
5 is the bounded region of R3

r S2.

We shall construct a fold map f : CP 2]2CP 2 → R3 such that f(S0(f)) =
S0 ∪ S1 ∪ S2 and f(S1(f)) = P , where a fold map is a smooth map with
only fold points as its singularities. In particular, S0(f) is diffeomorphic to
the disjoint union of three 2-spheres and S1(f) is diffeomorphic to RP 2.

Over the points on each stratum we put fibers as depicted in Fig. 6.2, where
the lower figure depicts a part of the 2-disk (contained in P ) as in the right
hand side of Fig. 6.1 together with parts of S1 and S2, which sit inside the
bounded region of R3

rP . It is easy to see that the regular parts of the fibers
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Fig. 6.2. Fibers over the points in R3

can be oriented consistently. Hence, if such a smooth map is constructed, then
the source 4-manifold will be orientable.

Let N(A0
1) be a small closed disk neighborhood of the zero dimensional

stratum A0
1 such that its boundary two sphere is transverse to the other strata.

Let N(A1
j )

∼= D2 × [0, 1] denote the closure of Ñ(A1
j ) rN(A0

1), where Ñ(A1
j )

is a small tubular neighborhood of the 1-dimensional stratum A1
j such that

its boundary is transverse to the strata of higher dimensions (j = 1, 2, 3).
We may assume that N(A1

j )
∼= D2 × [0, 1] is attached to N(A0

1) along D2 ×

{0, 1} and that N(A0
1) ∪N(A1

1) ∪N(A1
2) ∪ N(A1

3) is a regular neighborhood
of A0

1 ∪ A1
1 ∪ A1

2 ∪ A1
3 in R3. Similarly, we construct N(A2

j ), j = 1, 2, . . . , 7,

and N(A3
j ), j = 1, 2, . . . , 5, so that the family of closed sets {N(Aij)}0≤i≤3
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T 2
(3)

R

Fig. 6.3. A 2-parameter deformation of Morse functions on T 2
(3)

covers R3 and that distinct members intersect only along their boundaries.
Furthermore, we put Âij = Aij ∩ N(Aij). We may assume that the natural

projection N(Aij) → Âij is a smooth (3 − i)-disk bundle.
Let us now construct a closed orientable 4-manifold M and a C∞ stable

map f : M → R3 such that f(S(f)) and the fibers are as depicted in Fig. 6.2.
Our strategy is to first construct compact 4-manifolds M i

j and smooth maps

f ij : M i
j → N(Aij), and then glue them together.

As we have noted in Remark 3.6, we can construct a compact orientable 4-
manifold M0

1 and a smooth map f0
1 : M0

1 → R3 which has only fold points as
its singularities such that f0

1 (M0
1 ) = N(A0

1) and that the fibers are consistent
with Fig. 6.2 (see also Fig. 3.6). In our case, M 0

1 is diffeomorphic to T 2
(3)×D

2,
where for a surface F , we denote by F(`) the surface obtained from F by taking
off ` open disks whose closures do not intersect each other, and T 2 denotes
the 2-dimensional torus. Such a map f 0

1 : M0
1 → R3 can be constructed by

using a 2-parameter deformation of Morse functions T 2
(3) → R as depicted in

Fig. 6.3, which corresponds to raising/lowering the three critical points.

Let B1
j be a 2-disk fiber of the bundle N(A1

j ) → Â1
j , j = 1, 2, 3. Then

we can construct a compact orientable 3-manifold N 1
j and a smooth map

g1
j : N1

j → B1
j which has only fold points as its singularities such that its

fibers are as depicted in Fig. 6.4 (for details, see [28, 30, 42], for example).
Then we can construct a smooth map f 1

j : M1
j = N1

j × [0, 1] → N(A1
j ) by

putting f1
j = g1

j × id[0,1], where we identify N(A1
j ) with B1

j × [0, 1]. Note that

M1
j is diffeomorphic to T 2

(2) × [−1, 1]× [0, 1].
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B1
j

Fig. 6.4. Fibers over the points in B1
j for g1

j

Similarly, for each of the four strata A2
j diffeomorphic to an open disk,

j = 1, 2, 3, 4, by using a Morse function S2
(3) → [−1, 1] as in Fig. 2.2 (2),

we can construct a smooth map f 2
j : M2

j → N(A2
j )

∼= [−1, 1] × D2 which
has only fold points as its singularities such that its fibers are as depicted
in Fig. 6.2. Note that M2

j is diffeomorphic to S2
(3) ×D2. For the other three

strata A2
j diffeomorphic to a 2-sphere, j = 5, 6, 7, we do not construct f 2

j for
the moment.

Now let us piece together the smooth maps constructed above. First, we
attach f0

1 : M0
1 → N(A0

1) and f1
j : N1

j × [0, 1] → N(A1
j ), j = 1, 2, 3, by using

appropriate embeddings ϕ1
j : N1

j × {0, 1} → ∂M0
1 . This is possible by the

classification of singular fibers of C∞ stable maps of 3-manifolds into surfaces
(see Remark 3.14 and Theorem 3.15), since f 0

1 and f1
j have the same singular

fiber of κ = 2 on the attaching part. Note that then the natural map

(f0
1 ∪ f1

j )−1((N(A0
1) ∪N(A1

j )) ∩N(A2
j )) → ∂Â2

j (6.1)

is the projection of a smooth S2
(3)-bundle over a circle, j = 1, 2, 3.

Note that we have a nontrivial diffeomorphism ϕ : N 1
j → N1

j such that

g1
j ◦ϕ = g1

j . (This corresponds to the rotation through the angle π around the

center of the square representing T 2
(2) in [42, Fig. 1].) Thus, we may assume

that the S2
(3)-bundle (6.1) is trivial by changing the embedding ϕ1

j by ϕ1
j ◦ ϕ̃

if necessary, where ϕ̃ : N1
j × {0, 1} → N1

j ×{0, 1} is the identity on N1
j × {0}

and is ϕ on N1
j × {1}. Let us denote the resulting map f 0

1 ∪ f1
1 ∪ f1

2 ∪ f1
3 by

f̃1. Then, we can check that the natural map

(f̃1)−1((N(A0
1) ∪N(A1

1) ∪N(A1
2) ∪N(A1

3)) ∩N(A2
4)) → ∂Â2

4 (6.2)

is also the projection of a trivial S2
(3)-bundle over a circle.
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Since the S2
(3)-bundles (6.1) and (6.2) are trivial, we can now attach f 2

j :

M2
j
∼= S2

(3) × D2 → N(A2
j ), j = 1, 2, 3, 4, to f̃1. Let us denote the resulting

map f̃1 ∪ f2
1 ∪ f2

2 ∪ f2
3 ∪ f2

4 by

f̃2 : M̃2 → N(A0
1) ∪N(A1

1) ∪N(A1
2) ∪N(A1

3)

∪N(A2
1) ∪N(A2

2) ∪N(A2
3) ∪N(A2

4) ⊂ R3.

Note that the image X of the above map is nothing but the regular neighbor-
hood of the Boy surface P . Let ∂X = ∂0X∪∂1X be the connected components
of ∂X , where

∂0X = X ∩N(A3
2) and ∂1X = X ∩N(A3

3),

both of which are diffeomorphic to the 2-sphere. Note that

f̃2|(
�

f2)−1(∂0X) : (f̃2)−1(∂0X) → ∂0X (6.3)

is the projection of a smooth orientable S1-bundle over a 2-sphere, and that

f̃2|(
�

f2)−1(∂1X) : (f̃2)−1(∂1X) → ∂1X (6.4)

is the projection of a smooth orientable (S1∪S1)-bundle over a 2-sphere. Note
also that the latter is a disjoint union of two orientable S1-bundles, since ∂1X
is simply connected.

Let M2
5 be the total space of the D2-bundle associated with the S1-bundle

(6.3), and M2
6 ,M

2
7 the total spaces of the D2-bundles associated with the

two S1-bundles (6.4). Then, by extending the maps (6.3) and (6.4), we can
construct smooth maps

f2
5 : M2

5 → N(A2
5) ∪N(A3

2), (6.5)

f2
6 : M2

6 → N(A2
6) ∪N(A3

3), (6.6)

f2
7 : M2

7 → N(A2
7) ∪N(A3

4) ∪N(A2
6) ∪N(A3

3) (6.7)

with only definite fold points as their singularities such that their singular
sets correspond to the zero sections of the D2-bundles, f2

5 (S0(f
2
5 )) = A2

5,
f2
6 (S0(f

2
6 )) = A2

6, and f2
7 (S0(f

2
7 )) = A2

7. Then, their fibers are as depicted in

Fig. 6.2. By our construction, we can glue (6.5), (6.6), (6.7) and f̃2 to get a
smooth map

f : M → R3

of a smooth closed 4-manifold M into R3.
Note that f has only fold points as its singularities and that its fibers are

exactly as depicted in Fig. 6.2. Then by Proposition 3.1, f is a C∞ stable
map.

In order to prove that M is diffeomorphic to CP 2]2CP 2, let us consider
a C∞ stable map g : M ′ → R3 constructed as follows. Let Y = D2

1 ∪ (S1 ×
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Fig. 6.5. Embedded 2-sphere Y = D2
1 ∪ (S1 × [0, 1]) ∪ D2

2 in R3

[0, 1]) ∪ D2
2 be a 2-sphere embedded in R3 which intersects A2

5, A
2
4 and A2

6

transversely as shown in Fig. 6.5, where D2
1 and D2

2 are copies of 2-disks. We

take Y so that the 3-disk Ỹ bounded by Y contains A2
7 = S2 in its interior.

Note that the natural map

f−1(S1 × [0, 1])
f

−−−−−→S1 × [0, 1]
π1−−−−−→S1

is a trivial D2-bundle, where π1 is the projection to the first factor. Note
also that the map hx = f |f−1({x}×[0,1]) : D2 → [0, 1] is a Morse function as
described in Fig. 6.6 for all x ∈ S1 and is independent of the choice of x.

Let us replace the map f |f−1(
�

Y ) by the smooth map g �

Y whose fibers are

as described in Fig. 6.7 (in fact, the real figure is obtained by rotating the
rectangle around the vertical line in the center).

Let us explain the reason why such a replacement is possible. We identify
Ỹ with D2× [0, 1] so that D2×{ε} corresponds to D2

2−ε for ε = 0, 1. Let ∆ be
a small concentric 2-disk in the interior of D2. By using a generic deformation
of functions kt : D2 → [0, 1], t ∈ [1/2, 1], as shown in Fig. 6.8, we can construct
the smooth map

g1 : S1 × [1/2, 1]×D2 → Ỹ r (∆× [0, 1]) ∼= S1 × [1/2, 1]× [0, 1]
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Fig. 6.6. Morse function hx : D2 → [0, 1]

PSfrag replacements
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1

D2
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∅

Fig. 6.7. Fibers of g �

Y

by putting g1(x, t, q) = (x, t, kt(q)). Note that g1 has only fold points and
cusp points as its singularities and is consistent with f |f−1(R3

rInt
�

Y ) along

(S1 × {1} ×D2) ∪ (S1 × [1/2, 1]× ∂D2).
Then, using the Morse function k1/2, we define the smooth map g2 : ∆×

D2 → ∆ × [0, 1] by g2(x, q) = (x, k1/2(q)). Obviously, this is consistent with
g1|g−1

1 (∂∆×[0,1]) along ∂∆×D2 = S1 ×{1/2}×D2, although we do not know

if it is consistent with f |f−1(R3
rInt

�

Y ) along

g−1
2 (∆× {0}) = ∆× ∂D2 = f−1(∆× {0}). (6.8)

However, we have a plenty of diffeomorphisms D2 → D2 that preserve
the Morse function k1/2. For example, all the diffeomorphisms in the rota-
tion group SO(2) satisfy this property. Hence, changing the identification
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Fig. 6.8. Deformation of functions on the 2-disk

PSfrag replacements
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Fig. 6.9. Image of S(g) by g

g−1
2 (∂∆ × [0, 1]) ∼= ∂∆ × D2 if necessary, we can arrange so that g2 is con-

sistent with f |f−1(R3
rInt

�

Y ) along (6.8). Therefore, we obtain a C∞ stable

map g : M ′ → R3 by gluing f |f−1(R3
rInt

�

Y ), g1 and g2, where g �

Y = g1 ∪ g2
(see Fig. 6.7 again). Note that the singular set S(g) is the union of a 2-sphere
component consisting of definite fold points and a projective plane component
containing the set of cusp points.

Lemma 6.1. The smooth closed 4-manifold M ′ is diffeomorphic to CP 2 or

CP 2.
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Proof. Let π : R3 → R be a projection. By locating g(S(g)) as in Fig. 6.9 by
an isotopy of R3, we may assume that π ◦ g : M ′ → R is a Morse function
with exactly three critical points (for such a construction of Morse functions,
refer to [14] for more details). We see easily that their indices are equal to
0, 2 and 4. Thus, M ′ has a handlebody decomposition h0 ∪ h2 ∪ h4, where hi

denotes an i-handle. Let k be the knot in ∂h0 = S3 along which the 2-handle
h2 is attached to h0. Since the resulting handlebody h0 ∪ h2 has boundary
diffeomorphic to S3, the knot k must be trivial and the framing must be
equal to ±1 by a deep result of Gordon and Luecke [17, 18]. Hence, M ′ is
diffeomorphic to CP 2 or CP 2 (for details, see [25]).

Remark 6.2. In this way we have completed the construction of a C∞ stable
map g : CP 2 → R3 with the following properties.

(1) The map g has only fold and cusp points as its singularities.
(2) The set C(g) of its cusp points constitutes a circle, and the singular set

S(g) is the union of a 2-sphere component consisting of definite fold points
and a projective plane component which contains C(g).

(3) The discriminant set g(S(g)) is as described in Fig. 6.9.
(4) The fibers of g can be completely described.

Presumably, the C∞ stable map g : M ′ = CP 2 → R3 thus constructed
coincides with Kobayashi’s example presented in [26, 27].

By choosing an appropriate orientation for M ′, we may assume that it
is orientation preservingly diffeomorphic to CP 2. By our construction, it is
easy to see that g−1(Ỹ ) is diffeomorphic to D4. Hence f−1(R3

r Int Ỹ ) is
diffeomorphic to CP 2 − IntD4.

Let us determine the diffeomorphism type of f−1(Ỹ ). Take a properly

embedded 2-disk D2
3 in Ỹ as in Fig. 6.5, and let Ỹ1 and Ỹ2 be the 3-disks such

that Ỹ = Ỹ1 ∪ Ỹ2, Ỹ1 ∩ Ỹ2 = D2
3, and Ỹ2 ⊃ S2. Then it is easy to see that

f−1(Ỹ1) and f−1(Ỹ2) are diffeomorphic to D2 ×D2 and to the total space E

of a D2-bundle over S2, respectively. More precisely, f−1(Ỹ ) is obtained from
E by attaching a 2-handle along the boundary of a D2-fiber of the fibration
E → S2. Hence, f−1(Ỹ ) is diffeomorphic either to CP 2]CP 2

r IntD4 or to
S2 × S2

r IntD4.
Therefore, the source 4-manifoldM = f−1(R3) of f is diffeomorphic either

to CP 2](CP 2]CP 2) or to CP 2](S2×S2). In both cases,M is diffeomorphic to
CP 2]2CP 2 (for details, see [25], for example). This completes the construction
of the desired C∞ stable map f : CP 2]2CP 2 → R3 as promised at the
beginning of this chapter.

It is an easy task to check that all the results obtained in Chaps. 4 and 5
are valid for the above constructed C∞ stable maps.

Remark 6.3. The author has shown that CP 2 does not admit a fold map into
R3 (see [42, 45, 53, 1, 47, 39]). This implies that the normal bundle of the
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definite fold component of f in M corresponding to S2 is nontrivial, for if it
were trivial, then we could construct a smooth map g′′ : M ′ → R3 with only
fold points as its singularities. In fact, we can show that the normal Euler
numbers of the definite fold components of f in M corresponding to S0, S1

and S2 are equal to 1,−2 and −2 respectively (for details, see [50]).

Using the example constructed above, we can show the following.

Proposition 6.4. For every n ≥ 1, there exists a smooth map

fn : nCP 2](n+ 1)CP 2 → R3

with only fold points as its singularities.

Proof. Recall that there exists a smooth map ` : CP 2]CP 2 → R3 with only
definite fold points as its singularities (for example, see [43]). Note also that
such a map can be constructed explicitly. Then, we can construct the desired
map fn from f = f1 : CP 2]2CP 2 → R3 and n−1 copies of ` by the connected
sum construction (for details, see [43]).

Remark 6.5. Sakuma [52] had conjectured that no closed orientable 4-manifold
with odd Euler characteristic can admit a fold map into R3 (see also [24,
Remark 2.3]). The above proposition gives explicit counter-examples to his
conjecture. Note that a more precise result has been obtained in [47] about
fold maps of 4-manifolds into R3 (see also [41]).





Part II

Universal Complex of Singular Fibers





7

Generalities

In this chapter, we begin to formalize the idea used in Chaps. 4 and 5.
First, let us prepare the following notation. For a pair of nonnegative

integers (n, p), we denote by Tpr(n, p) (or by S∞
pr (n, p)) the set of all proper

Thom maps (resp. proper C∞ stable maps) between manifolds of dimensions n
and p (for Thom maps, see Example 1.3 of Chap. 1). Furthermore, we denote
by S0

pr(n, p) the set of all C0 stable maps which are elements of Tpr(n, p).
Note that we have S∞

pr (n, p) ⊂ Tpr(n, p). However, the author does not know
if a proper C0 stable map is a Thom map or not, so that we adopt the above
convention. Note also that S0

pr(n, p) = S∞
pr (n, p) for nice dimension pairs (n, p)

in the sense of Mather [32] by [12, 60] (see also Remark 3.2).
In the following, we call k = p−n the codimension of a map in these sets.

For a fixed k, we put

T̃pr(k) =
⋃

p−n=k

Tpr(n, p),

S̃∞
pr (k) =

⋃

p−n=k

S∞
pr (n, p),

S̃0
pr(k) =

⋃

p−n=k

S0
pr(n, p).

In the following, for a Thom map f : M → N in Tpr(n, p), M and N will
denote Whitney stratifications of M and N respectively such that f satisfies
the Thom regularity condition [15, Chapter I, §3] with respect to them. For
a C0 equivalence class F of fibers, we denote by F(f) the set of points in N
over which lies a fiber of type F.

Lemma 7.1. The subspace F(f) of N is a union of strata of N and is a C0

submanifold of N of constant codimension if it is nonempty. Furthermore,

this codimension does not depend on a particular choice of f ∈ Tpr(n, p).

Proof. The first assertion has already been shown in Example 1.3. In order to
show the second assertion, let us take a top dimensional stratum Σ contained
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in F(f). Note that for each point y ∈ Σ, there exists a neighborhood Uy of y
in N such that Uy ∩ F(f) = Uy ∩Σ, since Σ is top dimensional. On the other
hand, by the definition of C0 equivalence, for each point y′ of F(f), there exists
a neighborhood Uy′ of y′ in N such that (Uy′ , Uy′ ∩ F(f)) is homeomorphic
to (Uy, Uy ∩ F(f)). Hence the assertion about F(f) follows. Using a similar
argument, we can prove the final assertion. This completes the proof. ut

Note that by virtue of the above lemma, the codimension of a C0 type F

of fibers makes sense, and we denote it by κ(F).
Let us introduce the following notion which will play an important role

throughout the rest of the book.

Definition 7.2. Suppose that an equivalence relation % = %n,p among the
fibers of proper Thom maps between smooth manifolds of dimensions n and
p is given. We say that the relation % is admissible if the following conditions
are satisfied.

(1) If two fibers are C0 equivalent, then they are also equivalent with respect
to %.

(2) For any two proper Thom maps fi : Mi → Ni in Tpr(n, p) and for any
points yi ∈ Ni, i = 0, 1, such that the fibers over yi are equivalent to
each other with respect to %, there exist neighborhoods Ui of yi in Ni,
i = 0, 1, and a homeomorphism ϕ : U0 → U1 such that ϕ(y0) = y1 and

ϕ(U0 ∩ F̃(f0)) = U1 ∩ F̃(f1) for every equivalence class F̃ of fibers with

respect to %, where F̃(fi) is the set of points in Ni over which lies a fiber

of fi of type F̃.

For example, the C0 equivalence is clearly admissible in the above sense.
We denote the C0 equivalence relation among the fibers of elements of Tpr(n, p)
by %0

n,p.
In the following argument, we fix an admissible equivalence relation % =

%n,p as in Definition 7.2.

Lemma 7.3. For every equivalence class F̃ with respect to an admissible

equivalence relation %, and for every proper Thom map f : M → N in

Tpr(n, p), the subspace F̃(f) of N is a union of strata of N and is a C0 sub-

manifold of N of constant codimension if it is nonempty. Furthermore, this

codimension does not depend on a particular choice of f ∈ Tpr(n, p).

