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Abstract. We classify singular fibers of C∞ stable maps of orientable 4-
manifolds into 3-manifolds up to right-left equivalence. Furthermore, we obtain
some results on the co-existence of singular fibers of such maps, and as a
consequence, we show that the Euler characteristic of the source 4-manifold
of such a stable map has the same parity as the number of singular fibers of
a certain type. We construct some explicit examples which indicate that the
study of such singular fibers is essential for a topological study of C∞ stable
maps of negative codimension from a global viewpoint. In fact, for a generic
map of negative codimension, a similar consideration enables us to obtain
a stratification of the target manifold according to the fibers, which leads
us naturally to the notion of universal complexes of singular fibers similar
to Vassiliev’s universal complexes of multi-singularities. In this paper, we
develop a rather detailed theory of such universal complexes of singular fibers
in a general setting in order to apply it to several explicit situations. We also
show that the cohomology groups of such universal complexes of singular fibers
give rise to cobordism invariants of smooth maps with a given set of local and
global singularities.
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1. Introduction

Let f : M → N be a proper smooth map of an n-dimensional manifold M into
a p-dimensional manifold N . When the codimension p− n is nonnegative, for any
point y in the target N , the inverse image f−1(y) consists of a finite number of
points, provided that f is generic enough. Hence, in order to study the semi-local
behavior of a generic map f around (the inverse image of) a point y ∈ N , we have
only to consider the multi-germ f : (M, f−1(y)) → (N, y). Therefore, we can use
the well-developed theory of multi-jet spaces and their sections in order to study
such semi-local behaviors of generic maps.

However, if the codimension p − n is strictly negative, then the inverse image
f−1(y) is no longer a discrete set. In general, f−1(y) forms a complex of positive
dimension n− p. Hence, we have to study the map germ f : (M, f−1(y)) → (N, y)
along a set f−1(y) of positive dimension and the theory of multi-jet spaces is not
sufficient any more. Surprizingly enough, there has been no systematic study of
such map germs in the literature, as long as the author knows, although we can
find some studies of the multi-germ of f at the singular points of f contained in
f−1(y).

In this paper, we consider the codimension −1 case, i.e. the case with n −
p = 1, and classify the right-left equivalence classes of generic map germs f :
(M, f−1(y)) → (N, y) for n = 2, 3, 4. For the case n = 3, Kushner, Levine and
Porto [23, 25] classified the singular fibers of C∞ stable maps of 3-manifolds into
surfaces up to diffeomorphism; however, they did not mention a classification up
to right-left equivalence (for details, see Definition 2.1 (2) in §2). In this paper, we
clarify the difference between the classification up to diffeomorphism and that up
to right-left equivalence by completely classifying the singular fibers up to these
two equivalences.

Given a generic map f : M → N of negative codimension, the target manifold
N is naturally stratified according to the right-left equivalence classes of f -fibers.
By carefully investigating how the strata are incident to each other, we get some
information on the homology class represented by a set of the points in the target
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Figure 1. The singular fiber whose number has the same parity
as the Euler characteristic of the source 4-manifold M

whose associated fibers are of certain types. This leads to some limitations on the
co-existence of singular fibers. For example, we show that for a C∞ stable map
of a closed orientable 4-manifold into a 3-manifold, the number of singular fibers
containing both a cusp point and a fold point is always even.

As an interesting and very important consequence of such co-existence results,
we show that for a C∞ stable map f : M → N of a closed orientable 4-manifold
M into a 3-manifold N , the Euler characteristic of the source manifold M has the
same parity as the number of singular fibers as depicted in Fig. 1 (Theorem 6.1).
Note that this type of result would be impossible if we used the multi-germs of
a given map at the singular points contained in a fiber instead of considering the
topology of the fibers. In other words, our idea of essentially using the topology of
singular fibers leads to new information on the global structure of generic maps.

Furthermore, the natural stratification of the target manifold according to the
fibers enables us to generalize Vassiliev’s universal complex of multi-singularities
[50] to our case. In this paper, we define such universal complexes of singular fibers
and compute the corresponding cohomology groups in certain cases. It turns out
that cohomology classes of such complexes give rise to cobordism invariants for
maps with a given set of singularities in the sense of Rimányi and Szűcs [35].

The paper is organized as follows.
In §2, we give precise definitions of certain equivalence relations among the fibers

of proper smooth maps, which will play essential roles in this paper.
In §3, in order to clarify our idea, we classify the fibers of proper Morse functions

on surfaces. The result itself should be folklore; however, we give a rather detailed
argument, since similar arguments will be used in subsequent sections.

In §4, we classify the fibers of proper C∞ stable maps of orientable 4-manifolds
into 3-manifolds up to right-left equivalence. Our strategy is to use a combinato-
rial argument, for obtaining all possible 1-dimensional complexes, together with a
classification up to right equivalence of certain multi-germs due to [8, 52]. After
the classification, we will see that the equivalence up to diffeomorphism and that
up to right-left equivalence are almost equivalent to each other in our case. Fur-
thermore, as another consequence of the classification, we will see that two fibers of
such stable maps are C0 right-left equivalent if and only of they are C∞ right-left
equivalent. This is an analogy of Damon’s result [7] for C∞ stable map germs in
nice dimensions. Furthermore, we give similar results for proper C∞ stable maps
of (not necessarily orientable) 3-manifolds into surfaces and for proper C∞ stable
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Morse functions on surfaces. For Morse functions on surfaces, we prove the follow-
ing very important result: for two proper C∞ stable Morse functions on surfaces,
they are C0 equivalent if and only if they are C∞ equivalent.

In §5, we investigate the stratification of the target 3-manifold of a C∞ sta-
ble map of a closed orientable 4-manifold as mentioned above and obtain certain
relations among the numbers (modulo two) of certain singular fibers.

In §6, we combine the result of §5 with the result of Fukuda [11] and the author
[39] about the Euler characteristics to obtain a congruence modulo two between
the Euler characteristic of the source 4-manifold and the number of singular fibers
as depicted in Fig. 1.

In §7, we construct explicit examples of C∞ stable maps of closed orientable
4-manifolds into R3. Since (4, 3) is a nice dimension pair in the sense of Mather
[27], given a 4-manifold M and a 3-manifold N , we have a plenty of C∞ stable
maps of M into N . However, it is surprizingly difficult to give an explicit example
and to give a detailed description of the structure of the fibers. Here, we carry this
out, and at the same time we explicitly construct infinitely many closed orientable
4-manifolds with odd Euler characteristics which admit smooth maps into R3 with
only fold singularities. In the subsequent sections, we will see that such explicit
examples are essential and very important in the study of singular fibers of generic
maps.

In §8, we generalize the idea given in §§5 and 6 in a more general setting to
obtain certain results on the co-existence of singular fibers.

In §9, we define the universal complexes of singular fibers for proper Thom maps
with coefficients in Z2, using an idea similar to Vassiliev’s [50] (see also [19, 33]).
Our universal complexes of singular fibers are very similar to Vassiliev’s universal
complexes of multi-singularities. In fact, we construct the complexes using the right-
left equivalence classes of fibers instead of multi-singularities, and this corresponds
to increasing the generators of each cochain group according to the topological
structures of fibers. In order to use such universal complexes in several situations,
we will develop a rather detailed theory of universal complexes of singular fibers.
Here, given a set of generic maps and a certain equivalence relation among their
fibers, we will define the corresponding universal complex of singular fibers.

In §10, we apply the general construction introduced in §9 to a more specific sit-
uation, namely in the case of proper C∞ stable maps of orientable 4-manifolds into
3-manifolds. For such maps, we determine the structure of the universal complex
of singular fibers with respect to a certain equivalence relation among the fibers
and compute its cohomology groups explicitly.

In §11, we consider co-orientable fibers and construct the corresponding universal
complex of co-orientable singular fibers with integer coefficients. We also give some
important problems related to the theory of universal complexes of singular fibers.

In §12, we define a homomorphism induced by a generic map of the cohomology
group of the universal complex of singular fibers to that of the target manifold of
the map. This corresponds to associating to a cohomology class α of the universal
complex the Poincaré dual to the homology class represented by the set of those
points over which lies a fiber appearing in a cocycle representing α. We will see
that the homomorphisms induced by explicit generic maps will be very useful in
the study of the cohomology groups of the universal complexes. This justifies the
study developed in §7.

In §13, we define a cobordism of smooth maps with a given set of singular fibers.
We will see that the homomorphism defined in §12 restricted to a certain subgroup is
an invariant of such a cobordism. Furthermore, we will give a criterion for a certain
cochain of the universal complex of singular fibers to be a cocycle in terms of the
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theory of such cobordisms, and apply it to finding a certain nontrivial cohomology
class of a universal complex associated to stable maps of 5-dimensional manifolds
into 4-dimensional manifolds.

In §14, we consider cobordisms of smooth maps with a given set of local singular-
ities in the sense of [35]. We explain how a cohomology class of a universal complex
of singular fibers gives rise to a cobordism invariant for such maps. Note that
such cobordism relations have been thoroughly studied in [35] in the nonnegative
codimension case. Our idea provides a systematic and new method to construct
cobordism invariants for negative codimension cases.

In §15, we give explicit examples of cobordism invariants constructed by using
the method introduced in the previous sections. In particular, we show that this
method provides a complete invariant of fold cobordisms of Morse functions on
closed oriented surfaces.

In §16, we give explicit applications of the general idea given in §8 to the topology
of certain generic maps.

Throughout this paper, all manifolds and maps are differentiable of class C∞.
The symbol “∼=” denotes a diffeomorphism between manifolds or an appropriate
isomorphism between algebraic objects. For a space X , the symbol “idX” denotes
the identity map of X .

The author would like to express his sincere gratitude to Toru Ohmoto, Kazuhiro
Sakuma, Takahiro Yamamoto, Minoru Yamamoto, and Jorge T. Hiratuka for stim-
ulating discussions and their invaluable comments.

2. Preliminaries

In this section, we give some fundamental definitions, which will be essential for
the classification of singular fibers of generic maps of negative codimensions.

Definition 2.1. (1) Let Mi be smooth manifolds and Ai ⊂Mi be subsets, i = 0, 1.
A continuous map g : A0 → A1 is said to be smooth if for every point q ∈ A0, there
exists a smooth map g̃ : V →M1 defined on a neighborhood V of q in M0 such that
g̃|V ∩A0 = g|V ∩A0 . Furthermore, a smooth map g : A0 → A1 is a diffeomorphism if
it is a homeomorphism and its inverse is also smooth.

(2) Let fi : Mi → Ni be smooth maps, i = 0, 1. For yi ∈ Ni, we say that
the fibers over y0 and y1 are diffeomorphic (or homeomorphic) if (f0)

−1(y0) ⊂ M0

and (f1)
−1(y1) ⊂ M1 are diffeomorphic in the above sense (resp. homeomorphic

in the usual sense). Furthermore, we say that the fibers over y0 and y1 are C∞

equivalent (or C0 equivalent), if for some open neighborhoods Ui of yi in Ni, there
exist diffeomorphisms (resp. homeomorphisms) ϕ̃ : (f0)

−1(U0) → (f1)
−1(U1) and

ϕ : U0 → U1 with ϕ(y0) = y1 which make the following diagram commutative:

(2.1)

((f0)
−1(U0), (f0)

−1(y0))
eϕ

−−−−−→ ((f1)
−1(U1), (f1)

−1(y1))yf0
yf1

(U0, y0)
ϕ

−−−−−→ (U1, y1).

When the fibers over y0 and y1 are C∞ (or C0) equivalent, we also say that the
map germs f0 : (M0, (f0)

−1(y0)) → (N0, y0) and f1 : (M1, (f1)
−1(y1)) → (N1, y1)

are smoothly (or topologically) right-left equivalent. Note that then (f0)
−1(y0) and

(f1)
−1(y1) are diffeomorphic (resp. homeomorphic) to each other in the above sense.

In what follows, if we just say “equivalent”, or “right-left equivalent”, then we
mean “C∞ equivalent” or “smoothly right-left equivalent”, respectively.

When y ∈ N is a regular value of a smooth map f : M → N between smooth
manifolds, we call f−1(y) a regular fiber ; otherwise, a singular fiber.

5



Example 2.2. If f : M → N is a proper submersion, then every fiber is regular.
Furthermore, by Ehresmann’s fibration theorem [10] (see also [4, §8.12]), the fibers
over two points y0 and y1 ∈ N are equivalent, provided that y0 and y1 belong to
the same connected component of N . Thus each equivalence class corresponds to
a union of connected components of N .

Example 2.3. Suppose that f : M → N is a Thom map, which is a stratified
map with respect to Whitney regular stratifications of M and N such that it is a
submersion on each stratum and satisfies a certain regularity condition (for more
details, refer to [12, Chapter I, §3], [9, §2.5], [6, §2], [46], for example).

Let Σ be a stratum of N of codimension κ. Take a point y ∈ Σ and let By be a
small κ-dimensional open disk in N centered at y which intersects Σ transversely
at the unique point y and is transverse to all the strata of N . Then by Thom’s
second isotopy lemma (for example, see [12, Chapter II, §5]), we see that the fiber
of f over y is C0 equivalent to the fiber of (f |f−1(By)) × idRp−κ over y × 0, where
p = dimN . Thus, again by Thom’s second isotopy lemma, we see that the fibers

over any two points belonging to the same stratum Σ of N are C0 equivalent to each

other. Thus, each C0 equivalence class corresponds to a union of strata of N .

3. Singular fibers of Morse functions on surfaces

Let us begin by the simplest case; namely, that of Morse functions on surfaces.
Let M be a smooth surface and f : M → R a proper Morse function. For its

critical points c1, c2, . . . ∈ M , we assume that f(ci) 6= f(cj) for i 6= j: i.e., we
assume that each fiber of f contains at most one critical point. This is equivalent
to saying that f is C∞ stable (see, for example, [9, §4.3], [13, Chapter III, §2B]),
so we often call such an f a stable Morse function.

By the Morse Lemma, at each critical point ci, f is C∞ right equivalent to the
function germ of the form

(x, y) 7→ ±x2 ± y2 + f(ci)

at the origin. In particular, each singular fiber contains exactly one of the following
two:

(1) a component consisting of just one point (corresponding to a local minimum
or maximum),

(2) a “crossing point” which has a neighborhood diffeomorphic to

X = {(x, y) ∈ R2 : x2 − y2 = 0, x2 + y2 < 1}

(corresponding to a saddle point).

Since f is proper, each fiber of f is compact. Furthermore, for each regular point
q ∈ M , the fiber through q is a regular 1-dimensional submanifold near the point.
Hence the component of a singular fiber of f containing a critical point should be
diffeomorphic to one of the three figures as depicted in Fig. 2 by a combinatorial
reason.

More precisely, we can show the following.

Theorem 3.1. Let f : M → R be a proper stable Morse function on a surface M .

Then the fiber over each critical value in R is equivalent to one of the three types

of fibers as depicted in Fig. 3.

Note that the source manifolds depicted in Fig. 3 are all open and have finitely
many connected components. In particular, the source manifold of Fig. 3 (3) is
diffeomorphic to the union of the once punctured open Möbius band and some
copies of S1 × R.
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(1) (2) (3)

Figure 2. List of diffeomorphism types of singular fibers for
Morse functions on surfaces

(1)

(2)

(3)

Figure 3. List of equivalence classes of singular fibers for Morse
functions on surfaces

Proof of Theorem 3.1. If the corresponding critical point c ∈M is a local minimum
or a local maximum, then the singular fiber is equivalent to that of Fig. 3 (1) by
the Morse Lemma together with Ehresmann’s fibration theorem [10].

Suppose that c is a saddle point. By the Morse Lemma, the function germ of f at
c is right equivalent to the function germ of f1 : (x, y) 7→ x2−y2 at the origin up to
a constant: i.e., there exists a diffeomorphism ϕ̃1 : V → V1 such that ϕ̃1(c) = (0, 0)
and f1 ◦ ϕ̃1 = f − f(c) on V , where V is a neighborhood of c in M and V1 is a
neighborhood of the origin in R2 of the form

V1 = {(x, y) ∈ R2 : x2 + y2 ≤ ε, |f1(x, y)| < δ}

for 1 >> ∃ε >> ∃δ > 0. In particular, there exists a diffeomorphism ϕ̃0 : V → V0

such that ϕ̃0(c) = c0 and f0 ◦ ϕ̃0 = f + (f0(c0)− f(c)) on V , where f0 is the Morse
function as in Fig. 3 (2) or (3), which will be chosen later, c0 is the critical point
of f0, and V0 is the corresponding neighborhood of c0 (see Fig. 4). Note that the
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V0

c0

Figure 4. The neighborhood V0

maps

(3.1) f |∂V ∩f−1((f(c)−δ,f(c)+δ)) : ∂V ∩ f−1((f(c) − δ, f(c) + δ))

→ (f(c) − δ, f(c) + δ)

and

(3.2) (f0)|∂V0∩(f0)−1((f0(c0)−δ,f0(c0)+δ)) : ∂V0 ∩ (f0)
−1((f0(c0) − δ, f0(c0) + δ))

→ (f0(c0) − δ, f0(c0) + δ)

are proper submersions.
Since a Morse function is a submersion outside of the critical points, the closure

of f−1(f(c))rV inM is a compact 1-dimensional smooth manifold whose boundary
consists exactly of four points, and hence it is diffeomorphic to the disjoint union
of two arcs and some circles. Therefore, f−1(f(c)) is diffeomorphic to the disjoint
union of (2) or (3) of Fig. 2 and some circles by a purely combinatorial reason.
At this stage, we choose f0 to be the Morse function as in Fig. 3 (2) (or (3))
if the component of f−1(f(c)) containing c is diffeomorphic to (2) (resp. (3)) of
Fig. 2. Furthermore, we choose the number of trivial circle bundle components
appropriately.

When the component of f−1(f(c)) containing c is diffeomorphic to (3) of Fig. 2,
we see easily that the diffeomorphism

(3.3) ϕ̃0|f−1(f(c))∩V : f−1(f(c)) ∩ V → (f0)
−1(f0(c0)) ∩ V0

between the local fibers extends to a diffeomorphism between the whole fibers
f−1(f(c)) and (f0)

−1(f0(c0)). In the case of Fig. 2 (2), this is not necessarily true.
If such an extension does not exist, then we modify the diffeomorphism ϕ̃0 by
composing it with a self-diffeomorphism of V corresponding to the diffeomorphism
h1 : V1 → V1 defined by (x, y) 7→ (y, x) such that f1 ◦ h1 = −f1. Note that
then we have f0 ◦ ϕ̃0 = r ◦ f , where r : R → R is the reflection defined by
x 7→ f0(c0)+f(c)−x. Then we see that the diffeomorphism (3.3) between the local
fibers extends to one between the whole fibers.

Since the maps (3.1) and (3.2) are proper submersions, we see that f (resp. f0)
restricted to f−1((f(c)−δ, f(c)+δ))− Int V (resp. (f0)

−1((f0(c0)−δ, f0(c0)+δ))−
IntV0) is a smooth fibration over an open interval by virtue of the relative version
of Ehresmann’s fibration theorem (see, for example, [24, §3]). These fibrations are
clearly trivial, and hence the diffeomorphism ϕ̃0 : V → V0 can be extended to a fiber
preserving diffeomorphism between f−1((f(c) − δ, f(c) + δ)) and (f0)

−1((f0(c0) −
δ, f0(c0) + δ)). Hence we have the desired result. This completes the proof. �
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Remark 3.2. Let c ∈ M be a critical point of a proper stable Morse function
f : M → R on a surface M . Then for δ > 0 sufficiently small, the difference

b0(f
−1(f(c) + δ)) − b0(f

−1(f(c) − δ))

is equal to ±1 if c is of type (1) or (2), and is equal to 0 if c is of type (3),
where b0 denotes the 0-th betti number, or equivalently, the number of connected
components.

Now let us examine the relationship among the numbers of singular fibers of the
above three types. For a stable Morse function f : M → R on a closed surface M ,
let 0odd denote the closure of the set

{y ∈ R : y is a regular value and b0(f
−1(y)) is odd}.

It is easy to see that 0odd is a finite disjoint union of closed intervals. Furthermore,
a point y ∈ R is in ∂0odd if and only if y is a critical value of type (1) or (2). Since
the number of boundary points of a finite disjoint union of closed intervals is always
even, we obtain the following.

Proposition 3.3. Let f : M → R be a stable Morse function on a closed surface

M . Then the total number of singular fibers of types (1) and (2) is always even.

Since the number of singular fibers is equal to the number of critical points,
it has the same parity as the Euler characteristic χ(M) of the source surface M .
Thus, we have the following.

Corollary 3.4. Let f : M → R be a stable Morse function on a closed surface

M . Then the Euler characteristic χ(M) of M has the same parity as the number

of singular fibers of type (3).

Remark 3.5. Let M be a closed connected nonorientable surface of nonorientable
genus g: i.e., M is homeomorphic to the connected sum of g copies of the real
projective plane RP 2. Then the number of singular fibers of type (3) of a stable
Morse function on M is always less than or equal to g, since M can contain at most
g disjointly embedded Möbius bands.

Since a neighborhood of a singular fiber of type (3) is nonorientable, we imme-
diately obtain the following special case of the Poincaré duality, using the fact that
every closed surface admits a stable Morse function.

Corollary 3.6. Every orientable closed surface has even Euler characteristic.

Remark 3.7. All the results in this section are valid also for maps into circles.

4. Classification of singular fibers

In this section, we consider proper C∞ stable maps of orientable 4-manifolds
into 3-manifolds, and classify their singular fibers up to the equivalences described
in Definition 2.1. We also pursue a similar classification of singular fibers for C∞

stable maps of surfaces and 3-manifolds. We give several important consequences
of these classifications as well.

4.1. Stable maps of orientable 4-manifolds into 3-manifolds. Let M be a
4-manifold and N a 3-manifold. The following characterization of C∞ stable maps
M → N is well-known.

Proposition 4.1. A proper smooth map f : M → N of a 4-manifold M into a

3-manifold N is C∞ stable if and only if the following conditions are satisfied.
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(1) (2) (3)

(4) (5) (6)

Figure 5. Multi-singularities of f |S(f)

(i) For every q ∈ M , there exist local coordinates (x, y, z, w) and (X,Y, Z)
around q ∈ M and f(q) ∈ N respectively such that one of the following

holds:

(X ◦ f, Y ◦ f, Z ◦ f)

=





(x, y, z), q: regular point,
(x, y, z2 + w2), q: definite fold point,
(x, y, z2 − w2), q: indefinite fold point,
(x, y, z3 + xz − w2), q: cusp point,
(x, y, z4 + xz2 + yz + w2), q: definite swallowtail,
(x, y, z4 + xz2 + yz − w2), q: indefinite swallowtail.

(ii) Set S(f) = {q ∈M : rankdfq < 3}, which is a regular closed 2-dimensional

submanifold of M under the above condition (i). Then, for every y ∈
f(S(f)), f−1(y)∩S(f) consists of at most three points and the multi-germ

(f |S(f), f
−1(y) ∩ S(f))

is right-left equivalent to one of the six multi-germs as described in Fig. 5:
(1) represents a single immersion germ which corresponds to a fold point,

(2) and (4) represent normal crossings of two and three immersion germs,

respectively, each of which corresponds to a fold point, (3) corresponds to a

cusp point, (5) represents a transverse crossing of a cuspidal edge as in (3)
and an immersion germ corresponding to a fold point, and (6) corresponds

to a swallowtail.

Remark 4.2. According to du Plessis and Wall [9, 51], if (n, p) is in the nice range
in the sense of Mather [27], a proper smooth map between manifolds of dimensions
n and p is C∞ stable if and only if it is C0 stable. Hence, the above proposition
gives a characterization of C0 stable maps of 4-manifolds into 3-manifolds as well,
since (4, 3) is in the nice range.

Let q be a singular point of a proper C∞ stable map f : M → N of a 4-manifold
M into a 3-manifold N . Then, using the above local normal forms, it is easy
to describe the diffeomorphism type of a neighborhood of q in f−1(f(q)). More
precisely, we easily get the following local characterizations of singular fibers.
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(1) (2) (3)

(4) (5)

Figure 6. Neighborhood of a singular point in a singular fiber

Lemma 4.3. Every singular point q of a proper C∞ stable map f : M → N of

a 4-manifold M into a 3-manifold N has one of the following neighborhoods in its

corresponding singular fiber (see Fig. 6):

(1) isolated point diffeomorphic to {(x, y) ∈ R2 : x2 +y2 = 0}, if q is a definite

fold point,

(2) union of two transverse arcs diffeomorphic to {(x, y) ∈ R2 : x2 − y2 = 0},
if q is an indefinite fold point,

(3) cuspidal arc diffeomorphic to {(x, y) ∈ R2 : x3 − y2 = 0}, if q is a cusp

point,

(4) isolated point diffeomorphic to {(x, y) ∈ R2 : x4 +y2 = 0}, if q is a definite

swallowtail,

(5) union of two tangent arcs diffeomorphic to {(x, y) ∈ R2 : x4 − y2 = 0}, if

q is an indefinite swallowtail.

Note that in Fig. 6, both the black dot (1) and the black square (4) represent
an isolated point; however, we use distinct symbols in order to distinguish them.

For the local nearby fibers, we have the following.

Lemma 4.4. Let f : M → N be a proper C∞ stable map of a 4-manifold M into

a 3-manifold N and q ∈ S(f) a singular point such that f−1(f(q)) ∩ S(f) = {q}.
Then the local fibers near q are as in Fig. 7:

(1) q is a definite fold point,

(2) q is an indefinite fold point,

(3) q is a cusp point,

(4) q is a definite swallowtail,

(5) q is an indefinite swallowtail,

where each 0- or 1-dimensional object represents a portion of the fiber over the corre-

sponding point in the target and each 2-dimensional object represents f(S(f)) ⊂ N
near f(q).

In the following, we assume that the 4-manifold M is orientable. Then we get
the following classification of singular fibers.

Theorem 4.5. Let f : M → N be a proper C∞ stable map of an orientable 4-
manifold M into a 3-manifold N . Then, every singular fiber of f is equivalent to

the disjoint union of one of the fibers as in Fig. 8 and a finite number of copies of

a fiber of the trivial circle bundle.

In Fig. 8, κ denotes the codimension of the set of points inN whose corresponding
fibers are equivalent to the relevant one. For details, see Remark 4.7. Furthermore,
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Figure 7. Local degenerations of fibers
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κ = 1

κ = 2

κ = 3

I0 I1

II00 II01 II11

II2 II3 IIa

III000 III001 III011

III111 III02 III03

III12 III13 III4

III5 III6 III7

III8 III0a III1a

IIIb IIIc IIId

IIIe

Figure 8. List of singular fibers of proper C∞ stable maps of
orientable 4-manifolds into 3-manifolds
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Figure 9. Degeneration of fibers around the fiber of type II3

I∗, II∗ and III∗ mean the names of the corresponding singular fibers, and “/” is
used only for separating the figures. Note that we have named the fibers so that
each connected fiber has its own digit or letter, and a disconnected fiber has the
name consisting of the digits or letters of its connected components. Hence, the
number of digits or letters in the superscript coincides with the number of connected
components.

It is not difficult to describe the behavior of the map on a neighborhood of
each singular fiber in Fig. 8. This can also be regarded as a degeneration of fibers
around the singular fiber, or a deformation of the singular fiber. In Fig. 9–12 are
depicted the nearby fibers for four of the 27 singular fibers (Fig. 7 (1) and (4)
can also be regarded as the deformations of the singular fibers of types I0 and IIIc

respectively).1 Since we are assuming that the source 4-manifold is orientable, the
singular fiber as in Fig. 2 (3) never appears in the degenerations.

Remark 4.6. Each singular fiber described in Fig. 8 can be realized as a component
of a singular fiber of some C∞ stable map of a closed orientable 4-manifold into
R3. This can be seen as follows. Given a singular fiber, we can first realize it
semi-locally; i.e., we can construct a proper C∞ stable map of an open 4-manifold
M0 into R3 such that its image coincides with the open unit disk in R3 and that
it has the given singular fiber over the center. Such a map can be constructed, for
example, by using a 2-parameter deformation of smooth functions on an orientable
surface: in this case, the open 4-manifold M0 is diffeomorphic to the product of
an open orientable surface and an open 2-disk. Then we can extend the map to a
smooth map of a closed orientable 4-manifoldM containingM0 into R3. Perturbing
the extended map slightly, we obtain a desired stable map. In fact, we can choose
an arbitrary closed orientable 4-manifold as the source manifold M of the desired
map.

1The degenerations of fibers around all the singular fibers are described in detail in [17].
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Figure 10. Degeneration of fibers around the fiber of type III8

Figure 11. Degeneration of fibers around the fiber of type IIIb
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Figure 12. Degeneration of fibers around the fiber of type IIIe

Proof of Theorem 4.5. Let us take a point y ∈ f(S(f)). We will first show that the
union of the components of f−1(y) containing singular points is diffeomorphic to
one of the fibers listed in Fig. 8 in the sense of Definition 2.1 (2).

If y corresponds to Fig. 5 (1), then f−1(y) contains exactly one singular point,
which is a fold point. Thus, by an argument similar to that in the proof of The-
orem 3.1, we see that the component of f−1(y) containing the singular point is
diffeomorphic to one of the three figures of Fig. 2. If a fiber as in Fig. 2 (3) ap-
pears, then the 4-manifold M must contain a punctured Möbius band times D2,
and hence is nonorientable. Since we have assumed that M is orientable, this does
not occur. Hence, we see that the singular fiber f−1(y) is diffeomorphic to the
disjoint union of I0 (or I1) and a finite number of nonsingular circles.

If y corresponds to Fig. 5 (2), then f−1(y) contains exactly two singular points,
say q1 and q2, which are fold points. Since they have neighborhoods as in Lemma 4.3
(1) or (2) in f−1(y), and since f is a submersion outside of the singular points, we
see that there are only a finite number of possibilities for the diffeomorphism type
of the union of the components of f−1(y) containing q1 and q2: for example, if
both q1 and q2 are indefinite fold points, then it is obtained from two copies of
the figure as in Fig. 6 (2) by connecting their end points by four arcs. Then we
can use Lemma 4.4 to obtain the nearby fibers of each possible singular fiber: for
example, for the singular fiber of type II3, see Fig. 9. Excluding the possibilities
such that a singular fiber as in Fig. 2 (3) appears as a nearby fiber, we get the fibers
II00, II01, II11, II2 and II3.

By similar combinatorial arguments, we obtain the following singular fibers:

(1) if y corresponds to Fig. 5 (3), then we obtain IIa,
16



(2) if y corresponds to Fig. 5 (4), then we obtain III000, III001, III011, III111,
III02, III03, III12, III13, III4, III5, III6, III7 and III8,

(3) if y corresponds to Fig. 5 (5), then we obtain III0a, III1a and IIIb,

(4) if y corresponds to Fig. 5 (6), then we obtain IIIc, IIId and IIIe.

Thus we have proved that every singular fiber is diffeomorphic to one of the
fibers listed in the theorem.

In order to complete the proof, we have only to show that if two singular fibers
are diffeomorphic to each other, then they are C∞ equivalent in the sense of Defi-
nition 2.1 (2), except for the two types of fibers I0 and IIIc.

Let fi : Mi → Ni, i = 0, 1, be proper C∞ stable maps of orientable 4-manifolds
into 3-manifolds. Let us take yi ∈ fi(S(fi)) ⊂ Ni. Suppose that the singular fibers
over y0 and y1 are diffeomorphic to each other.

If the singular fibers over y0 and y1 are of type I0, then let qi ∈ S(fi)∩(fi)
−1(yi)

be the unique singular point on the fibers. Since qi are definite fold points, there ex-
ist neighborhoods Vi of qi in Mi, Ui of yi in Ni and diffeomorphisms ϕ̃0 : (V0, q0) →
(V1, q1) and ϕ : (U0, y0) → (U1, y1) which make the following diagram commutative:

(V0, q0)
eϕ0

−−−−−→ (V1, q1)yf0
yf1

(U0, y0)
ϕ

−−−−−→ (U1, y1).

Furthermore, by taking the neighborhoods sufficiently small, we may assume that
(Ui, Ui ∩ fi(S(fi))) is as described in Fig. 5 (1), that Vi is a connected component
of (fi)

−1(Ui), Ui ∼= IntD3, Vi ∼= IntD4, and (fi)
−1(yi)∩ Vi = {qi}. Then the maps

fi|(fi)−1(Ui)rVi
: (fi)

−1(Ui) r Vi → Ui, i = 0, 1

are proper submersions and their fibers are disjoint unions of the same number of
copies of the circle. Hence, by Ehresmann’s fibration theorem, the diffeomorphism
ϕ̃0 : (V0, q0) → (V1, q1) extends to a diffeomorphism

ϕ̃ : ((f0)
−1(U0), (f0)

−1(y0)) → ((f1)
−1(U1), (f1)

−1(y1))

so that the diagram (2.1) in §2 commutes. Hence, the fibers over y0 and y1 are
equivalent.

The same argument works when the fibers over y0 and y1 are of type IIIc.
When the fibers over y0 and y1 are of type I1, we can imitate the above argument

for the case of I0; however, we cannot take Vi to be a connected component of
(fi)

−1(Ui), since the relevant singular points are indefinite fold points. So, we
first take Vi sufficiently small, and then imitate the proof of Theorem 3.1. More
precisely, we modify the diffeomorphisms ϕ̃0 : V0 → V1 and ϕ : U0 → U1, if
necessary, by using self-diffeomorphisms of V0 and U0 corresponding to those defined
by (x, y, z, w) 7→ (x, y, w, z) and (X,Y, Z) → (X,Y,−Z) respectively with respect
to the coordinates as in Proposition 4.1 (i) so that the diffeomorphism

ϕ̃0 : (f0)
−1(y0) ∩ V0 → (f1)

−1(y1) ∩ V1

extends to one between the whole fibers (f0)
−1(y0) and (f1)

−1(y1). Then we use the
relative version of Ehresmann’s fibration theorem to extend the diffeomorphism ϕ̃0 :
V0 → V1 to a fiber preserving diffeomorphism between (f0)

−1(U0) and (f1)
−1(U1).

Hence, the fibers over y0 and y1 are equivalent.
The same argument works when the fiber over yi contains exactly one singular

point: namely, for the cases of IIa, IIId and IIIe.
Now suppose that the fibers over y0 and y1 are of type II00. Then there ex-

ist neighborhoods Ui of yi such that the sets Ui ∩ fi(S(fi)) are as in Fig. 5 (2).
In particular, there exists a diffeomorphism ϕ : (U0, y0) → (U1, y1) between the
neighborhoods Ui of yi such that ϕ(U0 ∩ f0(S(f0))) = U1 ∩ f1(S(f1)). Note that
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we can describe the degeneration of the fibers of fi over Ui using Lemma 4.4
(for the case of II3, see Fig. 9). Then we see that the diffeomorphism ϕ can
be chosen so that it preserves the diffeomorphism types of the fibers: i.e., we
may assume that (f0)

−1(y) is diffeomorphic to (f1)
−1(ϕ(y)) for all y ∈ U0. Put

(fi)
−1(yi)∩S(fi) = {qi, q′i}, where qi and q′i are definite fold points. Then the multi-

germs ϕ ◦ f0 : ((f0)
−1(U0), {q0, q′0}) → (U1, y1) and f1 : ((f1)

−1(U1), {q1, q′1}) →
(U1, y1) have the same discriminant set germ (f1(S(f1)), y1) and they satisfy the
assumption of [8, (0.6) Theorem]. Hence they are right equivalent; i.e., there
exists a diffeomorphism ϕ̃0 : (V0, {q0, q′0}) → (V1, {q1, q′1}) between sufficiently
small neighborhoods V0 and V1 of {q0, q′0} and {q1, q′1} respectively such that
f1 ◦ ϕ̃0 = ϕ ◦ f0 : (V0, {q0, q′0}) → (U1, y1) (see also [52]). Then the rest of the
proof is the same as that in the case of I0.

When the fibers over y0 and y1 are of type II01, put (fi)
−1(yi)∩S(fi) = {qi, q′i},

where qi is a definite fold point and q′i is an indefinite fold point. Then we can
imitate the above argument to obtain a diffeomorphism ϕ between neighborhoods
Ui of yi and a diffeomorphism ϕ̃0 between neighborhoods Vi of {qi, q′i} such that
f1 ◦ ϕ̃0 = ϕ ◦ f0 on V0. If we choose the diffeomorphism ϕ so that it preserves the
diffeomorphism types of the fibers, then we see easily that the diffeomorphism ϕ̃0

between the local fibers (f0)
−1(y0) ∩ V0 and (f1)

−1(y1) ∩ V1 necessarily extends to
one between the whole fibers (f0)

−1(y0) and (f1)
−1(y1); in other words, we do not

need to modify ϕ̃0 or ϕ as in the proof of Theorem 3.1. Then the rest of the proof
is the same as that in the case of I1.

A similar argument works also in the cases of II11, III000, III001, III011, III111,
III0a and III1a.

When the fibers over y0 and y1 are of type II2, we can use almost the same
argument. The only difference is that we have to choose the diffeomorphism
ϕ̃0 : V0 → V1 so that the diffeomorphism ϕ̃0 : (f0)

−1(y0) ∩ V0 → (f1)
−1(y1) ∩ V1

between the local fibers extends to a diffeomorphism between the whole fibers
(f0)

−1(y0) and (f1)
−1(y1). For this, we can use the self-diffeomorphisms of each of

the neighborhoods of the indefinite fold points corresponding to those defined by
(x, y, z, w) 7→ (x, y,±z,±w) with respect to the coordinates as in Proposition 4.1
(i). More precisely, we modify ϕ̃0 using these diffeomorphisms as we did in the
case of I1. Note that here, ϕ is chosen so that it preserves the diffeomorphism
types of the fibers, and is fixed. Therefore, we cannot use the self-diffeomorphisms
corresponding to those defined by (x, y, z, w) 7→ (x, y,±w,±z).

We can use similar arguments also in the cases of II3, III02, III03, III12, III13,
III4, III5, III6, III7, III8 and IIIb.

In the above argument, we note the following. When the fibers over y0 and y1
are of type III02, III03, III12, III13, III4 or III7, put (fi)

−1(yi)∩S(fi) = {qi, q′i, q
′′
i }.

We name them so that

ϕ(f0(V0j ∩ S(f0))) = f1(V1j ∩ S(f1))), j = 1, 2, 3,

where Vi is the disjoint union of Vi1, Vi2 and Vi3 which are neighborhoods of qi, q
′
i and

q′′i respectively. Then we see easily that the correspondence q0 7→ q1, q
′
0 7→ q′1, q

′′
0 7→

q′′1 coincides with that given by ϕ̃0 and extends to a diffeomorphism between the
whole fibers (f0)

−1(y0) and (f1)
−1(y1), since ϕ preserves the diffeomorphism types

of the fibers. (For the cases of II2, II3, III5, III6 and III8, we do not need such

an argument by virtue of their symmetries. For the case of IIIb, we do not need it
either because the two singular points contained in a fiber are of different types.)
Therefore, we can apply the argument above.

This completes the proof of Theorem 4.5. �
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Remark 4.7. Let f : M → N be a proper C∞ stable map of an orientable 4-manifold
M into a 3-manifold N and F the type of one of the singular fibers appearing in
Fig. 8. We define F(f) to be the set of points y ∈ N such that the fiber f−1(y)
over y is equivalent to the disjoint union of F and some copies of a fiber of the
trivial circle bundle. As the above proof shows, each F(f) is a submanifold of N ,
provided that it is nonempty, and its codimension is denoted by κ(F), which is
called the codimension of the singular fiber of type F (or the codimension of the
disjoint union of F and some copies of a fiber of the trivial circle bundle). See
Fig. 8 for the codimension of each singular fiber. Note that the target manifold N
is naturally stratified into these submanifolds.

Remark 4.8. As the proof of Theorem 4.5 shows, two singular fibers of proper C∞

stable maps of orientable 4-manifolds into 3-manifolds are diffeomorphic if and only
if they are C∞ equivalent, except for the singular fibers of types I0 and IIIc.

Furthermore, we also have the following.

Corollary 4.9. Two fibers of proper C∞ stable maps of orientable 4-manifolds into

3-manifolds are C∞ equivalent if and only if they are C0 equivalent.

Proof. We have only to prove the statement for arbitrary two fibers in the list given
in Theorem 4.5. Suppose that two fibers are C0 equivalent. Then the degenerations
of the fibers around the singular fibers are also topologically equivalent, and their
nearby fibers must be homeomorphic. It is not difficult to check that this implies
that the two fibers are of the same C∞ type. �

Remark 4.10. Recall that Damon [7] (see also [6]) has shown that for nice dimen-
sions, two C∞ stable map germs are topologically right-left equivalent if and only if
they are smoothly right-left equivalent. The above corollary shows that this is also
true for C∞ stable map germs along fibers for the dimension pair (4, 3), which is in
the nice range, as long as the source manifold is orientable. (In fact, this is also true
for the dimension pairs (2, 1) and (3, 2) without the orientability hypothesis. See
§3 and Corollary 4.16 below.) Note that even for nice dimensions, this statement
for map germs along fibers is not true in general. For example, we can construct
two proper Morse functions of 8-dimensional manifolds such that one of them has
the standard 7-dimensional sphere as its regular fibers, and that the other has a
homotopy 7-sphere not diffeomorphic to the standard 7-sphere [28] as its regular
fibers. Then the map germs along (nonsingular) fibers are topologically right-left
equivalent, but not smoothly right-left equivalent.

Remark 4.11. Let us denote by 0 the smooth right-left equivalence class of a regular
fiber. Furthermore, for a fiber of type F and a positive integer n, we denote by Fn

the smooth right-left equivalence class of the fiber consisting of a fiber of type F

and some copies of a fiber of the trivial circle bundle such that the total number
of connected components is equal to n. If we classify the singular fibers of proper
C∞ stable maps of orientable 4-manifolds into 3-manifolds up to homeomorphism
in the sense of Definition 2.1 (2), then we get a smaller list than that given in
Theorem 4.5. In fact, we have the following, where “≈” means a homeomorphism:

(1) I0n ≈ IIIcn for n ≥ 1,
(2) I0n ≈ IIIcn ≈ III0an for n ≥ 2,

(3) I1n ≈ IIIbn ≈ IIIdn ≈ IIIen for n ≥ 1,

(4) I1n ≈ IIIbn ≈ IIIdn ≈ IIIen ≈ III1an for n ≥ 2,
(5) III6n ≈ III8n for n ≥ 1,
(6) IIan ≈ 0n for n ≥ 1.
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Furthermore, it is not difficult to see that the above fibers exhaust all the repetitions
of the homeomorphism types in the list of smooth right-left equivalence classes of
fibers.

Remark 4.12. Suppose that a smooth map f : M → N between smooth manifolds
is given. For two points q, q′ ∈ M , we define q ∼f q′ if f(q) = f(q′) and q and q′

belong to the same connected component of an f -fiber. We define Wf = M/∼f to
be the quotient space and qf : M → Wf the quotient map. Then it is easy to see

that there exists a unique continuous map f : Wf → N such that the diagram

M
f

−−−−−→ N

qf
ց րf

Wf

is commutative. The space Wf or the above commutative diagram is called the
Stein factorization of f (see [25]). It is known that if f is a topologically stable
map, then Wf is a polyhedron and all the maps appearing in the above diagram
are triangulable (for details, see [17]).

Kushner, Levine and Porto [23, 25] have determined the local structures of Stein
factorizations of proper C∞ stable maps of 3-manifolds into surfaces by using their
classification of singular fibers. Similarly, by using our classification of singular
fibers, we can determine the local structures of Stein factorizations of proper C∞

stable maps of orientable 4-manifolds into 3-manifolds. For details, see [17].

Remark 4.13. For proper C∞ stable maps of possibly nonorientable 4-manifolds
into 3-manifolds, a similar classification of singular fibers is obtained in [53].

4.2. Stable maps of surfaces and 3-manifolds. In this subsection, let us men-
tion similar classifications of singular fibers of proper C∞ stable Morse functions
on surfaces and those of proper C∞ stable maps of 3-manifolds into surfaces. Let
us begin by the following remark.

Remark 4.14. We can obtain a classification of singular fibers of proper C∞ stable
maps of orientable 3-manifolds into surfaces similar to Theorem 4.5. The list we
get is nothing but the singular fibers with κ = 1 and 2 in Fig. 8. The list itself
was already obtained by Kushner, Levine and Porto [23, 25], although they did not
describe explicitly the equivalence relation for their classification.

In fact, we can easily get the following list of C∞ right-left equivalence classes of
singular fibers for proper C∞ stable maps of (not necessarily orientable) 3-manifolds
into surfaces. Details are left to the reader.

Theorem 4.15. Let f : M → N be a proper C∞ stable map of a 3-manifold M
into a surface N . Then, every singular fiber of f is equivalent to the disjoint union

of one of the fibers as in Fig. 13 and a finite number of copies of a fiber of the

trivial circle bundle.

Note that the above list itself is mentioned in the introduction of [25]. As a
corollary to Theorems 3.1 and 4.15, we get the following, which we can prove by
an argument similar to that in the proof of Corollary 4.9. Details are left to the
reader.

Corollary 4.16. Let us consider two fibers of proper C∞ stable Morse functions

on surfaces, or two fibers of proper C∞ stable maps of 3-manifolds into surfaces.

Then, the following conditions are equivalent to each other.

(1) They are diffeomorphic.

(2) They are C0 equivalent.
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ĨI
11

ĨI
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ĨI
a

Figure 13. List of singular fibers of proper C∞ stable maps of
3-manifolds into surfaces

(3) They are C∞ equivalent.

We warn the reader that the fibers as depicted in Fig. 2 (2) and (3) (or the

fibers Ĩ1 and Ĩ2) are homeomorphic to each other, although they are not C0 equiv-
alent nor diffeomorphic to each other. Compare these results with Remark 4.8 and
Corollary 4.9.

As an important consequence of the above mentioned result, we show the fol-
lowing.

Corollary 4.17. Let f0 : M0 → N0 and f1 : M1 → N1 be two proper C∞ stable

maps of surfaces into 1-dimensional manifolds. Then, the maps f0 and f1 are C0

right-left equivalent if and only if they are C∞ right-left equivalent.

Proof. Suppose that f0 and f1 are C0 right-left equivalent so that we have home-
omorphisms ϕ̃ : M0 → M1 and ϕ : N0 → N1 satisfying f1 ◦ ϕ̃ = ϕ ◦ f0. Since
f0(S(f0)) and f1(S(f1)) are discrete sets and ϕ sends f0(S(f0)) homeomorphically
onto f1(S(f1)), we see that there exists a diffeomorphism ψ : N0 → N1 which
approximates ϕ such that ψ|f0(S(f0)) = ϕ|f0(S(f0)).

Then by Corollary 4.16 together with the proof of Theorem 3.1, we see that for
each point y ∈ f0(S(f0)), there exist a small neighborhood Uy of y in N0 and a

diffeomorphism ψ̃y : (f0)
−1(Uy) → (f1)

−1(Uy′) such that the diagram

((f0)
−1(Uy), (f0)

−1(y))
eψy

−−−−−→ ((f1)
−1(Uy′), (f1)

−1(y′))yf0
yf1

(Uy, y)
ψ

−−−−−→ (Uy′ , y
′)
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is commutative, where y′ = ψ(y) and Uy′ = ψ(Uy) is a neighborhood of y′ in N1.