Proof. By Definition 7.2 (1) and Lemma 7.1, F̃(f) is a union of strata. Hence,
the rest of the assertion follows from an argument similar to that in the proof
of Lemma 7.1 together with Definition 7.2 (2). ut

By virtue of the above lemma, the codimension of F̃ makes sense, and we
denote it by κ(F̃).

For an equivalence class F̃ of fibers with respect to % with κ = κ(F̃), let ∂F̃

be the set of equivalence classes G̃ of fibers with respect to % of codimension
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κ + 1 such that G̃(f) ⊂ F̃(f) r F̃(f) for every f ∈ Tpr(n, p). For G̃ ∈ ∂F̃, we

take a proper Thom map f ∈ Tpr(n, p) with G̃(f) 6= ∅. Then we take a top

dimensional stratum Σ ⊂ G̃(f), and let BΣ be a small disk which intersects
Σ transversely exactly at its center and whose dimension coincides with the

codimension of Σ. Then BΣ ∩ F̃(f) consists of a finite number of arcs which

have BΣ ∩Σ as a common end point. Let n �

F
(G̃) ∈ Z2 denote the number of

such arcs modulo two, which clearly does not depend on the choice of BΣ , Σ
or f by Definition 7.2 (2). Then, by considering the homological boundary of

F̃(f), we have the following.

Proposition 7.4. For every equivalence class F̃ of fibers with respect to an

admissible equivalence relation %, and for every f : M → N in Tpr(n, p), the

Z2-chain ∑
�

G∈∂
�

F

n �

F
(G̃)G̃(f) (7.1)

(of closed support) is a cycle in N and represents the zero homology class in

the homology Hc
p−κ−1(N ;Z2) of closed support, where κ denotes the codimen-

sion of F̃.

Proof. By the definition of n �

F
(G̃), we see that the Z2-chain (7.1) coincides

the boundary of the Z2-chain F̃(f) in N . Hence the result follows. ut

Remark 7.5. In the above proposition, if F̃ does not contain the empty fiber
and the source manifold M is compact, then the Z2-chain (7.1) has com-
pact support and represents the zero homology class in the usual homology
Hp−κ−1(N ;Z2).

We warn the reader that the sum appearing in the right hand side of
(7.1) may contain infinitely many terms if the source manifold M of f is not
compact.

Note that all the results obtained in Chap. 4 are special cases of the above
proposition. Some applications of Proposition 7.4 to other specific situations
will be given in Chap. 15.
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Universal Complex of Singular Fibers

In this chapter, based on the idea given in the previous chapter, we define
a complex of singular fibers for a specific map, and then we define its uni-
versal versions for various classes of maps. We will see later that this is a
generalization of Vassiliev’s universal complex of multi-singularities [58]. Here
we develop a rather detailed theory of such universal complexes in order to
better understand what is the essential point behind our results obtained in
Chaps. 4 and 5, and to obtain further related results.

8.1 Complex of Singular Fibers for a Specific Map

Let f : M → N be a proper smooth map of a smooth n-dimensional manifold
M into a smooth p-dimensional manifold N such that f is a Thom map in the
sense of Example 1.3, as in the previous chapter: in other words, f ∈ Tpr(n, p).

In the following, we fix an equivalence relation % = %n,p for the set of
fibers of such maps which is admissible in the sense of Definition 7.2. Let us
construct a complex of fibers for f with coefficients in Z2 with respect to the
admissible equivalence relation % as follows.

For κ ≥ 0, let Cκ(f, %) be the Z2-vector space consisting of all formal
linear combinations, ∑

κ(
�

F)=κ

m �

F
F̃ (m �

F
∈ Z2),

which may possibly contain infinitely many terms if M is noncompact, of
the equivalence classes F̃ of fibers of f with codimension κ with respect to
the equivalence relation %. If there are no such fibers, then we simply put
Cκ(f, %) = 0. Furthermore, for κ < 0, we also put Cκ(f, %) = 0. For two

equivalence classes of fibers F̃ and G̃ of f with κ(F̃) = κ(G̃) − 1, we define

the incidence coefficient [F̃ : G̃]f ∈ Z2 by putting [F̃ : G̃]f = n �

F
(G̃) ∈ Z2 if

G̃(f) ⊂ F̃(f) r F̃(f), and [F̃ : G̃]f = 0 otherwise. Define the Z2-linear map
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δκ(f) : Cκ(f, %) → Cκ+1(f, %)

by

δκ(f)(F̃) =
∑

κ(
�

G)=κ+1

[F̃ : G̃]f G̃, (8.1)

for F̃ with κ(F̃) = κ. We warn the reader that the sum appearing in the
right hand side of (8.1) may possibly contain infinitely many terms if M is

noncompact. Nevertheless, for a given equivalence class G̃ of fibers of f with
codimension κ + 1, the number of equivalence classes F̃ of fibers of f with
codimension κ such that [F̃ : G̃]f 6= 0 is finite by virtue of the local finite-
ness of the Whitney regular stratifications and the definition of an admissible
equivalence relation. Hence, the linear map δκ(f) is well-defined.

The following lemma can be proved by an argument similar to that in [58,
8.3.4 Lemma] or [38, Lemma 1.5]. Details are left to the reader.

Lemma 8.1. δκ+1(f) ◦ δκ(f) = 0.

Therefore, C(f, %) = (Cκ(f, %), δκ(f))κ constitutes a complex and its co-
homology groups Hκ(f, %) are well-defined.

8.2 Complex for Maps Between Manifolds of Fixed

Dimensions

The above construction can be generalized to get a “universal” complex of
singular fibers for proper Thom maps between manifolds of dimensions n and
p as follows.

Let % be an admissible equivalence relation as in Definition 7.2 for the
fibers of elements of Tpr(n, p). For κ ∈ Z, let Cκ(Tpr(n, p), %) be the Z2-vector
space consisting of all formal linear combinations,

∑

κ(
�

F)=κ

m �

F
F̃ (m �

F
∈ Z2),

which may possibly contain infinitely many terms, of the equivalence classes
F̃ of fibers of proper Thom maps between manifolds of dimensions n and p
with κ(F̃) = κ with respect to the equivalence relation % = %n,p. If there is
no such equivalence class (for example, if κ > p or κ < 0), then we simply

put Cκ(Tpr(n, p), %) = 0. For two equivalence classes F̃ and G̃ of fibers of

elements of Tpr(n, p) with κ(F̃) = κ(G̃)−1, we define the incidence coefficient

[F̃ : G̃] ∈ Z2 by putting [F̃ : G̃] = n �

F
(G̃) ∈ Z2 if G̃(f) ⊂ F̃(f) r F̃(f)

for every f ∈ Tpr(n, p), and [F̃ : G̃] = 0 otherwise. Then the Z2-linear map
δκ : Cκ(Tpr(n, p), %) → Cκ+1(Tpr(n, p), %) is defined by
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δκ(F̃) =
∑

κ(
�

G)=κ+1

[F̃ : G̃]G̃, (8.2)

for F̃ with κ(F̃) = κ. (See (8.1) and the subsequent remark). Note that the
incidence coefficient, and hence the map δκ, is well-defined by virtue of Defini-
tion 7.2 (2). Furthermore, we can prove that δκ+1◦δκ = 0 as in Lemma 8.1. We
call the resulting complex C(Tpr(n, p), %) = (Cκ(Tpr(n, p), %), δκ)κ the univer-

sal complex of singular fibers for proper Thom maps between manifolds of di-

mensions n and p with respect to the admissible equivalence relation % = %n,p,
and we denote its cohomology group of dimension κ by Hκ(Tpr(n, p), %).

For f ∈ Tpr(n, p), let Cκ(f c, %) be the linear subspace of Cκ(Tpr(n, p), %)
spanned by those equivalence classes of fibers of elements of Tpr(n, p) of codi-
mension κ with respect to % which contain no fiber of f .

Lemma 8.2. For f ∈ Tpr(n, p), the following holds.

(1) We have δκ(C
κ(f c, %)) ⊂ Cκ+1(f c, %) for every κ ∈ Z. Hence, C(f c, %) =

(Cκ(f c, %), δκ|Cκ(fc,%))κ constitutes a subcomplex of C(Tpr(n, p), %).
(2) The quotient complex

C(Tpr(n, p), %)/C(f c, %) = (Cκ(Tpr(n, p), %)/C
κ(f c, %), δκ)κ

is naturally isomorphic to C(f, %), where

δκ : Cκ(Tpr(n, p), %)/C
κ(f c, %) → Cκ+1(Tpr(n, p), %)/C

κ+1(f c, %)

is the well-defined Z2-linear map induced by δκ.

Proof. Let F̃ ∈ Cκ(f c, %) be an equivalence class of fibers of codimension κ

which contains no fiber of f . For an equivalence class G̃ ∈ Cκ+1(Tpr(n, p), %)

of fibers of codimension κ+ 1, if [F̃ : G̃] 6= 0, then G̃(f) ⊂ F̃(f) r F̃(f). Since

F̃ does not contain any fiber of f , we have F̃(f) = ∅, and hence G̃(f) = ∅.

Thus, we have G̃ ∈ Cκ+1(f c, %) and item (1) follows.
Let πκ : Cκ(Tpr(n, p), %) → Cκ(f, %) be the natural projection: i.e., πκ is

the linear map defined by

πκ(F̃) =

{
F̃, if F̃ ∈ Cκ(f, %),
0, otherwise,

for an equivalence class F̃ ∈ Cκ(Tpr(n, p), %) of fibers. Then, it is easy to see
that the system of Z2-linear maps {πκ}κ defines a surjective cochain map
and the kernel of πκ coincides with Cκ(f c, %). Hence, item (2) follows. This
completes the proof. ut

In view of the above lemma, the complex C(Tpr(n, p), %) is universal in the
sense that the complex C(f, %) for a specific Thom map f is obtained as a
quotient complex.
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Remark 8.3. We will see in Chap. 9 that the universal complex of singular
fibers with respect to the C0 equivalence as defined above corresponds to in-
creasing the generators of each cochain group of Vassiliev’s universal complex
of multi-singularities [58] according to the topological structures of the fibers
(see Definition 9.9 and Remark 9.10).

8.3 Complex for Maps with Fixed Codimension

As we have noticed in Remark 3.14, a singular fiber of a codimension k map
into a p-dimensional manifold can naturally be identified with a singular fiber
of a codimension k map into a (p+1)-dimensional manifold. This is formalized
as follows.

Definition 8.4. Let f : M → N be a proper Thom map between manifolds
of dimensions n and p with k = p − n. For a positive integer `, we call the
map

f × idR` : M ×R` → N ×R`

the `-th suspension of f . (When ` = 1, we sometimes call it the suspension of
f and denote it by Σf .) Furthermore, to the fiber of f over a point y ∈ N ,
we can associate the fiber of f × idR` over y × {0}. We say that the latter
fiber is obtained from the original fiber by the `-th suspension. Note that the
`-th suspension of a proper Thom map is again a proper Thom map. Note
also that a fiber and its suspensions are all diffeomorphic to each other in the
sense of Definition 1.1 (2).

By considering the suspension as above, we can define a cochain map

C(Tpr(n+ `, p+ `), %n+`,p+`) → C(Tpr(n, p), %n,p)

as long as the equivalence relations for the dimension pairs are consistent with
each other in a certain sense, which is specified as follows.

Definition 8.5. Let us fix an integer k. Suppose that for each dimension pair
(n, p) with p − n = k and min(n, p) ≥ 0, we are given an admissible equiva-
lence relation %n,p for the fibers of proper Thom maps between manifolds of
dimensions n and p. Such a system of equivalence relations

Rk = {%n,p : p− n = k, min(n, p) ≥ 0},

which is often written simply as {%n,p}p−n=k or {%p−k,p}p, is said to be stable if
the following condition is satisfied: if two fibers of proper Thom maps between
manifolds of dimensions n and p are equivalent with respect to %n,p, then their
`-th suspensions are also equivalent with respect to %n+`,p+` for all ` > 0. Note
that the `-th suspensions are fibers of proper Thom maps between manifolds
of dimensions n+ ` and p+ `.
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For example, the set of C0 equivalence relations {%0
p−k,p}p gives a stable

system of admissible equivalence relations for the fibers of proper Thom maps
of codimension k, and we denote it by R0

k.
Suppose that a stable system of admissible equivalence relations Rk as

in Definition 8.5 is given for the fibers of proper Thom maps of codimension
k. Then, for every pair (n, p) with p − n = k and a positive integer `, the
suspension induces a natural map

sκ : Cκ(Tpr(n+ `, p+ `), %n+`,p+`) → Cκ(Tpr(n, p), %n,p) (8.3)

for κ ∈ Z. More precisely, when 0 ≤ κ ≤ p, for an equivalence class
F̃ ∈ Cκ(Tpr(n + `, p + `), %n+`,p+`) of fibers with respect to %n+`,p+`, we de-

fine sκ(F̃) ∈ Cκ(Tpr(n, p), %n,p) to be the (possibly infinite) sum of all those
equivalence classes of fibers of codimension κ with respect to %n,p whose `-th

suspensions are contained in F̃. For κ > p or κ < 0, we simply put sκ = 0.
Note that sκ is a well-defined Z2-linear map by virtue of Definition 8.5.

Lemma 8.6. The Z2-linear map sκ of (8.3) is a monomorphism for every

κ ≤ p.

Proof. For κ < 0, the assertion is clear. Suppose 0 ≤ κ ≤ p. For an equivalence
class F̃ ∈ Cκ(Tpr(n+ `, p+ `), %n+`,p+`) of fibers, there exists a proper Thom
map f : M → N between manifolds of dimensions n+` and p+` such that its
fiber over a point y ∈ N is a representative of F̃. By the proof of Lemma 7.3,
we may assume that the stratum containing y is of codimension κ. Let B
be a small open disk of dimension p embedded in N centered at y which is
transverse to all the strata. Then f |f−1(B) : f−1(B) → B is a proper Thom
map and the `-th suspension of its fiber over y is C0 equivalent to the fiber
of f over y by Thom’s second isotopy lemma. Moreover, the codimension of
the equivalence class containing the fiber of f |f−1(B) over y is equal to κ.

Hence, sκ(F̃) never vanishes. Since {%p−k,p}p is stable, this shows that sκ is a
monomorphism. ut

Remark 8.7. We warn the reader that the equivalence class with respect to
%n+`,p+` of the `-th suspension of a fiber whose equivalence class with respect
to %n,p is of codimension κ may not be of codimension κ. The codimension
can decrease by suspension.

Remark 8.8. We see easily that for a κ with 0 ≤ κ ≤ p, the Z2-linear map sκ
of (8.3) is an isomorphism if and only if the following two hold.

(1) If an equivalence class of fibers with respect to %n,p has codimension κ,
then the equivalence class of their `-th suspensions with respect to %n+`,p+`

has also codimension κ.
(2) Two fibers whose equivalence classes with respect to %n,p have codimension

κ are equivalent with respect to %n,p if and only if their `-th suspensions
are equivalent with respect to %n+`,p+`.
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In particular, the Z2-linear maps sκ are isomorphisms for all κ with 0 ≤ κ ≤ p
if and only if the following holds: two fibers are equivalent with respect to %n,p
if and only if their `-th suspensions are equivalent with respect to %n+`,p+`.

By virtue of Definition 8.5, we can prove the following.

Lemma 8.9. The system of Z2-linear maps {sκ}κ defines a cochain map

C(Tpr(n+ `, p+ `), %n+`,p+`) → C(Tpr(n, p), %n,p).

In other words, we have δκ ◦ sκ = sκ+1 ◦ δκ for all κ ∈ Z.

Proof. We may assume that 0 ≤ κ ≤ p − 1. Let F̃ be an equivalence class
of fibers in Cκ(Tpr(n + `, p + `), %n+`,p+`), and G̃ an equivalence class in

Cκ+1(Tpr(n, p), %n,p). Let us consider the coefficients of G̃ in δκ ◦ sκ(F̃) and in

sκ+1 ◦ δκ(F̃).

Case 1. The equivalence class of the `-th suspension of G̃ has codimension
strictly smaller than κ+ 1.

The relevant coefficient in sκ+1 ◦ δκ(F̃) is clearly zero by the definition of

sκ+1. On the other hand, if the relevant coefficient in δκ ◦ sκ(F̃) is not zero,

then there is a codimension κ equivalence class H̃ whose coboundary contains
G̃ and whose `-th suspension is contained in F̃. By our assumption, the `-th
suspension of G̃ has codimension strictly smaller than κ+1, and hence either
the `-th suspension of H̃ has codimension strictly smaller than κ, or the `-th
suspension of G̃ is equivalent to the `-th suspension of H̃.

The first case does not occur, since the `-th suspension of H̃ is contained
in F̃, which is of codimension κ.

If the second case occurs, then the equivalence class of the `-th suspension
of G̃ has codimension κ. Since by Lemma 7.3, the equivalence class determines
a topological submanifold of codimension κ, there must be a unique codimen-
sion κ equivalence class H̃′ (6= H̃) whose coboundary contains G̃ and whose

`-th suspension is contained in F̃. Hence, we see that the coefficient of G̃ in
δκ ◦ sκ(F̃) is equal to zero.

Hence, the relevant coefficients coincide with each other in this case.

Case 2. The equivalence class of the `-th suspension of G̃ has codimension
κ+ 1.

The coefficient of G̃ in δκ ◦ sκ(F̃) is equal to the number of codimension κ

equivalence classes whose coboundaries contain G̃ and whose `-th suspensions
are contained in F̃. On the other hand, the coefficient of G̃ in sκ+1 ◦ δκ(F̃) is

not zero if and only if the `-th suspension of G̃ is contained in the coboundary
of F̃. Hence, the relevant coefficients coincide with each other in this case as
well. This completes the proof. ut

It follows easily from the definition of sκ that the composition of
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sκ : Cκ(Tpr(n+`+`′, p+`+`′), %n+`+`′,p+`+`′) → Cκ(Tpr(n+`, p+`), %n+`,p+`)

and
sκ : Cκ(Tpr(n+ `, p+ `), %n+`,p+`) → Cκ(Tpr(n, p), %n,p)

coincides with

sκ : Cκ(Tpr(n+ `+ `′, p+ `+ `′), %n+`+`′,p+`+`′) → Cκ(Tpr(n, p), %n,p).

By this observation together with Lemma 8.9, for a fixed integer k, the pro-
jective limit

C(T̃pr(k),Rk) = lim
←−
p

C(Tpr(p− k, p), %p−k,p) (8.4)

is well-defined as a cochain complex. We call C(T̃pr(k),Rk) the universal com-

plex of singular fibers for codimension k proper Thom maps with respect to the

stable system of admissible equivalence relations Rk. We write its cohomology
group of dimension κ by Hκ(T̃pr(k),Rk).

Remark 8.10. Recall that the projective limit (8.4) is identified with the sub-
space of the product

∏

p

Cκ(Tpr(p− k, p), %p−k,p)

consisting of all elements (cp)p with sκ(cp+`) = cp for all p and `.

As a direct consequence of Lemmas 8.6 and 8.9, we have the following.

Lemma 8.11. The natural map

Φκn,p : Cκ(T̃pr(k),Rk) → Cκ(Tpr(n, p), %n,p) (8.5)

induced by the projection is a monomorphism if κ ≤ p. Furthermore, the

system of Z2-linear maps {Φκn,p}κ defines a cochain map

C(T̃pr(k),Rk) → C(Tpr(n, p), %n,p).

The Z2-linear map Φκn,p defined above can be identified with the map (8.6)
which will be defined in §8.4.

8.4 Another Description

The complex C(T̃pr(k),Rk) can also be constructed by using another method,
as explained below.
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Definition 8.12. Let fi : Mi → Ni, i = 0, 1, be proper Thom maps with
the same codimension k = dimNi − dimMi. We say that the fibers over
yi ∈ Ni, i = 0, 1, are stably C0 (or C∞) equivalent if the fibers of fi× idR`i :
Mi×R`i → Ni×R`i over yi×{0} are C0 (resp. C∞) equivalent to each other
for some nonnegative integers `i, i = 0, 1, with dimN0 + `0 = dimN1 + `1.

Definition 8.13. Suppose that an equivalence relation R̂k among the fibers
of proper Thom maps of codimension k is given. We say that the relation R̂k

is stably admissible if the following conditions are satisfied.

(1) If two fibers are stably C0 equivalent, then they are also equivalent with

respect to R̂k .
(2) For every positive integer `, two fibers are equivalent with respect to R̂k

if and only if their `-th suspensions are equivalent with respect to R̂k.
(3) For any proper Thom maps fi : Mi → Ni, i = 0, 1, of codimension k

and for any points yi ∈ Ni whose corresponding fibers are equivalent with
respect to R̂k, there exist neighborhoods Ui of yi × {0} in Ni × R`i for
some nonnegative integers `i, i = 0, 1, with dimN0 + `0 = dimN1 + `1,
and a homeomorphism ϕ : U0 → U1 such that ϕ(y0 ×{0}) = y1 ×{0} and

ϕ(U0 ∩ F̂(f0 × idR`0 )) = U1 ∩ F̂(f1 × idR`1 )

for every equivalence class F̂ of fibers with respect to R̂k, where F̂(fi ×
idR`i ) is the set of points in Ni ×R`i over which lies a fiber of fi × idR`i

of type F̂.