Here, we choose the diffeomorphism ψ̃y so that it approximates ϕ̃|(f0)−1(Uy).
Since the collection of homeomorphisms ϕ̃|(f0)−1(Uy), y ∈ f0(S(f0)), extends to

a homeomorphism ϕ̃ such that f1 ◦ ϕ̃ = ϕ ◦ f0, the collection of diffeomorphisms

ψ̃y, y ∈ f0(S(f0)), also extends to a homeomorphism ψ̃ such that f1 ◦ ψ̃ = ψ ◦ f0.
Now, it is well-known that two C∞ S1-bundles are C0 equivalent if and only

if they are C∞ equivalent. This is true also for C∞ bundles with fiber a union

of finite copies of S1. Hence the homeomorphism ψ̃ above can be chosen to be a
diffeomorphism. Hence, the C∞ maps f0 and f1 are C∞ right-left equivalent to
each other. This completes the proof. �

Problem 4.18. Let f0 : M0 → N0 and f1 : M1 → N1 be two proper C∞ stable
maps of orientable 4-manifolds into 3-manifolds (or two proper C∞ stable maps of
3-manifolds into surfaces). If f0 and f1 are C0 right-left equivalent, then are they
C∞ right-left equivalent?

For the above problem and Corollary 4.17, refer to [6, §4], for example. Note that
there have been known a lot of examples of 4-manifold pairs which are mutually
homeomorphic, but are not diffeomorphic. If the answer to the above problem is
affirmative, then such 4-manifolds would not admit C∞ stable maps that are C0

right-left equivalent.

5. Relations among the numbers of singular fibers

Let f : M → N be a C∞ stable map of a closed orientable 4-manifold into a
3-manifold. In this section, we consider a natural stratification of N induced by the
equivalence classes of fibers of f , and obtain some relations among the numbers of
singular fibers of codimension three.

Let f : M → N be a C∞ stable map of a closed orientable 4-manifold M into
a 3-manifold N and F the equivalence class of one of the singular fibers appearing
in Fig. 8. We define F(f) to be the set of points y ∈ N such that the fiber f−1(y)
over y is equivalent to the union of F and some copies of a fiber of the trivial
circle bundle. Furthermore, we define Fo(f) (resp. Fe(f)) to be the subset of F(f)
consisting of the points y ∈ N such that b0(f

−1(y)) is odd (resp. even), where b0
denotes the number of connected components. We denote the closures of F(f),

Fo(f), and Fe(f) in N by F(f), Fo(f), and Fe(f), respectively. It is easy to see

that each of F(f), Fo(f), or Fe(f) is a (3−κ)-dimensional subcomplex of N , where
κ is the codimension of F. In particular, if the codimension κ is equal to two, then
Fo(f) and Fe(f) are finite graphs embedded in N . Their vertices correspond to
points over which lies a singular fiber with κ = 3. For a singular fiber F′ of κ = 3,
the degree of the vertex corresponding to F′

o(f) (or F′
e(f)) in the graph Fo(f) is

given in Table 1, which can be obtained by using the description of nearby fibers
as in Fig. 10–12. Note that the degrees in the graph Fe(f) can be obtained by
interchanging F′

o(f) with F′
e(f) in the table.

In the following, for a finite set X , we denote by |X | the number of its elements.
Since the sum of the degrees over all vertices is always an even number for any
finite graph, we obtain the following.

Proposition 5.1. Let f : M → N be a C∞ stable map of a closed orientable

4-manifold into a 3-manifold. Then the following numbers are always even.

(1) |III000(f)| + |III001(f)| + |III0ae (f)| + |IIIce(f)|.
(2) |III000(f)| + |III001(f)| + |III0ao (f)| + |IIIco(f)|.
(3) |III0ao (f)| + |III1ae (f)| + |IIIbe(f)|.
(4) |III0ae (f)| + |III1ao (f)| + |IIIbo(f)|.
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II00o (f) II01o (f) II11o (f) II2o(f) II3o(f) IIao(f)

III000o (f) 3 0 0 0 0 0

III000e (f) 3 0 0 0 0 0

III001o (f) 1 2 0 0 0 0

III001e (f) 1 2 0 0 0 0

III011o (f) 0 2 1 0 0 0

III011e (f) 0 2 1 0 0 0

III111o (f) 0 0 3 0 0 0

III111e (f) 0 0 3 0 0 0

III02o (f) 0 2 0 1 0 0

III02e (f) 0 2 0 1 0 0

III03o (f) 0 4 0 0 1 0

III03e (f) 0 0 0 0 1 0

III12o (f) 0 0 2 1 0 0

III12e (f) 0 0 2 1 0 0

III13o (f) 0 0 4 0 1 0

III13e (f) 0 0 0 0 1 0

III4o(f) 0 0 0 3 0 0

III4e(f) 0 0 1 2 0 0

III5o(f) 0 0 0 3 0 0

III5e(f) 0 0 0 3 0 0

III6o(f) 0 0 0 3 3 0

III6e(f) 0 0 0 0 0 0

III7o(f) 0 0 0 4 1 0

III7e(f) 0 0 0 0 1 0

III8o(f) 0 0 0 0 6 0

III8e(f) 0 0 0 0 0 0

III0ao (f) 0 1 0 0 0 1

III0ae (f) 1 0 0 0 0 1

III1ao (f) 0 0 1 0 0 1

III1ae (f) 0 1 0 0 0 1

IIIbo(f) 0 0 0 1 0 1

IIIbe(f) 0 1 0 0 0 1

IIIco(f) 0 0 0 0 0 2

IIIce(f) 1 0 0 0 0 0

IIIdo(f) 0 0 0 0 1 2

IIIde(f) 0 0 0 0 0 0

IIIeo(f) 0 0 0 1 0 0

IIIee(f) 0 0 0 0 0 2

Table 1. Degrees of each vertex in the graphs
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(5) |III011(f)| + |III111(f)| + |III4e(f)| + |III1ao (f)|.
(6) |III011(f)| + |III111(f)| + |III4o(f)| + |III1ae (f)|.
(7) |III02(f)|+ |III12(f)|+ |III4o(f)|+ |III5(f)|+ |III6o(f)|+ |IIIbo(f)|+ |IIIeo(f)|.
(8) |III02(f)|+ |III12(f)|+ |III4e(f)|+ |III5(f)|+ |III6e(f)|+ |IIIbe(f)|+ |IIIee(f)|.
(9) |III03(f)| + |III13(f)| + |III6o(f)| + |III7(f)| + |IIIdo(f)|.

(10) |III03(f)| + |III13(f)| + |III6e(f)| + |III7(f)| + |IIIde(f)|.
(11) |III0a(f)| + |III1a(f)| + |IIIb(f)|.

In fact, items (1)–(10) of the above proposition correspond to the graphs II00o (f),

II00e (f), II01o (f), II01e (f), II11o (f), II11e (f), II2o(f), II2e(f), II3o(f), and II3e(f) respec-

tively. Item (11) corresponds to both IIao(f) and IIae (f).
Eliminating the terms of the forms |Fo(f)| and |Fe(f)|, we obtain the following.

Corollary 5.2. Let f : M → N be a C∞ stable map of a closed orientable 4-
manifold into a 3-manifold. Then the following numbers are always even.

(1) |III0a(f)| + |IIIc(f)|.
(2) |III0a(f)| + |III1a(f)| + |IIIb(f)|.
(3) |III4(f)| + |III1a(f)|.
(4) |III4(f)| + |III6(f)| + |IIIb(f)| + |IIIe(f)|.
(5) |III6(f)| + |IIId(f)|.

Remark 5.3. It is easy to see that the five numbers appearing in Corollary 5.2 are
all even if and only if the following five hold.

(1) |III0a(f)| ≡ |IIIc(f)| (mod 2).
(2) |III1a(f)| ≡ |III4(f)| (mod 2).

(3) |III6(f)| ≡ |IIId(f)| (mod 2).

(4) |IIIb(f)| ≡ |III4(f)| + |IIIc(f)| (mod 2).

(5) |IIIc(f)| + |IIId(f)| + |IIIe(f)| ≡ 0 (mod 2).

Note that the left hand side of congruence (5) is nothing but the total number of
swallowtails. Note also that item (11) of Proposition 5.1 represents the number of
cuspidal intersections as in Fig. 5 (5).

Remark 5.4. Adding items (2), (3), (6), (8) and (10) of Proposition 5.1, we obtain

|III000(f)| + |III001(f)| + |III011(f)| + |III111(f)| + |III02(f)| + |III03(f)|

+|III12(f)| + |III13(f)| + |III4(f)| + |III5(f)| + |III7(f)|

+|IIIco(f)| + |IIIde(f)| + |IIIee(f)| ≡ 0 (mod 2).

This and congruence (1) of Remark 5.3 have also been obtained in [17] by using
methods different from ours.

Remark 5.5. By using the same method, we can obtain similar co-existence results
for singular fibers of proper C∞ stable maps of closed 3-manifolds into surfaces.
More precisely, using the notation introduced in Theorem 4.15, we have the follow-
ing.

(1) |ĨI
01

(f)| + |ĨI
a

e (f)| ≡ 0 (mod 2).

(2) |ĨI
01

(f)| + |ĨI
a

o(f)| ≡ 0 (mod 2).

(3) |ĨI
02

(f)| + |ĨI
12

(f)| + |ĨI
6
(f)| ≡ 0 (mod 2).

Details are left to the reader (compare this with Table 3 of §10).

We end this section by posing a problem.

Problem 5.6. Let S be the Z2-vector space consisting of 38-tuples of elements of
Z2 such that the congruences in Proposition 5.1 hold, where each of the 38 com-
ponents corresponds to |III000o (f)|, |III000e (f)|, etc. Then, for an arbitrary element
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0o(f) 0e(f)

0e(f)

yy

Indf (y) = 0 Indf (y) = 1

Figure 14. Index of a swallowtail

of S, does there exist a C∞ stable map of some closed orientable 4-manifold into
some 3-manifold which realizes it as the parities of the numbers of corresponding
singular fibers? In other words, do the congruences in Proposition 5.1 exhaust all
the possible relations among the parities of the numbers of singular fibers of the
form Fo(f) or Fe(f)?

6. Parity of the Euler characteristic of the source 4-manifold

In this section, using the co-existence results for singular fibers obtained in the
previous section, we study the relationship between the number of singular fibers
of a certain type and the Euler characteristic of the source 4-manifold. In the
following, χ will denote the Euler characteristic.

Let f : M → N be a C∞ stable map of a closed orientable 4-manifold into a
3-manifold. Set

0o(f) = {y ∈ N r f(S(f)) : b0(f
−1(y)) ≡ 1 (mod 2)},

0e(f) = {y ∈ N r f(S(f)) : b0(f
−1(y)) ≡ 0 (mod 2)}.

It is easy to see that they are disjoint open sets of N . Furthermore, since M

is compact, the closure 0o(f) of 0o(f) is compact. Let y and y′ be points in N
belonging to adjacent regions of N r f(S(f)). Since M is orientable, the difference
between the numbers of components of the fibers over y and y′ is always equal to
one. Hence, we have

0o(f) ∩ 0e(f) = ∂0o(f) = ∂0e(f) = f(S(f)),

where for a subset X of a topological space, ∂X denotes Xr IntX . In other words,
(N, f(S(f))) is two colorable in the sense of [31] (see also [30]).

Note that the map f |S(f) : S(f) → N is a topologically stable singular surface
in the sense of [31]. Then, for each cross cap y ∈ f(S(f)), which corresponds to
a swallowtail point of f , we can define the index Indf (y) ∈ {0, 1} by using the
coloring (0o(f),0e(f)) of (N, f(S(f))). More precisely, it is defined as in Fig. 14
(for details, see [31]).

Then by Szűcs’ formula [47] (see also [31]), we have

(6.1) T (f(S(f))) +
∑

y

Indf (y) ≡ χ(S(f)) (mod 2),

where y runs through the cross caps of f(S(f)) corresponding to Fig. 5 (6), and
T (f(S(f))) denotes the number of triple points of f(S(f)) corresponding to Fig. 5
(4). On the other hand, by using the degenerations of the fibers around the singular

25



fibers corresponding to swallowtails as in Fig. 12, we obtain the following:

Indf (y) =

{
0, if y ∈ IIIco(f) ∪ IIIdo(f) ∪ IIIee(f),

1, if y ∈ IIIce(f) ∪ IIIde(f) ∪ IIIeo(f).

Hence, applying (6.1), we have

|III000(f)| + |III001(f)| + |III011(f)| + |III111(f)| + |III02(f)| + |III03(f)|

+|III12(f)| + |III13(f)| + |III4(f)| + |III5(f)| + |III6(f)| + |III7(f)|

+|III8(f)| + |IIIce(f)| + |IIIde(f)| + |IIIeo(f)| ≡ χ(S(f)) (mod 2).

On the other hand, adding items (1), (3), (5), (7), (9) and (11) in Proposition 5.1,
we obtain

|III000(f)| + |III001(f)| + |III011(f)| + |III111(f)| + |III02(f)| + |III03(f)|

+|III12(f)| + |III13(f)| + |III4(f)| + |III5(f)| + |III7(f)| + |IIIce(f)|

+|IIIdo(f)| + |IIIeo(f)| ≡ 0 (mod 2).

Adding the above two congruences, we obtain

|III6(f)| + |III8(f)| + |IIId(f)| ≡ χ(S(f)) (mod 2).

Since |III6(f)| ≡ |IIId(f)| (mod 2) by Corollary 5.2 (5), we get

|III8(f)| ≡ χ(S(f)) (mod 2).

Since we always have

χ(S(f)) ≡ χ(M) (mod 2)

by [11, 39], we finally obtain the following theorem, which can be regarded as a
4-dimensional version of Corollary 3.4.

Theorem 6.1. Let f : M → N be a C∞ stable map of a closed orientable 4-
manifold into a 3-manifold. Then we have

χ(M) ≡ |III8(f)| (mod 2).

Remark 6.2. The above theorem holds also for C∞ stable maps of closed (not
necessarily orientable) 4-manifolds into 3-manifolds such that every fiber has an
orientable neighborhood.

Remark 6.3. The results in the previous and the present sections can be generalized
to C∞ stable maps of possibly nonorientable closed 4-manifolds into 3-manifolds.
For details, see [53] (see also Remark 4.13).

Remark 6.4. A result corresponding to Remark 3.5 does not hold for singular fibers
of types III∗ for C∞ stable maps of 4-manifolds into 3-manifolds. This is because
we can increase the number of fibers of a given type of codimension three as much
as we want. For details, see Remark 4.6.

We end this section by posing a problem.

Problem 6.5. Is it possible to obtain an integral formula giving the signature of
the source oriented 4-manifold in terms of the algebraic numbers of some singular
fibers?

In order to appropriately define “algebraic numbers” of singular fibers, we should
probably determine those singular fibers which are “orientable”, and define their
signs.
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Figure 15. Boy surface

7. Some explicit examples of stable maps of 4-manifolds

In this section, we give explicit examples of C∞ stable maps of 4-manifolds into
R3. Note that there have already been known some explicit examples of such stable
maps that have only definite fold points as their singularities (see [43, 37, 38, 41,
42]). Such maps have singular fibers of types I0, II00, and III000, and have no other
singular fibers. Furthermore, the source 4-manifolds of such maps always have even
Euler characteristics. Here we construct more complicated maps having a singular
fiber of type III8 such that the source 4-manifold has odd Euler characteristic.

Let us first construct a C∞ stable map f : CP 2♯2CP 2 → R3 which satisfies the
following properties.

(1) The map f has only fold points as its singularities.
(2) The singular set S(f) is the union of three 2-sphere components consist-

ing of definite fold points and a projective plane component consisting of
indefinite fold points.

(3) The discriminant set f(S(f)) is a disjoint union of three embedded 2-spheres
and the Boy surface in R3 (see Fig. 15).

(4) The fibers of f can be completely described (details will be given in Fig. 16).

Recall that the Boy surface P , which is the image of an immersion RP 2 # R3,
is constructed by attaching a 2-disk as in the right hand side of Fig. 15 to the image
of an immersion of the Möbius band as in the left hand side of Fig. 15, from the
front side.

Note that R3
rP consists exactly of two regions. Let S0 be a 2-sphere embedded

in the unbounded region of R3
rP such that the bounded region of R3

rS0 contains
P . Furthermore, let S1 and S2 be two disjoint concentric 2-spheres embedded in
the bounded region of R3

r P such that S2 is contained in the bounded region of
R3

r S1. Note that R3
r (P ∪ S0 ∪ S1 ∪ S2) consists exactly of five regions and

that P ∪ S0 ∪ S1 ∪ S2 naturally induces a stratification of R3: we have five strata
of dimension three, seven strata of dimension two, three strata of dimension one,
and one stratum of dimension zero. Let us denote by Aij the strata of dimension i.
We enumerate them as follows (see Fig. 16):

(1) the closure of A2
j contains A0

1∪A
1
j , j = 1, 2, 3, and the closure of A2

4 contains

A0
1 ∪A

1
1 ∪A

1
2 ∪A

1
3,

(2) A2
5 = S0, A

2
6 = S1, A

2
7 = S2,

(3) A3
1 is the unbounded region of R3

r S0,
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Figure 16. Fibers over the points in R3

(4) A3
2 is the region between S0 and the Boy surface,

(5) A3
3 is the region between the Boy surface and S1,

(6) A3
4 is the region between S1 and S2, and

(7) A3
5 is the bounded region of R3

r S2.

We shall construct a fold map f : CP 2♯2CP 2 → R3 such that f(S0(f)) =
S0 ∪ S1 ∪ S2 and f(S1(f)) = P , where a fold map is a smooth map with only fold
points as its singularities. In particular, S0(f) is diffeomorphic to the disjoint union
of three 2-spheres and S1(f) is diffeomorphic to RP 2.

Over the points on each stratum we put fibers as depicted in Fig. 16, where
the lower figure depicts a part of the 2-disk (contained in P ) as in the right hand
side of Fig. 15 together with parts of S1 and S2, which sit inside the bounded
region of R3

r P . It is easy to see that the regular parts of the fibers can be
oriented consistently. Hence, if such a smooth map is constructed, then the source
4-manifold will be orientable.

Let N(A0
1) be a small closed disk neighborhood of the zero dimensional stratum

A0
1 such that its boundary two sphere is transverse to the other strata. LetN(A1

j )
∼=

D2 × [0, 1] denote the closure of Ñ(A1
j ) rN(A0

1), where Ñ(A1
j ) is a small tubular

neighborhood of the 1-dimensional stratum A1
j such that its boundary is transverse
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B1
j

Figure 17. Fibers over the points in B1
j for g1

j

to the strata of higher dimensions (j = 1, 2, 3). We may assume that N(A1
j )

∼=
D2 × [0, 1] is attached to N(A0

1) along D2 × {0, 1} and that N(A0
1) ∪ N(A1

1) ∪
N(A1

2) ∪N(A1
3) is a regular neighborhood of A0

1 ∪ A
1
1 ∪ A

1
2 ∪ A

1
3 in R3. Similarly,

we construct N(A2
j ), j = 1, 2, . . . , 7, and N(A3

j ), j = 1, 2, . . . , 5, so that the family

of closed sets {N(Aij)}0≤i≤3 covers R3 and that distinct members intersect only

along their boundaries. Furthermore, we put Âij = Aij ∩ N(Aij). We may assume

that the natural projection N(Aij) → Âij is a smooth (3 − i)-disk bundle.
Let us now construct a closed orientable 4-manifold M and a C∞ stable map f :

M → R3 such that f(S(f)) and the fibers are as depicted in Fig. 16. Our strategy
is to first construct compact 4-manifolds M i

j and smooth maps f ij : M i
j → N(Aij),

and then glue them together.
As we have noted in Remark 4.6, we can construct a compact orientable 4-

manifold M0
1 and a smooth map f0

1 : M0
1 → R3 which has only fold points as its

singularities such that f0
1 (M0

1 ) = N(A0
1) and that the fibers are consistent with

Fig. 16 (see also Fig. 10). In our case, M0
1 is diffeomorphic to T 2

(3) ×D2, where for

a surface F , we denote by F(ℓ) the surface obtained from F by taking off ℓ open

disks whose closures do not intersect each other, and T 2 denotes the 2-dimensional
torus.

Let B1
j be a 2-disk fiber of the bundle N(A1

j ) → Â1
j , j = 1, 2, 3. Then we can

construct a compact orientable 3-manifold N1
j and a smooth map g1

j : N1
j → B1

j

which has only fold points as its singularities such that its fibers are as depicted in
Fig. 17 (for details, see [23, 25, 36], for example). Then we can construct a smooth
map f1

j : M1
j = N1

j × [0, 1] → N(A1
j ) by putting f1

j = g1
j × id[0,1], where we identify

N(A1
j) with B1

j × [0, 1]. Note that M1
j is diffeomorphic to T 2

(2) × [−1, 1]× [0, 1].

Similarly, for each of the four strata A2
j diffeomorphic to an open disk, j =

1, 2, 3, 4, by using a Morse function S2
(3) → [−1, 1] as in Fig. 3 (2), we can construct

a smooth map f2
j : M2

j → N(A2
j )

∼= [−1, 1] × D2 which has only fold points as

its singularities such that its fibers are as depicted in Fig. 16. Note that M2
j is

diffeomorphic to S2
(3) × D2. For the other three strata A2

j diffeomorphic to a 2-

sphere, j = 5, 6, 7, we do not construct f2
j for the moment.

Now let us piece together the smooth maps constructed above. First, we attach
f0
1 : M0

1 → N(A0
1) and f1

j : N1
j × [0, 1] → N(A1

j), j = 1, 2, 3, by using appropriate

embeddings ϕ1
j : N1

j × {0, 1} → ∂M0
1 . This is possible by the classification of

singular fibers of C∞ stable maps of 3-manifolds into surfaces (see Remark 4.14
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and Theorem 4.15), since f0
1 and f1

j have the same singular fiber of κ = 2 on the
attaching part. Note that then the natural map

(7.1) (f0
1 ∪ f1

j )
−1((N(A0

1) ∪N(A1
j)) ∩N(A2

j)) → ∂Â2
j

is the projection of a smooth S2
(3)-bundle over a circle, j = 1, 2, 3.

Note that we have a nontrivial diffeomorphism ϕ : N1
j → N1

j such that g1
j ◦ ϕ =

g1
j . (This corresponds to the rotation through the angle π around the center of

the square representing T 2
(2) in [36, Fig. 1].) Thus, we may assume that the S2

(3)-

bundle (7.1) is trivial by changing the embedding ϕ1
j by ϕ1

j ◦ ϕ̃ if necessary, where

ϕ̃ : N1
j × {0, 1} → N1

j × {0, 1} is the identity on N1
j × {0} and is ϕ on N1

j × {1}.

Let us denote the resulting map f0
1 ∪ f1

1 ∪ f1
2 ∪ f1

3 by f̃1. Then, we can check that
the natural map

(7.2) (f̃1)−1((N(A0
1) ∪N(A1

1) ∪N(A1
2) ∪N(A1

3)) ∩N(A2
4)) → ∂Â2

4

is also the projection of a trivial S2
(3)-bundle over a circle.

Since the S2
(3)-bundles (7.1) and (7.2) are trivial, we can now attach f2

j : M2
j
∼=

S2
(3) ×D2 → N(A2

j), j = 1, 2, 3, 4, to f̃1. Let us denote the resulting map f̃1 ∪ f2
1 ∪

f2
2 ∪ f2

3 ∪ f2
4 by

f̃2 : M̃2 → N(A0
1) ∪N(A1

1) ∪N(A1
2) ∪N(A1

3)

∪N(A2
1) ∪N(A2

2) ∪N(A2
3) ∪N(A2

4) ⊂ R3.

Note that the image X of the above map is nothing but the regular neighborhood
of the Boy surface P . Let ∂X = ∂0X ∪ ∂1X be the connected components of ∂X ,
where

∂0X = X ∩N(A3
2) and ∂1X = X ∩N(A3

3),

both of which are diffeomorphic to the 2-sphere. Note that

(7.3) f̃2|( ef2)−1(∂0X) : (f̃2)−1(∂0X) → ∂0X

is the projection of a smooth orientable S1-bundle over a 2-sphere, and that

(7.4) f̃2|( ef2)−1(∂1X) : (f̃2)−1(∂1X) → ∂1X

is the projection of a smooth orientable (S1∪S1)-bundle over a 2-sphere. Note also
that the latter is a disjoint union of two orientable S1-bundles, since ∂1X is simply
connected.

Let M2
5 be the total space of the D2-bundle associated with the S1-bundle (7.3),

and M2
6 ,M

2
7 the total spaces of the D2-bundles associated with the two S1-bundles

(7.4). Then, by extending the maps (7.3) and (7.4), we can construct smooth maps

f2
5 : M2

5 → N(A2
5) ∪N(A3

2),(7.5)

f2
6 : M2

6 → N(A2
6) ∪N(A3

3),(7.6)

f2
7 : M2

7 → N(A2
7) ∪N(A3

4) ∪N(A2
6) ∪N(A3

3)(7.7)

with only definite fold points as their singularities such that their singular sets
correspond to the zero sections of the D2-bundles, f2

5 (S0(f
2
5 )) = A2

5, f
2
6 (S0(f

2
6 )) =

A2
6, and f2

7 (S0(f
2
7 )) = A2

7. Then, their fibers are as depicted in Fig. 16. By our

construction, we can glue (7.5), (7.6), (7.7) and f̃2 to get a smooth map

f : M → R3

of a smooth closed 4-manifold M into R3.
Note that f has only fold points as its singularities and that its fibers are exactly

as depicted in Fig. 16. Then by Proposition 4.1, f is a C∞ stable map.
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D2
1

D2
2

D2
3

S1 × [0, 1]

A2
4 ⊂ P

A2
5 = S0

A2
6 = S1

A2
7 = S2

Figure 18. Embedded 2-sphere Y = D2
1 ∪ (S1 × [0, 1]) ∪D2

2 in R3

D2

hx [0, 1]

Figure 19. Morse function hx : D2 → [0, 1]

In order to prove that M is diffeomorphic to CP 2♯2CP 2, let us consider a C∞

stable map g : M ′ → R3 constructed as follows. Let Y = D2
1 ∪ (S1 × [0, 1])∪D2

2 be
a 2-sphere embedded in R3 which intersects A2

5, A
2
4 and A2

6 transversely as shown

in Fig. 18, where D2
1 and D2

2 are copies of 2-disks. We take Y so that the 3-disk Ỹ
bounded by Y contains A2

7 = S2 in its interior. Note that the natural map

f−1(S1 × [0, 1])
f

−−−−−→S1 × [0, 1]
π1−−−−−→S1

is a trivial D2-bundle, where π1 is the projection to the first factor. Note also that
the map hx = f |f−1({x}×[0,1]) : D2 → [0, 1] is a Morse function as described in

Fig. 19 for all x ∈ S1 and is independent of the choice of x.
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D2
1

D2
2

∅

Figure 20. Fibers of geY
t = 1 t = 3/4 t = 1/2

1

0

kt

Figure 21. Deformation of functions on the 2-disk

Let us replace the map f |f−1(eY ) by the smooth map geY whose fibers are as

described in Fig. 20 (in fact, the real figure is obtained by rotating the rectangle
around the vertical line in the center).

Let us explain the reason why such a replacement is possible. We identify Ỹ
with D2× [0, 1] so that D2×{ε} corresponds to D2

2−ε for ε = 0, 1. Let ∆ be a small
concentric 2-disk in the interior of D2. By using a generic deformation of functions
kt : D2 → [0, 1], t ∈ [1/2, 1], as shown in Fig. 21, we can construct the smooth map

g1 : S1 × [1/2, 1]×D2 → Ỹ r (∆ × [0, 1]) ∼= S1 × [1/2, 1]× [0, 1]

by putting g1(x, t, q) = (x, t, kt(q)). Note that g1 has only fold points and cusp
points as its singularities and is consistent with f |f−1(R3

rInt eY ) along (S1 × {1} ×

D2) ∪ (S1 × [1/2, 1]× ∂D2).
Then, using the Morse function k1/2, we define the smooth map g2 : ∆ ×D2 →

∆×[0, 1] by g2(x, q) = (x, k1/2(q)). Obviously, this is consistent with g1|g−1
1 (∂∆×[0,1])

along ∂∆×D2 = S1×{1/2}×D2, although we do not know if it is consistent with
f |f−1(R3

rInt eY ) along

(7.8) g−1
2 (∆ × {0}) = ∆ × ∂D2 = f−1(∆ × {0}).

However, we have a plenty of diffeomorphisms D2 → D2 that preserve the Morse
function k1/2. For example, all the diffeomorphisms in the rotation group SO(2)

satisfy this property. Hence, changing the identification g−1
2 (∂∆× [0, 1]) ∼= ∂∆×D2
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π

R

Figure 22. Image of S(g) by g

if necessary, we can arrange so that g2 is consistent with f |f−1(R3
rInt eY ) along (7.8).

Therefore, we obtain a C∞ stable map g : M ′ → R3 by gluing f |f−1(R3
rInt eY ), g1

and g2, where geY = g1 ∪ g2 (see Fig. 20 again). Note that the singular set S(g) is
the union of a 2-sphere component consisting of definite fold points and a projective
plane component containing the set of cusp points.

Lemma 7.1. The smooth closed 4-manifold M ′ is diffeomorphic to CP 2 or CP 2.

Proof. Let π : R3 → R be a projection. By locating g(S(g)) as in Fig. 22 by an
isotopy of R3, we may assume that π◦g : M ′ → R is a Morse function with exactly
three critical points (for such a construction of Morse functions, refer to [11] for
more details). We see easily that their indices are equal to 0, 2 and 4. Thus, M ′

has a handlebody decomposition h0 ∪ h2 ∪ h4, where hi denotes an i-handle. Let k
be the knot in ∂h0 = S3 along which the 2-handle h2 is attached to h0. Since the
resulting handlebody h0∪h2 has boundary diffeomorphic to S3, the knot k must be
trivial and the framing must be equal to ±1 by [14, 15]. Hence, M ′ is diffeomorphic

to CP 2 or CP 2 (for details, see [20]). �

Remark 7.2. In this way we have completed the construction of a C∞ stable map
g : CP 2 → R3 with the following properties.

(1) The map g has only fold and cusp points as its singularities.
(2) The set C(g) of its cusp points constitutes a circle, and the singular set

S(g) is the union of a 2-sphere component consisting of definite fold points
and a projective plane component which contains C(g).

(3) The discriminant set g(S(g)) is as described in Fig. 22.
(4) The fibers of g can be completely described.

Presumably, the C∞ stable map g : M ′ = CP 2 → R3 thus constructed coincides
with Kobayashi’s example presented in [21, 22].

By choosing an appropriate orientation for M ′, we may assume that it is orien-
tation preservingly diffeomorphic to CP 2. By our construction, it is easy to see

that g−1(Ỹ ) is diffeomorphic to D4. Hence f−1(R3
r Int Ỹ ) is diffeomorphic to

CP 2 − IntD4.
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Let us determine the diffeomorphism type of f−1(Ỹ ). Take a properly embedded

2-disk D2
3 in Ỹ as in Fig. 18, and let Ỹ1 and Ỹ2 be the 3-disks such that Ỹ = Ỹ1∪ Ỹ2,

Ỹ1 ∩ Ỹ2 = D2
3, and Ỹ2 ⊃ S2. Then it is easy to see that f−1(Ỹ1) and f−1(Ỹ2)

are diffeomorphic to D2 × D2 and to the total space E of a D2-bundle over S2,

respectively. More precisely, f−1(Ỹ ) is obtained from E by attaching a 2-handle

along the boundary of a D2-fiber of the fibration E → S2. Hence, f−1(Ỹ ) is

diffeomorphic either to CP 2♯CP 2
r IntD4 or to S2 × S2

r IntD4.
Therefore, the source 4-manifold M = f−1(R3) of f is diffeomorphic either

to CP 2♯(CP 2♯CP 2) or to CP 2♯(S2 × S2). In both cases, M is diffeomorphic to

CP 2♯2CP 2 (for details, see [20], for example). This completes the construction of

the desired C∞ stable map f : CP 2♯2CP 2 → R3 as promised at the beginning of
this section.

It is an easy task to check that all the results obtained in §§5 and 6 are valid for
the above constructed C∞ stable maps.

Remark 7.3. The author has shown that CP 2 does not admit a fold map into R3

(see [36, 39, 45, 1, 40, 34]). This implies that the normal bundle of the definite
fold component of f in M corresponding to S2 is nontrivial, for if it were trivial,
then we could construct a smooth map g′′ : M ′ → R3 with only fold points as its
singularities. In fact, we can show that the normal Euler numbers of the definite
fold components of f in M corresponding to S0, S1 and S2 are equal to 1,−2 and
−2 respectively.

Using the example constructed above, we can show the following.

Proposition 7.4. For every n ≥ 1, there exists a smooth map

fn : nCP 2♯(n+ 1)CP 2 → R3

with only fold points as its singularities.

Proof. Recall that there exists a smooth map ℓ : CP 2♯CP 2 → R3 with only definite
fold points as its singularities (for example, see [37]). Note also that such a map
can be constructed explicitly. Then, we can construct the desired map fn from
f = f1 : CP 2♯2CP 2 → R3 and n−1 copies of ℓ by the connected sum construction
(for details, see [37]). �

Remark 7.5. Sakuma [44] had conjectured that no closed orientable 4-manifold with
odd Euler characteristic can admit a fold map into R3. The above proposition gives
explicit counter-examples to his conjecture. Note that a more precise result has been
obtained in [40] about fold maps of 4-manifolds into R3.

8. Generalities

In this and the following sections, we formalize the idea used in §§5 and 6 in a
more general setting and develop a general theory.

First, let us prepare the following notation. For a pair of nonnegative integers
(n, p), we denote by Tpr(n, p) (or by S∞

pr (n, p)) the set of all proper Thom maps (resp.
proper C∞ stable maps) between manifolds of dimensions n and p (for Thom maps,
see Example 2.3 of §2). Furthermore, we denote by S0

pr(n, p) the set of all C0 stable
maps which are elements of Tpr(n, p). Note that we have S∞

pr (n, p) ⊂ Tpr(n, p).

However, the author does not know if a proper C0 stable map is a Thom map or
not, so that we adopt the above convention. Note also that S0

pr(n, p) = S∞
pr (n, p)

for nice dimension pairs (n, p) in the sense of Mather [27] by [9, 51] (see also
Remark 4.2).
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In the following, we call k = p− n the codimension of a map in these sets. For
a fixed k, we put

T̃pr(k) =
⋃

p−n=k

Tpr(n, p),

S̃∞
pr (k) =

⋃

p−n=k

S∞
pr (n, p),

S̃0
pr(k) =

⋃

p−n=k

S0
pr(n, p).

In the following, for a Thom map f : M → N in Tpr(n, p), M and N will denote
Whitney stratifications of M and N respectively such that f satisfies the Thom
regularity condition [12, Chapter I, §3] with respect to them. For a C0 equivalence
class F of fibers, we denote by F(f) the set of points in N over which lies a fiber of
type F.

Lemma 8.1. The subspace F(f) of N is a union of strata of N and is a C0

submanifold of N of constant codimension if it is nonempty. Furthermore, this

codimension does not depend on a particular choice of f ∈ Tpr(n, p).

Proof. The first assertion has already been shown in Example 2.3. In order to show
the second assertion, let us take a top dimensional stratum Σ contained in F(f).
Note that for each point y ∈ Σ, there exists a neighborhood Uy of y in N such
that Uy ∩ F(f) = Uy ∩ Σ, since Σ is top dimensional. On the other hand, by the
definition of C0 equivalence, for each point y′ of F(f), there exists a neighborhood
Uy′ of y′ in N such that (Uy′ , Uy′∩F(f)) is homeomorphic to (Uy, Uy∩F(f)). Hence
the assertion about F(f) follows. Using a similar argument, we can prove the final
assertion. This completes the proof. �

Note that by virtue of the above lemma, the codimension of a C0 type F of fibers
makes sense, and we denote it by κ(F).

Let us introduce the following notion which will play an important role through-
out the rest of the paper.

Definition 8.2. Suppose that an equivalence relation ρ = ρn,p among the fibers of
proper Thom maps between smooth manifolds of dimensions n and p is given. We
say that the relation ρ is admissible if the following conditions are satisfied.

(1) If two fibers are C0 equivalent, then they are also equivalent with respect
to ρ.

(2) For any two proper Thom maps fi : Mi → Ni in Tpr(n, p) and for any
points yi ∈ Ni, i = 0, 1, such that the fibers over yi are equivalent to
each other with respect to ρ, there exist neighborhoods Ui of yi in Ni,
i = 0, 1, and a homeomorphism ϕ : U0 → U1 such that ϕ(y0) = y1 and

ϕ(U0 ∩ F̃(f0)) = U1 ∩ F̃(f1) for every equivalence class F̃ of fibers with

respect to ρ, where F̃(fi) is the set of points in Ni over which lies a fiber of

fi of type F̃.

For example, the C0 equivalence is clearly admissible in the above sense. We
denote the C0 equivalence relation among the fibers of elements of Tpr(n, p) by ρ0

n,p.
In the following argument, we fix an admissible equivalence relation ρ = ρn,p as

in Definition 8.2.

Lemma 8.3. For every equivalence class F̃ with respect to an admissible equivalence

relation ρ, and for every proper Thom map f : M → N in Tpr(n, p), the subspace

F̃(f) of N is a union of strata of N and is a C0 submanifold of N of constant
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codimension if it is nonempty. Furthermore, this codimension does not depend on

a particular choice of f ∈ Tpr(n, p).

Proof. By Definition 8.2 (1) and Lemma 8.1, F̃(f) is a union of strata. Hence,
the rest of the assertion follows from an argument similar to that in the proof of
Lemma 8.1 together with Definition 8.2 (2). �

By virtue of the above lemma, the codimension of F̃ makes sense, and we denote

it by κ(F̃).

For an equivalence class F̃ of fibers with respect to ρ with κ = κ(F̃), let ∂F̃ be

the set of equivalence classes G̃ of fibers with respect to ρ of codimension κ+1 such

that G̃(f) ⊂ F̃(f) r F̃(f) for every f ∈ Tpr(n, p). For G̃ ∈ ∂F̃, we take a proper

Thom map f ∈ Tpr(n, p) with G̃(f) 6= ∅. Then we take a top dimensional stratum

Σ ⊂ G̃(f), and let BΣ be a small disk which intersects Σ transversely exactly at its

center and whose dimension coincides with the codimension of Σ. Then BΣ ∩ F̃(f)
consists of a finite number of arcs which have BΣ ∩Σ as a common end point. Let

neF(G̃) ∈ Z2 denote the number of such arcs modulo two, which clearly does not

depend on the choice of BΣ,Σ or f by Definition 8.2 (2). Then, by considering the

homological boundary of F̃(f), we have the following.

Proposition 8.4. For every equivalence class F̃ of fibers with respect to an admis-

sible equivalence relation ρ, and for every f : M → N in Tpr(n, p), the Z2-chain

(8.1)
∑eG∈∂eFneF(G̃)G̃(f)

(of closed support) is a cycle in N and represents the zero homology class in the

homology Hc
p−κ−1(N ;Z2) of closed support, where κ denotes the codimension of F̃.

Proof. By the definition of neF(G̃), we see that the Z2-chain (8.1) coincides the

boundary of the Z2-chain F̃(f) in N . Hence the result follows. �

Remark 8.5. In the above proposition, if F̃ does not contain the empty fiber and
the source manifold M is compact, then the Z2-chain (8.1) has compact support
and represents the zero homology class in the usual homology Hp−κ−1(N ;Z2).

We warn the reader that the sum appearing in the right hand side of (8.1) may
contain infinitely many terms if the source manifold M of f is not compact.

Note that all the results obtained in §5 are special cases of the above proposition.
Some applications of Proposition 8.4 to other specific situations will be given in §16.

9. Universal complex of singular fibers

In this section, based on the idea given in the previous section, we define a
complex of singular fibers for a specific map, and then we define its universal ver-
sions for various classes of maps. We will see later that this is a generalization of
Vassiliev’s universal complex of multi-singularities [50]. Here we develop a rather
detailed theory of such universal complexes in order to better understand what is
the essential point behind our results obtained in §§5 and 6, and to obtain further
related results.
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9.1. Complex of singular fibers for a specific map. Let f : M → N be
a proper smooth map of a smooth n-dimensional manifold M into a smooth p-
dimensional manifold N such that f is a Thom map in the sense of Example 2.3,
as in the previous section: in other words, f ∈ Tpr(n, p).

In the following, we fix an equivalence relation ρ = ρn,p for the set of fibers
of such maps which is admissible in the sense of Definition 8.2. Let us construct
a complex of fibers for f with coefficients in Z2 with respect to the admissible
equivalence relation ρ as follows.

For κ ≥ 0, let Cκ(f, ρ) be the Z2-vector space consisting of all formal linear
combinations, ∑

κ(eF)=κ

meFF̃ (meF ∈ Z2),

which may possibly contain infinitely many terms if M is noncompact, of the equiv-

alence classes F̃ of fibers of f with codimension κ with respect to the equivalence
relation ρ. If there are no such fibers, then we simply put Cκ(f, ρ) = 0. Further-

more, for κ < 0, we also put Cκ(f, ρ) = 0. For two equivalence classes of fibers F̃

and G̃ of f with κ(F̃) = κ(G̃)− 1, we define the incidence coefficient [F̃ : G̃]f ∈ Z2

by putting [F̃ : G̃]f = neF(G̃) ∈ Z2 if G̃(f) ⊂ F̃(f) r F̃(f), and [F̃ : G̃]f = 0
otherwise. Define the Z2-linear map

δκ(f) : Cκ(f, ρ) → Cκ+1(f, ρ)

by

(9.1) δκ(f)(F̃) =
∑

κ(eG)=κ+1

[F̃ : G̃]f G̃,

for F̃ with κ(F̃) = κ. We warn the reader that the sum appearing in the right
hand side of (9.1) may possibly contain infinitely many terms if M is noncompact.

Nevertheless, for a given equivalence class G̃ of fibers of f with codimension κ+ 1,

the number of equivalence classes F̃ of fibers of f with codimension κ such that

[F̃ : G̃]f 6= 0 is finite by virtue of the local finiteness of the Whitney regular
stratifications and the definition of an admissible equivalence relation. Hence, the
linear map δκ(f) is well-defined.

The following lemma can be proved by an argument similar to that in [50,
8.3.4 Lemma] or [33, Lemma 1.5]. The details are left to the reader.

Lemma 9.1. δκ+1(f) ◦ δκ(f) = 0.

Therefore, C(f, ρ) = (Cκ(f, ρ), δκ(f))κ constitutes a complex and its cohomology
groups Hκ(f, ρ) are well-defined.

9.2. Universal complex of singular fibers for Thom maps between mani-

folds of fixed dimensions. The above construction can be generalized to get a
“universal” complex of singular fibers for proper Thom maps between manifolds of
dimensions n and p as follows.

Let ρ be an admissible equivalence relation as in Definition 8.2 for the fibers
of elements of Tpr(n, p). For κ ∈ Z, let Cκ(Tpr(n, p), ρ) be the Z2-vector space
consisting of all formal linear combinations,

∑

κ(eF)=κ

meFF̃ (meF ∈ Z2),

which may possibly contain infinitely many terms, of the equivalence classes F̃ of

fibers of proper Thom maps between manifolds of dimensions n and p with κ(F̃) = κ
with respect to the equivalence relation ρ = ρn,p. If there is no such equivalence

37



class (for example, if κ > p or κ < 0), then we simply put Cκ(Tpr(n, p), ρ) =

0. For two equivalence classes F̃ and G̃ of fibers of elements of Tpr(n, p) with

κ(F̃) = κ(G̃) − 1, we define the incidence coefficient [F̃ : G̃] ∈ Z2 by putting

[F̃ : G̃] = neF(G̃) ∈ Z2 if G̃(f) ⊂ F̃(f) r F̃(f) for every f ∈ Tpr(n, p), and [F̃ : G̃] = 0

otherwise. Then the Z2-linear map δκ : Cκ(Tpr(n, p), ρ) → Cκ+1(Tpr(n, p), ρ) is
defined by

(9.2) δκ(F̃) =
∑

κ(eG)=κ+1

[F̃ : G̃]G̃,

for F̃ with κ(F̃) = κ. (See (9.1) and the subsequent remark). Note that the incidence
coefficient, and hence the map δκ, is well-defined by virtue of Definition 8.2 (2).
Furthermore, we can prove that δκ+1◦δκ = 0 as in Lemma 9.1. We call the resulting
complex C(Tpr(n, p), ρ) = (Cκ(Tpr(n, p), ρ), δκ)κ the universal complex of singular

fibers for proper Thom maps between manifolds of dimensions n and p with respect

to the admissible equivalence relation ρ = ρn,p, and we denote its cohomology group
of dimension κ by Hκ(Tpr(n, p), ρ).

For f ∈ Tpr(n, p), let Cκ(f c, ρ) be the linear subspace of Cκ(Tpr(n, p), ρ) spanned

by all the equivalence classes F̃ of fibers of elements of Tpr(n, p) of codimension κ

with respect to ρ such that no fiber of f belongs to F̃.

Lemma 9.2. For f ∈ Tpr(n, p), the following holds.

(1) We have δκ(C
κ(f c, ρ)) ⊂ Cκ+1(f c, ρ) for every κ ∈ Z. Hence, C(f c, ρ) =

(Cκ(f c, ρ), δκ|Cκ(fc,ρ))κ constitutes a subcomplex of C(Tpr(n, p), ρ).
(2) The quotient complex

C(Tpr(n, p), ρ)/C(f c, ρ) = (Cκ(Tpr(n, p), ρ)/C
κ(f c, ρ), δκ)κ

is naturally isomorphic to C(f, ρ), where

δκ : Cκ(Tpr(n, p), ρ)/C
κ(f c, ρ) → Cκ+1(Tpr(n, p), ρ)/C

κ+1(f c, ρ)

is the well-defined Z2-linear map induced by δκ.

Proof. Let F̃ ∈ Cκ(f c, ρ) be an equivalence class of fibers of codimension κ which

contains no fiber of f . For an equivalence class G̃ ∈ Cκ+1(Tpr(n, p), ρ) of fibers of

codimension κ + 1, if [F̃ : G̃] 6= 0, then G̃(f) ⊂ F̃(f) r F̃(f). Since F̃ does not

contain any fiber of f , we have F̃(f) = ∅, and hence G̃(f) = ∅. Thus, we have

G̃ ∈ Cκ+1(f c, ρ) and item (1) follows.
Let πκ : Cκ(Tpr(n, p), ρ) → Cκ(f, ρ) be the natural projection: i.e., πκ is the

linear map defined by

πκ(F̃) =

{
F̃, if F̃ ∈ Cκ(f, ρ),
0, otherwise,

for an equivalence class F̃ ∈ Cκ(Tpr(n, p), ρ) of fibers. Then, it is easy to see that the
system of Z2-linear maps {πκ}κ defines a surjective cochain map and the kernel of
πκ coincides with Cκ(f c, ρ). Hence, item (2) follows. This completes the proof. �

In view of the above lemma, the complex C(Tpr(n, p), ρ) is universal in the sense
that the complex C(f, ρ) for a specific Thom map f is obtained as a quotient
complex.

Remark 9.3. We will see in §10 that the universal complex of singular fibers with
respect to the C0 equivalence as defined above corresponds to increasing the gen-
erators of each cochain group of Vassiliev’s universal complex of multi-singularities
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[50] according to the topological structures of the fibers (see Definition 10.9 and
Remark 10.10).