For example, the stable C0 equivalence is a stably admissible equivalence
relation, and we denote it by R̂0

k.
The following lemma can be proved by an argument similar to that in the

proof of Lemma 7.3.

Lemma 8.14. For every equivalence class F̂ with respect to a stably admissible

equivalence relation R̂k, and for every proper Thom map f : M → N in

T̃pr(k), the subspace F̂(f) of N is a union of strata of N . Furthermore, we

have the following.

(1) For every y ∈ F̂(f), there exists a nonnegative integer ` such that F̂(f)×R`

is a C0 submanifold of N ×R` at y × {0}.

(2) The codimension of F̂(f) × R` in N × R` at y × {0} does not depend on

the choice of y or f .

By virtue of the above lemma, the codimension of F̂ makes sense, and we
denote it by κ(F̂).

Let R̂k be a stably admissible equivalence relation among the fibers of
proper Thom maps of codimension k. Then, we can naturally construct the
cochain complex C(T̃pr(k), R̂k) = (Cκ(T̃pr(k), R̂k), δκ)κ as follows: the κ-

dimensional cochain group Cκ(T̃pr(k), R̂k) is the Z2-vector space consisting
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of all formal linear combinations, which may possibly contain infinitely many
terms, of the equivalence classes F̂ of fibers of proper Thom maps of codimen-
sion k with κ(F̂) = κ and

δκ : Cκ(T̃pr(k), R̂k) → Cκ+1(T̃pr(k), R̂k)

is defined in a way similar to δκ(f) (see (8.1) and the subsequent remark).

(Here, we simply put Cκ(T̃pr(k), R̂k) = 0 for κ < 0.) Note that the incidence
coefficient is well-defined by virtue of Definition 8.13 (2) and (3). We write

the cohomology group of dimension κ of the cochain complex C(T̃pr(k), R̂k)

by Hκ(T̃pr(k), R̂k).
Let us now discuss the relationship between the complex thus obtained

and that of §8.3. Suppose that a stable system Rk = {%p−k,p}p of admissible
equivalence relations for the fibers of proper Thom maps of codimension k in
the sense of Definition 8.5 is given. Then, we can naturally define a new equiv-
alence relation R̂k for the fibers of proper Thom maps of codimension k as
follows: two such fibers are equivalent if some of their suspensions are equiva-
lent in the original sense. Then we can easily check that this new equivalence
relation R̂k is stably admissible in the sense of Definition 8.13. For example,
if we consider the system of C0 equivalence relations R0

k = {%0
p−k,p}p, then

it defines a stable system of admissible equivalence relations, and the new
equivalence relation is nothing but the stable C0 equivalence R̂0

k.
Then, we get the following.

Proposition 8.15. The complex C(T̃pr(k), R̂k) with respect to the new equiv-

alence relation R̂k defined above is naturally isomorphic to the universal com-

plex C(T̃pr(k),Rk), defined by (8.4), of singular fibers for codimension k proper

Thom maps with respect to the original stable system of admissible equivalence

relations Rk = {%p−k,p}p.

Proof. For every pair (n, p) with p− n = k and for every κ, we can naturally
define the Z2-linear map

Φκn,p : Cκ(T̃pr(k), R̂k) → Cκ(Tpr(n, p), %n,p) (8.6)

by associating to each equivalence class F̂ of codimension κ with respect to
R̂k the sum of all those equivalence classes of codimension κ with respect to
%n,p which are contained in F̂. It is not difficult to show that Φn,p = {Φκn,p}κ
defines a cochain map

C(T̃pr(k), R̂k) → C(Tpr(n, p), %n,p)

(see the proof of Lemma 8.9) and that sκ ◦Φκn+`,p+` = Φκn,p for every positive
integer `, where sκ is the Z2-linear map (8.3) induced by the suspension.
Hence, {Φp−k,p}p induces a cochain map

Φ : C(T̃pr(k), R̂k) → lim
←−
p

C(Tpr(p− k, p), %p−k,p) = C(T̃pr(k),Rk)
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by the universality of the projective limit. Furthermore, it is not difficult to
show that Φ is injective. Finally, Φ is surjective by virtue of the definitions
of R̂k and the projective limit. Hence, we have the desired conclusion. This
completes the proof. ut

Conversely, suppose that a stably admissible equivalence relation R̂k

among the fibers of proper Thom maps of codimension k is given. Then,
for every pair (n, p) with p − n = k, we can define the equivalence relation
%n,p among the fibers of elements of Tpr(n, p) as follows: two such fibers are

equivalent with respect to %n,p if they are equivalent with respect to R̂k and
in Definition 8.13 (3), `i can be chosen to be zero, i.e., if there exist neighbor-
hoods Ui of yi in Ni, i = 0, 1, and a homeomorphism ϕ : U0 → U1 such that
ϕ(y0) = y1 and

ϕ(U0 ∩ F̂(f0)) = U1 ∩ F̂(f1)

for every equivalence class F̂ of fibers with respect to R̂k, where fi : Mi → Ni
are elements of Tpr(n, p) whose fibers over yi ∈ Ni are the given ones, and

F̂(fi) is the set of points in Ni over which lies a fiber of fi of type F̂.

Lemma 8.16. (1) The relation %n,p defined as above is an admissible equiv-

alence relation in the sense of Definition 7.2.
(2) The system of equivalence relations Rk = {%p−k,p}p is stable in the

sense of Definition 8.5.

Proof. (1) We can show that the C0 equivalence implies the equivalence with
respect to %n,p, since C0 equivalence implies the equivalence with respect to

R̂k.
Suppose that fi : Mi → Ni, i = 0, 1, are elements of Tpr(n, p) whose

fibers over yi ∈ Ni are equivalent to each other with respect to %n,p. Then,
there exist neighborhoods Ui of yi in Ni, i = 0, 1, and a homeomorphism
ϕ : U0 → U1 such that ϕ(y0) = y1 and ϕ(U0 ∩ F̂(f0)) = U1 ∩ F̂(f1) for every

equivalence class F̂ of fibers with respect to R̂k. Then, the fiber of f0 over an
arbitrary point y ∈ U0 is equivalent, with respect to %n,p, to that of f1 over
ϕ(y), by the very definition of the equivalence relation %n,p. Hence, we have

ϕ(U0 ∩ F̃(f0)) = U1 ∩ F̃(f1) for every equivalence class F̃ with respect to %n,p.
Hence, (1) holds.

(2) This follows immediately from the definition of the equivalence relation
%n,p. This completes the proof. ut

We see easily that the stably admissible equivalence relation among the
fibers of proper Thom maps of codimension k constructed from Rk coincides
with the original equivalence relation R̂k. Therefore, by Proposition 8.15,
the complex C(T̃pr(k), R̂k) is naturally isomorphic to the universal complex

C(T̃pr(k),Rk), defined by (8.4), of singular fibers for codimension k proper
Thom maps with respect to the stable system of admissible equivalence rela-
tions Rk = {%p−k,p}p.
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For the stable C0 equivalence, we have the following problem, the answer
to which the author does not know.

Problem 8.17. Let fi : Mi → Ni, i = 0, 1, be proper Thom maps such that
n = dimM0 = dimM1 and p = dimN0 = dimN1. For points yi ∈ Ni, if the
fibers of fi over yi are stably C0 (or C∞) equivalent, then are they C0 (resp.
C∞) equivalent? In other words, is the natural cochain map

C(T̃pr(k),R
0
k) → C(Tpr(n, p), %

0
n,p)

of the universal complex with respect to the stable C0 equivalence to that
with respect to the C0 equivalence an epimorphism?

Note that if fi are codimension −1 proper C0 stable maps of manifolds of
dimension less than or equal to 4, then the answer to the above problem is
shown to be affirmative by using an argument similar to that in the proof of
Corollary 3.9. (In the 4-dimensional case, we should assume the orientability
of the source manifold, while for the other dimensions, it is not necessary. See
Corollary 3.16 and the subsequent remark.)

8.5 Changing the Equivalence Relation

Suppose that we are given two admissible equivalence relations % = %n,p and
% = %n,p for the fibers of elements of Tpr(n, p). If every equivalence class with
respect to %n,p is a union of equivalence classes with respect to %n,p, then we
say that %n,p is weaker than %n,p and write %n,p ≤ %n,p. In this case, we can
naturally define the Z2-linear map

ε%,% : C(Tpr(n, p), %) → C(Tpr(n, p), %) (8.7)

by associating to a class F̃ of codimension κ with respect to % the sum of
all the equivalence classes with respect to % of codimension κ contained in F̃.
This clearly defines a cochain map (for example, see the proof of Lemma 8.9).
Note that the associated map

Cκ(Tpr(n, p), %) → Cκ(Tpr(n, p), %)

is a monomorphism for every κ.
Suppose that we are given two stable systems of admissible equivalence

relations Rk = {%p−k,p}p and Rk = {%p−k,p}p for the fibers of codimension
k proper Thom maps. If %p−k,p ≤ %p−k,p for every p, then we say that Rk is

weaker than Rk and write Rk ≤ Rk. In this case, the system of cochain maps
{ε%p−k,p,%p−k,p

}p induces the cochain map

εRk,Rk
: C(T̃pr(k),Rk) → C(T̃pr(k),Rk).
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Note that the associated map

Cκ(T̃pr(k),Rk) → Cκ(T̃pr(k),Rk)

is a monomorphism for every κ.
In particular, if we consider the C0 equivalence %0

n,p among the fibers of
elements of Tpr(n, p), then we have %n,p ≤ %0

n,p for any admissible equivalence
relation %n,p. Hence, we have the cochain map

ε%n,p,%0n,p
: C(Tpr(n, p), %n,p) → C(Tpr(n, p), %

0
n,p).

In other words, since this cochain map is always a monomorphism, we may
regard C(Tpr(n, p), %n,p) as a subcomplex of C(Tpr(n, p), %

0
n,p).

Furthermore, if we consider the stable system of admissible equivalence
relations R0

k = {%0
p−k,p}p induced by the C0 equivalence, then Rk ≤ R0

k for
any stable system Rk of admissible equivalence relations. Hence, we have the
cochain map

εRk,R0
k

: C(T̃pr(k),Rk) → C(T̃pr(k),R
0
k).

We can show that this is always a monomorphism, and hence C(T̃pr(k),Rk)

can be regarded as a subcomplex of C(T̃pr(k),R0
k).

8.6 Changing the Class of Maps

So far, we have worked with the whole set of proper Thom maps of a fixed
codimension. By restricting the class of Thom maps that we consider, we can
also obtain the universal complex of singular fibers for such a class of maps.

First, let us consider maps between manifolds of fixed dimensions.

Definition 8.18. A C0 equivalence class F of fibers of elements of Tpr(n, p)
is said to be under another C0 equivalence class G of fibers if for some (and
hence every) representative f : (M, f−1(y)) → (N, y) of F, there is a point y′

arbitrarily close to y over which lies a fiber of type G. In this case, we also
say that G is over F.

Let Γ = Γn,p be an ascending set of C0 equivalence classes of fibers of
elements of Tpr(n, p), where “ascending” means that for an arbitrary equiva-
lence class in the set, every class over it also belongs to the set. We say that
a proper Thom map f : M → N between smooth manifolds of dimensions n
and p is a Γ -map if its fibers all lie in Γ . We use the same notation Γ = Γn,p
for the set of all Γ -maps, when there is no confusion.

If for an arbitrary equivalence class in the set Γ , every class under it also
belongs to the set, then we say that it is a descending set. For example, the
set of all C0 equivalence classes of fibers of a fixed Thom map f ∈ Tpr(n, p) is
ascending, while the set f c of all C0 equivalence classes of fibers of elements
of Tpr(n, p) which do not appear for f is a descending set. Note that C(f c, %0)
is a subcomplex of C(Tpr(n, p), %

0) (see Lemma 8.2), essentially because the
set f c is descending.
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Let Γ = Γn,p be as above and let %Γ = %Γn,p be an equivalence relation
among the fibers of Γ -maps which is admissible in the same sense as in Def-
inition 7.2. Then, we can naturally define the universal complex C(Γn,p, %

Γ )
of singular fibers for Γ -maps with respect to the admissible equivalence re-
lation %Γ . We write the corresponding cohomology group of dimension κ by
Hκ(Γn,p, %

Γ ).
Suppose that the equivalence relation %Γ is the restriction to Γ of an admis-

sible equivalence relation % = %n,p among the fibers of elements of Tpr(n, p).
Let Cκ(Γ c, %) be the linear subspace of Cκ(Tpr(n, p), %) spanned by those
equivalence classes of fibers of elements of Tpr(n, p) of codimension κ with
respect to % which contain no fiber of a Γ -map. Then, by an argument similar
to that in the proof of Lemma 8.2, we can prove the following. Details are left
to the reader.

Lemma 8.19. For an ascending set Γ = Γn,p of C0 equivalence classes of

fibers of elements of Tpr(n, p), the following holds.

(1) We have δκ(C
κ(Γ c, %)) ⊂ Cκ+1(Γ c, %) for every κ ∈ Z. Hence, C(Γ c, %) =

(Cκ(Γ c, %), δκ|Cκ(Γ c,%))κ constitutes a subcomplex of C(Tpr(n, p), %).
(2) The quotient complex

C(Tpr(n, p), %)/C(Γ c, %) = (Cκ(Tpr(n, p), %)/C
κ(Γ c, %), δκ)κ

is naturally isomorphic to C(Γ, %Γ ), where

δκ : Cκ(Tpr(n, p), %)/C
κ(Γ c, %) → Cκ+1(Tpr(n, p), %)/C

κ+1(Γ c, %)

is the well-defined Z2-linear map induced by δκ.

More generally, if Γ and Γ ′ are two ascending sets of singular fibers of
elements of Tpr(n, p) such that Γ ⊂ Γ ′, and if the admissible equivalence
relation %Γ for Γ is the restriction to Γ of an admissible equivalence relation
%Γ
′

for Γ ′, then we naturally have the cochain map

πΓ ′,Γ : C(Γ ′, %Γ
′

) → C(Γ, %Γ )

induced by the projection. Note that the corresponding Z2-linear map on
every dimension is an epimorphism.

Furthermore, if %Γ
′

and %Γ
′

are two admissible equivalence relations for
Γ ′ with %Γ

′

≤ %Γ
′

in a sense similar to §8.5, then we can naturally define the
cochain map

ε%Γ ′ ,%Γ ′ : C(Γ ′, %Γ
′

) → C(Γ ′, %Γ
′

).

Note that the corresponding Z2-linear map on every dimension is a monomor-
phism. If %Γ and %Γ are the restrictions to Γ of %Γ

′

and %Γ
′

respectively, then
we have the commutative diagram of cochain complexes:
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C(Γ ′, %Γ
′

)
ε

%Γ ′ ,%Γ ′

−−−−−→ C(Γ ′, %Γ
′

)yπΓ ′,Γ

yπΓ ′,Γ

C(Γ, %Γ )
ε

%Γ ,%Γ

−−−−−→ C(Γ, %Γ ).

(8.8)

Let us denote by C(Γ ′
r Γ, %Γ

′

) and C(Γ ′
r Γ, %Γ

′

) the kernels of the
Z2-linear maps

πΓ ′,Γ : C(Γ ′, %Γ
′

) → C(Γ, %Γ )

and
πΓ ′,Γ : C(Γ ′, %Γ

′

) → C(Γ, %Γ )

respectively. Note that they are subcomplexes of C(Γ ′, %Γ
′

) and C(Γ ′, %Γ
′

)
respectively spanned by those equivalence classes of fibers in Γ ′ which contain
no fiber in Γ . Furthermore, we define C(Γ, %Γ /%Γ ) and C(Γ ′, %Γ

′

/%Γ
′

) to be
the cokernels of ε%Γ ,%Γ and ε%Γ ′ ,%Γ ′ respectively. It is easy to show that ε%Γ ′ ,%Γ ′

induces a monomorphism

C(Γ ′
r Γ, %Γ

′

) → C(Γ ′
r Γ, %Γ

′

)

and we denote its cokernel by C(Γ ′
rΓ, %Γ

′

/%Γ
′

). Then we naturally have the
following commutative diagram:

0 0 0
↓ ↓ ↓

0 → C(Γ ′
r Γ, %Γ

′

) → C(Γ ′
r Γ, %Γ

′

) → C(Γ ′
r Γ, %Γ

′

/%Γ
′

) → 0
↓ ↓ ↓

0 → C(Γ ′, %Γ
′

)
ε

%Γ ′ ,%Γ ′

→ C(Γ ′, %Γ
′

) → C(Γ ′, %Γ
′

/%Γ
′

) → 0yπΓ ′,Γ

yπΓ ′,Γ ↓

0 → C(Γ, %Γ )
ε

%Γ ,%Γ

→ C(Γ, %Γ ) → C(Γ, %Γ /%Γ ) → 0
↓ ↓ ↓
0 0 0

(8.9)

where all the rows and columns are exact. Therefore, we have the correspond-
ing commutative diagram of long exact sequences of cohomologies as well.

Now let us vary the dimension pair (n, p) keeping the codimension p−n = k
fixed. Let

Γ̃ = Γ̃k =
⋃

p−n=k

Γn,p

be a set of C0 equivalence classes of fibers of proper Thom maps of codimen-
sion k such that each Γn,p is an ascending set of C0 equivalence classes of

fibers of elements of Tpr(n, p), and that Γ̃ is closed under suspension in the
sense of Definition 8.4. (For example, the set of all C0 equivalence classes of

fibers of elements of S̃0
pr(k) is such a set.)
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We say that a proper Thom map of codimension k is a Γ̃k-map if its fibers
all lie in Γ̃k. We use the same notation Γ̃ = Γ̃k for the set of all Γ̃k-maps,
when there is no confusion.

Let R
�

Γ
k = {%

Γp−k,p

p−k,p }p be a system of equivalence relations, where each

%
Γp−k,p

p−k,p is an admissible equivalence relation among the fibers of Γp−k,p-maps.

Furthermore, we assume that the system R
�

Γ
k of admissible equivalence rela-

tions is stable in the sense of Definition 8.5.
Then, we can naturally define the universal complex of singular fibers

C(Γ̃k,R
�

Γ
k )

for Γ̃k-maps with respect to the stable system of admissible equivalence rela-

tions R
�

Γ
k . As in the case of Thom maps, we have two definitions for the uni-

versal complexes, which are equivalent to each other as in Proposition 8.15.

We write its cohomology group of dimension κ by Hκ(Γ̃k,R
�

Γ
k ).

Note that if the stable system of admissible equivalence relations R
�

Γ
k is the

restriction of a stable system of admissible equivalence relations Rk among the
fibers of proper Thom maps of codimension k, then we see that the complex

C(Γ̃k,R
�

Γ
k ) is a quotient complex of the universal complex C(T̃pr(k),Rk) in

view of the construction given in §8.4.
More generally, if Γ̃ and Γ̃ ′ are two ascending sets of singular fibers of

elements of T̃pr(k) which are closed under suspension such that Γ̃ ⊂ Γ̃ ′, and if

the stable system of admissible equivalence relations R
�

Γ
k for Γ̃ is the restriction

to Γ̃ of a stable system of admissible equivalence relations R
�

Γ ′

k for Γ̃ ′, then
we naturally have the cochain map

π �

Γ ′,
�

Γ : C(Γ̃ ′,R
�

Γ ′

k ) → C(Γ̃ ,R
�

Γ
k )

induced by the natural projection. Note that the corresponding Z2-linear map
on every dimension is an epimorphism.

Furthermore, if R
�

Γ ′ and R

�

Γ ′

are two stable systems of admissible equiva-

lence relations for Γ̃ ′ with R
�

Γ ′ ≤ R

�

Γ ′

in a sense similar to §8.5, then we can
naturally define the cochain map

ε
R

�

Γ ′ ,R

�

Γ ′ : C(Γ̃ ′,R
�

Γ ′) → C(Γ̃ ′,R

�

Γ ′

).

Note that the corresponding Z2-linear map on every dimension is a monomor-
phism.

If R
�

Γ and R

�

Γ
are the restrictions to Γ̃ of R

�

Γ ′ and R

�

Γ ′

respectively, then
we have the commutative diagram of cochain maps:

C(Γ̃ ′,R
�

Γ ′)
ε
R

�

Γ ′ ,R

�

Γ ′

−−−−−→ C(Γ̃ ′,R

�

Γ ′

)yπ �

Γ ′,
�

Γ

yπ �

Γ ′,
�

Γ

C(Γ̃ ,R
�

Γ )
ε
R

�

Γ ,R

�

Γ

−−−−−→ C(Γ̃ ,R

�

Γ
).
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Note that we can extend the above commutative diagram as in (8.9) so that
we obtain exact rows and columns.