9.3. Universal complex of singular fibers for Thom maps with fixed codi-

mension. As we have noticed in Remark 4.14, a singular fiber of a codimension k
map into a p-dimensional manifold can naturally be identified with a singular fiber
of a codimension k map into a (p+ 1)-dimensional manifold. This is formalized as
follows.

Definition 9.4. Let f : M → N be a proper Thom map between manifolds of
dimensions n and p with k = p− n. For a positive integer ℓ, we call the map

f × idRℓ : M × Rℓ → N × Rℓ

the ℓ-th suspension of f . (When ℓ = 1, we sometimes call it the suspension of f
and denote it by Σf .) Furthermore, to the fiber of f over a point y ∈ N , we can
associate the fiber of f × idRℓ over y×{0}. We say that the latter fiber is obtained
from the original fiber by the ℓ-th suspension. Note that the ℓ-th suspension of a
proper Thom map is again a proper Thom map.

By considering the suspension as above, we can define a cochain map

C(Tpr(n+ ℓ, p+ ℓ), ρn+ℓ,p+ℓ) → C(Tpr(n, p), ρn,p)

as long as the equivalence relations for the dimension pairs are consistent with each
other in a certain sense, which is specified as follows.

Definition 9.5. Let us fix an integer k. Suppose that for each dimension pair
(n, p) with p − n = k and min(n, p) ≥ 0, we are given an admissible equivalence
relation ρn,p for the fibers of proper Thom maps between manifolds of dimensions
n and p. Such a system of equivalence relations

Rk = {ρn,p : p− n = k, min(n, p) ≥ 0},

which is often written simply as {ρn,p}p−n=k or {ρp−k,p}p, is said to be stable if
the following condition is satisfied: if two fibers of proper Thom maps between
manifolds of dimensions n and p are equivalent with respect to ρn,p, then their ℓ-th
suspensions are also equivalent with respect to ρn+ℓ,p+ℓ for all ℓ > 0. Note that the
ℓ-th suspensions are fibers of proper Thom maps between manifolds of dimensions
n+ ℓ and p+ ℓ.

For example, the set of C0 equivalence relations {ρ0
p−k,p}p gives a stable system of

admissible equivalence relations for the fibers of proper Thom maps of codimension
k, and we denote it by R0

k.
Suppose that a stable system of admissible equivalence relations Rk as in Defi-

nition 9.5 is given for the fibers of proper Thom maps of codimension k. Then, for
every pair (n, p) with p− n = k and a positive integer ℓ, the suspension induces a
natural map

(9.3) sκ : Cκ(Tpr(n+ ℓ, p+ ℓ), ρn+ℓ,p+ℓ) → Cκ(Tpr(n, p), ρn,p)

for κ ∈ Z. More precisely, when 0 ≤ κ ≤ p, for an equivalence class F̃ ∈
Cκ(Tpr(n+ ℓ, p+ ℓ), ρn+ℓ,p+ℓ) of fibers with respect to ρn+ℓ,p+ℓ, we define sκ(F̃) ∈
Cκ(Tpr(n, p), ρn,p) to be the (possibly infinite) sum of all those equivalence classes
of fibers of codimension κ with respect to ρn,p whose ℓ-th suspensions are contained

in F̃. For κ > p or κ < 0, we simply put sκ = 0. Note that sκ is a well-defined
Z2-linear map by virtue of Definition 9.5.

Lemma 9.6. The Z2-linear map sκ of (9.3) is a monomorphism for every κ ≤ p.
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Proof. For κ < 0, the assertion is clear. Suppose 0 ≤ κ ≤ p. For an equivalence

class F̃ ∈ Cκ(Tpr(n+ ℓ, p+ ℓ), ρn+ℓ,p+ℓ) of fibers, there exists a proper Thom map
f : M → N between manifolds of dimensions n+ ℓ and p+ ℓ such that its fiber over

a point y ∈ N is a representative of F̃. By the proof of Lemma 8.3, we may assume
that the stratum containing y is of codimension κ. Let B be a small open disk
of dimension p embedded in N centered at y which is transverse to all the strata.
Then f |f−1(B) : f−1(B) → B is a proper Thom map and the ℓ-th suspension of

its fiber over y is C0 equivalent to the fiber of f over y by Thom’s second isotopy
lemma. Moreover, the codimension of the equivalence class containing the fiber

of f |f−1(B) over y is equal to κ. Hence, sκ(F̃) never vanishes. Since {ρp−k,p}p is
stable, this shows that sκ is a monomorphism. �

Remark 9.7. We warn the reader that the equivalence class with respect to ρn+ℓ,p+ℓ

of the ℓ-th suspension of a fiber whose equivalence class with respect to ρn,p is of
codimension κ may not be of codimension κ. The codimension can decrease by
suspension.

Remark 9.8. We see easily that for a κ with 0 ≤ κ ≤ p, the Z2-linear map sκ of
(9.3) is an isomorphism if and only if the following two hold.

(1) If an equivalence class of fibers with respect to ρn,p has codimension κ, then
the equivalence class of their ℓ-th suspensions with respect to ρn+ℓ,p+ℓ has
also codimension κ.

(2) Two fibers whose equivalence classes with respect to ρn,p have codimension
κ are equivalent with respect to ρn,p if and only if their ℓ-th suspensions
are equivalent with respect to ρn+ℓ,p+ℓ.

In particular, the Z2-linear maps sκ are isomorphisms for all κ with 0 ≤ κ ≤ p if
and only if the following holds: two fibers are equivalent with respect to ρn,p if and
only if their ℓ-th suspensions are equivalent with respect to ρn+ℓ,p+ℓ.

By virtue of Definition 9.5, we can prove the following.

Lemma 9.9. The system of Z2-linear maps {sκ}κ defines a cochain map

C(Tpr(n+ ℓ, p+ ℓ), ρn+ℓ,p+ℓ) → C(Tpr(n, p), ρn,p).

In other words, we have δκ ◦ sκ = sκ+1 ◦ δκ for all κ ∈ Z.

Proof. We may assume that 0 ≤ κ ≤ p−1. Let F̃ be an equivalence class of fibers in

Cκ(Tpr(n+ ℓ, p+ ℓ), ρn+ℓ,p+ℓ), and G̃ an equivalence class in Cκ+1(Tpr(n, p), ρn,p).

Let us consider the coefficients of G̃ in δκ ◦ sκ(F̃) and in sκ+1 ◦ δκ(F̃).

Case 1. The equivalence class of the ℓ-th suspension of G̃ has codimension strictly
smaller than κ+ 1.

The relevant coefficient in sκ+1 ◦ δκ(F̃) is clearly zero by the definition of sκ+1.

On the other hand, if the relevant coefficient in δκ ◦ sκ(F̃) is not zero, then there

is a codimension κ equivalence class H̃ whose coboundary contains G̃ and whose

ℓ-th suspension is contained in F̃. By our assumption, the ℓ-th suspension of G̃ has

codimension strictly smaller than κ+ 1, and hence either the ℓ-th suspension of H̃

has codimension strictly smaller than κ, or the ℓ-th suspension of G̃ is equivalent

to the ℓ-th suspension of H̃.

The first case does not occur, since the ℓ-th suspension of H̃ is contained in F̃,
which is of codimension κ.

If the second case occurs, then the equivalence class of the ℓ-th suspension of

G̃ has codimension κ. Since by Lemma 8.3, the equivalence class determines a
topological submanifold of codimension κ, there must be a unique codimension κ
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equivalence class H̃′ (6= H̃) whose coboundary contains G̃ and whose ℓ-th suspension

is contained in F̃. Hence, we see that the coefficient of G̃ in δκ ◦ sκ(F̃) is equal to
zero.

Hence, the relevant coefficients coincide with each other in this case.

Case 2. The equivalence class of the ℓ-th suspension of G̃ has codimension κ+1.

The coefficient of G̃ in δκ ◦ sκ(F̃) is equal to the number of codimension κ

equivalence classes whose coboundaries contain G̃ and whose ℓ-th suspensions are

contained in F̃. On the other hand, the coefficient of G̃ in sκ+1 ◦ δκ(F̃) is not zero if

and only if the ℓ-th suspension of G̃ is contained in the coboundary of F̃. Hence, the
relevant coefficients coincide with each other in this case as well. This completes
the proof. �

It follows easily from the definition of sκ that the composition of

sκ : Cκ(Tpr(n+ ℓ+ ℓ′, p+ ℓ+ ℓ′), ρn+ℓ+ℓ′,p+ℓ+ℓ′) → Cκ(Tpr(n+ ℓ, p+ ℓ), ρn+ℓ,p+ℓ)

and

sκ : Cκ(Tpr(n+ ℓ, p+ ℓ), ρn+ℓ,p+ℓ) → Cκ(Tpr(n, p), ρn,p)

coincides with

sκ : Cκ(Tpr(n+ ℓ+ ℓ′, p+ ℓ+ ℓ′), ρn+ℓ+ℓ′,p+ℓ+ℓ′) → Cκ(Tpr(n, p), ρn,p).

By this observation together with Lemma 9.9, for a fixed integer k, the projective
limit

(9.4) C(T̃pr(k),Rk) = lim
←−

p

C(Tpr(p− k, p), ρp−k,p)

is well-defined as a cochain complex. We call C(T̃pr(k),Rk) the universal complex

of singular fibers for codimension k proper Thom maps with respect to the stable

system of admissible equivalence relations Rk. We write its cohomology group of

dimension κ by Hκ(T̃pr(k),Rk).

Remark 9.10. Recall that the projective limit

Cκ(T̃pr(k),Rk) = lim
←−
p

Cκ(Tpr(p− k, p), ρp−k,p)

is identified with the subspace of the product

ΠpC
κ(Tpr(p− k, p), ρp−k,p)

consisting of all elements (cp)p with sκ(cp+ℓ) = cp for all p and ℓ.

As a direct consequence of Lemmas 9.6 and 9.9, we have the following.

Lemma 9.11. The natural map

(9.5) Φκn,p : Cκ(T̃pr(k),Rk) → Cκ(Tpr(n, p), ρn,p)

induced by the projection is a monomorphism if κ ≤ p. Furthermore, the system of

Z2-linear maps {Φκn,p}κ defines a cochain map

C(T̃pr(k),Rk) → C(Tpr(n, p), ρn,p).

The Z2-linear map Φκn,p defined above can be identified with the map (9.6) which
will be defined in §9.4.
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9.4. Another description of the universal complex of singular fibers for

Thom maps with fixed codimension. The complex C(T̃pr(k),Rk) can also be
constructed by using another method, as explained below.

Definition 9.12. Let fi : Mi → Ni, i = 0, 1, be proper Thom maps with the same
codimension k = dimNi−dimMi. We say that the fibers over yi ∈ Ni, i = 0, 1, are
stably C0 (or C∞) equivalent if the fibers of fi × idRℓi : Mi×Rℓi → Ni ×Rℓi over
yi × {0} are C0 (resp. C∞) equivalent to each other for some nonnegative integers
ℓi, i = 0, 1, with dimN0 + ℓ0 = dimN1 + ℓ1.

Definition 9.13. Suppose that an equivalence relation R̂k among the fibers of

proper Thom maps of codimension k is given. We say that the relation R̂k is stably

admissible if the following conditions are satisfied.

(1) If two fibers are stably C0 equivalent, then they are also equivalent with

respect to R̂k.

(2) For every positive integer ℓ, two fibers are equivalent with respect to R̂k if

and only if their ℓ-th suspensions are equivalent with respect to R̂k.
(3) For any proper Thom maps fi : Mi → Ni, i = 0, 1, of codimension k

and for any points yi ∈ Ni whose corresponding fibers are equivalent with

respect to R̂k, there exist neighborhoods Ui of yi × {0} in Ni × Rℓi for
some nonnegative integers ℓi, i = 0, 1, with dimN0 + ℓ0 = dimN1 + ℓ1,
and a homeomorphism ϕ : U0 → U1 such that ϕ(y0 × {0}) = y1 × {0} and

ϕ(U0 ∩ F̂(f0 × idRℓ0 )) = U1 ∩ F̂(f1 × idRℓ1 ) for every equivalence class F̂ of

fibers with respect to R̂k, where F̂(fi× idRℓi ) is the set of points in Ni×Rℓi

over which lies a fiber of fi × idRℓi of type F̂.

For example, the stable C0 equivalence is a stably admissible equivalence rela-

tion, and we denote it by R̂0
k.

The following lemma can be proved by an argument similar to that in the proof
of Lemma 8.3.

Lemma 9.14. For every equivalence class F̂ with respect to a stably admissible

equivalence relation R̂k, and for every proper Thom map f : M → N in T̃pr(k), the

subspace F̂(f) of N is a union of strata of N . Furthermore, we have the following.

(1) For every y ∈ F̂(f), there exists a nonnegative integer ℓ such that F̂(f)×Rℓ

is a C0 submanifold of N × Rℓ at y × {0}.

(2) The codimension of F̂(f) × Rℓ in N × Rℓ at y × {0} does not depend on

the choice of y or f .

By virtue of the above lemma, the codimension of F̂ makes sense, and we denote

it by κ(F̂).

Let R̂k be a stably admissible equivalence relation among the fibers of proper
Thom maps of codimension k. Then, we can naturally construct the cochain com-

plex C(T̃pr(k), R̂k) = (Cκ(T̃pr(k), R̂k), δκ)κ as follows: Cκ(T̃pr(k), R̂k) is the Z2-
vector space consisting of all formal linear combinations, which may possibly con-

tain infinitely many terms, of the equivalence classes F̂ of fibers of proper Thom

maps of codimension k with κ(F̂) = κ and

δκ : Cκ(T̃pr(k), R̂k) → Cκ+1(T̃pr(k), R̂k)

is defined in a way similar to δκ(f) (see (9.1) and the subsequent remark). (Here,

we simply put Cκ(T̃pr(k), R̂k) = 0 for κ < 0.) Note that the incidence coefficient
is well-defined by virtue of Definition 9.13 (2) and (3). We write the cohomology

group of dimension κ of the cochain complex C(T̃pr(k), R̂k) by Hκ(T̃pr(k), R̂k).
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Let us now discuss the relationship between the complex thus obtained and that
of §9.3. Suppose that a stable system Rk = {ρp−k,p}p of admissible equivalence
relations for the fibers of proper Thom maps of codimension k in the sense of
Definition 9.5 is given. Then, we can naturally define a new equivalence relation

R̂k for the fibers of proper Thom maps of codimension k as follows: two such fibers
are equivalent if some of their suspensions are equivalent in the original sense. Then

we can easily check that this new equivalence relation R̂k is stably admissible in the
sense of Definition 9.13. For example, if we consider the system of C0 equivalence
relations R0

k = {ρ0
p−k,p}p, then it defines a stable system of admissible equivalence

relations, and the new equivalence relation is nothing but the stable C0 equivalence

R̂0
k.
Then, we get the following.

Proposition 9.15. The complex C(T̃pr(k), R̂k) with respect to the new equivalence

relation R̂k is naturally isomorphic to the universal complex C(T̃pr(k),Rk), defined

by (9.4), of singular fibers for codimension k proper Thom maps with respect to the

original stable system of admissible equivalence relations Rk = {ρp−k,p}p.

Proof. For every pair (n, p) with p−n = k and for every κ, we can naturally define
the Z2-linear map

(9.6) Φκn,p : Cκ(T̃pr(k), R̂k) → Cκ(Tpr(n, p), ρn,p)

by associating to each equivalence class F̂ of codimension κ with respect to R̂k the
sum of all those equivalence classes of codimension κ with respect to ρn,p which are

contained in F̂. It is not difficult to show that Φn,p = {Φκn,p}κ defines a cochain
map

C(T̃pr(k), R̂k) → C(Tpr(n, p), ρn,p)

(see the proof of Lemma 9.9) and that sκ ◦ Φκn+ℓ,p+ℓ = Φκn,p for every positive

integer ℓ, where sκ is the Z2-linear map (9.3) induced by the suspension. Hence,
{Φp−k,p}p induces a cochain map

Φ : C(T̃pr(k), R̂k) → lim
←−

p

C(Tpr(p− k, p), ρp−k,p) = C(T̃pr(k),Rk)

by the universality of the projective limit. Furthermore, it is not difficult to show

that Φ is injective. Finally, Φ is surjective by virtue of the definitions of R̂k and
the projective limit. Hence, we have the desired conclusion. This completes the
proof. �

Conversely, suppose that a stably admissible equivalence relation R̂k among the
fibers of proper Thom maps of codimension k is given. Then, for every pair (n, p)
with p − n = k, we can define the equivalence relation ρn,p among the fibers of
elements of Tpr(n, p) as follows: two such fibers are equivalent with respect to ρn,p
if they are equivalent with respect to R̂k and in Definition 9.13 (3), ℓi can be
chosen to be zero, i.e., if there exist neighborhoods Ui of yi in Ni, i = 0, 1, and a

homeomorphism ϕ : U0 → U1 such that ϕ(y0) = y1 and ϕ(U0 ∩ F̂(f0)) = U1 ∩ F̂(f1)

for every equivalence class F̂ of fibers with respect to R̂k, where fi : Mi → Ni are

elements of Tpr(n, p) whose fibers over yi ∈ Ni are the given ones, and F̂(fi) is the

set of points in Ni over which lies a fiber of fi of type F̂.

Lemma 9.16. (1) The relation ρn,p defined as above is an admissible equivalence

relation in the sense of Definition 8.2.
(2) The system of equivalence relations Rk = {ρp−k,p}p is stable in the sense of

Definition 9.5.
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Proof. (1) We can show that the C0 equivalence implies the equivalence with respect

to ρn,p, since C0 equivalence implies the equivalence with respect to R̂k.
Suppose that fi : Mi → Ni, i = 0, 1, are elements of Tpr(n, p) whose fibers

over yi ∈ Ni are equivalent to each other with respect to ρn,p. Then, there exist
neighborhoods Ui of yi in Ni, i = 0, 1, and a homeomorphism ϕ : U0 → U1 such

that ϕ(y0) = y1 and ϕ(U0 ∩ F̂(f0)) = U1 ∩ F̂(f1) for every equivalence class F̂ of

fibers with respect to R̂k. Then, the fiber of f0 over an arbitrary point y ∈ U0 is
equivalent, with respect to ρn,p, to that of f1 over ϕ(y), by the very definition of

the equivalence relation ρn,p. Hence, we have ϕ(U0 ∩ F̃(f0)) = U1 ∩ F̃(f1) for every

equivalence class F̃ with respect to ρn,p. Hence, (1) holds.
(2) This follows immediately from the definition of the equivalence relation ρn,p.

This completes the proof. �

We see easily that the stably admissible equivalence relation among the fibers
of proper Thom maps of codimension k constructed from Rk coincides with the

original equivalence relation R̂k. Therefore, by Proposition 9.15, the complex

C(T̃pr(k), R̂k) is naturally isomorphic to the universal complex C(T̃pr(k),Rk), de-
fined by (9.4), of singular fibers for codimension k proper Thom maps with respect
to the stable system of admissible equivalence relations Rk = {ρp−k,p}p.

For the stable C0 equivalence, we have the following problem, the answer to
which the author does not know.

Problem 9.17. Let fi : Mi → Ni, i = 0, 1, be proper Thom maps such that n =
dimM0 = dimM1 and p = dimN0 = dimN1. For points yi ∈ Ni, if the fibers of fi
over yi are stably C0 (or C∞) equivalent, then are they C0 (resp. C∞) equivalent?
In other words, is the natural cochain map

C(T̃pr(k),R
0
k) → C(Tpr(n, p), ρ

0
n,p)

of the universal complex with respect to the stable C0 equivalence to that with
respect to the C0 equivalence an epimorphism?

Note that if fi are codimension −1 proper C0 stable maps of manifolds of di-
mension less than or equal to 4, then the answer to the above problem is shown to
be affirmative by using an argument similar to that in the proof of Corollary 4.9.
(In the 4-dimensional case, we should assume the orientability of the source mani-
fold, while for the other dimensions, it is not necessary. See Corollary 4.16 and the
subsequent remark.)

9.5. Changing the equivalence relation. Suppose that we are given two ad-
missible equivalence relations ρ = ρn,p and ρ = ρn,p for the fibers of elements of
Tpr(n, p). If every equivalence class with respect to ρn,p is a union of equivalence
classes with respect to ρn,p, then we say that ρn,p is weaker than ρn,p and write
ρn,p ≤ ρn,p. In this case, we can naturally define the Z2-linear map

(9.7) ερ,ρ : C(Tpr(n, p), ρ) → C(Tpr(n, p), ρ)

by associating to a class F̃ of codimension κ with respect to ρ the sum of all the

equivalence classes with respect to ρ of codimension κ contained in F̃. This clearly
defines a cochain map (for example, see the proof of Lemma 9.9). Note that the
associated map

Cκ(Tpr(n, p), ρ) → Cκ(Tpr(n, p), ρ)

is a monomorphism for every κ.
Suppose that we are given two stable systems of admissible equivalence relations

Rk = {ρp−k,p}p and Rk = {ρp−k,p}p for the fibers of codimension k proper Thom

maps. If ρp−k,p ≤ ρp−k,p for every p, then we say that Rk is weaker than Rk and
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write Rk ≤ Rk. In this case, the system of cochain maps {ερp−k,p,ρp−k,p
}p induces

the cochain map

εRk,Rk
: C(T̃pr(k),Rk) → C(T̃pr(k),Rk).

Note that the associated map

Cκ(T̃pr(k),Rk) → Cκ(T̃pr(k),Rk)

is a monomorphism for every κ.
In particular, if we consider the C0 equivalence ρ0

n,p among the fibers of elements

of Tpr(n, p), then we have ρn,p ≤ ρ0
n,p for any admissible equivalence relation ρn,p.

Hence, we have the cochain map

ερn,p,ρ0n,p
: C(Tpr(n, p), ρn,p) → C(Tpr(n, p), ρ

0
n,p).

In other words, since this cochain map is always a monomorphism, we may regard
C(Tpr(n, p), ρn,p) as a subcomplex of C(Tpr(n, p), ρ

0
n,p).

Furthermore, if we consider the stable system of admissible equivalence relations
R0
k = {ρ0

p−k,p}p induced by the C0 equivalence, then Rk ≤ R0
k for any stable

system Rk of admissible equivalence relations. Hence, we have the cochain map

εRk,R0
k

: C(T̃pr(k),Rk) → C(T̃pr(k),R
0
k).

We can show that this is always a monomorphism, and hence C(T̃pr(k),Rk) can be

regarded as a subcomplex of C(T̃pr(k),R0
k).

9.6. Changing the class of maps. So far, we have worked with the whole set of
proper Thom maps of a fixed codimension. By restricting the class of Thom maps
that we consider, we can also obtain the universal complex of singular fibers for
such a class of maps.

First, let us consider maps between manifolds of fixed dimensions.

Definition 9.18. A C0 equivalence class F of fibers of elements of Tpr(n, p) is said
to be under another C0 equivalence class G of fibers if for some (and hence every)
representative f : M, f−1(y) → N, y of F, there is a point y′ arbitrarily close to y
over which lies a fiber of type G. In this case, we also say that G is over F.

Let Γ = Γn,p be an ascending set of C0 equivalence classes of fibers of elements
of Tpr(n, p), where “ascending” means that for an arbitrary equivalence class in the
set, every class over it also belongs to the set. We say that a proper Thom map
f : M → N between smooth manifolds of dimensions n and p is a Γ-map if its
fibers all lie in Γ. We use the same notation Γ = Γn,p for the set of all Γ-maps,
when there is no confusion.

If for an arbitrary equivalence class in the set Γ, every class under it also belongs
to the set, then we say that it is an descending set. For example, the set of all
C0 equivalence classes of fibers of a fixed Thom map f ∈ Tpr(n, p) is ascending,
while the set f c of all C0 equivalence classes of fibers of elements of Tpr(n, p) which
do not appear for f is a descending set. Note that C(f c, ρ0) is a subcomplex of
C(Tpr(n, p), ρ

0) (see Lemma 9.2), essentially because the set f c is descending.

Let Γ = Γn,p be as above and let ρΓ = ρΓ
n,p be an equivalence relation among

the fibers of Γ-maps which is admissible in the same sense as in Definition 8.2.
Then, we can naturally define the universal complex C(Γn,p, ρ

Γ) of singular fibers
for Γ-maps with respect to the admissible equivalence relation ρΓ. We write the
corresponding cohomology group of dimension κ by Hκ(Γn,p, ρ

Γ).
Suppose that the equivalence relation ρΓ is the restriction to Γ of an admissible

equivalence relation ρ = ρn,p among the fibers of elements of Tpr(n, p). LetCκ(Γc, ρ)

be the linear subspace of Cκ(Tpr(n, p), ρ) spanned by all the equivalence classes F̃

of fibers of elements of Tpr(n, p) of codimension κ with respect to ρ such that no
45



fiber of a Γ-map belongs to F̃. Then, by an argument similar to that in the proof
of Lemma 9.2, we can prove the following. Details are left to the reader.

Lemma 9.19. For an ascending set Γ = Γn,p of C0 equivalence classes of fibers of

elements of Tpr(n, p), the following holds.

(1) We have δκ(C
κ(Γc, ρ)) ⊂ Cκ+1(Γc, ρ) for every κ ∈ Z. Hence, C(Γc, ρ) =

(Cκ(Γc, ρ), δκ|Cκ(Γc,ρ))κ constitutes a subcomplex of C(Tpr(n, p), ρ).
(2) The quotient complex

C(Tpr(n, p), ρ)/C(Γc, ρ) = (Cκ(Tpr(n, p), ρ)/C
κ(Γc, ρ), δκ)κ

is naturally isomorphic to C(Γ, ρΓ), where

δκ : Cκ(Tpr(n, p), ρ)/C
κ(Γc, ρ) → Cκ+1(Tpr(n, p), ρ)/C

κ+1(Γc, ρ)

is the well-defined Z2-linear map induced by δκ.

More generally, if Γ and Γ′ are two ascending sets of singular fibers of elements of
Tpr(n, p) such that Γ ⊂ Γ′, and if the admissible equivalence relation ρΓ for Γ is the

restriction to Γ of an admissible equivalence relation ρΓ′ for Γ′, then we naturally
have the cochain map

πΓ′,Γ : C(Γ′, ρΓ′) → C(Γ, ρΓ)

induced by the projection. Note that the corresponding Z2-linear map on every
dimension is an epimorphism.

Furthermore, if ρΓ′ and ρΓ′ are two admissible equivalence relations for Γ′ with

ρΓ′ ≤ ρΓ′ in a sense similar to §9.5, then we can naturally define the cochain map

ερΓ′ ,ρΓ′ : C(Γ′, ρΓ′) → C(Γ′, ρΓ′).

Note that the corresponding Z2-linear map on every dimension is a monomorphism.

If ρΓ and ρΓ are the restrictions to Γ of ρΓ′ and ρΓ′ respectively, then we have the
commutative diagram of cochain complexes:

(9.8)

C(Γ′, ρΓ′)
ε

ρΓ′ ,ρΓ′

−−−−−→ C(Γ′, ρΓ′)yπΓ′,Γ

yπΓ′,Γ

C(Γ, ρΓ)
ε

ρΓ,ρΓ

−−−−−→ C(Γ, ρΓ).

Let us denote by C(Γ′
r Γ, ρΓ′) and C(Γ′

r Γ, ρΓ′) the kernels of the Z2-linear
maps

πΓ′,Γ : C(Γ′, ρΓ′) → C(Γ, ρΓ)

and

πΓ′,Γ : C(Γ′, ρΓ′) → C(Γ, ρΓ)

respectively. Note that they are subcomplexes of C(Γ′, ρΓ′) and C(Γ′, ρΓ′) respec-
tively spanned by those equivalence classes of fibers in Γ′ which contain no fiber in Γ.

Furthermore, we define C(Γ, ρΓ/ρΓ) and C(Γ′, ρΓ′/ρΓ′) to be the cokernels of ερΓ,ρΓ
and ερΓ′ ,ρΓ′ respectively. It is easy to show that ερΓ′ ,ρΓ′ induces a monomorphism

C(Γ′
r Γ, ρΓ′) → C(Γ′

r Γ, ρΓ′)
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and we denote its cokernel by C(Γ′
r Γ, ρΓ′/ρΓ′). Then we naturally have the

following commutative diagram:
(9.9)

0 0 0
↓ ↓ ↓

0 → C(Γ′
r Γ, ρΓ′) → C(Γ′

r Γ, ρΓ′) → C(Γ′
r Γ, ρΓ′/ρΓ′) → 0

↓ ↓ ↓

0 → C(Γ′, ρΓ′)
ε

ρΓ′ ,ρΓ′

→ C(Γ′, ρΓ′) → C(Γ′, ρΓ′/ρΓ′) → 0yπΓ′,Γ

yπΓ′,Γ ↓

0 → C(Γ, ρΓ)
ε

ρΓ,ρΓ

→ C(Γ, ρΓ) → C(Γ, ρΓ/ρΓ) → 0
↓ ↓ ↓
0 0 0

where all the rows and columns are exact. Therefore, we have the corresponding
commutative diagram of long exact sequences of cohomologies as well.

Now, let us vary the dimension pair (n, p) keeping the codimension p − n = k
fixed. Let

Γ̃ = Γ̃k =
⋃

p−n=k

Γn,p

be a set of C0 equivalence classes of fibers of proper Thom maps of codimension k
such that each Γn,p is an ascending set of C0 equivalence classes of fibers of elements

of Tpr(n, p), and that Γ̃ is closed under suspension in the sense of Definition 9.4.

(For example, the set of all C0 equivalence classes of fibers of elements of S̃0
pr(k) is

such a set.)

We say that a proper Thom map of codimension k is a Γ̃k-map if its fibers all

lie in Γ̃k. We use the same notation Γ̃ = Γ̃k for the set of all Γ̃k-maps, when there
is no confusion.

Let R
eΓ
k = {ρ

Γp−k,p

p−k,p }p be a system of equivalence relations, where each ρ
Γp−k,p

p−k,p is
an admissible equivalence relation among the fibers of Γp−k,p-maps. Furthermore,

we assume that the system R
eΓ
k of admissible equivalence relations is stable in the

sense of Definition 9.5.
Then, we can naturally define the universal complex of singular fibers

C(Γ̃k,R
eΓ
k )

for Γ̃k-maps with respect to the stable system of admissible equivalence relations

R
eΓ
k . As in the case of Thom maps, we have two definitions for the universal com-

plexes, which are equivalent to each other as in Proposition 9.15. We write its

cohomology group of dimension κ by Hκ(Γ̃k,R
eΓ
k ).

Note that if the stable system of admissible equivalence relations R
eΓ
k is the

restriction of a stable system of admissible equivalence relationsRk among the fibers

of proper Thom maps of codimension k, then we see that the complex C(Γ̃k,R
eΓ
k ) is a

quotient complex of the universal complex C(T̃pr(k),Rk) in view of the construction
given in §9.4.

More generally, if Γ̃ and Γ̃′ are two ascending sets of singular fibers of elements of

T̃pr(k) which are closed under suspension such that Γ̃ ⊂ Γ̃′, and if the stable system

of admissible equivalence relations R
eΓ
k for Γ̃ is the restriction to Γ̃ of a stable system

of admissible equivalence relations R
eΓ′
k for Γ̃′, then we naturally have the cochain

map

πeΓ′,eΓ : C(Γ̃′,R
eΓ′
k ) → C(Γ̃,R

eΓ
k )
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induced by the natural projection. Note that the corresponding Z2-linear map on
every dimension is an epimorphism.

Furthermore, if R
eΓ′ and R

eΓ′
are two stable systems of admissible equivalence

relations for Γ̃′ with R
eΓ′ ≤ R

eΓ′
in a sense similar to §9.5, then we can naturally

define the cochain map

ε
ReΓ′ ,ReΓ′ : C(Γ̃′,R

eΓ′) → C(Γ̃′,R
eΓ′

).

Note that the corresponding Z2-linear map on every dimension is a monomorphism.

If R
eΓ and R

eΓ
are the restrictions to Γ̃ of R

eΓ′ and R
eΓ′

respectively, then we have
the commutative diagram of cochain maps:

C(Γ̃′,R
eΓ′) ε

R
eΓ′ ,ReΓ′

−−−−−→ C(Γ̃′,R
eΓ′

)yπeΓ′,eΓ yπeΓ′,eΓ
C(Γ̃,R

eΓ)
ε
R

eΓ,R
eΓ

−−−−−→ C(Γ̃,R
eΓ
).

Note that we can extend the above commutative diagram as in (9.9) so that we
obtain exact rows and columns.

Remark 9.20. Let Γ̃ = Γ̃k = ∪pΓp−k,p be as above and R
eΓ
k = {ρ

Γp−k,p

p−k,p }p be a stable

system of admissible equivalence relations for the fibers of Γ̃-maps. Then we have
the natural Z2-linear map

Φκp−k,p : Cκ(Γ̃,R
eΓ
k ) → Cκ(Γp−k,p, ρ

Γp−k,p

p−k,p )

induced by the projection for every p, since Cκ(Γ̃,R
eΓ
k ) is the projective limit and

hence is a Z2-submodule of the product of all Cκ(Γp−k,p, ρ
Γp−k,p

p−k,p ) (see Remark 9.10).

(Note that for Γ̃ = T̃pr(k), this map has already been defined. See (9.5) and (9.6).)
Set n = p − k. For 0 ≤ κ ≤ p, Φκn,p is a monomorphism if and only if every

equivalence class of fibers in Γ̃ with respect to R̂k of codimension κ contains a

suspension of a fiber in Γp−k,p whose equivalence class with respect to ρ
Γp−k,p

p−k,p

has codimension κ, where R̂k is the stably admissible equivalence relation among

the fibers in Γ̃ defined just before Proposition 9.15 (compare this assertion with
Lemma 9.11). On the other hand, Φκn,p is an epimorphism if and only if the following
two conditions hold.

(1) If an equivalence class of fibers in Γn,p with respect to ρ
Γn,p
n,p has codimen-

sion κ, then the equivalence class of their ℓ-th suspensions with respect to

ρ
Γn+ℓ,p+ℓ

n+ℓ,p+ℓ has also codimension κ for all ℓ ≥ 1.

(2) Two fibers in Γn,p whose equivalence classes with respect to ρ
Γn,p
n,p have

codimension κ are equivalent with respect to ρ
Γn,p
n,p if and only if their ℓ-th

suspensions are equivalent with respect to ρ
Γn+ℓ,p+ℓ

n+ℓ,p+ℓ for some ℓ ≥ 0.

Compare this with Problem 9.17, Lemma 9.6 and Remark 9.8.

When a class of proper Thom maps is given, let us consider the following defini-
tions.

Definition 9.21. (1) Let Γn,p = Γ be a subset of Tpr(n, p). We denote by Γ∗
n,p = Γ∗

the set of all C0 equivalence classes of fibers of elements of Γn,p. Then, it is clear
that Γ∗

n,p is an ascending set and the set of all Γ∗
n,p-maps contain the original set

Γn,p of maps. For an admissible equivalence relation ρΓ among the elements of
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Γ∗
n,p, we define the universal complex of singular fibers for Γn,p with respect to ρΓ

by
C(Γn,p, ρ

Γ) = C(Γ∗
n,p, ρ

Γ).

Furthermore, we denote the corresponding cohomology group of dimension κ by
Hκ(Γn,p, ρ

Γ). We call the set of Γ∗
n,p-maps the completion of Γn,p. When the set of

Γ∗
n,p-maps coincides with the original set Γn,p, we say that the set Γn,p is complete.

(2) Let Γ̃k = Γ̃ be a subset of T̃pr(k). We denote by Γ̃∗
k = Γ̃∗ the set of all C0

equivalence classes of fibers of elements of Γ̃k and their suspensions. Then, we have

Γ̃∗
k =

⋃

p−n=k

Γ∗
n,p,

where Γ∗
n,p is the set of C0 equivalence classes in Γ̃∗

k of fibers of maps between
manifolds of dimensions n and p, and each Γ∗

n,p is an ascending set. Furthermore,

Γ̃∗
k is closed under suspension. Then, it is clear that the set of all Γ̃∗

k-maps contain

the original set Γ̃k of maps. For a stable system of admissible equivalence relations

R
eΓ
k among the elements of Γ̃∗

k, we define the universal complex of singular fibers for

Γ̃k with respect to R
eΓ
k by

C(Γ̃k,R
eΓ
k ) = C(Γ̃∗

k,R
eΓ
k ).

Furthermore, we denote the corresponding cohomology group of codimension κ by

Hκ(Γ̃k,R
eΓ
k ). We call the set of Γ̃∗

k-maps the completion of Γ̃k. When the set of

Γ̃∗
k-maps coincides with the original set Γ̃k, we say that the set Γ̃k is complete.

Example 9.22. For example, the set S0
pr(n, p) is not complete, since there exist

nonstable Thom maps whose fibers are all C0 equivalent to a fiber of a C0 stable
map. On the other hand, Tpr(n, p) is clearly complete.

In the following, if Γ = Γn,p ⊂ Γ′
n,p = Γ′ ⊂ Tpr(n, p) and ρΓ is the restriction

of an admissible equivalence relation ρΓ′ for the fibers of elements of Γ′
n,p, we

sometimes write C(Γn,p, ρ
Γ′) in place of C(Γn,p, ρ

Γ) when there is no confusion. For
the universal complexes for the fibers of codimension k maps, we sometimes use
the same convention as well.

Example 9.23. Let Mpr(n, p) be the set of all proper Morin maps in Tpr(n, p) which
satisfy the normal crossing condition as in [13, Chapter VI, §5], and set

M̃pr(k) =
⋃

p−n=k

Mpr(n, p).

(Here, a smooth map is called a Morin map if its singularities are all of Morin types
[29].) Furthermore, we denote by Mpr(n, p)

ori the subset of Mpr(n, p) consisting
of those maps whose source manifolds are orientable, and we set

M̃pr(k)
ori =

⋃

p−n=k

Mpr(n, p)
ori.

(Note that the sets M̃pr(k) and M̃pr(k)
ori are closed under suspension.) Then, by

using Remark 9.20, we can show that

Cκ(M̃pr(−1)ori,R0
−1) = Cκ(Mpr(4, 3)ori, ρ0

4,3)

for all κ ≤ 3, and hence

Hκ(M̃pr(−1)ori,R0
−1) = Hκ(Mpr(4, 3)ori, ρ0

4,3)

for κ ≤ 2 (see also the paragraph just after Problem 9.17). Compare this with
Problem 10.8.
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10. Universal complex of singular fibers for stable maps of

orientable 4-manifolds into 3-manifolds

Now, let us consider a more specific situation, i.e., the case of proper C∞ stable
maps of orientable 4-manifolds into 3-manifolds. Recall that a proper smooth map
of a 4-manifold into a 3-manifold is C∞ stable if and only if it is C0 stable, as we
have noted in Remark 4.2. In the following, we denote by S0

pr(n, p)
ori the subset

of S0
pr(n, p) consisting of the proper C0 stable maps of orientable manifolds of

dimension n into manifolds of dimension p.
The universal complex of singular fibers C(S0

pr(4, 3)ori, ρ0
4,3) for proper C0 stable

maps of orientable 4-manifolds into 3-manifolds with respect to the C0 (or C∞)
right-left equivalence ρ0

4,3 can be described as follows.

For a positive integer ℓ, let us denote by I0ℓ the equivalence class of the singular
fiber which is the disjoint union of the corresponding singular fiber I0 as in Fig. 8
and some fibers of the trivial circle bundle such that its total number of connected
components is equal to ℓ. We define I1ℓ (ℓ ≥ 1), II00ℓ (ℓ ≥ 2), etc. similarly. Further-
more, let 0ℓ (ℓ ≥ 0) denote the equivalence class of the regular fiber consisting of ℓ
copies of a fiber of the trivial circle bundle.

Then, by the construction in §9, we obtain the complex of Z2-coefficients

0 −→ C0(S0
pr(4, 3)ori, ρ0

4,3)
δ0−→ C1(S0

pr(4, 3)ori, ρ0
4,3)

δ1−→ C2(S0
pr(4, 3)ori, ρ0

4,3)
δ2−→ C3(S0

pr(4, 3)ori, ρ0
4,3) −→ 0,

where C0(S0
pr(4, 3)ori, ρ0

4,3) is generated by 0ℓ, and Ci(S0
pr(4, 3)ori, ρ0

4,3), i = 1, 2, 3,

are generated by I∗ℓ , II
∗
ℓ and III∗ℓ , respectively, for various ℓ. Note that we have not

specified any proper C0 stable map f : M → N of an orientable 4-manifold into a
3-manifold. Hence, this complex can be regarded as a universal complex of singular

fibers for proper C0 stable maps of orientable 4-manifolds into 3-manifolds, in the
sense that the corresponding complex for a specific C0 stable map f is realized as
a quotient complex of the universal complex (see Lemma 9.2).

This complex has the disadvantage that it has too many generators at each
dimension and hence that it is a bit difficult to pursue a straightforward calculation
of its cohomology groups. Thus, it seems reasonable to consider an equivalence
relation weaker than the C0 equivalence. For this, let us fix a positive integer m.

Definition 10.1. We say that two fibers of proper Thom maps between manifolds
of dimensions p+ 1 and p, p ≥ 0, are C0 equivalent modulo m circle components if
one of them is C0 equivalent to the disjoint union of the other one and ℓm copies
of a fiber of the trivial circle bundle for some nonnegative integer ℓ. We denote this
equivalence relation by ρ0

p+1,p(m). Given a subset Γp+1,p of Tpr(p + 1, p), we shall

use the same notation ρ0
p+1,p(m) for the equivalence relation for Γ∗

p+1,p induced
by the above one, when there is no confusion (for the notation Γ∗

p+1,p, refer to
Definition 9.21).

Lemma 10.2. Let p be a nonnegative integer and m a positive integer. The C0

equivalence modulo m circle components ρ0
p+1,p(m) is an admissible equivalence

relation for the fibers of elements of Tpr(p+ 1, p) and hence for Γ∗
p+1,p.

Proof. By definition, we see easily that condition (1) of Definition 8.2 is satisfied.
Suppose that two fibers are C0 equivalent modulo m circle components. Then by
definition, the corresponding nearby fibers are all C0 equivalent modulo m circle
components. Hence condition (2) of Definition 8.2 is also satisfied. This completes
the proof. �
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Remark 10.3. Furthermore, we can also show that the system of admissible equiv-

alence relations R0
−1(m) = {ρ0

p+1,p(m)}p≥0 for the fibers of elements of T̃pr(−1) is

stable in the sense of Definition 9.5. Hence, for any subset Γ̃−1 of T̃pr(−1) which

is closed under suspension, the restriction of R0
−1(m) = {ρ0

p+1,p(m)}p≥0 to Γ̃∗
−1 is

also stable.

By Lemma 10.2, for a nonnegative integer p and a positive integer m, we can
define the universal complex of singular fibers

C(Tpr(p+ 1, p), ρ0
p+1,p(m))

for proper Thom maps between manifolds of dimensions p+1 and p with respect to
the C0 equivalence modulo m circle components. More generally, for every subset
Γp+1,p of Tpr(p+ 1, p), we can define the universal complex of singular fibers

C(Γp+1,p, ρ
0
p+1,p(m))

for Γp+1,p with respect to the C0 equivalence modulom circle components (see Defi-
nition 9.21). We call the universal complexes thus obtained the universal complexes

of singular fibers modulo m circle components.
The argument in §5 can be elaborated to prove the following results. Details are

left to the reader.

Proposition 10.4. The cohomology groups of the universal complex of singular

fibers modulo two circle components

C(S0
pr(4, 3)ori, ρ0

4,3(2))

for proper C0 stable maps of orientable 4-manifolds into 3-manifolds are given as

follows:

H0(S0
pr(4, 3)ori, ρ0

4,3(2)) ∼= Z2 (generated by [0o + 0e]),

H1(S0
pr(4, 3)ori, ρ0

4,3(2)) ∼= Z2 (generated by [I0o + I1e ] = [I0e + I1o]),

H2(S0
pr(4, 3)ori, ρ0

4,3(2)) = 0,

where Fo (or Fe) denotes the C0 equivalence class modulo two circle components

represented by Fℓ with ℓ odd (resp. even), and [∗] denotes the cohomology class

represented by the cocycle ∗.

Remark 10.5. We can apply Proposition 8.4 as follows. The Z2-homology class (of
closed support) in the target 3-manifold represented by a cycle corresponding to
a coboundary of the universal complex of singular fibers (modulo m circle compo-
nents) always vanishes. For m = 2, the coboundary groups are generated by the
cochains listed in Table 2.

κ generator(s)

1 (I0e + I1o) − (I0o + I1e)

2 II01o + II01e + IIae , II01o + II01e + IIao

Table 2. Generators for the coboundary groups of C(S0
pr(4, 3)ori, ρ0

4,3(2))

For κ = 3, we can easily read off the generators from Table 1 given in §5. Note
that these lead to the congruences modulo two obtained in Proposition 5.1.

Compare this with [50, 12.5.4, 12.6.5, 13.4.1] and [33].
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Remark 10.6. By using the classification theorem of singular fibers for proper C0

stable maps in S0
pr(3, 2)ori and in S0

pr(2, 1)ori (see Remark 4.14 and Theorem 3.1),
we see that the Z2-linear maps

sκ : Cκ(S0
pr(4, 3)ori, ρ0

4,3(2)) → Cκ(S0
pr(3, 2)ori, ρ0

3,2(2))

for κ ≤ 2 and

sκ : Cκ(S0
pr(4, 3)ori, ρ0

4,3(2)) → Cκ(S0
pr(2, 1)ori, ρ0

2,1(2))

for κ ≤ 1 induced by the suspension are in fact isomorphisms. Hence, some of the
above results are valid also for C(S0

pr(3, 2)ori, ρ0
3,2(2)) and C(S0

pr(2, 1)ori, ρ0
2,1(2)). For

example, we have the following, where for an equivalence class of fibers, we use the
same notation as the equivalence class of its suspension.

(1) For f ∈ S0
pr(3, 2)ori, we have

|II01o (f)| + |II01e (f)| + |IIae (f)| ≡ |II01o (f)| + |II01e (f)| + |IIao(f)| ≡ 0 (mod 2).

(2) For f ∈ S0
pr(2, 1)ori, we have

|I0e(f)| + |I1o(f)| ≡ |I0o(f)| + |I1e(f)| (mod 2).

We can also prove the following. For the notation, refer to Theorem 4.15 and
Proposition 10.4.

Proposition 10.7. The cohomology groups of the universal complex of singular

fibers modulo two circle components

C(S0
pr(3, 2), ρ0

3,2(2))

for proper C0 stable maps of (not necessarily orientable) 3-manifolds into surfaces

are given as follows:

H0(S0
pr(3, 2), ρ0

3,2(2)) ∼= Z2 (generated by [0o + 0e]),

H1(S0
pr(3, 2), ρ0

3,2(2)) ∼= Z2 ⊕ Z2 (generated by [̃I0o + Ĩ1e ] = [̃I0e + Ĩ1o]

and [̃I2o + Ĩ2e ]).

The coboundary groups of the cochain complex C(S0
pr(3, 2), ρ0

3,2(2)) are generated
by the cochains listed in Table 3 (see also Remark 5.5).

κ generator(s)

1 (̃I0e + Ĩ1o) − (̃I0o + Ĩ1e)

2 ĨI
01

o + ĨI
01

e + ĨI
a

e , ĨI
01

o + ĨI
01

e + ĨI
a

o , ĨI
02

o + ĨI
02

e + ĨI
12

o + ĨI
12

e + ĨI
6

o + ĨI
6

e

Table 3. Generators for the coboundary groups of C(S0
pr(3, 2), ρ0

3,2(2))

By the same reason as in Remark 10.6, some of the above results hold also for
C(S0

pr(2, 1), ρ0
2,1(2)) as well.