Remark 8.20. Let Γ̃ = Γ̃k = ∪pΓp−k,p be as above and R
�

Γ
k = {%

Γp−k,p

p−k,p }p be

a stable system of admissible equivalence relations for the fibers of Γ̃ -maps.
Then we have the natural Z2-linear map

Φκp−k,p : Cκ(Γ̃ ,R
�

Γ
k ) → Cκ(Γp−k,p, %

Γp−k,p

p−k,p )

induced by the projection for every p, since Cκ(Γ̃ ,R
�

Γ
k ) is the projective limit

and hence is a Z2-submodule of the product of all Cκ(Γp−k,p, %
Γp−k,p

p−k,p ) (see

Remark 8.10). (Note that for Γ̃ = T̃pr(k), this map has already been defined.
See (8.5) and (8.6).) Set n = p− k. For 0 ≤ κ ≤ p, Φκn,p is a monomorphism if

and only if every equivalence class of fibers in Γ̃ with respect to R̂k of codi-
mension κ contains a suspension of a fiber in Γp−k,p whose equivalence class

with respect to %
Γp−k,p

p−k,p has codimension κ, where R̂k is the stably admissible

equivalence relation among the fibers in Γ̃ defined just before Proposition 8.15
(compare this assertion with Lemma 8.11). On the other hand, Φκn,p is an epi-
morphism if and only if the following two conditions hold.

(1) If an equivalence class of fibers in Γn,p with respect to %
Γn,p
n,p has codimen-

sion κ, then the equivalence class of their `-th suspensions with respect to

%
Γn+`,p+`

n+`,p+` has also codimension κ for all ` ≥ 1.

(2) Two fibers in Γn,p whose equivalence classes with respect to %
Γn,p
n,p have

codimension κ are equivalent with respect to %
Γn,p
n,p if and only if their `-th

suspensions are equivalent with respect to %
Γn+`,p+`

n+`,p+` for some ` ≥ 0.

Compare this with Problem 8.17, Lemma 8.6 and Remark 8.8.

When a class of proper Thom maps is given, let us consider the following
definitions.

Definition 8.21. (1) Let Γn,p = Γ be a subset of Tpr(n, p). We denote by
Γ ∗
n,p = Γ ∗ the set of all C0 equivalence classes of fibers of elements of Γn,p.

Then, it is clear that Γ ∗
n,p is an ascending set and the set of all Γ ∗

n,p-maps
contain the original set Γn,p of maps. For an admissible equivalence relation
%Γ among the elements of Γ ∗

n,p, we define the universal complex of singular

fibers for Γn,p with respect to %Γ by

C(Γn,p, %
Γ ) = C(Γ ∗

n,p, %
Γ ).

Furthermore, we denote the corresponding cohomology group of dimension κ
by Hκ(Γn,p, %

Γ ). We call the set of Γ ∗
n,p-maps the completion of Γn,p. When

the set of Γ ∗
n,p-maps coincides with the original set Γn,p, we say that the set

Γn,p is complete.
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(2) Let Γ̃k = Γ̃ be a subset of T̃pr(k). We denote by Γ̃ ∗
k = Γ̃ ∗ the set of

all C0 equivalence classes of fibers of elements of Γ̃k and their suspensions.
Then, we have

Γ̃ ∗
k =

⋃

p−n=k

Γ ∗
n,p,

where Γ ∗
n,p is the set of C0 equivalence classes in Γ̃ ∗

k of fibers of maps be-
tween manifolds of dimensions n and p, and each Γ ∗

n,p is an ascending set.

Furthermore, Γ̃ ∗
k is closed under suspension. Then, it is clear that the set of

all Γ̃ ∗
k -maps contain the original set Γ̃k of maps. For a stable system of ad-

missible equivalence relations R
�

Γ
k among the elements of Γ̃ ∗

k , we define the

universal complex of singular fibers for Γ̃k with respect to R
�

Γ
k by

C(Γ̃k,R
�

Γ
k ) = C(Γ̃ ∗

k ,R
�

Γ
k ).

Furthermore, we denote the corresponding cohomology group of codimension

κ by Hκ(Γ̃k,R
�

Γ
k ). We call the set of Γ̃ ∗

k -maps the completion of Γ̃k. When the

set of Γ̃ ∗
k -maps coincides with the original set Γ̃k, we say that the set Γ̃k is

complete.

Example 8.22. For example, the set S0
pr(n, p) is not complete, since there exist

nonstable Thom maps whose fibers are all C0 equivalent to a fiber of a C0

stable map. On the other hand, Tpr(n, p) is clearly complete.

In the following, if Γ = Γn,p ⊂ Γ ′
n,p = Γ ′ ⊂ Tpr(n, p) and %Γ is the

restriction of an admissible equivalence relation %Γ
′

for the fibers of elements
of Γ ′

n,p, we sometimes write C(Γn,p, %
Γ ′) in place of C(Γn,p, %

Γ ) when there
is no confusion. For the universal complexes for the fibers of codimension k
maps, we sometimes use the same convention as well.

Example 8.23. Let Mpr(n, p) be the set of all proper Morin maps in Tpr(n, p)
which satisfy the normal crossing condition as in [16, Chapter VI, §5], and set

M̃pr(k) =
⋃

p−n=k

Mpr(n, p).

(Here, a smooth map is called a Morin map if its singularities are all of Morin
types [34].) Furthermore, we denote by Mpr(n, p)

ori the subset of Mpr(n, p)
consisting of those maps whose source manifolds are orientable, and we set

M̃pr(k)
ori =

⋃

p−n=k

Mpr(n, p)
ori.

(Note that the sets M̃pr(k) and M̃pr(k)
ori are closed under suspension.) Then,

by using Remark 8.20, we can show that
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Cκ(M̃pr(−1)ori,R0
−1) = Cκ(Mpr(4, 3)ori, %0

4,3)

for all κ ≤ 3, and hence

Hκ(M̃pr(−1)ori,R0
−1) = Hκ(Mpr(4, 3)ori, %0

4,3)

for κ ≤ 2 (see also the paragraph just after Problem 8.17). Compare this with
Problem 9.8.
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Stable Maps of 4-Manifolds into 3-Manifolds

Now let us consider a more specific situation, i.e., the case of proper C∞

stable maps of orientable 4-manifolds into 3-manifolds. Recall that a proper
smooth map of a 4-manifold into a 3-manifold is C∞ stable if and only if it
is C0 stable, as we have noted in Remark 3.2. In the following, we denote by
S0

pr(n, p)
ori the subset of S0

pr(n, p) consisting of the proper C0 stable maps of
orientable manifolds of dimension n into manifolds of dimension p.

The universal complex of singular fibers C(S0
pr(4, 3)ori, %0

4,3) for proper C0

stable maps of orientable 4-manifolds into 3-manifolds with respect to the C0

(or C∞) right-left equivalence %0
4,3 can be described as follows.

For a positive integer `, let us denote by I0` the equivalence class of the
singular fiber which is the disjoint union of the corresponding singular fiber
I0 as in Fig. 3.4 and some fibers of the trivial circle bundle such that its total
number of connected components is equal to `. We define I1` (` ≥ 1), II00`
(` ≥ 2), etc. similarly. Furthermore, let 0` (` ≥ 0) denote the equivalence
class of the regular fiber consisting of ` copies of a fiber of the trivial circle
bundle.

Then, by the construction in Chap. 8, we obtain the complex of Z2-
coefficients

0 −→ C0(S0
pr(4, 3)ori, %0

4,3)
δ0−→ C1(S0

pr(4, 3)ori, %0
4,3)

δ1−→ C2(S0
pr(4, 3)ori, %0

4,3)
δ2−→ C3(S0

pr(4, 3)ori, %0
4,3) −→ 0,

where C0(S0
pr(4, 3)ori, %0

4,3) is generated by 0`, and Ci(S0
pr(4, 3)ori, %0

4,3), i =
1, 2, 3, are generated by I∗` , II

∗
` and III∗` , respectively, for various `. Note that

we have not specified any proper C0 stable map f : M → N of an orientable 4-
manifold into a 3-manifold. Hence, this complex can be regarded as a universal

complex of singular fibers for proper C0 stable maps of orientable 4-manifolds

into 3-manifolds, in the sense that the corresponding complex for a specific
C0 stable map f is realized as a quotient complex of the universal complex
(see Lemma 8.2).
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This complex has the disadvantage that it has too many generators at
each dimension and hence that it is a bit difficult to pursue a straightforward
calculation of its cohomology groups. Thus, it seems reasonable to consider
an equivalence relation weaker than the C0 equivalence. For this, let us fix a
positive integer m.

Definition 9.1. We say that two fibers of proper Thom maps between man-
ifolds of dimensions p + 1 and p, p ≥ 0, are C0 equivalent modulo m circle

components if one of them is C0 equivalent to the disjoint union of the other
one and `m copies of a fiber of the trivial circle bundle for some nonnegative
integer `. We denote this equivalence relation by %0

p+1,p(m). Given a subset
Γp+1,p of Tpr(p+1, p), we shall use the same notation %0

p+1,p(m) for the equiva-
lence relation for Γ ∗

p+1,p induced by the above one, when there is no confusion
(for the notation Γ ∗

p+1,p, refer to Definition 8.21).

Lemma 9.2. Let p be a nonnegative integer and m a positive integer. The C0

equivalence modulo m circle components %0
p+1,p(m) is an admissible equiva-

lence relation for the fibers of elements of Tpr(p+ 1, p) and hence for Γ ∗
p+1,p.

Proof. By definition, we see easily that condition (1) of Definition 7.2 is satis-
fied. Suppose that two fibers are C0 equivalent modulo m circle components.
Then by definition, the corresponding nearby fibers are all C0 equivalent mod-
ulo m circle components. Hence condition (2) of Definition 7.2 is also satisfied.
This completes the proof. ut

Remark 9.3. Furthermore, we can also show that the system of admissible
equivalence relations R0

−1(m) = {%0
p+1,p(m)}p≥0 for the fibers of elements of

T̃pr(−1) is stable in the sense of Definition 8.5. Hence, for any subset Γ̃−1

of T̃pr(−1) which is closed under suspension, the restriction of R0
−1(m) =

{%0
p+1,p(m)}p≥0 to Γ̃ ∗

−1 is also stable.

By Lemma 9.2, for a nonnegative integer p and a positive integer m, we
can define the universal complex of singular fibers

C(Tpr(p+ 1, p), %0
p+1,p(m))

for proper Thom maps between manifolds of dimensions p + 1 and p with
respect to the C0 equivalence modulo m circle components. More generally,
for every subset Γp+1,p of Tpr(p + 1, p), we can define the universal complex
of singular fibers

C(Γp+1,p, %
0
p+1,p(m))

for Γp+1,p with respect to the C0 equivalence modulom circle components (see
Definition 8.21). We call the universal complexes thus obtained the universal

complexes of singular fibers modulo m circle components.
The argument in Chap. 4 can be elaborated to prove the following results.

Details are left to the reader.
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Proposition 9.4. The cohomology groups of the universal complex of singular

fibers modulo two circle components

C(S0
pr(4, 3)ori, %0

4,3(2))

for proper C0 stable maps of orientable 4-manifolds into 3-manifolds are given

as follows:

H0(S0
pr(4, 3)ori, %0

4,3(2)) ∼= Z2 (generated by [0o + 0e]),

H1(S0
pr(4, 3)ori, %0

4,3(2)) ∼= Z2 (generated by [I0o + I1e ] = [I0e + I1o]),

H2(S0
pr(4, 3)ori, %0

4,3(2)) = 0,

where Fo (or Fe) denotes the C0 equivalence class modulo two circle compo-

nents represented by F` with ` odd (resp. even), and [∗] denotes the cohomology

class represented by the cocycle ∗.

Remark 9.5. We can apply Proposition 7.4 as follows. The Z2-homology class
(of closed support) in the target 3-manifold represented by a cycle correspond-
ing to a coboundary of the universal complex of singular fibers (modulo m
circle components) always vanishes. For m = 2, the coboundary groups are
generated by the cochains listed in Table 9.1.

For κ = 3, we can easily read off the generators from Table 4.1 given in
Chap. 4. Note that these lead to the congruences modulo two obtained in
Proposition 4.1.

Compare this with [58, 12.5.4, 12.6.5, 13.4.1] and [38].

Remark 9.6. By using the classification theorems of singular fibers for proper
C0 stable maps in S0

pr(3, 2)ori and in S0
pr(2, 1)ori (see Remark 3.14 and Theo-

rem 2.1), we see that the Z2-linear maps

sκ : Cκ(S0
pr(4, 3)ori, %0

4,3(2)) → Cκ(S0
pr(3, 2)ori, %0

3,2(2))

for κ ≤ 2 and

sκ : Cκ(S0
pr(4, 3)ori, %0

4,3(2)) → Cκ(S0
pr(2, 1)ori, %0

2,1(2))

for κ ≤ 1 induced by the suspension are in fact isomorphisms. Therefore,
some of the above mentioned results are valid also for C(S0

pr(3, 2)ori, %0
3,2(2))

and C(S0
pr(2, 1)ori, %0

2,1(2)). For example, we have the following, where for an
equivalence class of fibers, we use the same notation as the equivalence class
of its suspension.

Table 9.1. Generators for the coboundary groups of C(S0
pr(4, 3)ori, %0

4,3(2))

κ generator(s)

1 (I0e + I1o) − (I0o + I1e)

2 II01o + II01e + IIa
e , II01o + II01e + IIa

o
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(1) For f ∈ S0
pr(3, 2)ori, we have

|II01o (f)|+|II01e (f)|+|IIae (f)| ≡ |II01o (f)|+|II01e (f)|+|IIao(f)| ≡ 0 (mod 2).

(2) For f ∈ S0
pr(2, 1)ori, we have

|I0e(f)| + |I1o(f)| ≡ |I0o(f)| + |I1e(f)| (mod 2).

We can also prove the following. For the notation, refer to Theorem 3.15
and Proposition 9.4.

Proposition 9.7. The cohomology groups of the universal complex of singular

fibers modulo two circle components

C(S0
pr(3, 2), %0

3,2(2))

for proper C0 stable maps of (not necessarily orientable) 3-manifolds into

surfaces are given as follows:

H0(S0
pr(3, 2), %0

3,2(2)) ∼= Z2 (generated by [0o + 0e]),

H1(S0
pr(3, 2), %0

3,2(2)) ∼= Z2 ⊕ Z2 (generated by [̃I0o + Ĩ1e ] = [̃I0e + Ĩ1o]

and [̃I2o + Ĩ2e ]).

The coboundary groups of the cochain complex C(S0
pr(3, 2), %0

3,2(2)) are
generated by the cochains listed in Table 9.2 (see also Remark 4.5).

By the same reason as in Remark 9.6, some of the above results hold also
for C(S0

pr(2, 1), %0
2,1(2)) as well.

Problem 9.8. Is the natural map

Hκ(S̃0
pr(−1),R0

−1) → Hκ(S0
pr(4, 3), %0

4,3)

an isomorphism for κ ≤ 2? More generally, is the natural map

Hκ(S̃0
pr(−1),R0

−1) → Hκ(S0
pr(p+ 1, p), %0

p+1,p)

an isomorphism for κ ≤ p − 1? Compare this with Remark 8.20 and Exam-
ple 8.23.

Table 9.2. Generators for the coboundary groups of C(S0
pr(3, 2), %0

3,2(2))

κ generator(s)

1 (
�

I0e +
�

I1o) − (
�

I0o +
�

I1e)

2
�

II
01

o +
�

II
01

e +
�

II
a

e ,
�

II
01

o +
�

II
01

e +
�

II
a

o ,
�

II
02

o +
�

II
02

e +
�

II
12

o +
�

II
12

e +
�

II
6

o +
�

II
6

e
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Now let us introduce the following equivalence relation among the fibers
weaker than the C0 equivalence.

Definition 9.9. Let us consider the class of maps f in Tpr(n, p) such that the
restriction to its singular set S(f), f |S(f), is finite-to-one. We say that two
fibers of such maps are C0 multi-singularity equivalent (or multi-singularity

equivalent) if the associated multi-germs at their singular points are C0 right-
left equivalent to each other. It is easy to show that this defines an admissible
equivalence relation for the fibers of the above class of maps. Here, we adopt
the convention that if the fibers contain no singular points, then they are al-
ways multi-singularity equivalent. We denote the multi-singularity equivalence
relation by %ms

n,p.
It is easy to see that if n = p+ 1, then

%ms
p+1,p ≤ %0

p+1,p(m) ≤ %0
p+1,p

for every positive integer m.

Remark 9.10. Note that the universal complex of singular fibers with respect
to the multi-singularity equivalence corresponds to Vassiliev’s universal com-
plex of multi-singularities [58] (see also [23, 38]).

By using a characterization of C0 stable maps of orientable 5-dimensional
manifolds into 4-dimensional manifolds as in Proposition 3.1, we can easily
obtain the following. The details are left to the reader.

Proposition 9.11. The cohomology groups of the universal complex of sin-

gular fibers for proper C0 stable maps of orientable 5-dimensional manifolds

into 4-dimensional manifolds with respect to the multi-singularity equivalence

C(S0
pr(5, 4)ori, %ms

5,4)

are given as follows:

H0(S0
pr(5, 4)ori, %ms

5,4)
∼= Z2 (generated by [0]),

H1(S0
pr(5, 4)ori, %ms

5,4)
∼= Z2 (generated by [I

0
+ I

1
]),

H2(S0
pr(5, 4)ori, %ms

5,4) = 0,

H3(S0
pr(5, 4)ori, %ms

5,4) = 0,

where 0 denotes the multi-singularity equivalence class of regular fibers, I
0

the multi-singularity equivalence class of the definite fold mono-germ, I
1

the

multi-singularity equivalence class of the indefinite fold mono-germ, and [∗]
denotes the cohomology class represented by the cocycle ∗.

The above proposition shows that if we consider Vassiliev’s universal com-
plex of multi-singularities instead of our universal complex of singular fibers,



88 9 Stable Maps of 4-Manifolds into 3-Manifolds

then a result like Theorem 5.1 cannot be obtained. In fact, although we have
not included the computation of H3(S0

pr(5, 4)ori, %0
5,4(2)), we will see in Corol-

lary 12.12 that it contains a nontrivial element which corresponds to the
singular fiber of type III8 as in Fig. 3.4 (see also Remark 10.12). We will also
see that such a nontrivial element is closely related to the formula given in
Theorem 5.1. This justifies our study of the universal complexes of singular
fibers instead of multi-singularities.



10

Co-orientable Singular Fibers

Let us now proceed to the construction of another universal complex corre-
sponding to co-orientable strata.

10.1 Complex with Respect to the C
0 Equivalence

Let us begin by the following definition.

Definition 10.1. Let F be a C0 equivalence class of fibers of proper Thom
maps. Consider arbitrary homeomorphisms ϕ̃ and ϕ which make the diagram

(f−1(U0), f
−1(y))

�

ϕ
−−−−−→ (f−1(U1), f

−1(y))yf
yf

(U0, y)
ϕ

−−−−−→ (U1, y)

commutative, where f is a proper Thom map such that the fiber over y belongs
to F, and Ui are open neighborhoods of y. Note that then we have ϕ(F(f) ∩
U0) = F(f) ∩ U1. We say that F is weakly co-orientable if ϕ always preserves
the local orientation of the normal bundle of F(f) at y. We also call any fiber
belonging to a weakly co-orientableC0 equivalence class a weakly co-orientable

fiber. In particular, if the codimension of F coincides with the dimension of the
target of f , then ϕ above should preserve the local orientation of the target
at y.

Note that if F is weakly co-orientable, then F(f) has orientable normal
bundle for every proper Thom map f . The author does not know whether the
converse also holds or not.

Remark 10.2. Note that F(f) is merely a C0 submanifold of the target in
general (see Lemma 7.1 and its proof) and we have to be careful when we talk
about its normal bundle. However, as we have seen in the proof of Lemma 7.1,
it is always locally flat and the orientability of its normal bundle is well-
defined. For example, use the fact that Uir(Ui∩F(f)) is homotopy equivalent
to Sκ−1 × (Ui ∩ F(f)) for appropriate Ui, where κ is the codimension of F.



90 10 Co-orientable Singular Fibers

Note that a weakly co-orientable C0 equivalence class F of fibers has ex-
actly two co-orientations corresponding to the two orientations of the normal
bundle of F(f) at a point y in the target, where f is a Thom map such that
the fiber over y belongs to F and that the target itself is a small neighborhood
of y. When one of the co-orientations is fixed, we call it a co-oriented C0

equivalence class of fibers.
Using the co-orientations, we can construct the universal complex of

weakly co-orientable singular fibers with coefficients in Z as follows. Let us first
fix a dimension pair (n, p) with p− n = k. For κ ∈ Z, let COκ(Tpr(n, p), %

0
n,p)

be the free Z-module consisting of all formal linear combinations with inte-
ger coefficients, which may possibly contain infinitely many terms, of the C0

equivalence classes F of weakly co-orientable and co-oriented fibers of proper
Thom maps between manifolds of dimensions n and p with κ(F) = κ, where
%0
n,p stands for the C0 equivalence among the fibers of elements of Tpr(n, p). In

particular, COκ(Tpr(n, p), %
0
n,p) = 0 for κ > p and κ < 0. Here, we adopt the

convention that −1 times a co-oriented C0 equivalence class coincides with
the C0 equivalence class with reversed co-orientation. For two co-oriented
C0 equivalence classes of fibers F and G with κ(F) = κ(G) − 1, we define
[F : G] = nF(G) ∈ Z, which is called the incidence coefficient, as in Chap. 7,
where we take the co-orientations into account and the result is an integer.1

Then we define the homomorphism

δκ : COκ(Tpr(n, p), %
0
n,p) → COκ+1(Tpr(n, p), %

0
n,p)

by

δκ(F) =
∑

κ(G)=κ+1

[F : G]G, (10.1)

for F with κ(F) = κ. Note that the homomorphism δκ is well-defined (for
details, see the remarks just after (8.1) in Chap. 8).

Then, we can prove δκ+1 ◦ δκ = 0 as in Chap. 8 or in [58, §8]. Therefore,

CO(Tpr(n, p), %
0
n,p) = (COκ(Tpr(n, p), %

0
n,p), δκ)κ

constitutes a complex and its cohomology groups

H∗(CO(Tpr(n, p), %
0
n,p))

are well-defined. We call the complex the universal complex of weakly co-

orientable singular fibers for proper Thom maps between manifolds of dimen-

sions n and p with respect to the C0 equivalence.

Remark 10.3. Let F be a weakly co-orientable and co-oriented C0 equivalence
class of fibers and G a C0 equivalence class of fibers such that κ(F) = κ(G)−1.

1We can prove that the incidence coefficient in this sense is well-defined. Details
are left to the reader.
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Then, by using a “local co-orientation” for G, we can define the incidence
coefficient [F : G] as an integer. If this integer is non-zero, then we can show
that G is also weakly co-orientable. In other words, if G is not weakly co-
orientable, then the incidence coefficient [F : G] necessarily vanishes.

By restricting the class of Thom maps that we consider, we can also obtain
the universal complex of weakly co-orientable singular fibers for such a class
of maps (for details, refer to §8.6). Such a complex is a quotient complex of
the above constructed universal complex (see Lemma 8.19).

Example 10.4. For proper C0 stable maps of orientable 4-manifolds into 3-
manifolds, we see easily that 0`, I0` , I1` , II01` , IIa` , III0a` , III1a` , and IIIb` are weakly
co-orientable for every `, and that the others are not weakly co-orientable. Us-
ing these weakly co-orientable fibers, we can construct the universal complex
of weakly co-orientable singular fibers with coefficients in Z as follows:

0 −→ CO0(S0
pr(4, 3)ori, %0

4,3)
δ0−→ CO1(S0

pr(4, 3)ori, %0
4,3)

δ1−→ CO2(S0
pr(4, 3)ori, %0

4,3)
δ2−→ CO3(S0

pr(4, 3)ori, %0
4,3) −→ 0.

We call this the universal complex of weakly co-orientable singular fibers for

proper C0 stable maps of orientable 4-manifolds into 3-manifolds.

By a method similar to that in §8.3, for an integer k, we can also define
the universal complex CO(T̃pr(k),R0

k) of weakly co-orientable singular fibers
for proper Thom maps of codimension k with respect to the stable system of
C0 equivalence relations as the projective limit of the complexes

CO(Tpr(p− k, p), %0
p−k,p),

where R0
k = {%0

p−k,p}p. We write the associated cohomology group of dimen-

sion κ by Hκ(CO(T̃pr(k),R0
k)). As in §8.4, we can also give another description

of this universal complex. Furthermore, we can also define a similar univer-
sal complex of weakly co-orientable singular fibers for a given class of Thom
maps, and show that it is a quotient complex of the above constructed uni-
versal complex for Thom maps.

10.2 Complex with Respect to an Admissible

Equivalence

Now let us fix an admissible equivalence relation %n,p among the fibers of
proper Thom maps between smooth manifolds of dimensions n and p. The
following definition strongly depends on %n,p.



92 10 Co-orientable Singular Fibers

Definition 10.5. An equivalence class F̃ of fibers of proper Thom maps with
respect to %n,p is co-orientable (or strongly co-orientable) if for any homeo-
morphism ϕ : (U0, y) → (U1, y) such that

ϕ(G̃(f) ∩ U0) = G̃(f) ∩ U1

for every equivalence class G̃, ϕ preserves the local orientation of the normal
bundle of F̃(f) at y, where f is a proper Thom map such that the fiber over y

belongs to F̃, and Ui are open neighborhoods of y. (Note that by Lemma 7.3,

F̃(f) is a C0 submanifold of the target.) In particular, if the codimension of F̃

coincides with the dimension of the target, then ϕ should preserve the local
orientation of the target at y. Note that if F̃ is co-orientable, then F̃(f) has
orientable normal bundle for every proper Thom map f , while the converse
may not hold in general.

Remark 10.6. When the admissible equivalence relation %n,p is given by the
C0 equivalence, i.e., when %n,p = %0

n,p, we can show that a C0 equivalence class
of fibers is weakly co-orientable if it is strongly co-orientable. The author does
not know whether the converse also holds or not.

Using Definition 10.5, we can naturally define the universal complex of

co-orientable singular fibers for proper Thom maps between manifolds of di-

mensions n and p with respect to the admissible equivalence relation %n,p, and
we denote it by CO(Tpr(n, p), %n,p). Note that its cochain group at each di-
mension is a free Z-module. We denote the corresponding cohomology group
of dimension κ by Hκ(CO(Tpr(n, p), %n,p)).

If we are given a stable system of admissible equivalence relations

Rk = {%p−k,p}p

for the fibers of proper Thom maps of codimension k, then we can also define
the corresponding universal complex CO(T̃pr(k),Rk) as the projective limit of
the complexes CO(Tpr(p−k, p), %p−k,p) as in §8.3. We denote the corresponding

cohomology group of dimension κ by Hκ(CO(T̃pr(k),Rk)). Note that if the
equivalence class of the suspension of a fiber whose equivalence class has
codimension κ is co-orientable of codimension κ, then the original equivalence
class is necessarily co-orientable, and hence the cochain map

CO(Tpr(n+ `, p+ `), %n+`,p+`) → CO(Tpr(n, p), %n,p)

is well-defined for every (n, p) with p − n = k and ` > 0. We can also give

another description of the universal complex CO(T̃pr(k),Rk) as in §8.4.
Let us consider two admissible equivalence relations %n,p and %n,p for the

fibers of elements of Tpr(n, p). The following lemma is a direct consequence of
Definition 10.5.
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Lemma 10.7. Suppose %n,p ≤ %n,p. Furthermore, suppose that F̃ and F are

equivalence classes with respect to %n,p and %n,p respectively such that F̃ ⊃ F

and that they have the same codimension. If F̃ is co-orientable, then so is F.

By virtue of the above lemma, the homomorphism

ε%n,p,%n,p
: CO(Tpr(n, p), %n,p) → CO(Tpr(n, p), %n,p)

as in (8.7) is a well-defined cochain map. We can also define a similar cochain
map for two stable systems of admissible equivalence relations.

Furthermore, as in §8.6, by restricting the class of Thom maps that we
consider, we can also obtain the universal complex of co-orientable singular
fibers for such a class of maps. Such a complex is a quotient complex of one
of the above constructed universal complexes of co-orientable singular fibers
for proper Thom maps.

10.3 Stable Maps of 4-Manifolds into 3-Manifolds

Now let us consider proper C0 stable maps of orientable 4-manifolds into 3-
manifolds. By considering the C0 equivalence modulo m circle components
introduced in Definition 9.1, we get the corresponding universal complex of
co-orientable singular fibers modulo m circle components. We denote the re-
sulting complex by CO(S0

pr(4, 3)ori, %0
4,3(m)). For m = 2, we see easily that

0`, I0` , I1` , II01` , IIa` , III0a` , III1a` , and IIIb` are co-orientable for ` = o, e, and
that the others are not co-orientable, using the notation as in Proposition 9.4
(compare this with Example 10.4).

Then we easily get the following.2

Proposition 10.8. The cohomology groups of the universal complex

CO(S0
pr(4, 3)ori, %0

4,3(2))

of co-orientable singular fibers modulo two circle components for proper C0

stable maps of orientable 4-manifolds into 3-manifolds are given as follows:

H0(CO(S0
pr(4, 3)ori, %0

4,3(2))) ∼= Z (generated by [0o + 0e]),

H1(CO(S0
pr(4, 3)ori, %0

4,3(2))) ∼= Z (generated by [I0o + I1e ] = [I0e + I1o]),

H2(CO(S0
pr(4, 3)ori, %0

4,3(2))) = 0,

where [∗] denotes the cohomology class represented by the cocycle ∗.

2In what follows, for each co-orientable equivalence class, we fix its co-orientation
once and for all, although we do not mention it explicitly.
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Remark 10.9. As in Remark 9.5, if the target 3-manifold is orientable, then
we can show that the integral homology class (of closed support) in the target
3-manifold represented by a cycle corresponding to a coboundary of the uni-
versal complex of co-orientable singular fibers (modulo m circle components)
always vanishes. For m = 2, the coboundary groups are generated by the
cochains listed in Table 10.1.

Thus, by the same reason as in Remark 9.6, we get the following proposi-
tion, where for an equivalence class of fibers, we use the same notation as the
equivalence class of its suspension.

Proposition 10.10. (1) Let f : M → N be a C0 stable map of a closed

orientable surface into a 1-dimensional manifold N . Then we have

||I0e(f)|| + ||I1o(f)|| = ||I0o(f)|| + ||I1e(f)||,

where for a co-oriented equivalence class F̃ of fibers, ||F̃(f)|| denotes the alge-

braic number of fibers of f of type F̃.

(2) Let f : M → N be a C0 stable map of a closed orientable 3-manifold

into an orientable surface N . Then we have

||II01o (f)|| + ||II01e (f)|| + ||IIae (f)|| = ||II01o (f)|| + ||II01e (f)|| + ||IIao(f)|| = 0.

(3) Let f : M → N be a C0 stable map of a closed orientable 4-manifold

into an orientable 3-manifold N . Then we have

||III0ao (f)||+ ||III1ae (f)||+ ||IIIbe(f)|| = ||III0ae (f)||+ ||III1ao (f)||+ ||IIIbo(f)|| = 0.

Let us pose the following problem concerning Chaps. 8, 9 and 10.

Problem 10.11. Let us consider the homology class in the target repre-
sented by a cycle corresponding to a cocycle of the universal complex of
(co-orientable) singular fibers representing a nontrivial cohomology class of
the complex. Can it be written as a polynomial of some characteristic classes
as in [58, 23, 38]? Can we find such a polynomial which is universal in a cer-
tain sense, like Thom polynomials for singularities? (For Thom polynomials,
see [3, 19] for example.)

Table 10.1. Generators for the coboundary groups of CO(S0
pr(4, 3)ori, %0

4,3(2))

κ generator(s)

1 (I0e + I1o) − (I0o + I1e)

2 II01o + II01e + IIa
e , II01o + II01e + IIa

o

3 III0a
o + III1a

e + IIIb
e, III0a

e + III1a
o + IIIb

o
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Note that the above problem is closely related to the homomorphism which
will be defined in Chap. 11.

Remark 10.12. We have not included the calculation of the third cohomology
groups of the universal complexes of (co-orientable) singular fibers modulo
two circle components for proper C0 stable maps of orientable 4-manifolds
into 3-manifolds, since the corresponding complex terminates essentially at
dimension three. In order to calculate the third cohomology groups which
make sense, we have to calculate the third cohomology group of the complex
C(S0

pr(5, 4)ori, %0
5,4(2)) (or CO(S0

pr(5, 4)ori, %0
5,4(2))). In other words, we have to

classify the singular fibers of proper C0 stable maps of orientable 5-manifolds
into 4-manifolds.

Nevertheless, Theorem 5.1 indicates that the singular fiber III8 might rep-
resent a generator of the third cohomology group and that the corresponding
homology class for proper C0 stable maps of orientable 4-manifolds into 3-
manifolds can be written in terms of a polynomial of Stiefel-Whitney classes.
In fact, this will be shown to be correct in Chap. 12 by using Theorem 5.1
(see Corollary 12.12).

In the case where the dimensions are smaller by two, we can check that
the above expectations are affirmative as follows. As we have seen in Propo-
sition 9.7, the singular fiber Ĩ2 (or more precisely, the cocycle Ĩ2o + Ĩ2e) rep-
resents a generator of the first cohomology group of the universal complex
C(S0

pr(3, 2), %0
3,2(2)) of singular fibers for proper C0 stable maps of (not neces-

sarily orientable) 3-manifolds into surfaces with respect to the C0 equivalence
modulo two circle components. Furthermore, by Corollary 2.4, the correspond-
ing 0-dimensional homology class for Morse functions on surfaces is nothing
but the Euler characteristic modulo two of the source surface, which coincides
with its top Stiefel-Whitney class (for a more precise argument, see Chap. 14).

The following problem is closely related to Problem 4.6. See also Prob-
lem 11.14.

Problem 10.13. For each generator of the cohomology groups of the univer-
sal complex of (co-orientable) singular fibers for proper C0 stable maps of
orientable 4-manifolds into 3-manifolds, does there exist a C0 stable map of
a closed orientable 4-manifold into a 3-manifold whose corresponding cycle
represents a nonzero element in the homology of the target?

Compare the above problem with [58, §17].
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Homomorphism Induced by a Thom Map

In this chapter, we show that one can obtain a lot of information on the coho-
mology groups of the universal complexes of singular fibers by using concrete
examples of Thom maps.

Let Γ = Γn,p be a subset of Tpr(n, p) and %Γ = %Γn,p an admissible equiva-
lence relation among the fibers of elements of Γn,p.

Definition 11.1. Let
c =

∑

κ(
�

F)=κ

n �

F
F̃

be a κ-dimensional cochain of the complex C(Γn,p, %
Γ
n,p), where n �

F
∈ Z2. For

a Thom map f : M → N which is an element of Γ ∗ = Γ ∗
n,p, we define c(f) to

be the closure of the set of points y ∈ N such that the fiber over y belongs to
some F̃ with n �

F
6= 0. If c is a cocycle, then c(f) is a Z2-cycle of closed support

of codimension κ of the target manifold N . If in addition, M is closed and
κ > 0, then c(f) is a Z2-cycle in the usual sense.

When c is a cocycle of the complex CO(Γn,p, %
Γ
n,p), c(f) is naturally a

Z-cycle, provided that the target manifold N is oriented.

Lemma 11.2. Suppose that c and c′ are κ-dimensional cocycles of the com-

plex C(Γn,p, %
Γ
n,p) which are cohomologous. Then c(f) and c′(f) are homolo-

gous in N for every f ∈ Γ ∗
n,p.

Proof. There exists a (κ− 1)-dimensional cochain d of the complex such that
c − c′ = δκ−1d. Then we see easily that c(f) − c′(f) = ∂d(f), where d(f) is
defined similarly. Hence the result follows. ut

Note that a similar result holds also for cocycles of the universal complex
of co-orientable singular fibers.

Definition 11.3. Let α be a κ-dimensional cohomology class of the complex
C(Γn,p, %

Γ
n,p). For a proper Thom map f : M → N which is an element of

Γ ∗
n,p, we define α(f) ∈ Hc

p−κ(N ;Z2) to be the homology class represented
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by the cycle c(f) of closed support, where c is a cocycle representing α and
p = dimN . By Lemma 11.2, this is well-defined. When M is closed and κ > 0,
we can also regard α(f) as an element of Hp−κ(N ;Z2).

Then we can define the map

ϕf : Hκ(Γn,p, %
Γ
n,p) → Hκ(N ;Z2)

by ϕf (α) = α(f)∗, where α(f)∗ ∈ Hκ(N ;Z2) is the Poincaré dual to
α(f) ∈ Hc

p−κ(N ;Z2). This is clearly a homomorphism and we call it the
homomorphism induced by the Thom map f . When M is closed and κ > 0, we
can also regard ϕf as a homomorphism into the cohomology group Hκ

c (N ;Z2)
of compact support.

When the target manifold N is oriented, we can define

ϕf : Hκ(CO(Γn,p, %
Γ
n,p)) → Hκ(N ;Z)

similarly.

Suppose that %Γ = %
Γn,p
n,p and %Γ = %

Γn,p
n,p are two admissible equivalence

relations for the fibers of elements of Γ = Γn,p ⊂ Tpr(n, p) such that %
Γn,p
n,p ≤

%
Γn,p
n,p . Then the following diagram is clearly commutative for every element
f : M → N of Γ ∗:

Hκ(Γ, %Γ )
ε

%Γ ,%Γ ∗

−−−−−→Hκ(Γ, %Γ )

ϕf↘ ↙ϕf

Hκ(N ;Z2),

where ε%Γ ,%Γ ∗ : Hκ(Γ, %Γ ) → Hκ(Γ, %Γ ) is the homomorphism induced by the

natural cochain map ε%Γ ,%Γ : C(Γ, %Γ ) → C(Γ, %Γ ) defined in §§8.5 and 8.6.
Furthermore, if Γ ⊂ Γ ′ ⊂ Tpr(n, p), then for every element f : M → N of

Γ ∗, we have the commutative diagram

Hκ(Γ ′, %Γ
′

)
πΓ ′,Γ∗

−−−−−→Hκ(Γ, %Γ )

ϕf↘ ↙ϕf

Hκ(N ;Z2),

where %Γ
′

is an admissible equivalence relation among the fibers of elements
of Γ ′, %Γ is its restriction to the fibers of elements of Γ , and πΓ ′,Γ∗ is the

homomorphism induced by the natural cochain map πΓ ′,Γ : C(Γ ′, %Γ
′

) →
C(Γ, %Γ ) defined in §8.6.

In particular, we have the commutative diagram

Hκ(Γn,p, %
Γ
n,p) → Hκ(Γn,p, %

0
n,p)

ϕf↘ ↙ϕf

↓ Hκ(N ;Z2) ↓
ϕf↗ ↖ϕf

Hκ(f, %Γn,p) → Hκ(f, %0
n,p)
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for every element f : M → N of Γ ∗
n,p, where Γn,p ⊂ Tpr(n, p), %

Γ
n,p is an

admissible equivalence relation for the fibers of elements of Γn,p, %
0
n,p denotes

the C0 equivalence, and the vertical and the horizontal homomorphisms are
the natural ones defined as above (see also (8.8)).

Now as in §8.6, let

Γ̃ = Γ̃k =
⋃

p−n=k

Γn,p

be a set of C0 equivalence classes of fibers of proper Thom maps of codi-
mension k such that each Γn,p is an ascending set of C0 equivalence classes

of fibers of elements of Tpr(n, p), and that Γ̃ is closed under suspension in

the sense of Definition 8.4. Furthermore, let R
�

Γ
k = {%

Γp−k,p

p−k,p }p be a system of

equivalence relations, where each %
Γp−k,p

p−k,p is an admissible equivalence relation

among the fibers of Γp−k,p-maps. We assume that the system R
�

Γ
k of admis-

sible equivalence relations is stable in the sense of Definition 8.5. Then, for
every f : M → N in Γ ∗

n,p with p−n = k, we have the natural and well-defined
homomorphism

ϕ̃f : Hκ(Γ̃k,R
�

Γ
k ) → Hκ(N ;Z2)

which is defined as the composition of the homomorphism

Φκn,p∗ : Hκ(Γ̃k,R
�

Γ
k ) → Hκ(Γn,p, %

Γn,p
n,p )

induced by the cochain map Φκn,p : Cκ(Γ̃k,R
�

Γ
k ) → Cκ(Γn,p, %

Γn,p
n,p ) as in Re-

mark 8.20 and the homomorphism

ϕf : Hκ(Γn,p, %
Γn,p
n,p ) → Hκ(N ;Z2)

defined above. We can also use the other description of the universal complex
as in §8.4 and the definition as in Definition 11.3 in order to define ϕ̃f .

Remark 11.4. In the above situation, it is easy to verify that for every f : M →
N in Γ ∗

n,p and a positive integer `, the following diagram is commutative:

Hκ(Γn+`,p+`, %
Γn+`,p+`

n+`,p+` )
sκ∗−−−−−→ Hκ(Γn,p, %

Γn,p
n,p )yϕ �

f

yϕf

Hκ(N ×R`;Z2) ∼= Hκ(N ;Z2),

where sκ∗ is the homomorphism induced by the suspension, f̃ : M × R` →
N ×R` is the `-th suspension of f , and the last horizontal isomorphism is the
natural one.

As a direct consequence of the above definitions, we have the following.
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Proposition 11.5. In the above situations, we have

rankZ2 ϕf ≤ dimZ2 H
κ(Γn,p, %

Γn,p
n,p )

and

rankZ2 ϕ̃f ≤ dimZ2 H
κ(Γ̃k,R

�

Γ
k ).

Remark 11.6. It is sometimes difficult to directly calculate the cohomology
group H∗(Γn,p, %

0
n,p) with respect to the C0 equivalence. However, the above

argument shows that if we have an element α of the cohomology group

H∗(Γn,p, %
Γn,p
n,p ) with respect to an admissible equivalence relation %

Γn,p
n,p such

that ϕf (α) 6= 0 for some f ∈ Γ ∗
n,p, then the image of α in H∗(Γn,p, %

0
n,p) does

not vanish. In other words, by calculating the cohomology group with respect
to an admissible equivalence relation, which is often much easier than that
with respect to the C0 equivalence, and by constructing explicit examples, we
can find nontrivial elements of the cohomology group with respect to the C0

equivalence. This justifies our study developed in Chaps. 6 and 9.