Problem 10.8. Is the natural map

Hκ(S̃0
pr(−1),R0

−1) → Hκ(S0
pr(4, 3), ρ0

4,3)

an isomorphism for κ ≤ 2? More generally, is the natural map

Hκ(S̃0
pr(−1),R0

−1) → Hκ(S0
pr(p+ 1, p), ρ0

p+1,p)

an isomorphism for κ ≤ p− 1? Compare this with Remark 9.20 and Example 9.23.

Now, let us introduce the following equivalence relation among the fibers weaker
than the C0 equivalence.
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Definition 10.9. Let us consider the class of maps f in Tpr(n, p) such that the
restriction to its singular set S(f), f |S(f), is finite-to-one. We say that two fibers

of such maps are C0 multi-singularity equivalent (or multi-singularity equivalent)
if the associated multi-germs at their singular points are C0 right-left equivalent to
each other. It is easy to show that this defines an admissible equivalence relation
for the fibers of the above class of maps. Here, we adopt the convention that if the
fibers contain no singular points, then they are always multi-singularity equivalent.
We denote the multi-singularity equivalence relation by ρms

n,p.
It is easy to see that if n = p+ 1, then

ρms
p+1,p ≤ ρ0

p+1,p(m) ≤ ρ0
p+1,p

for every positive integer m.

Remark 10.10. Note that the universal complex of singular fibers with respect to
the multi-singularity equivalence corresponds to Vassiliev’s universal complex of
multi-singularities [50] (see also [19, 33]).

By using a characterization of C0 stable maps of orientable 5-dimensional man-
ifolds into 4-dimensional manifolds as in Proposition 4.1, we can easily obtain the
following. The details are left to the reader.

Proposition 10.11. The cohomology groups of the universal complex of singu-

lar fibers for proper C0 stable maps of orientable 5-dimensional manifolds into

4-dimensional manifolds with respect to the multi-singularity equivalence

C(S0
pr(5, 4)ori, ρms

5,4)

are given as follows:

H0(S0
pr(5, 4)ori, ρms

5,4)
∼= Z2 (generated by [0]),

H1(S0
pr(5, 4)ori, ρms

5,4)
∼= Z2 (generated by [I

0
+ I

1
]),

H2(S0
pr(5, 4)ori, ρms

5,4) = 0,

H3(S0
pr(5, 4)ori, ρms

5,4) = 0,

where 0 denotes the multi-singularity equivalence class of regular fibers, I
0

the multi-

singularity equivalence class of the definite fold mono-germ, I
1

the multi-singularity

equivalence class of the indefinite fold mono-germ, and [∗] denotes the cohomology

class represented by the cocycle ∗.

The above proposition shows that if we consider Vassiliev’s universal complex
of multi-singularities, then a result like Theorem 6.1 cannot be obtained. In fact,
although we have not included the computation of H3(S0

pr(5, 4)ori, ρ0
5,4(2)), we will

see in Corollary 13.12 that it contains a nontrivial element which corresponds to the
singular fiber of type III8 as in Fig. 8 (see also Remark 11.12). We will also see that
such a nontrivial element is closely related to the formula given in Theorem 6.1.
This justifies our study of the universal complexes of singular fibers instead of
multi-singularities.

11. Universal complex of co-orientable singular fibers

Let us now proceed to the construction of another universal complex correspond-
ing to co-orientable strata.
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11.1. Universal complex with respect to the C0 equivalence. Let us begin
by the following definition.

Definition 11.1. A C0 equivalence class F of fibers of proper Thom maps is weakly

co-orientable if for any homeomorphisms ϕ̃ and ϕ which make the diagram

(f−1(U0), f
−1(y))

eϕ
−−−−−→ (f−1(U1), f

−1(y))yf
yf

(U0, y)
ϕ

−−−−−→ (U1, y)

commutative, ϕ preserves the local orientation of the normal bundle of F(f) at y,
where f is a proper Thom map such that the fiber over y belongs to F, and Ui are
open neighborhoods of y. We also call any fiber belonging to a weakly co-orientable
C0 equivalence class a weakly co-orientable fiber. In particular, if the codimension
of F coincides with the dimension of the target of f , then ϕ above should preserve
the local orientation of the target at y.

Note that if F is weakly co-orientable, then F(f) has orientable normal bundle
for every proper Thom map f . The author does not know whether the converse
also holds or not.

Remark 11.2. Note that F(f) is merely a C0 submanifold of the target in general
(see Lemma 8.1 and its proof) and we have to be careful when we talk about its
normal bundle. However, as we have seen in the proof of Lemma 8.1, it is always
locally flat and the orientability of its normal bundle is well-defined. For example,
use the fact that Ui r (Ui ∩F(f)) is homotopy equivalent to Sκ−1 × (Ui ∩F(f)) for
appropriate Ui, where κ is the codimension of F.

Note that a weakly co-orientable C0 equivalence class F of fibers has exactly
two co-orientations corresponding to the two orientations of the normal bundle of
F(f) at a point y in the target, where f is a Thom map such that the fiber over y
belongs to F and that the target itself is a small neighborhood of y. When one of
the co-orientations is fixed, we call it a co-oriented C0 equivalence class of fibers.

Using the co-orientations, we can construct the universal complex of weakly co-
orientable singular fibers with coefficients in Z as follows. Let us first fix a dimension
pair (n, p) with p−n = k. For κ ∈ Z, let COκ(Tpr(n, p), ρ

0
n,p) be the free Z-module

consisting of all formal linear combinations with integer coefficients, which may
possibly contain infinitely many terms, of the C0 equivalence classes F of weakly
co-orientable and co-oriented fibers of proper Thom maps between manifolds of
dimensions n and p with κ(F) = κ, where ρ0

n,p stands for the C0 equivalence

among the fibers of elements of Tpr(n, p). In particular, COκ(Tpr(n, p), ρ
0
n,p) =

0 for κ > p and κ < 0. Here, we adopt the convention that −1 times a co-
oriented C0 equivalence class coincides with the C0 equivalence class with reversed
co-orientation. For two co-oriented C0 equivalence classes of fibers F and G with
κ(F) = κ(G) − 1, we define [F : G] = nF(G) ∈ Z, which is called the incidence

coefficient, as in §8, where we take the co-orientations into account and the result
is an integer. Then we define the homomorphism

δκ : COκ(Tpr(n, p), ρ
0
n,p) → COκ+1(Tpr(n, p), ρ

0
n,p)

by

(11.1) δκ(F) =
∑

κ(G)=κ+1

[F : G]G,

for F with κ(F) = κ. Note that the homomorphism δκ is well-defined (for details,
see the remarks just after (9.1) in §9).
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Then, we can prove δκ+1 ◦ δκ = 0 as in §9 or in [50, §8]. Therefore,

CO(Tpr(n, p), ρ
0
n,p) = (COκ(Tpr(n, p), ρ

0
n,p), δκ)κ

constitutes a complex and its cohomology groups

H∗(CO(Tpr(n, p), ρ
0
n,p))

are well-defined. We call the complex the universal complex of weakly co-orientable

singular fibers for proper Thom maps between manifolds of dimensions n and p with

respect to the C0 equivalence.

Remark 11.3. Let F be a weakly co-orientable and co-oriented C0 equivalence class
of fibers and G a C0 equivalence class of fibers such that κ(F) = κ(G)−1. Then, by
using a “local co-orientation” for G, we can define the incidence coefficient [F : G]
as an integer. If this integer is non-zero, then we can show that G is also weakly
co-orientable. In other words, if G is not weakly co-orientable, then the incidence
coefficient [F : G] vanishes.

By restricting the class of Thom maps that we consider, we can also obtain the
universal complex of weakly co-orientable singular fibers for such a class of maps
(for details, refer to §9.6). Such a complex is a quotient complex of the above
constructed universal complex (see Lemma 9.19).

Example 11.4. For proper C0 stable maps of orientable 4-manifolds into 3-manifolds,
we see easily that 0ℓ, I0ℓ , I1ℓ , II01ℓ , IIaℓ , III0aℓ , III1aℓ , and IIIbℓ are weakly co-orientable
for every ℓ, and that the others are not weakly co-orientable. Using these weakly
co-orientable fibers, we can construct the universal complex of weakly co-orientable
singular fibers with coefficients in Z as follows:

0 −→ CO0(S0
pr(4, 3)ori, ρ0

4,3)
δ0−→ CO1(S0

pr(4, 3)ori, ρ0
4,3)

δ1−→ CO2(S0
pr(4, 3)ori, ρ0

4,3)
δ2−→ CO3(S0

pr(4, 3)ori, ρ0
4,3) −→ 0.

We call this the universal complex of weakly co-orientable singular fibers for proper

C0 stable maps of orientable 4-manifolds into 3-manifolds.

By a method similar to that in §9.3, for an integer k, we can also define the

universal complex CO(T̃pr(k),R0
k) of weakly co-orientable singular fibers for proper

Thom maps of codimension k with respect to the stable system of C0 equivalence
relations as the projective limit of the complexes

CO(Tpr(p− k, p), ρ0
p−k,p),

where R0
k = {ρ0

p−k,p}p. We write the associated cohomology group of dimension

κ by Hκ(CO(T̃pr(k),R0
k)). As in §9.4, we can also give another description of this

universal complex. Furthermore, we can also define a similar universal complex
of weakly co-orientable singular fibers for a given class of Thom maps, and show
that it is a quotient complex of the above constructed universal complex for Thom
maps.

11.2. Universal complex with respect to an admissible equivalence. Now,
let us fix an admissible equivalence relation ρn,p among the fibers of proper Thom
maps between smooth manifolds of dimensions n and p. The following definition
strongly depends on ρn,p.

Definition 11.5. An equivalence class F̃ of fibers of proper Thom maps with
respect to ρn,p is co-orientable (or strongly co-orientable) if for any homeomorphism

ϕ : (U0, y) → (U1, y) such that ϕ(G̃(f) ∩ U0) = G̃(f) ∩ U1 for every equivalence

class G̃, ϕ preserves the local orientation of the normal bundle of F̃(f) at y, where
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f is a proper Thom map such that the fiber over y belongs to F̃, and Ui are open

neighborhoods of y. (Note that by Lemma 8.3, F̃(f) is a C0 submanifold of the

target.) In particular, if the codimension of F̃ coincides with the dimension of the
target, then ϕ should preserve the local orientation of the target at y. Note that if

F̃ is co-orientable, then F̃(f) has orientable normal bundle for every proper Thom
map f , while the converse may not hold in general.

Remark 11.6. When the admissible equivalence relation ρn,p is given by the C0

equivalence, i.e., when ρn,p = ρ0
n,p, we can show that a C0 equivalence class of

fibers is weakly co-orientable if it is strongly co-orientable. The author does not
know whether the converse also holds or not.

Using Definition 11.5, we can naturally define the universal complex of co-

orientable singular fibers for proper Thom maps between manifolds of dimensions

n and p with respect to the admissible equivalence relation ρn,p, and we denote it
by CO(Tpr(n, p), ρn,p). Note that its cochain group at each dimension is a free
Z-module. We denote the corresponding cohomology group of dimension κ by
Hκ(CO(Tpr(n, p), ρn,p)).

If we are given a stable system of admissible equivalence relations

Rk = {ρp−k,p}p

for the fibers of proper Thom maps of codimension k, then we can also define the

corresponding universal complex CO(T̃pr(k),Rk) as the projective limit of the com-
plexes CO(Tpr(p−k, p), ρp−k,p) as in §9.3. We denote the corresponding cohomology

group of dimension κ by Hκ(CO(T̃pr(k),Rk)). Note that if the equivalence class of
the suspension of a fiber whose equivalence class has codimension κ is co-orientable
of codimension κ, then the original equivalence class is necessarily co-orientable,
and hence the cochain map

CO(Tpr(n+ ℓ, p+ ℓ), ρn+ℓ,p+ℓ) → CO(Tpr(n, p), ρn,p)

is well-defined for every (n, p) with p− n = k and ℓ > 0. We can also give another

description of the universal complex CO(T̃pr(k),Rk) as in §9.4.
Let us consider two admissible equivalence relations ρn,p and ρn,p for the fibers

of elements of Tpr(n, p). The following lemma is a direct consequence of Defini-
tion 11.5.

Lemma 11.7. Suppose ρn,p ≤ ρn,p. Furthermore, suppose that F̃ and F are equiv-

alence classes with respect to ρn,p and ρn,p respectively such that F̃ ⊃ F and that

they have the same codimension. If F̃ is co-orientable, then so is F.

By virtue of the above lemma, the homomorphism

ερn,p,ρn,p
: CO(Tpr(n, p), ρn,p) → CO(Tpr(n, p), ρn,p)

as in (9.7) is a well-defined cochain map. We can also define a similar cochain map
for two stable systems of admissible equivalence relations.

Furthermore, as in §9.6, by restricting the class of Thom maps that we consider,
we can also obtain the universal complex of co-orientable singular fibers for such a
class of maps. Such a complex is a quotient complex of one of the above constructed
universal complexes of co-orientable singular fibers for proper Thom maps.

11.3. Universal complex of co-orientable singular fibers for stable maps

of orientable 4-manifolds into 3-manifolds. Now, let us consider proper C0

stable maps of orientable 4-manifolds into 3-manifolds. By considering the C0

equivalence modulo m circle components introduced in Definition 10.1, we get the
corresponding universal complex of co-orientable singular fibers modulo m circle
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components. We denote the resulting complex by CO(S0
pr(4, 3)ori, ρ0

4,3(m)). For

m = 2, we see easily that 0ℓ, I0ℓ , I1ℓ , II01ℓ , IIaℓ , III0aℓ , III1aℓ , and IIIbℓ are co-orientable
for ℓ = o, e, and that the others are not co-orientable, using the notation as in
Proposition 10.4 (compare this with Example 11.4).

Then we easily get the following.

Proposition 11.8. The cohomology groups of the universal complex

CO(S0
pr(4, 3)ori, ρ0

4,3(m))

of co-orientable singular fibers modulo two circle components for proper C0 stable

maps of orientable 4-manifolds into 3-manifolds are given as follows:

H0(CO(S0
pr(4, 3)ori, ρ0

4,3(m))) ∼= Z (generated by [0o + 0e]),

H1(CO(S0
pr(4, 3)ori, ρ0

4,3(m))) ∼= Z (generated by [I0o + I1e ] = [I0e + I1o]),

H2(CO(S0
pr(4, 3)ori, ρ0

4,3(m))) = 0,

where [∗] denotes the cohomology class represented by the cocycle ∗.

Remark 11.9. As in Remark 10.5, if the target 3-manifold is orientable, then we can
show that the integral homology class (of closed support) in the target 3-manifold
represented by a cycle corresponding to a coboundary of the universal complex of
co-orientable singular fibers (modulo m circle components) always vanishes. For
m = 2, the coboundary groups are generated by the cochains listed in Table 4.

κ generator(s)

1 (I0e + I1o) − (I0o + I1e)

2 II01o + I01e + IIae , II01o + II01e + IIao

3 III0ao + III1ae + IIIbe, III0ae + III1ao + IIIbo

Table 4. Generators for the coboundary groups of CO(S0
pr(4, 3)ori, ρ0

4,3(2))

Thus, by the same reason as in Remark 10.6, we get the following proposition,
where for an equivalence class of fibers, we use the same notation as the equivalence
class of its suspension.

Proposition 11.10. (1) Let f : M → N be a C0 stable map of a closed orientable

surface into a 1-dimensional manifold N . Then we have

||I0e(f)|| + ||I1o(f)|| = ||I0o(f)|| + ||I1e(f)||,

where for a co-oriented equivalence class F̃ of fibers, ||F̃(f)|| denotes the algebraic

number of fibers of f of type F̃.

(2) Let f : M → N be a C0 stable map of a closed orientable 3-manifold into an

orientable surface N . Then we have

||II01o (f)|| + ||II01e (f)|| + ||IIae (f)|| = ||II01o (f)|| + ||II01e (f)|| + ||IIao(f)|| = 0.

(3) Let f : M → N be a C0 stable map of a closed orientable 4-manifold into an

orientable 3-manifold N . Then we have

||III0ao (f)|| + ||III1ae (f)|| + ||IIIbe(f)|| = ||III0ae (f)|| + ||III1ao (f)|| + ||IIIbo(f)|| = 0.

Let us pose the following problem concerning §§9, 10 and 11.
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Problem 11.11. Let us consider the homology class in the target represented by a
cycle corresponding to a cocycle of the universal complex of (co-orientable) singular
fibers representing a nontrivial cohomology class of the complex. Can it be written
as a polynomial of some characteristic classes as in [50, 19, 33]? Can we find
such a polynomial which is universal in a certain sense, like Thom polynomials for
singularities? (For Thom polynomials, see [2, 16] for example.)

Note that the above problem is closely related to the homomorphism which will
be defined in §12.

Remark 11.12. We have not included the calculation of the third cohomology
groups of the universal complexes of (co-orientable) singular fibers modulo two
circle components for proper C0 stable maps of orientable 4-manifolds into 3-
manifolds, since the corresponding complex terminates essentially at dimension
three. In order to calculate the third cohomology groups which make sense, we
have to calculate the third cohomology group of the complex C(S0

pr(5, 4)ori, ρ0
5,4(2))

(or CO(S0
pr(5, 4)ori, ρ0

5,4(2))). In other words, we have to classify the singular fibers

of proper C0 stable maps of orientable 5-manifolds into 4-manifolds.
Nevertheless, Theorem 6.1 indicates that the singular fiber III8 might represent

a generator of the third cohomology group and that the corresponding homology
class for proper C0 stable maps of orientable 4-manifolds into 3-manifolds can be
written in terms of a polynomial of Stiefel-Whitney classes. In fact, this will be
shown to be correct in §13 by using Theorem 6.1 (see Corollary 13.12).

In the case where the dimensions are smaller by two, we can check that the
above expectations are affirmative as follows. As we have seen in Proposition 10.7,

the singular fiber Ĩ2 (or more precisely, the cocycle Ĩ2o + Ĩ2e) represents a generator
of the first cohomology group of the universal complex C(S0

pr(3, 2), ρ0
3,2(2)) of sin-

gular fibers for proper C0 stable maps of (not necessarily orientable) 3-manifolds
into surfaces with respect to the C0 equivalence modulo two circle components.
Furthermore, by Corollary 3.4, the corresponding 0-dimensional homology class for
Morse functions on surfaces is nothing but the Euler characteristic modulo two of
the source surface, which coincides with its top Stiefel-Whitney class (for a more
precise argument, see §15).

The following problem is closely related to Problem 5.6. See also Problem 12.14.

Problem 11.13. For each generator of the cohomology groups of the universal com-
plex of (co-orientable) singular fibers for proper C0 stable maps of orientable 4-
manifolds into 3-manifolds, does there exist a C0 stable map of a closed orientable
4-manifold into a 3-manifold whose corresponding cycle represents a nonzero ele-
ment in the homology of the target?

Compare the above problem with [50, §17].

12. Homomorphism induced by a Thom map

In this section, we show that one can obtain a lot of information on the cohomol-
ogy groups of the universal complexes of singular fibers by using concrete examples
of Thom maps.

Let Γ = Γn,p be a subset of Tpr(n, p) and ρΓ = ρΓ
n,p an admissible equivalence

relation among the fibers of elements of Γn,p.

Definition 12.1. Let

c =
∑

κ(eF)=κ

neFF̃
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be a κ-dimensional cocycle of the complex C(Γn,p, ρ
Γ
n,p), where neF ∈ Z2. For a

Thom map f : M → N which is an element of Γ∗ = Γ∗
n,p, we define c(f) to be the

closure of the set of points y ∈ N such that the fiber over y belongs to some F̃ with
neF 6= 0. Since c is a cocycle, c(f) is a Z2-cycle of closed support of codimension κ

of the target manifold N . When M is closed and κ > 0, c(f) is a Z2-cycle in the
usual sense.

When c is a cocycle of the complex CO(Γn,p, ρ
Γ
n,p), c(f) is naturally a Z-cycle,

provided that the target manifold N is oriented.

Lemma 12.2. If c and c′ are κ-dimensional cocycles of the complex C(Γn,p, ρ
Γ
n,p)

which are cohomologous, then c(f) and c′(f) are homologous in N for every f ∈
Γ∗
n,p.

Proof. There exists a (κ−1)-dimensional cochain d of the complex such that c−c′ =
δκ−1d. Then we see easily that c(f)−c′(f) = ∂d(f), where d(f) is defined similarly.
Hence the result follows. �

Note that a similar result holds also for cocycles of the universal complex of
co-orientable singular fibers.

Definition 12.3. Let α be a κ-dimensional cohomology class of the complex
C(Γn,p, ρ

Γ
n,p). For a proper Thom map f : M → N which is an element of Γ∗

n,p,
we define α(f) ∈ Hc

p−κ(N ;Z2) to be the homology class represented by the cycle
c(f) of closed support, where c is a cocycle representing α and p = dimN . By
Lemma 12.2, this is well-defined. When M is closed and κ > 0, we can also regard
α(f) as an element of Hp−κ(N ;Z2).

Then we can define the map

ϕf : Hκ(Γn,p, ρ
Γ
n,p) → Hκ(N ;Z2)

by ϕf (α) = α(f)∗, where α(f)∗ ∈ Hκ(N ;Z2) is the Poincaré dual to α(f) ∈
Hc
p−κ(N ;Z2). This is clearly a homomorphism and we call it the homomorphism

induced by the Thom map f . When M is closed and κ > 0, we can also regard ϕf
as a homomorphism into the cohomology group Hκ

c (N ;Z2) of compact support.
When the target manifold N is oriented, we can define

ϕf : Hκ(CO(Γn,p, ρ
Γ
n,p)) → Hκ(N ;Z)

similarly.

Suppose that ρΓ = ρ
Γn,p
n,p and ρΓ = ρ

Γn,p
n,p be two admissible equivalence relations

for the fibers of elements of Γ = Γn,p ⊂ Tpr(n, p) such that ρ
Γn,p
n,p ≤ ρ

Γn,p
n,p . Then the

following diagram is clearly commutative for every element f : M → N of Γ∗:

Hκ(Γ, ρΓ)
ε

ρΓ,ρΓ∗
−−−−−→Hκ(Γ, ρΓ)

ϕfց ւϕf

Hκ(N ;Z2),

where ερΓ,ρΓ∗ : Hκ(Γ, ρΓ) → Hκ(Γ, ρΓ) is the homomorphism induced by the nat-

ural homomorphism ερΓ,ρΓ : C(Γ, ρΓ) → C(Γ, ρΓ) defined in §§9.5 and 9.6.
Furthermore, if Γ ⊂ Γ′ ⊂ Tpr(n, p), then for every element f : M → N of Γ∗, we

have the commutative diagram

Hκ(Γ′, ρΓ′)
πΓ′,Γ∗

−−−−−→Hκ(Γ, ρΓ)

ϕfց ւϕf

Hκ(N ;Z2),
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where ρΓ′ is an admissible equivalence relation among the fibers of elements of Γ′,
ρΓ is its restriction to the fibers of elements of Γ, and πΓ′,Γ∗ is the homomorphism

induced by the natural homomorphism πΓ′,Γ : C(Γ′, ρΓ′) → C(Γ, ρΓ) defined in §9.6.
In particular, we have the commutative diagram

Hκ(Γn,p, ρ
Γ
n,p) → Hκ(Γn,p, ρ

0
n,p)

ϕfց ւϕf

↓ Hκ(N ;Z2) ↓
ϕfր տϕf

Hκ(f, ρΓ
n,p) → Hκ(f, ρ0

n,p)

for every element f : M → N of Γ∗
n,p, where Γn,p ⊂ Tpr(n, p), ρ

Γ
n,p is an admissible

equivalence relation for the fibers of elements of Γn,p, ρ
0
n,p denotes the C0 equiv-

alence, and the vertical and the horizontal homomorphisms are the natural ones
defined as above (see also (9.8)).