Let us prepare some lemmas, which will be used later. For this, let us
introduce the following definitions.

Definition 11.7. Let f : M → N be a proper Thom map and g : V → N a
smooth map which is transverse to f and to all the strata of N . Put

Ṽ = {(x, y) ∈M × V : f(x) = g(y)} ⊂M × V

and consider the following commutative diagram:

Ṽ
�

g
−−−−−→ My�

f

yf
V

g
−−−−−→ N,

where g̃ and f̃ are the restrictions of the projections to the first and the
second factors respectively. Note that Ṽ is a smooth manifold of dimension
dimV + dimM − dimN and that f̃ is a proper Thom map. We call f̃ the
pull-back of f by g and say that f̃ is obtained by pulling back f by g.

Definition 11.8. Suppose that

Γn,p ⊂ Tpr(n, p) and Γn+`,p+` ⊂ Tpr(n+ `, p+ `)

are given with ` > 0 such that the `-th suspension of an element of Γn,p always
belong to Γn+`,p+`. Let f : M → N be an arbitrary element of Γn+`,p+` and
g : IntDp → N an arbitrary smooth map which is transverse to f and to all
the strata of N . Note that the pull-back f̃ of f by g is then an element of
Tpr(n, p). If the fibers of f̃ always belong to Γ ∗

n,p, then we say that Γn,p is
transversely complete with respect to Γn+`,p+`.
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Furthermore, we say that

Γ̃k =
⋃

p−n=k

Γn,p ⊂ T̃pr(k)

is transversely complete if it is closed under suspension and if Γn,p is trans-
versely complete with respect to Γn+`,p+` for all n, p and `.

Note that the set T̃pr(k) is clearly transversely complete.
The following lemma can be proved by the same argument as in the proof

of Lemma 8.6. Details are left to the reader.

Lemma 11.9. If Γn,p is transversely complete with respect to Γn+`,p+`, then

the natural Z2-linear map

sκ : Cκ(Γn+`,p+`, %
Γn+`,p+`

n+`,p+` ) → Cκ(Γn,p, %
Γn,p
n,p )

induced by the suspension is a monomorphism for every κ ≤ p, where %
Γn+`,p+`

n+`,p+`

and %
Γn,p
n,p are admissible equivalence relations for the fibers of elements of

Γn+`,p+` and Γn,p, respectively, which are stable in a sense similar to Defini-

tion 8.5.

In the following lemma, we assume that each Γn,p, p−n = k, is a subset of

Tpr(n, p) and that Γ̃k = ∪p−n=kΓn,p is closed under suspension. Furthermore,

{%
Γn,p
n,p }p−n=k is a stable system of admissible equivalence relations for the

fibers of elements of Γ̃k, where each %
Γn,p
n,p is an admissible equivalence relation

for Γ ∗
n,p. Recall that Γ ∗

n,p denotes the set of C0 equivalence classes of fibers of
elements of Γn,p and, when there is no confusion, it also denotes the set of all
Γ ∗
n,p-maps (see §8.6).

Lemma 11.10. Let α ∈ Hp(Γn+`,p+`, %
Γn+`,p+`

n+`,p+` ) be a cohomology class such

that ϕf (sp∗α) = 0 in Hp(N ;Z2) for every Thom map f : M → N in Γ ∗
n,p

with both M and N being closed, where

sp∗ : Hp(Γn+`,p+`, %
Γn+`,p+`

n+`,p+` ) → Hp(Γn,p, %
Γn,p
n,p )

is the homomorphism induced by the suspension, and

ϕf : Hp(Γn,p, %
Γn,p
n,p ) → Hp(N ;Z2)

is the homomorphism induced by f . Furthermore, suppose that Γn,p is trans-

versely complete with respect to Γn+`,p+`. Then, for every g : M ′ → N ′ in

Γ ∗
n+`,p+`, we have ϕg(α) = 0 in Hp(N ′;Z2).

Proof. Let c be a cocycle of Cp(Γn+`,p+`, %
Γn+`,p+`

n+`,p+` ) which represents α. We
have only to show that the homology class [c(g)] ∈ Hc

` (N
′;Z2) represented
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by c(g) vanishes. For this, it suffices to prove that the intersection number
[c(g)] · ξ vanishes for all ξ ∈ Hp(N

′;Z2) by Poincaré duality.
By [56], there exists a closed p-dimensional manifold V and a smooth map

h : V → N ′ such that h∗[V ]2 = ξ, where [V ]2 ∈ Hp(V ;Z2) is the fundamental
class of V . We may assume that h is transverse to g and to all the strata of N ′.
Let us consider the pull-back g̃ : Ṽ → V of g by h (see Definition 11.7). Since
Γn,p is transversely complete with respect to Γn+`,p+` by our assumption, we
see that g̃ is an element of Γ ∗

n,p. Furthermore, both the source and the target
manifolds of g̃ are closed. Therefore, by our assumption, ϕ �

g(sp∗α) = 0; in
other words, (spc)(g̃) consists of an even number of points in V . Hence, the
intersection number of [c(g)] and ξ vanishes. This completes the proof. ut

In fact, we have the following.

Lemma 11.11. Suppose that Γn,p is transversely complete with respect to

Γn+`,p+`. Then, for a cohomology class α ∈ Hp(Γn+`,p+`, %
Γn+`,p+`

n+`,p+` ), the fol-

lowing two are equivalent to each other.

(1) For every proper Thom map f : M → N in Γ ∗
n,p, we have ϕf (sp∗α) = 0

in Hp(N ;Z2).
(2) For every proper Thom map g : M ′ → N ′ in Γ ∗

n+`,p+`, we have ϕg(α) = 0
in Hp(N ′;Z2).

Proof. We have already proved that (1) implies (2). Suppose that (2) holds.
For a given proper Thom map f : M → N in Γ ∗

n,p, consider the commutative

diagram given in Remark 11.4 with κ = p. Since the `-th suspension f̃ :
M ×R` → N ×R` is a Γ ∗

n+`,p+`-map, we have ϕ �

f (α) = 0 by our assumption.

Hence (1) follows. ut

Remark 11.12. In fact, we can prove the following, without assuming that
Γn,p is transversely complete with respect to Γn+`,p+`. For a cohomology class
β ∈ Im sp∗, the following two are equivalent to each other, where

sp∗ : Hp(Γn+`,p+`, %
Γn+`,p+`

n+`,p+` ) → Hp(Γn,p, %
Γn,p
n,p )

is the homomorphism induced by the suspension.

(1) For every proper Thom map f : M → N in Γ ∗
n,p, we have ϕf (β) = 0 in

Hp(N ;Z2).
(2) For every Thom map f : M → N in Γ ∗

n,p with both M and N being closed,
we have ϕf (β) = 0 in Hp(N ;Z2).

The proof goes as follows. Suppose (2) holds and take f as in (1). Consider
the commutative diagram given in Remark 11.4 with κ = p. Then apply an
argument similar to that in the proof of Lemma 11.10, using a smooth map h
of a closed p-dimensional manifold into N×R`. Since f̃ is the `-th suspension
of f , the pull-back of f̃ by h is a Γ ∗

n,p-map. Hence, from (2), (1) follows.
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Note that all the results in this chapter hold also for the universal com-
plexes of co-orientable singular fibers and the cohomology groups with Z-
coefficients, provided that the target manifolds are oriented.

Problem 11.13. Are the cohomology groups

Hκ(Tpr(n, p), %
0
n,p), (11.1)

Hκ(S0
pr(n, p), %

0
n,p), (11.2)

Hκ(CO(Tpr(n, p), %
0
n,p)), (11.3)

Hκ(CO(S0
pr(n, p), %

0
n,p)), (11.4)

Hκ(T̃pr(k),R
0
k), (11.5)

Hκ(S̃0
pr(k),R

0
k), (11.6)

Hκ(CO(T̃pr(k),R
0
k)), (11.7)

Hκ(CO(S̃0
pr(k),R

0
k)) (11.8)

finitely generated for all κ?

The following is a generalization of Problem 10.13.

Problem 11.14. Let α be an element of one of the cohomology groups (11.1)–
(11.8). If α 6= 0, then does there exist a smooth map f (in the relevant class)
such that ϕf (α) does not vanish? In other words, if ϕf (α) = 0 for all f , then
does α vanish?

As to an interpretation of the above problem, see Remark 12.14.
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Cobordism Invariance

In this chapter, we define cobordisms of singular maps with a given set of
singular fibers and show that the homomorphism ϕf induced by a Thom map
f defined in Chap. 11 is a cobordism invariant of f when restricted to a
certain subgroup. We also apply this notion of cobordisms to give a necessary
and sufficient condition for a certain cochain of the universal complex to be a
cocycle.

12.1 Cobordism of Singular Maps

As in §8.6, let

Γ̃ = Γ̃k =
⋃

p−n=k

Γn,p

be a set of C0 equivalence classes of fibers of proper Thom maps of codi-
mension k such that each Γn,p is an ascending set of C0 equivalence classes

of fibers of elements of Tpr(n, p), and that Γ̃ is closed under suspension in
the sense of Definition 8.4. Recall that a proper Thom map f : M → N of
codimension k is a Γ̃k-map if its fibers all lie in Γ̃k. If M is a manifold with
boundary, then we also suppose that f(∂M) ⊂ ∂N and for collar neighbor-
hoods C = ∂M × [0, 1) and C ′ = ∂N × [0, 1) of ∂M and ∂N respectively, we
have f |C = (f |∂M ) × id[0,1).

Definition 12.1. For a smooth manifold N , two Γ̃k-maps f0 : M0 → N and
f1 : M1 → N of closed manifolds M0 and M1 are said to be Γ̃k-cobordant if
there exist a compact manifold W with boundary the disjoint union of M0 and
M1, and a Γ̃k-map F : W → N × [0, 1] such that fi = F |Mi

: Mi → N × {i},

i = 0, 1. We call F a Γ̃k-cobordism between f0 and f1.
When Mi are oriented and W can be taken to be oriented so that ∂W =

(−M0) qM1, then we say that f0 and f1 are oriented Γ̃k-cobordant.
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Remark 12.2. The notion of Γ̃k-maps and that of Γ̃k-cobordisms were essen-
tially introduced by Rimányi and Szűcs [40], although they considered only the
nonnegative codimension case and they called them τ -maps and τ -cobordisms
respectively. Note that if the codimension is nonnegative, then a fiber of a
proper generic map is always a finite set of points and that map-germs along
the fibers are nothing but multi-germs. In the nonnegative codimension case,
Rimányi and Szűcs constructed a universal Γ̃k-map and this gives rise to a lot
of Γ̃k-cobordism invariants. Our aim in this chapter is to construct invariants
of Γ̃k-cobordisms even in the negative codimension case.

Remark 12.3. In Definition 12.1, when the dimensions of the source manifolds
M0 and M1 are equal to n, we have only to give Γn,p and Γn+1,p+1 instead of

the whole Γ̃k in order to define the notion of Γ̃k-cobordisms. For this reason,
we will sometimes talk about Γ̃k-cobordisms even when only Γn,p and Γn+1,p+1

are given.

Let
sκ∗ : Hκ(Γn+1,p+1, %

Γn+1,p+1

n+1,p+1 ) → Hκ(Γn,p, %
Γn,p
n,p )

be the homomorphism induced by the suspension, where R
�

Γ
k = {%

Γp−k,p

p−k,p }p is

a stable system of admissible equivalence relations for Γ̃ .

Lemma 12.4. Let fi : Mi → N , i = 0, 1, be Thom maps which are elements

of Γn,p and are Γ̃k-maps, where we assume that Mi are closed. If they are

Γ̃k-cobordant, then for every κ we have

ϕf0 |Im sκ∗
= ϕf1 |Im sκ∗

: Im sκ∗ → Hκ(N ;Z2).

Proof. Let F : W → N × [0, 1] be a Γ̃k-cobordism between f0 and f1. Let c be

an arbitrary κ-dimensional cocycle of the complex C(Γn+1,p+1, %
Γn+1,p+1

n+1,p+1 ) and

set c = sκ(c) ∈ Cκ(Γn,p, %
Γn,p
n,p ). Then we see easily that ∂c(F ) = c(f1)×{1}−

c(f0) × {0}, since c is a cocycle (for the notation, refer to Definition 11.1).
Then the result follows immediately. ut

Remark 12.5. In Lemma 12.4, if κ ≥ 1, then ϕfi
can be regarded as homo-

morphisms into Hκ
c (N ;Z2), since Mi are closed. In this case, we can prove

that
ϕf0 |Im sκ∗

= ϕf1 |Im sκ∗
: Im sκ∗ → Hκ

c (N ;Z2).

Definition 12.6. The pairs {Γn+1,p+1, %
Γn+1,p+1

n+1,p+1 } and {Γn,p, %
Γn,p
n,p } are said

to be compatible at dimension κ if the homomorphism

sκ∗ : Hκ(Γn+1,p+1, %
Γn+1,p+1

n+1,p+1 ) → Hκ(Γn,p, %
Γn,p
n,p )

is surjective.
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Lemma 12.7. The pairs {Γn+1,p+1, %
Γn+1,p+1

n+1,p+1 } and {Γn,p, %
Γn,p
n,p } are compat-

ible at dimension κ if the following conditions hold.

(1) Every fiber in Γn+1,p+1 of codimension κ+ 1 with respect to %
Γn+1,p+1

n+1,p+1 is a

suspension of a fiber in Γn,p of the same codimension with respect to %
Γn,p
n,p .

(2) If an equivalence class of fibers in Γn,p with respect to %
Γn,p
n,p has codi-

mension κ, then the equivalence class of their suspensions with respect to

%
Γn+1,p+1

n+1,p+1 has also codimension κ.

(3) Two fibers in Γn,p whose equivalence classes with respect to %
Γn,p
n,p have

codimension κ are equivalent with respect to %
Γn,p
n,p if and only if their sus-

pensions are equivalent with respect to %
Γn+1,p+1

n+1,p+1 .

Proof. If κ < 0 or κ > p, then the result is trivial. When 0 ≤ κ ≤ p, by an
argument similar to that in Remark 8.20, we see that if conditions (2) and (3)
are satisfied, then

sκ : Cκ(Γn+1,p+1, %
Γn+1,p+1

n+1,p+1 ) → Cκ(Γn,p, %
Γn,p
n,p )

is an epimorphism. Furthermore, condition (1) implies that sκ+1 is a monomor-
phism (see also Remark 8.20). Thus the homomorphism sκ∗ induced on the
κ-dimensional cohomology is an epimorphism, and hence the compatibility
follows. ut

Corollary 12.8. Consider the case where Γn,p = Tpr(n, p) for all (n, p) with

p − n = k, and put %n,p = %
Γn,p
n,p . We suppose that κ+ 1 ≤ p. Then the pairs

{Tpr(n+1, p+1), %n+1,p+1} and {Tpr(n, p), %n,p} are compatible at dimension

κ if the following two conditions hold.

(1) If an equivalence class of fibers of elements of Tpr(n, p) with respect to %n,p
has codimension κ, then the equivalence class of their suspensions with

respect to %n+1,p+1 has also codimension κ.
(2) Two fibers of elements of Tpr(n, p) whose equivalence classes with respect

to %n,p have codimension κ are equivalent with respect to %n,p if and only

if their suspensions are equivalent with respect to %n+1,p+1.

Proof. Recall that if κ+ 1 ≤ p, then by Lemma 8.6,

sκ+1 : Cκ+1(Tpr(n+ 1, p+ 1), %n+1,p+1) → Cκ+1(Tpr(n, p), %n,p)

is always a monomorphism. Then the result follows from Lemma 12.7. ut

Corollary 12.9. We suppose that the pairs {Γn+1,p+1, %
Γn+1,p+1

n+1,p+1 } and {Γn,p,

%
Γn,p
n,p } are compatible at dimension κ. Let fi : Mi → N , i = 0, 1, be Thom

maps which are elements of Γn,p and are Γ̃k-maps, where we assume that Mi

are closed. If they are Γ̃k-cobordant, then we have

ϕf0 = ϕf1 : Hκ(Γn,p, %
Γn,p
n,p ) → Hκ(N ;Z2).
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If κ ≥ 1, then we also have

ϕf0 = ϕf1 : Hκ(Γn,p, %
Γn,p
n,p ) → Hκ

c (N ;Z2).

By using a natural generalization of Proposition 8.15 to certain subsets of
T̃pr(k) together with an argument similar to that in the proof of Lemma 12.4,
we get the following as well.

Corollary 12.10. Let R
�

Γ
k = {%

Γp−k,p

p−k,p }p be a stable system of admissible equiv-

alence relations for Γ̃ . Let fi : Mi → N , i = 0, 1, be Γ̃ -maps with dimMi = n
and dimN = p, where we assume that Mi are closed. If they are Γ̃ -cobordant,

then for every κ we have

ϕ̃f0 = ϕ̃f1 : Hκ(Γ̃ ,R
�

Γ
k ) → Hκ(N ;Z2).

If κ ≥ 1, then we also have

ϕ̃f0 = ϕ̃f1 : Hκ(Γ̃ ,R
�

Γ
k ) → Hκ

c (N ;Z2).

When the manifold N is oriented, we get similar results in coefficients in
Z by using the universal complex of co-orientable singular fibers. Details are
left to the reader.

12.2 A Characterization of Cocycles

In this section, we shall give a necessary and sufficient condition for a certain
cochain of the universal complex to be a cocycle in terms of the homomorphism
induced by Thom maps.

Let Γ̃ = Γ̃k be as in the previous section, and let R
�

Γ
k = {%

Γp−k,p

p−k,p }p be a

stable system of admissible equivalence relations for Γ̃ .

Let c be an arbitrary cochain in Cκ(Γn,p, %
Γn,p
n,p ) with 0 < κ < p. Set

λ = κ− k. Since we always have Cκ+1(Γλ,κ, %
Γλ,κ

λ,κ ) = 0,

δκ : Cκ(Γλ,κ, %
Γλ,κ

λ,κ ) → Cκ+1(Γλ,κ, %
Γλ,κ

λ,κ )

is the zero homomorphism, and hence sκc ∈ Cκ(Γλ,κ, %
Γλ,κ

λ,κ ) is a cocycle of

the complex C(Γλ,κ, %
Γλ,κ

λ,κ ), where

sκ : Cκ(Γn,p, %
Γn,p
n,p ) → Cκ(Γλ,κ, %

Γλ,κ

λ,κ )

is the homomorphism induced by the (p− κ)-th suspension. Therefore, for a
Γ ∗
λ,κ-map f : M → N , the homology class [sκc(f)] ∈ Hc

0(N ;Z2) represented
by sκc(f) is well-defined. Note that its Poincaré dual in Hκ(N ;Z2) coincides



12.2 A Characterization of Cocycles 109

with ϕf ([sκc]), where [sκc] ∈ Hκ(Γλ,κ, %
Γλ,κ

λ,κ ) is the cohomology class repre-
sented by the cocycle sκc, and

ϕf : Hκ(Γλ,κ, %
Γλ,κ

λ,κ ) → Hκ(N ;Z2)

is the homomorphism induced by f . Furthermore, when the source manifold
M is closed, [sκc(f)] is well-defined as an element of H0(N ;Z2).

Proposition 12.11. Suppose that Γλ,κ is transversely complete with respect

to Γn,p, where 0 < κ < p and p − n = κ − λ = k. Then a cochain c

in Cκ(Γn,p, %
Γn,p
n,p ) is a cocycle of the complex C(Γn,p, %

Γn,p
n,p ) if and only if

[sκc(f)] = 0 ∈ H0(N ;Z2) (or equivalently, ϕf ([sκc]) = 0 in Hκ(N ;Z2)) for

every Γ ∗
λ,κ-map f : M → N such that both M and N are closed and that f is

Γ̃k-cobordant to a nonsingular map.

Proof. If c is a cocycle, then the cohomology class represented by sκc lies in
the image of

sκ∗ : Hκ(Γλ+1,κ+1, %
Γλ+1,κ+1

λ+1,κ+1 ) → Hκ(Γλ,κ, %
Γλ,κ

λ,κ ).

Therefore, we have

[sκc(f)] = [sκc(f
′)] ∈ H0(N ;Z2) (12.1)

for every f that is Γ̃k-cobordant to a nonsingular map f ′ by Lemma 12.4 (see
also Remark 12.5). We see easily that (12.1) always vanishes, since κ > 0 and
for a nonsingular map f ′, we have sκc(f

′) = ∅.
Conversely, suppose that [sκc(f)] = 0 ∈ H0(N ;Z2) for every f as in

the proposition. Let F̃ be an arbitrary equivalence class of fibers in Γn,p of

codimension κ + 1 with respect to %
Γn,p
n,p , and g : M ′ → N ′ be an element of

Tpr(n, p) such that the fiber of g over a point y ∈ N ′ belongs to F̃. By the
proof of Lemma 7.3, we may assume that the stratum Σ containing y is of
codimension κ + 1. Let N be the boundary of a sufficiently small (κ + 1)-
dimensional disk B in N ′ centered at y and transverse to Σ such that N
is transverse to g and to all the strata of N ′. Note that B corresponds to
BΣ in the argument just after Lemma 7.3. Then f = g|M : M → N with
M = g−1(N) is an element of Tpr(λ, κ). Furthermore, since Γλ,κ is transversely
complete with respect to Γn,p by our assumption, we see that f is a Γ ∗

λ,κ-map.
It is easy to see that B contains a regular value y0 of g with y0 ∈ B rN .

Set C = B − IntB0, where B0 is a closed disk neighborhood of y0 in B rN
consisting only of regular values of g and IntB0 denotes its interior as a
subspace of B. Note that C is diffeomorphic to Sκ × [0, 1]. Then, we see

that g| �

C : C̃ → C with C̃ = g−1(C) gives a Γ̃k-cobordism between f and a
nonsingular map. Hence, by our assumption, sκc(f) consists of an even number

of points. This means that the coefficient of F̃ in δκ(sκc) is zero (see (8.2)).

Since this holds for an arbitrary F̃ of codimension κ+1, we have δκ(sκc) = 0.
This completes the proof. ut
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Now let us apply the above proposition to a specific but important situa-
tion as follows.

Corollary 12.12. Let us consider the complex

C(S0
pr(5, 4)ori, %0

5,4(2)) (12.2)

of singular fibers for proper C0 stable maps of orientable 5-dimensional man-

ifolds into 4-dimensional manifolds with respect to the C0 equivalence modulo

two circle components. Let ÎII
8

o (or ÎII
8

e) be the C0 equivalence class modulo

two circle components of the suspension of III8o (resp. III8e). Then ÎII
8

o +ÎII
8

e is

a 3-cocycle of the complex (12.2) and represents a nontrivial cohomology class

in H3(S0
pr(5, 4)ori, %0

5,4(2)).

For notations, refer to Fig. 3.4 and Proposition 9.4.

Proof. As in Proposition 3.1, we can obtain a similar characterization of
proper C∞ stable maps of 5-dimensional manifolds into 4-dimensional man-
ifolds (for details, see [50]). Using this and Proposition 3.1 itself, we can
show that S0

pr(4, 3)ori is transversely complete with respect to S0
pr(5, 4)ori.

Furthermore, an argument similar to that of the proof of Corollary 3.9 shows
that two elements of S0

pr(4, 3)ori∗ are C0 equivalent modulo two circle compo-

nents if and only if so are their suspensions in S0
pr(5, 4)ori∗. Hence, we have

s3(ÎII
8

o + ÎII
8

e) = III8o + III8e .
Now suppose that a C0 stable map f : M → N of a closed orientable

4-manifold into a closed 3-manifold is S̃0
pr(−1)-cobordant to a nonsingular

map. Since the source manifold of a nonsingular map always has zero Euler
characteristic, we see that the Euler characteristic ofM should be even. Hence,
by Theorem 5.1, the number of elements in the set (III8o + III8e)(f) should be
even, and hence it represents the trivial homology class in H0(N ;Z2). Then,

by Proposition 12.11, we see that ÎII
8

o +ÎII
8

e is a cocycle of the complex (12.2).
Note that there does exist a closed orientable 4-manifold whose Euler

characteristic is odd. Let g : M ′ → N ′ be a C0 stable map of such a 4-
manifold M ′ into a 3-manifold N ′. Then, again by Theorem 5.1, we see that,
for the homomorphism

ϕg : H3(S0
pr(4, 3)ori, %0

4,3(2)) → H3
c (N

′;Z2)

induced by g, we have ϕg([III
8
o + III8e ]) 6= 0. This shows that the cohomology

class s3∗([ÎII
8

o + ÎII
8

e ]) = [III8o + III8e ] does not vanish, and hence that the

cohomology class [ÎII
8

o + ÎII
8

e ] is nontrivial. This completes the proof. ut

The above corollary justifies the prediction given in Remark 10.12.
Let us end this chapter by the following proposition concerning Prob-

lem 11.14.
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Proposition 12.13. Suppose that Γλ,κ is transversely complete with respect

to Γn,p, where 0 < κ < p and p− n = κ− λ = k. Then the following two are

equivalent.

(1) A cochain c ∈ Cκ(Γn,p, %
Γn,p
n,p ) is a coboundary if and only if [sκc(f)] =

0 ∈ H0(N ;Z2) (or equivalently, ϕf ([sκc]) = 0 in Hκ(N ;Z2)) for every

Γ ∗
λ,κ-map f : M → N such that both M and N are closed.

(2) If α ∈ Hκ(Γn,p, %
Γn,p
n,p ) is nonzero, then there exists a Γ ∗

n,p-map g : M ′ →
N ′ such that ϕg(α) 6= 0 in Hκ(N ′;Z2).

Proof. (1) =⇒ (2). Suppose that ϕg(α) = 0 in Hκ(N ′;Z2) for all Γ ∗
n,p-map

g : M ′ → N ′. Then, by Lemma 11.11, for every Γ ∗
λ,κ-map f : M → N , we

have ϕf (sκ∗α) = 0 in Hκ(N ;Z2). Now item (1) implies that α = 0. This is a
contradiction.

(2) =⇒ (1). Suppose that c is a coboundary. Then ϕf ([sκc]) = 0 in
Hκ(N ;Z2), since [sκc] = sκ∗[c] = 0. Conversely, suppose that [sκc(f)] = 0 ∈
H0(N ;Z2) for every Γ ∗

λ,κ-map f : M → N such that bothM andN are closed.
By Proposition 12.11, c is a cocycle. Then, by Lemma 11.10, ϕg([c]) = 0 for
every Γ ∗

n,p-map g. Then item (2) implies that [c] = 0; i.e. c is a coboundary.
This completes the proof. ut

Note that all the results in this section hold also for the universal complexes
of co-orientable singular fibers and the cohomology groups with Z-coefficients,
provided that the target manifolds are oriented, except for Corollary 12.12.

Remark 12.14. Recall that Tpr(λ, κ) is always transversely complete with re-
spect to Tpr(n, p). Thus, in view of Proposition 12.13, a special case of Prob-
lem 11.14 can be interpreted as follows at least for Thom maps. A cochain
c ∈ Cκ(Tpr(n, p), %

0
n,p) with 0 < κ < p of the universal complex is a cocycle

if and only if sκc(f) is null-homologous for all f cobordant to a nonsingu-
lar map. Is it true that a cocycle c is a coboundary if and only if sκc(f) is
null-homologous for all f?
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Cobordism of Maps with Prescribed Local

Singularities

In this chapter, we consider another cobordism relation which is slightly dif-
ferent from the one given in the previous chapter.

Let us consider a C∞ stable (mono-)germ η : (Rn, 0) → (Rn+k, 0) of
codimension k. We define its suspension Ση : (Rn+1, 0) → (Rn+1+k, 0) by
Ση(u, t) = (η(u), t) for u ∈ Rn and t ∈ R. For a fixed k ∈ Z, let us consider
the set of C∞ stable map germs of codimension k, and the equivalence relation
generated by the C∞ right-left equivalence and the suspension. We call such
an equivalence class a singularity type (see [40]).

There is a hierarchy of singularity types. A singularity type A is said to
be under another singularity type B if for a representative f : (Rn, 0) →
(Rn+k, 0) of A, there is a germ of B arbitrary close to f , in the sense that
there are points x arbitrary close to the origin of Rn such that the germ of f
at x belongs to B. In this case, we also say that B is over A. (Compare this
with Definition 8.18.)

Let τ be an ascending set of singularity types.

Definition 13.1. We say that a smooth map f : M → N between smooth
manifolds is a τ -map if its singularities (as mono-germs) in the source mani-
fold M all lie in τ . If M is a manifold with boundary, then we also suppose
that f(∂M) ⊂ ∂N and for collar neighborhoods C and C ′ of ∂M and ∂N
respectively, we have f |C = Σ(f |∂M ).

Definition 13.2. For a smooth manifold N , two τ -maps f0 : M0 → N and
f1 : M1 → N of closed manifolds M0 and M1 are said to be τ -cobordant if
there exist a compact manifold W with boundary the disjoint union M0qM1,
and a τ -map F : W → N× [0, 1] such that fi = F |Mi

: Mi → N×{i}, i = 0, 1.
We call F a τ -cobordism between f0 and f1.

When Mi are oriented and W can be taken to be oriented so that ∂W =
(−M0) qM1, then we say that f0 and f1 are oriented τ -cobordant.

Lemma 13.3. Every τ -map of a closed manifold is τ -cobordant to a τ -map

which is a Thom map.
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Proof. Suppose that a τ -map f : M → N is given, where M is a closed
manifold. Then there exists a τ -map f̃ : M → N which is a Thom map and
which is sufficiently close to f in the mapping space C∞(M,N), since the set
of Thom maps is dense in C∞(M,N) and the local singularities of f are all
C∞ stable (and hence the set of all τ -maps is open in the mapping space). In

particular, we may assume that f and f̃ are homotopic through τ -maps and
hence are τ -cobordant. This completes the proof. ut

Remark 13.4. Suppose that two τ -maps fi : Mi → N , i = 0, 1, of closed
manifolds are Thom maps. If they are τ -cobordant, then a τ -cobordism be-
tween them can be chosen as a Thom map. This is proved by first taking any
τ -cobordism and then by approximating it by a Thom map.

In what follows, we fix the codimension k ∈ Z. For an ascending set τ
of singularity types of codimension k and for a dimension pair (n, p) with
p−n = k, let us denote by τ(n, p) the set of all proper Thom maps which are
τ -maps. Furthermore, we set

τ̃ (k) =
⋃

p

τ(p− k, p),

and let us consider a stable system of admissible equivalence relations Rτ
k =

{%τp−k,p}p for the fibers of elements of τ̃(k). Note that the set τ̃ (k) is closed
under suspension.

Definition 13.5. Let f : M → N be an arbitrary τ -map, which may not
necessarily be a Thom map, where we assume that M is closed. Then by
Lemma 13.3, f is τ -cobordant to a τ -map f̃ : M → N which is a Thom map.
Then we define

ϕf : Im sκ∗ → Hκ(N ;Z2)

by ϕf = ϕ �

f |Im sκ∗
, where

sκ∗ : Hκ(τ(n + 1, p+ 1), %τn+1,p+1) → Hκ(τ(n, p), %τn,p)

is the homomorphism induced by the suspension, and

ϕ �

f : Hκ(τ(n, p), %τn,p) → Hκ(N ;Z2)

is the homomorphism induced by the Thom map f̃ . The homomorphism ϕf
is well-defined by virtue of Lemma 12.4 together with Remark 13.4.

By Lemma 12.4, we see that if f0 and f1 are τ -maps of closed manifolds
into a p-dimensional manifold N which are τ -cobordant, then ϕf0 = ϕf1 . In
other words, the correspondence f 7→ ϕf defines a τ -cobordism invariant of
τ -maps into N .



13 Cobordism of Maps with Prescribed Local Singularities 115

Remark 13.6. If τ is big enough, or more precisely, if the space of τ -maps is
always dense in the corresponding mapping space, then for every smooth map
f : M → N of a closed manifold, we can define ϕf to be ϕ �

f , where f̃ is an
approximation of f which is a τ -map. Then, we can show that this is well-
defined, and that it defines a bordism invariant of smooth maps into N , where
two smooth maps f0 : M0 → N and f1 : M1 → N of closed manifolds M0 and
M1 are said to be bordant if there exist a compact manifold W with boundary
the disjoint union M0 qM1, and a smooth map F : W → N × [0, 1] such that
fi = F |Mi

: Mi → N × {i}, i = 0, 1 (for details, see [8]). In particular, if N is
contractible, it defines a cobordism invariant of the source manifold.

Remark 13.7. So far, we have considered Thom maps which are τ -maps. It is
easy to see that we could as well consider C0 stable maps which are Thom
maps (or C∞ stable maps for nice dimension pairs (n, p) in the sense of Mather
[32]) instead of Thom maps, since the corresponding sets are dense in the
mapping spaces. Let us denote by τ 0(n, p) the set of C0 stable maps in Tpr(n, p)
which are τ -maps. Then, for a τ -map f : M → N with M being closed, we
can define the homomorphism

ϕf : Im s0κ∗ → Hκ(N ;Z2),

which is a τ -cobordism invariant, where

s0κ∗ : Hκ(τ0(n+ 1, p+ 1), %τn+1,p+1) → Hκ(τ0(n, p), %τn,p)

is the homomorphism induced by the suspension.
In fact, we can show that the diagram

Hκ(τ(n + 1, p+ 1), %τn+1,p+1)
sκ∗−−−−−→ Hκ(τ(n, p), %τn,p)yπ

τ(n+1,p+1),τ0(n+1,p+1)∗

yπτ(n,p),τ0(n,p)∗

Hκ(τ0(n+ 1, p+ 1), %τn+1,p+1)
s0κ∗−−−−−→ Hκ(τ0(n, p), %τn,p)

is commutative, and that

ϕf : Im sκ∗ → Hκ(N ;Z2)

coincides with the composition of the natural homomorphism induced by the
projection

πτ(n,p),τ0(n,p)∗|Im sκ∗
: Im sκ∗ → Im s0κ∗

and
ϕf : Im s0κ∗ → Hκ(N ;Z2).

Let us consider τ -maps into N = N ′×R, where N ′ is a (p−1)-dimensional
manifold. Then, the set of all τ -cobordism classes of τ -maps of closed manifolds
into N , denoted by Cobτ (N), forms an abelian group with respect to the “far
away disjoint union”. (When we take the orientations into account, we denote
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the corresponding abelian group by Cobori
τ (N).) More precisely, for two τ -

maps fi : Mi → N of closed manifolds Mi, i = 0, 1, there exists a real
number r such that f0(M0) ∩ (Tr ◦ f1(M1)) = ∅, where the diffeomorphism
Tr : N ′×R → N ′×R is defined by Tr(x, t) = (x, t+r). Then, it is not difficult
to show that the τ -cobordism class of the disjoint union of the two maps f0

and Tr◦f1 depends only on the τ -cobordism classes of f0 and f1. Furthermore,
the resulting τ -cobordism class does not change even if we interchange f0 and
f1. Thus, we define [f0] + [f1] = [f0 q (Tr ◦ f1)], where [∗] denotes the τ -
cobordism class of ∗. The neutral element is the map of the empty set, and
the inverse element of a τ -map f : M → N ′×R is given by −f : M → N ′×R

defined by −f = R ◦ f , where R : N ′ × R → N ′ × R is the diffeomorphism
defined by R(x, t) = (x,−t). (When we take the orientations into account, the
source manifold of −f is understood to be −M .)

Then, the following is a direct consequence of the above definitions.

Proposition 13.8. In the above situation, the map

Φκ : Cobτ (N) → Hom (Im sκ∗, H
κ(N ;Z2))

defined by Φκ([f ]) = ϕf for a τ -maps f of a closed manifold into N is a

homomorphism of abelian groups for every κ, where

sκ∗ : Hκ(τ(n + 1, p+ 1), %τn+1,p+1) → Hκ(τ(n, p), %τn,p)

is the homomorphism induced by the suspension.

Note that a similar map

Φκ : Cobτ (N) → Hom (Im s0κ∗, H
κ(N ;Z2))

can also be defined and is a homomorphism of abelian groups for every κ (see
Remark 13.7).

We do not know if the homomorphism ⊕κΦκ is injective or not for some
%τn,p and %τn+1,p+1.

Remark 13.9. Note that the above proposition holds also for Γ̃k-maps in the
sense of §8.6 or Chap. 12. However, we do not know if the group operation
defined on the set of cobordism classes is commutative or not. If N = N ′′×R2

for some (p−2)-dimensional manifold N ′′, then we can show that the resulting
group is abelian.

Note that all the results in this chapter hold also for the universal com-
plexes of co-orientable singular fibers and the cohomology groups with Z-
coefficients, provided that the target manifolds are oriented.
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Examples of Cobordism Invariants

In this chapter, we shall construct explicit cobordism invariants in specific sit-
uations following the procedure introduced in the previous chapters. Through-
out the chapter, the codimension will always be equal to −1. Furthermore,
we shall work only with nice dimension pairs, and we shall consider C0 stable
maps instead of Thom maps following Remark 13.7.

14.1 Cobordism of Stable Maps

Let τ be the set of singularity types corresponding to a regular point and a
Morin singularity [34], i.e., a fold point, a cusp point, a swallowtail, etc. Note
that if the dimension of the source manifold is less than or equal to 4, this set
is big enough in the sense of Remark 13.6.

Let us consider C0 stable maps of surfaces and 3-manifolds. By Propo-
sition 9.7, the first cohomology group of the universal complex of singular
fibers

C(S0
pr(3, 2), %0

3,2(2)) = C(τ0(3, 2), %0
3,2(2))

with respect to the C0 equivalence modulo two circle components for τ 0(3, 2)-

maps is isomorphic to Z2 ⊕ Z2 and is generated by α1 = [̃I0o + Ĩ1e ] = [̃I0e + Ĩ1o]

and α2 = [̃I2o + Ĩ2e ]. In the following, let

s01∗ : H1(τ0(3, 2), %0
3,2(2)) → H1(τ0(2, 1), %0

2,1(2))

be the homomorphism induced by the suspension.
Let us first consider α2 = [̃I2o + Ĩ2e ]. For a C∞ stable map f : M → N

of a closed surface into a connected 1-dimensional manifold N , (s01∗α2)(f) ∈
H0(N ;Z2) ∼= Z2 is nothing but the number modulo two of the singular fibers
as depicted in Fig. 2.2 (3). By Lemma 12.4 and Remark 13.6, this is a bordism
invariant. On the other hand, by Corollary 2.4 and Remark 2.9, the number
modulo two coincides with the parity of the Euler characteristic of the source
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surface M . Thus, (s01∗α2)(f) coincides with the parity of the Euler charac-
teristic of its source surface. When N = R, this is a complete bordism (or
τ -cobordism) invariant for (τ -)maps of closed surfaces into N .

For α1 = [̃I0o + Ĩ1e ] = [̃I0e + Ĩ1o], we have the following.

Lemma 14.1. For every τ0(2, 1)-map f : M → N of a closed surface M into

a 1-dimensional manifold N , (s01∗α1)(f) ∈ H0(N ;Z2) vanishes.

Proof. Let 0o(f) be the set

{y ∈ N : y is a regular value of f and b0(f
−1(y)) is odd}.

Since every 1-dimensional manifold is orientable, we give an orientation to N .
Then each connected component of 0o(f), which is either an arc or a circle,
has an induced orientation. Note that the end points of the arc components
of 0o(f) correspond to

(̃I0o + Ĩ1e + Ĩ0e + Ĩ1o)(f).

For an arc component, we say that it is of type ++ (or −−) if the number
of connected components of a regular fiber of f increases (resp. decreases) by
one when the target point passes through its starting point and also when it
passes through its terminal point. We say that it is of type +− (or −+) if
the number increases (resp. decreases) by one when the target point passes
through its starting point and it decreases (resp. increases) by one when it
passes through its terminal point. In this way, the arc components of 0o(f)
can be classified into these four types. We denote by n(++), n(−−), n(+−)
and n(−+) the numbers of arc components of types ++, −−, +− and −+
respectively.

Then, it is easy to show that

|̃I0o(f)| + |̃I1e(f)| = n(++) + n(−−) + 2n(+−),

|̃I0e(f)| + |̃I1o(f)| = n(++) + n(−−) + 2n(−+).

Since we should have n(++) = n(−−), we obtain

|̃I0o(f)| + |̃I1e(f)| ≡ |̃I0e(f)| + |̃I1o(f)| ≡ 0 (mod 2).

This implies that (s01∗α1)(f) = 0 in H0(N ;Z2). This completes the proof. ut

Remark 14.2. Note that s01∗α1 does not vanish as an element of the cohomol-
ogy group H1(τ0(2, 1), %0

2,1(2)). Hence, the above lemma shows that even if
we take a nontrivial cohomology class of the universal complex with respect
to an admissible equivalence relation, the corresponding homology class in the
target manifold can be trivial. Hence, the answer to the problem mentioned
in Problem 11.14 is negative in general, if we replace the C0 equivalence re-
lation %0

n,p with an arbitrary admissible equivalence relation, at least for the
cohomology group (11.2). See also Remark 12.14.
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Let us consider the homomorphism

ε%02,1(2),%02,1∗
: H1(S0

pr(2, 1), %0
2,1(2)) → H1(S0

pr(2, 1), %0
2,1)

induced by the cochain map

ε%02,1(2),%02,1
: C(S0

pr(2, 1), %0
2,1(2)) → C(S0

pr(2, 1), %0
2,1)

defined in §8.6. If the image of s01∗α1 ∈ H1(S0
pr(2, 1), %0

2,1(2)) by ε%02,1(2),%02,1∗
is

nontrivial, then the problem mentioned in Problem 11.14 is negatively solved.
The author conjectures that ε%02,1(2),%02,1∗

(s01∗α1) 6= 0.

In [63, 64], Yamamoto considers an equivalence relation among the fibers of
a given map which takes into account their positions from a global viewpoint.
In other words, even if two fibers are C0 equivalent, if their positions are
different from each other in a certain global sense, then one considers them to
be nonequivalent. Probably, we can construct universal complexes of singular
fibers with respect to such “global” equivalence relations. Then, the author
conjectures that for such a universal complex with respect to a certain global
equivalence relation, the answer to the problem mentioned in Problem 11.14
should be positive.

If we consider a C0 stable map f : M → N of a closed 3-manifold into a
surface, then α1(f) and α2(f) are defined as elements of H1(N ;Z2). We see
that α2(f) can be nontrivial by the example constructed as follows.

Let g : RP 2 → R be an arbitrary Morse function. Note that (s01∗α2)(g) is
nontrivial by Corollary 2.4. We define f = g × idS1 : RP 2 × S1 → R × S1.
Then we see that α2(f) does not vanish in H1(R×S1;Z2). (This implies, for
example, that f : RP 2 × S1 → R× S1 is not bordant to a constant map.)

On the other hand, α1(f) always vanishes. This follows from Lemma 11.10,
since (s01∗α1)(h) always vanishes for a τ 0(2, 1)-map h of a closed surface into a
1-dimensional manifold as mentioned above. Note that τ 0(2, 1) is transversely
complete with respect to τ0(3, 2).

14.2 Cobordism of Fold Maps

Let us now consider an example of τ which is not big in the sense of Re-
mark 13.6. Let τ be the set of singularity types corresponding to a regular
point and a fold point. In this case, a τ -map is called a fold map. (Recall that
this notion was already introduced in Chap. 6). In the following, we denote by
τ0(n, p)ori the set of all C0 equivalence classes of fibers for proper C0 stable
τ -maps in Tpr(n, p) of orientable n-dimensional manifolds.

Then the following proposition can be proved. Details are left to the reader.

Proposition 14.3. The cohomology groups of the universal complex
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CO(τ0(3, 2)ori, %0
3,2(2))

of co-orientable singular fibers for proper C0 stable fold maps of orientable

3-manifolds into surfaces with respect to the C0 equivalence modulo two circle

components are given as follows:

H0(CO(τ0(3, 2)ori, %0
3,2(2))) ∼= Z (generated by [0o + 0e]),

H1(CO(τ0(3, 2)ori, %0
3,2(2))) ∼= Z ⊕ Z (generated by α1 = [̃I0o + Ĩ1e ] = [̃I0e + Ĩ1o],

α2 = [̃I0o + Ĩ0e ], and α3 = [̃I1o + Ĩ1e ]

with 2α1 = α2 + α3),

where for a C0 equivalence class F of fibers, Fo (or Fe) denotes the C0 equiv-

alence class modulo two circle components represented by F` with ` odd (resp.
even), and [∗] denotes the cohomology class represented by the cocycle ∗.

Let f : M → R be a Morse function, which is a fold map, of a
closed oriented surface M . Then (s01∗α2)(f) ∈ H0(R;Z) ∼= Z coincides with
max(f) − min(f), where max(f) (or min(f)) is the number of local max-
ima (resp. minima) of the Morse function f . Furthermore, (s01∗α3)(f) coin-
cides with the τ -cobordism invariant introduced in [22]. Since we can show
that (s01∗α1)(f) always vanishes as in Lemma 14.1, we have (s01∗α2)(f) =
−(s01∗α3)(f).

Note that by [22], two Morse functions f0 and f1 on closed oriented surfaces
are oriented τ -cobordant if and only if (s01∗α2)(f0) = (s01∗α2)(f1). In other
words, the cohomology class s01∗α2 of the universal complex of co-orientable
singular fibers with respect to the C0 equivalence modulo two circle com-
ponents gives a complete invariant for τ -cobordisms of τ -maps of oriented
surfaces into R.
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Applications

In this chapter, we give some applications of the ideas developed in Chap. 7
to the topology of generic maps.

First, we prepare some lemmas.

Lemma 15.1. Let W be a compact m-dimensional manifold such that its

boundary is a disjoint union of open and closed subsets V0 and V1. If there

exists a Morse function g : W → R such that g(W ) = [a, b] for some a < b,
V0 = g−1(a), V1 = g−1(b), and that g has a unique critical point in the inte-

rior of W , then the difference between the Euler characteristics of V0 and V1

is equal to ±2, provided that m is odd.

Proof. Let λ be the index of the critical point. Then by Morse theory, we see
that V1 is diffeomorphic to

(V0 r Int(Sλ−1 ×Dm−λ)) ∪ (Dλ × Sm−λ−1).

Then the result follows immediately. ut

Definition 15.2. Let V0 and V1 be closed oriented (4k+1)-dimensional man-
ifolds with k ≥ 0. Suppose that there exists an oriented cobordism W between
V0 and V1. Then, we define d(V0, V1) to be the Euler characteristic modulo two
of W . Since every closed orientable (4k + 2)-dimensional manifold has even
Euler characteristic, d(V0, V1) ∈ Z2 does not depend of the choice of W . In
fact, d(V0, V1) coincides with the difference between the semi-characteristics
χ∗(V0) and χ∗(V1) with respect to any coefficient field (see [31] and [21, §5]).

Then the following lemma follows from the very definition.

Lemma 15.3. Let W be a compact (4k + 2)-dimensional oriented manifold

such that its boundary is a disjoint union of open and closed subsets V0 and

V1. If there exists a Morse function g : W → R such that g(W ) = [a, b] for

some a < b, V0 = g−1(a), V1 = g−1(b), and that g has a unique critical point

in the interior of W , then d(V0, V1) defined above is equal to 1 ∈ Z2.
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With the help of the above lemmas, we prove the following. Recall that
a smooth map between smooth manifolds is a Boardman map if its jet ex-
tensions are transverse to all the Thom-Boardman subbundles (see [5] and
[16, Chapter VI, §5]). Furthermore, such a map satisfies the normal crossing

condition if its restrictions to the Thom-Boardman strata intersect in general
position (for more details, see [16, Chapter VI, §5]).

Proposition 15.4. Let f : M → N be a Boardman map of a closed n-
dimensional manifold M into a p-dimensional manifold with n ≥ p. Suppose

either that n − p is even, or that n − p ≡ 1 (mod 4) and M is orientable.

Then f∗[S(f)]2 = 0 ∈ Hp−1(N ;Z2), where [S(f)]2 ∈ Hp−1(M ;Z2) is the

Z2-homology class represented by the singular set S(f) of f .

Proof. We may assume that N is connected. We may also assume that f
satisfies the normal crossing condition by perturbing f slightly. When n−p ≡ 1
(mod 4), we fix an orientation of M . Take a regular value y0 ∈ N of f and fix
it, where we take y0 ∈ N r f(M) if N is open. Let R be the closure of the set
of points y ∈ N r f(S(f)) such that

χ(f−1(y)) − χ(f−1(y0))

2

is odd for n− p ≡ 0 (mod 2) and that

d(f−1(y0), f
−1(y1)) ≡ 1 (mod 2)

for n−p ≡ 1 (mod 4). (Note that in the latter case, both f−1(y0) and f−1(y1)
are orientable manifolds.) Note that if A is an embedded arc connecting y and
y0 transverse to f , then f−1(A) gives a (oriented) cobordism between f−1(y)
and f−1(y0), and hence χ(f−1(y))− χ(f−1(y0)) is always an even integer for
n− p ≡ 0 (mod 2) and d(f−1(y0), f

−1(y1)) ∈ Z2 is well-defined for n− p ≡ 1
(mod 4). Then it is easy to see that R is compact.

Since f is a Boardman map, S(f) is naturally stratified into the Thom-
Boardman strata, and the top dimensional strata of S(f) consist of fold points.
Let J be an arc embedded in N such that J intersects f(S(f)) transversely
at a unique interior point z such that f−1(z) ∩ S(f) consists of a fold point.
Then by applying Lemmas 15.1 and 15.3 to the (oriented) cobordism f−1(J)
and the Morse function f |f−1(J) : f−1(J) → J , we see that exactly one end
point of J belongs to R. Therefore, f∗[S(f)]2 coincides with the Z2-homology
class represented by ∂R, since f satisfies the normal crossing condition. Thus
the result follows. ut

Remark 15.5. Proposition 15.4 does not hold for general Thom maps. For
example, let f : S1 → S1 be a C∞ homeomorphism such that f is equivalent
to the function x 7→ x3 at a point. Then, f is a Thom map, but S(f) consists
exactly of one point.
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By Thom [57], the Poincaré dual of [S(f)]2 ∈ Hp−1(M ;Z2) coincides with
the (n−p+1)-st Stiefel-Whitney class wn−p+1(TM−f∗TN) of the difference
bundle TM − f∗TN . Since every continuous map between smooth manifolds
is homotopic to a Boardman map, we obtain the following.

Corollary 15.6. Let f : M → N be a continuous map of a smooth closed

n-dimensional manifold M into a smooth p-dimensional manifold with n ≥ p.
Suppose either that n − p is even, or that n − p ≡ 1 (mod 4) and M is

orientable. Then we have f!wn−p+1(TM − f∗TN) = 0 ∈ H1(N ;Z2), where

f! : Hn−p+1(M ;Z2) → H1(N ;Z2)

denotes the Gysin homomorphism induced by f .

As another corollary to Proposition 15.4, we have the following.

Corollary 15.7. Let f : M → N be a C∞ stable map of a closed n-
dimensional manifold M into a p-dimensional manifold N with n ≥ p such

that f has only fold points as its singularities. Suppose either that n and p are

odd, or that n − p ≡ 1 (mod 4), p ≡ 1 (mod 2) and M is orientable. Then

the Euler characteristic of f(S(f)) is even.

The above corollary follows from the fact that in the above situation,
S(f) is a (p − 1)-dimensional closed submanifold of M and that f |S(f) is
an immersion with normal crossings (for example, see [16, Chapter III, §4]),
together with [37, Corollary 7.3].

Now let f : M → N be a C∞ stable map of a closed n-dimensional
manifold M into a p-dimensional manifold N such that f has only fold points
as its singularities. For m ≥ 0, we put

Σm(f) = {y ∈ N : f−1(y) ∩ S(f) consists exactly of m points},

and for m ≥ 1, we put

Σ̃m(f) = f−1(Σm(f)) ∩ S(f).

Note that Σm(f) is a regular submanifold of N of dimension p−m, and that

Σ̃m(f) is a regular submanifold of M of dimension p−m.
Then we have the following.

Proposition 15.8. Let f : M → N be a C∞ stable map of a closed n-
dimensional manifold M into a p-dimensional manifold N with n ≥ p such

that f has only fold points as its singularities. Suppose that n − p is even.

Then, the Z2-homology class

[Σm(f)]2 ∈ Hp−m(Σm−1(f);Z2)

represented by Σm(f) vanishes for m odd. Furthermore, the Z2-homology class

[Σ̃m(f)]2 ∈ Hp−m(Σ̃m−1(f);Z2)

represented by Σ̃m(f) vanishes for m even.
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Proof. Take a point y0 ∈ Σm−1(f). Let R ⊂ Σm−1(f) be the the closure of
the set of points y ∈ Σm−1(f) such that

χ(f−1(y)) − χ(f−1(y0))

2

is odd. Then by an argument similar to that in the proof of Proposition 15.4,
we see that [Σm(f)]2 coincides with the Z2-homology class represented by ∂R,
since m is odd. Hence the first half of the proposition follows. The second half
follows from a similar argument. ut

The above proposition shows, for example, that the singular value set
f(S(f)) of the C∞ stable map f : CP 2]2CP 2 → R3 constructed in Chap. 6
cannot be realized as the singular value set of a C∞ stable map of a closed
n-dimensional manifold into R3 for n ≥ 3 odd.
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Further Developments

Since the first version of this book was written as a preprint, there have already
been several new developments in the theory of singular fibers of differentiable
maps. In this chapter, we briefly present some of them.

16.1 Signature Formula

In Theorem 5.1, we have shown that for a stable map of a closed orientable
4-manifold M into a 3-manifold, the Euler characteristic of M has the same
parity as the number of III8-fibers. In a forthcoming paper [50], which is a
joint paper with Takahiro Yamamoto, we will define a sign, +1 or −1, for each
III8-fiber of a stable map of an oriented 4-manifold into a 3-manifold. This
sign is closely related to the orientation of the source 4-manifold M , and is
not related to the co-orientation of singular fibers as discussed in Chap. 10.
(In fact, the latter is related to the orientation of the target 3-manifold and
not the source 4-manifold.) We will show that the signature of the source

oriented 4-manifold coincides with the algebraic number of III8-fibers, where
the algebraic number of III8-fibers means the sum of the signs over all III8-
fibers.

This will be shown as follows. We will first classify the singular fibers of
stable maps of orientable 5-manifolds into 4-manifolds by using the method
developed in this book. Furthermore, when the source 5-manifold is oriented,
we will define an orientation for the 1-dimensional set of points in the target
corresponding to III8-fibers. As a consequence, we will show that if the source
5-manifold is closed and oriented, then the closure of the 1-dimensional set
defines an oriented 1-dimensional cycle. This implies that the algebraic num-
ber of III8-fibers for a stable map of an oriented 4-manifold into a 3-manifold
is an oriented bordism invariant. In particular, for stable maps into R3, it
gives an oriented cobordism invariant of the source 4-manifold.

On the other hand, we will show that for the example constructed in
Chap. 6, the algebraic number of III8-fibers coincides with the signature of
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the source 4-manifold CP 2]2CP 2. (For this, we will compute the normal
Euler number of the surface of definite fold points. See Remark 6.3.) It is
well-known that the signature is also an oriented cobordism invariant of the
source 4-manifold. More precisely, it is additive under the disjoint union, and
two oriented 4-manifolds are oriented cobordant if and only if they have the
same signature. Therefore, the result follows when the target 3-manifold is
the Euclidean 3-space. For the general 3-manifold case, we use a result of
Conner–Floyd [8] about the oriented bordism groups.

Note that then Theorem 5.1 is an easy corollary to this signature theorem.

16.2 Vassiliev Type Invariants for Stable Maps

In [62], Minoru Yamamoto developed a theory of first order Vassiliev type
invariants of stable maps by using the topology of singular fibers (for first
order Vassiliev type invariants, refer to [59] or [2]). He considered stable maps
of orientable 3-manifolds into the plane and classified all the deformations
of singular fibers in generic 1- and 2-parameter families of such maps. Using
this, he constructed a (portion of) Vassiliev type complex and determined
all its cocycles: more precisely, the group of cocycles forms a free abelian
group of rank 7. Furthermore, he gave a geometric interpretation to each
of the seven generating cocycles. Six of them count the number of singular

fibers of codimension 2, namely singular fibers of types ĨI
00

, ĨI
01

, ĨI
11

, ĨI
3
,

ĨI
4
, and ĨI

a
(see Fig. 3.9 for the notation).1 The other generating cocycle

corresponds to the Euler characteristic of the quotient space appearing in the
Stein factorization (see Remark 3.12).

This is a first study of such Vassiliev type invariants in the negative codi-
mension case, as long as the author knows.

As an example of another type of a first order Vassiliev type invariant,
let us consider the following. Let f : M → R2 be a stable map of a closed
oriented 3-manifold into the plane. Then we can find an oriented 4-manifold
W with ∂W = M and a generic map F : W → R × [0,∞) such that f =
F |∂W : ∂W → R× {0}. Let us define

σ(f) = σ(W ) − ||III8(F )|| ∈ Z,

where σ(W ) is the signature of the oriented 4-manifold W and ||III8(F )|| is
the algebraic number of III8-fibers of the generic map F in the sense of §16.1.
Then the signature theorem mentioned in §16.1 implies that σ(f) ∈ Z does not
depend on the choice of W or F so that it is a well-defined isotopy invariant2

1Note that M. Yamamoto considered stable maps of orientable 3-manifolds so
that the other codimension 2 singular fibers do not appear.

2The author is indebted to Mikio Furuta for the idea of the construction pre-
sented here.
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of f . This invariant jumps exactly along codimension 1 unstable maps which
correspond to a birth/death of a III8-fiber so that it certainly defines a first
order Vassiliev type invariant for such stable maps.

In M. Yamamoto’s result [62], this invariant does not appear. This is be-
cause he did not use the orientation of the source 3-manifold in order to define
the co-orientation of each codimension 1 stratum corresponding to codimen-
sion 1 unstable maps in the mapping space.

Any way, the topological structure of singular fibers gives rise to first
order Vassiliev type invariants of stable maps in the negative codimension
case. There is even a possibility of defining invariants of smooth manifolds
using singular fibers of stable maps.
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α(f)∗ Poincaré dual to α(f)

bi(X) i-th Betti number of a space X

C complex plane

c(f) closure of the set of points y in the target of a map f such
that the fiber over y appears in a cochain c

C(f, %) (Cκ(f, %), δκ(f))κ

Cκ(f, %) cochain group of singular fibers of codimension κ of a map
f with respect to an admissible equivalence %

C(f c, %) (Cκ(f c, %), δκ|Cκ(fc,%))κ

Cκ(f c, %) subspace of Cκ(Tpr(n, p), %) spanned by the %-equivalence
classes of fibers of codimension κ containing no fiber of f

C(Γn,p, %
Γ ) universal complex of singular fibers for Γn,p-maps with re-

spect to an admissible equivalence %Γ

C(Γ ′
r Γ, %Γ

′

) kernel of πΓ ′,Γ : C(Γ ′, %Γ
′

) → C(Γ, %Γ )

C(Γ, %Γ /%Γ ) cokernel of ε%Γ ,%Γ : C(Γ, %Γ ) → C(Γ, %Γ )



List of Symbols 137

C(Γ ′
r Γ, %Γ

′

/%Γ
′

) cokernel of C(Γ ′
r Γ, %Γ

′

) → C(Γ ′
r Γ, %Γ

′

)

C(Γ̃k,R
�

Γ
k ) universal complex of singular fibers for Γ̃k-maps with re-

spect to a stable system of equivalence relations R
�

Γ
k

Cκ(Γ c, %) subspace of Cκ(Tpr(n, p), %) spanned by the %-equivalence
classes of fibers of codimension κ containing no fiber of a
Γ -map

C(Tpr(n, p), %) (Cκ(Tpr(n, p), %), δκ)κ

Cκ(Tpr(n, p), %) cochain group of singular fibers of codimension κ for
Tpr(n, p) with respect to an admissible equivalence %

C(T̃pr(k),Rk) lim
←−
p

C(Tpr(p− k, p), %p−k,p)

C(T̃pr(k), R̂k) (Cκ(T̃pr(k), R̂k), δκ)κ

Cκ(T̃pr(k), R̂k) cochain group of singular fibers of codimension κ for T̃pr(k)

with respect to a stably admissible equivalence R̂k

χ(X) Euler characteristic of a space X

χ∗(X) semi-characteristic of a manifold X

CO(Tpr(n, p), %
0
n,p) (COκ(Tpr(n, p), %

0
n,p), δκ)κ

COκ(Tpr(n, p), %
0
n,p) cochain group of weakly co-orientable singular fibers of

codimension κ for Tpr(n, p) with respect to the C0 equiv-
alence

CO(T̃pr(k),R0
k) universal complex of weakly co-orientable singular fibers for

T̃pr(k) with respect to the stable system of C0 equivalence
relations

CO(Tpr(n, p), %n,p) universal complex of co-orientable singular fibers for
Tpr(n, p) with respect to an admissible equivalence %n,p

CO(T̃pr(k),Rk) lim
←−

p

CO(Tpr(p− k, p), %p−k,p)

Cobτ (N) τ -cobordism group of τ -maps of closed manifolds into a
manifold N = N ′ ×R

Cobori
τ (N) τ -cobordism group of τ -maps of closed oriented manifolds

into a manifold N = N ′ ×R

CP 2 complex projective plane

CP 2 complex projective plane with the reversed orientation

d(V0, V1) Euler characteristic modulo 2 of an oriented cobordism be-
tween oriented (4k + 1)-dimensional manifolds V0 and V1



138 List of Symbols

δκ coboundary map for C(Tpr(n, p), %), C(T̃pr(k), R̂k), etc.

δκ coboundary map for a quotient complex

δκ(f) coboundary map for C(f, %)

ε%,% cochain map C(Tpr(n, p), %) → C(Tpr(n, p), %), etc.

ε%Γ ,%Γ cochain map C(Γ, %Γ ) → C(Γ, %Γ )

εRk,Rk
cochain map C(T̃pr(k),Rk) → C(T̃pr(k),Rk)

ε
R

�

Γ ′ ,R

�

Γ ′ cochain map C(Γ̃ ′,R
�

Γ ′) → C(Γ̃ ′,R

�

Γ ′

)

f map of the quotient space Wf to the target in the Stein
factorization of a map f

f! Gysin homomorphism induced by a map f

F, G, etc. an equivalence class of (singular) fibers

F̃, G̃, etc. an equivalence class of fibers with respect to an admissible
equivalence
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Szűcs, A., 18
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