Now, as in §9.6, let

Γ̃ = Γ̃k =
⋃

p−n=k

Γn,p

be a set of C0 equivalence classes of fibers of proper Thom maps of codimension k
such that each Γn,p is an ascending set of C0 equivalence classes of fibers of elements

of Tpr(n, p), and that Γ̃ is closed under suspension in the sense of Definition 9.4.

Furthermore, let R
eΓ
k = {ρ

Γp−k,p

p−k,p }p be a system of equivalence relations, where each

ρ
Γp−k,p

p−k,p is an admissible equivalence relation among the fibers of Γp−k,p-maps. We

assume that the system R
eΓ
k of admissible equivalence relations is stable in the sense

of Definition 9.5. Then, for every f : M → N in Γ∗
n,p with p− n = k, we have the

natural and well-defined homomorphism

ϕ̃f : Hκ(Γ̃k,R
eΓ
k ) → Hκ(N ;Z2)

which is defined as the composition of the homomorphism

Φκn,p∗ : Hκ(Γ̃k,R
eΓ
k ) → Hκ(Γn,p, ρ

Γn,p
n,p )

induced by the cochain map Φκn,p : Cκ(Γ̃k,R
eΓ
k ) → Cκ(Γn,p, ρ

Γn,p
n,p ) as in Remark 9.20

and the homomorphism

ϕf : Hκ(Γn,p, ρ
Γn,p
n,p ) → Hκ(N ;Z2)

defined above. We can also use the other description of the universal complex as
in §9.4 and the definition as in Definition 12.3 in order to define ϕ̃f .

Remark 12.4. In the above situation, it is easy to verify that for every f : M → N
in Γ∗

n,p and a positive integer ℓ, the following diagram is commutative:

Hκ(Γn+ℓ,p+ℓ, ρ
Γn+ℓ,p+ℓ

n+ℓ,p+ℓ )
sκ∗−−−−−→ Hκ(Γn,p, ρ

Γn,p
n,p )yϕ ef yϕf

Hκ(N × Rℓ;Z2) ∼= Hκ(N ;Z2),

where sκ∗ is the homomorphism induced by the suspension, f̃ : M ×Rℓ → N ×Rℓ

is the ℓ-th suspension of f , and the last horizontal isomorphism is the natural one.

As a direct consequence of the above definitions, we have the following.

Proposition 12.5. In the above situations, we have

rankZ2 ϕf ≤ dimZ2 H
κ(Γn,p, ρ

Γn,p
n,p )

and

rankZ2 ϕ̃f ≤ dimZ2 H
κ(Γ̃k,R

eΓ
k ).

60



Remark 12.6. It is sometimes difficult to directly calculate the cohomology group
H∗(Γn,p, ρ

0
n,p) with respect to the C0 equivalence. However, the above argument

shows that if we have an element α of the cohomology group H∗(Γn,p, ρ
Γn,p
n,p ) with

respect to an admissible equivalence relation ρ
Γn,p
n,p such that ϕf (α) 6= 0 for some

f ∈ Γ∗
n,p, then the image of α in H∗(Γn,p, ρ

0
n,p) does not vanish. In other words, by

calculating the cohomology group with respect to an admissible equivalence rela-
tion, which is often much easier than that with respect to the C0 equivalence, and
by constructing explicit examples, we can find nontrivial elements of the cohomol-
ogy group with respect to the C0 equivalence. This justifies our study developed
in §§10 and 7.

Let us prepare some lemmas, which will be used later. For this, let us introduce
the following definitions.

Definition 12.7. Let f : M → N be a proper Thom map and g : V → N a smooth
map which is transverse to f and to all the strata of N . Put

Ṽ = {(x, y) ∈M × V : f(x) = g(y)} ⊂M × V

and consider the following commutative diagram:

Ṽ
eg

−−−−−→ Myef yf
V

g
−−−−−→ N,

where g̃ and f̃ are the restrictions of the projections to the first and the second

factors respectively. Note that Ṽ is a smooth manifold of dimension dimV +

dimM − dimN and that f̃ is a proper Thom map. We call f̃ the pull-back of f by

g and say that f̃ is obtained by pulling back f by g.

Definition 12.8. Suppose that Γn,p ⊂ Tpr(n, p) and Γn+ℓ,p+ℓ ⊂ Tpr(n + ℓ, p + ℓ)
are given with ℓ > 0 such that the ℓ-th suspension of an element of Γn,p always
belong to Γn+ℓ,p+ℓ. Let f : M → N be an arbitrary element of Γn+ℓ,p+ℓ and
g : IntDp → N an arbitrary smooth map which is transverse to f and to all the

strata of N . Note that the pull-back f̃ of f by g is then an element of Tpr(n, p). If
the fibers of g always belong to Γ∗

n,p, then we say that Γn,p is transversely complete

with respect to Γn+ℓ,p+ℓ.
Furthermore, we say that

Γ̃k =
⋃

p−n=k

Γn,p ⊂ T̃pr(k)

is transversely complete if it is closed under suspension and if Γn,p is transversely
complete with respect to Γn+ℓ,p+ℓ for all n, p and ℓ.

Note that the set T̃pr(k) is clearly transversely complete.
The following lemma can be proved by the same argument as in the proof of

Lemma 9.6. Details are left to the reader.

Lemma 12.9. If Γn,p is transversely complete with respect to Γn+ℓ,p+ℓ, then the

natural Z2-linear map

sκ : Cκ(Γn+ℓ,p+ℓ, ρ
Γn+ℓ,p+ℓ

n+ℓ,p+ℓ ) → Cκ(Γn,p, ρ
Γn,p
n,p )

induced by the suspension is a monomorphism for every κ ≤ p, where ρ
Γn+ℓ,p+ℓ

n+ℓ,p+ℓ and

ρ
Γn,p
n,p are admissible equivalence relations for the fibers of elements of Γn+ℓ,p+ℓ and

Γn,p, respectively, which are stable in a sense similar to Definition 9.5.
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In the following lemma, we assume that each Γn,p, p − n = k, is a subset of

Tpr(n, p) and that Γ̃k = ∪p−n=kΓn,p is closed under suspension. Furthermore,

{ρ
Γn,p
n,p }p−n=k is a stable system of admissible equivalence relations for the fibers

of elements of Γ̃k, where each ρ
Γn,p
n,p is an admissible equivalence relation for Γ∗

n,p.

Recall that Γ∗
n,p denotes the set of C0 equivalence classes of fibers of elements of

Γn,p and, when there is no confusion, it also denotes the set of all Γ∗
n,p-maps (see

§9.6).

Lemma 12.10. Let α ∈ Hp(Γn+ℓ,p+ℓ, ρ
Γn+ℓ,p+ℓ

n+ℓ,p+ℓ ) be a cohomology class such that

ϕf (sp∗α) = 0 in Hp(N ;Z2) for every Thom map f : M → N in Γ∗
n,p with both M

and N being closed, where

sp∗ : Hp(Γn+ℓ,p+ℓ, ρ
Γn+ℓ,p+ℓ

n+ℓ,p+ℓ ) → Hp(Γn,p, ρ
Γn,p
n,p )

is the homomorphism induced by the suspension, and

ϕf : Hp(Γn,p, ρ
Γn,p
n,p ) → Hp(N ;Z2)

is the homomorphism induced by f . Furthermore, suppose that Γn,p is transversely

complete with respect to Γn+ℓ,p+ℓ. Then, for every g : M ′ → N ′ in Γ∗
n+ℓ,p+ℓ, we

have ϕg(α) = 0 in Hp(N ′;Z2).

Proof. Let c be a cocycle of Cp(Γn+ℓ,p+ℓ, ρ
Γn+ℓ,p+ℓ

n+ℓ,p+ℓ ) which represents α. We have

only to show that the homology class [c(g)] ∈ Hc
ℓ (N

′;Z2) represented by c(g)
vanishes. For this, it suffices to prove that the intersection number [c(g)] ·ξ vanishes
for all ξ ∈ Hp(N

′;Z2) by Poincaré duality.
By [48], there exists a closed p-dimensional manifold V and a smooth map h :

V → N ′ such that h∗[V ]2 = ξ, where [V ]2 ∈ Hp(V ;Z2) is the fundamental class
of V . We may assume that h is transverse to g and to all the strata of N ′. Let

us consider the pull-back g̃ : Ṽ → V of g by h (see Definition 12.7). Since Γn,p is
transversely complete with respect to Γn+ℓ,p+ℓ by our assumption, we see that g̃
is an element of Γ∗

n,p. Furthermore, both the source and the target manifolds of g̃
are closed. Therefore, by our assumption, ϕeg(sp∗α) = 0; in other words, (spc)(g̃)
consists of an even number of points in V . Hence, the intersection number of [c(g)]
and ξ vanishes. This completes the proof. �

In fact, we have the following.

Lemma 12.11. Suppose that Γn,p is transversely complete with respect to Γn+ℓ,p+ℓ.

Then, for a cohomology class α ∈ Hp(Γn+ℓ,p+ℓ, ρ
Γn+ℓ,p+ℓ

n+ℓ,p+ℓ ), the following two are

equivalent to each other.

(1) For every proper Thom map f : M → N in Γ∗
n,p, we have ϕf (sp∗α) = 0 in

Hp(N ;Z2).
(2) For every proper Thom map g : M ′ → N ′ in Γ∗

n+ℓ,p+ℓ, we have ϕg(α) = 0

in Hp(N ′;Z2).

Proof. We have already proved that (1) implies (2). Suppose that (2) holds. For
a given proper Thom map f : M → N in Γ∗

n,p, consider the commutative diagram

given in Remark 12.4 with κ = p. Since the ℓ-th suspension f̃ : M ×Rℓ → N ×Rℓ

is a Γ∗
n+ℓ,p+ℓ-map, we have ϕef (α) = 0 by our assumption. Hence (1) follows. �

Remark 12.12. In fact, we can prove the following, without assuming that Γn,p is
transversely complete with respect to Γn+ℓ,p+ℓ. For a cohomology class β ∈ Im sp∗,
the following two are equivalent to each other, where

sp∗ : Hp(Γn+ℓ,p+ℓ, ρ
Γn+ℓ,p+ℓ

n+ℓ,p+ℓ ) → Hp(Γn,p, ρ
Γn,p
n,p )

is the homomorphism induced by the suspension.
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(1) For every proper Thom map f : M → N in Γ∗
n,p, we have ϕf (β) = 0 in

Hp(N ;Z2).
(2) For every Thom map f : M → N in Γ∗

n,p with both M and N being closed,
we have ϕf (β) = 0 in Hp(N ;Z2).

The proof goes as follows. Suppose (2) holds and take f as in (1). Consider the
commutative diagram given in Remark 12.4 with κ = p. Then apply an argument
similar to that in the proof of Lemma 12.10, using a smooth map h of a closed p-

dimensional manifold into N×Rℓ. Since f̃ is the ℓ-th suspension of f , the pull-back

of f̃ by h is a Γ∗
n,p-map. Hence, from (2), (1) follows.

Note that all the results in this section hold also for the universal complexes of co-
orientable singular fibers and the cohomology groups with Z-coefficients, provided
that the target manifolds are oriented.

Problem 12.13. Are the cohomology groups

Hκ(Tpr(n, p), ρ
0
n,p),(12.1)

Hκ(S0
pr(n, p), ρ

0
n,p),(12.2)

Hκ(CO(Tpr(n, p), ρ
0
n,p)),(12.3)

Hκ(CO(S0
pr(n, p), ρ

0
n,p)),(12.4)

Hκ(T̃pr(k),R
0
k),(12.5)

Hκ(S̃0
pr(k),R

0
k),(12.6)

Hκ(CO(T̃pr(k),R
0
k)),(12.7)

Hκ(CO(S̃0
pr(k),R

0
k))(12.8)

finitely generated for all κ?

The following is a generalization of Problem 11.13.

Problem 12.14. Let α be an element of one of the cohomology groups (12.1)–(12.8).
If α 6= 0, then does there exist a smooth map f (in the relevant class) such that
ϕf (α) does not vanish? In other words, if ϕf (α) = 0 for all f , then does α vanish?

As to an interpretation of the above problem, see Remark 13.14.

13. Cobordism invariance

In this section, we define cobordisms of singular maps with a given set of singular
fibers and show that the homomorphism ϕf induced by a Thom map f defined in
§12 is a cobordism invariant of f when restricted to a certain subgroup. We also
apply this notion of cobordisms to give a necessary and sufficient condition for a
certain cochain of the universal complex to be a cocycle.

13.1. Invariance under cobordism of the homomorphism induced by a

specific singular map. As in §9.6, let

Γ̃ = Γ̃k =
⋃

p−n=k

Γn,p

be a set of C0 equivalence classes of fibers of proper Thom maps of codimension k
such that each Γn,p is an ascending set of C0 equivalence classes of fibers of elements

of Tpr(n, p), and that Γ̃ is closed under suspension in the sense of Definition 9.4.

Recall that a proper Thom map f : M → N of codimension k is a Γ̃k-map if its

fibers all lie in Γ̃k. If M is a manifold with boundary, then we also suppose that
f(∂M) ⊂ ∂N and for collar neighborhoods C = ∂M × [0, 1) and C′ = ∂N × [0, 1)
of ∂M and ∂N respectively, we have f |C = (f |∂M ) × id[0,1).
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Definition 13.1. For a smooth manifold N , two Γ̃k-maps f0 : M0 → N and

f1 : M1 → N of closed manifolds M0 and M1 are said to be Γ̃k-cobordant if there
exist a compact manifold W with boundary the disjoint union of M0 and M1, and

a Γ̃k-map F : W → N × [0, 1] such that fi = F |Mi
: Mi → N × {i}, i = 0, 1. We

call F a Γ̃k-cobordism between f0 and f1.
When Mi are oriented andW can be taken to be oriented so that ∂W = (−M0)∐

M1, then we say that f0 and f1 are oriented Γ̃k-cobordant.

Remark 13.2. The notion of Γ̃k-maps and that of Γ̃k-cobordisms were essentially
introduced by Rimányi and Szűcs [35], although they considered only the nonnega-
tive codimension case and they called them τ -maps and τ -cobordisms respectively.
Note that if the codimension is nonnegative, then a fiber of a proper generic map
is always a finite set of points and that map-germs along the fibers are nothing but
multi-germs. In the nonnegative codimension case, Rimányi and Szűcs constructed

a universal Γ̃k-map and this gives rise to a lot of Γ̃k-cobordism invariants. Our

aim in this section is to construct invariants of Γ̃k-cobordisms even in the negative
codimension case.

Remark 13.3. In Definition 13.1, when the dimensions of the source manifolds M0

and M1 are equal to n, we have only to give Γn,p and Γn+1,p+1 instead of the

whole Γ̃k in order to define the notion of Γ̃k-cobordisms. For this reason, we will

sometimes talk about Γ̃k-cobordisms even when only Γn,p and Γn+1,p+1 are given.

Let
sκ∗ : Hκ(Γn+1,p+1, ρ

Γn+1,p+1

n+1,p+1 ) → Hκ(Γn,p, ρ
Γn,p
n,p )

be the homomorphism induced by the suspension, where R
eΓ
k = {ρ

Γp−k,p

p−k,p }p is a

stable system of admissible equivalence relations for Γ̃.

Lemma 13.4. Let fi : Mi → N , i = 0, 1, be Thom maps which are elements of Γn,p
and are Γ̃k-maps, where we assume that Mi are closed. If they are Γ̃k-cobordant,

then for every κ we have

ϕf0 |Im sκ∗
= ϕf1 |Im sκ∗

: Im sκ∗ → Hκ(N ;Z2).

Proof. Let F : W → N × [0, 1] be a Γ̃k-cobordism between f0 and f1. Let c be an

arbitrary κ-dimensional cocycle of the complex C(Γn+1,p+1, ρ
Γn+1,p+1

n+1,p+1 ) and set c =

sκ(c) ∈ Cκ(Γn,p, ρ
Γn,p
n,p ). Then we see easily that ∂c(F ) = c(f1)×{1}− c(f0)×{0},

since c is a cocycle (for the notation, refer to Definition 12.1). Then the result
follows immediately. �

Remark 13.5. In Lemma 13.4, if κ ≥ 1, then ϕfi
can be regarded as homomorphisms

into Hκ
c (N ;Z2), since Mi are closed. In this case, we can prove that

ϕf0 |Im sκ∗
= ϕf1 |Im sκ∗

: Im sκ∗ → Hκ
c (N ;Z2).

Definition 13.6. The pairs {Γn+1,p+1, ρ
Γn+1,p+1

n+1,p+1 } and {Γn,p, ρ
Γn,p
n,p } are said to be

compatible at dimension κ if the homomorphism

sκ∗ : Hκ(Γn+1,p+1, ρ
Γn+1,p+1

n+1,p+1 ) → Hκ(Γn,p, ρ
Γn,p
n,p )

is surjective.

Lemma 13.7. The pairs {Γn+1,p+1, ρ
Γn+1,p+1

n+1,p+1 } and {Γn,p, ρ
Γn,p
n,p } are compatible at

dimension κ if the following conditions hold.

(1) Every fiber in Γn+1,p+1 of codimension κ+ 1 with respect to ρ
Γn+1,p+1

n+1,p+1 is a

suspension of a fiber in Γn,p of the same codimension with respect to ρ
Γn,p
n,p .
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(2) If an equivalence class of fibers in Γn,p with respect to ρ
Γn,p
n,p has codimension

κ, then the equivalence class of their suspensions with respect to ρ
Γn+1,p+1

n+1,p+1

has also codimension κ.
(3) Two fibers in Γn,p whose equivalence classes with respect to ρ

Γn,p
n,p have codi-

mension κ are equivalent with respect to ρ
Γn,p
n,p if and only if their suspen-

sions are equivalent with respect to ρ
Γn+1,p+1

n+1,p+1 .

Proof. If κ < 0 or κ > p, then the result is trivial. When 0 ≤ κ ≤ p, by an argument
similar to that in Remark 9.20, we see that if conditions (2) and (3) are satisfied,
then

sκ : Cκ(Γn+1,p+1, ρ
Γn+1,p+1

n+1,p+1 ) → Cκ(Γn,p, ρ
Γn,p
n,p )

is an epimorphism. Furthermore, condition (1) implies that sκ+1 is a monomor-
phism (see also Remark 9.20). Thus the homomorphism sκ∗ induced on the κ-
dimensional cohomology is an epimorphism, and hence the compatibility follows.

�

Corollary 13.8. Consider the case where Γn,p = Tpr(n, p) for all (n, p) with p−n =

k, and put ρn,p = ρ
Γn,p
n,p . We suppose that κ+ 1 ≤ p. Then the pairs {Tpr(n+1, p+

1), ρn+1,p+1} and {Tpr(n, p), ρn,p} are compatible at dimension κ if the following

two conditions hold.

(1) If an equivalence class of fibers of elements of Tpr(n, p) with respect to ρn,p
has codimension κ, then the equivalence class of their suspensions with

respect to ρn+1,p+1 has also codimension κ.
(2) Two fibers of elements of Tpr(n, p) whose equivalence classes with respect

to ρn,p have codimension κ are equivalent with respect to ρn,p if and only if

their suspensions are equivalent with respect to ρn+1,p+1.

Proof. Recall that if κ+ 1 ≤ p, then by Lemma 9.6,

sκ+1 : Cκ+1(Tpr(n+ 1, p+ 1), ρn+1,p+1) → Cκ+1(Tpr(n, p), ρn,p)

is always a monomorphism. Then the result follows from Lemma 13.7. �

Corollary 13.9. Suppose that the pairs {Γn+1,p+1, ρ
Γn+1,p+1

n+1,p+1 } and {Γn,p, ρ
Γn,p
n,p } are

compatible at dimension κ. Let fi : Mi → N , i = 0, 1, be Thom maps which are

elements of Γn,p and are Γ̃k-maps, where we assume that Mi are closed. If they are

Γ̃k-cobordant, then we have

ϕf0 = ϕf1 : Hκ(Γn,p, ρ
Γn,p
n,p ) → Hκ(N ;Z2).

If κ ≥ 1, then we also have

ϕf0 = ϕf1 : Hκ(Γn,p, ρ
Γn,p
n,p ) → Hκ

c (N ;Z2).

By using a natural generalization of Proposition 9.15 to certain subsets of T̃pr(k)
together with an argument similar to that in the proof of Lemma 13.4, we get the
following as well.

Corollary 13.10. Let R
eΓ
k = {ρ

Γp−k,p

p−k,p }p be a stable system of admissible equivalence

relations for Γ̃. Let fi : Mi → N , i = 0, 1, be Γ̃-maps with dimMi = n and

dimN = p, where we assume that Mi are closed. If they are Γ̃-cobordant, then for

every κ we have

ϕ̃f0 = ϕ̃f1 : Hκ(Γ̃,R
eΓ
k ) → Hκ(N ;Z2).

If κ ≥ 1, then we also have

ϕ̃f0 = ϕ̃f1 : Hκ(Γ̃,R
eΓ
k ) → Hκ

c (N ;Z2).
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When the manifold N is oriented, we get similar results in coefficients in Z by
using the universal complex of co-orientable singular fibers. Details are left to the
reader.

13.2. A characterization of cocycles. In this subsection, we shall give a neces-
sary and sufficient condition for a certain cochain of the universal complex to be a
cocycle in terms of the homomorphism induced by Thom maps.

Let Γ̃ = Γ̃k be as in the previous subsection, and let R
eΓ
k = {ρ

Γp−k,p

p−k,p }p be a stable

system of admissible equivalence relations for Γ̃.

Let c be an arbitrary cochain in Cκ(Γn,p, ρ
Γn,p
n,p ) with 0 < κ < p. Set λ = κ− k.

Since we always have Cκ+1(Γλ,κ, ρ
Γλ,κ

λ,κ ) = 0,

δκ : Cκ(Γλ,κ, ρ
Γλ,κ

λ,κ ) → Cκ+1(Γλ,κ, ρ
Γλ,κ

λ,κ )

is the zero homomorphism, and hence sκc ∈ Cκ(Γλ,κ, ρ
Γλ,κ

λ,κ ) is a cocycle of the

complex C(Γλ,κ, ρ
Γλ,κ

λ,κ ), where

sκ : Cκ(Γn,p, ρ
Γn,p
n,p ) → Cκ(Γλ,κ, ρ

Γλ,κ

λ,κ )

is the homomorphism induced by the (p− κ)-th suspension. Therefore, for a Γ∗
λ,κ-

map f : M → N , the homology class [sκc(f)] ∈ Hc
0(N ;Z2) represented by sκc(f)

is well-defined. Note that its Poincaré dual in Hκ(N ;Z2) coincides with ϕf ([sκc]),

where [sκc] ∈ Hκ(Γλ,κ, ρ
Γλ,κ

λ,κ ) is the cohomology class represented by the cocycle
sκc, and

ϕf : Hκ(Γλ,κ, ρ
Γλ,κ

λ,κ ) → Hκ(N ;Z2)

is the homomorphism induced by f . Furthermore, when the source manifold M is
closed, [sκc(f)] is well-defined as an element of H0(N ;Z2).

Proposition 13.11. Suppose that Γλ,κ is transversely complete with respect to

Γn,p, where 0 < κ < p and p− n = κ− λ = k. Then a cochain c in Cκ(Γn,p, ρ
Γn,p
n,p )

is a cocycle of the complex C(Γn,p, ρ
Γn,p
n,p ) if and only if [sκc(f)] = 0 ∈ H0(N ;Z2)

(or equivalently, ϕf ([sκc]) = 0 in Hκ(N ;Z2)) for every Γ∗
λ,κ-map f : M → N such

that both M and N are closed and that f is Γ̃k-cobordant to a nonsingular map.

Proof. If c is a cocycle, then the cohomology class represented by sκc lies in the
image of

sκ∗ : Hκ(Γλ+1,κ+1, ρ
Γλ+1,κ+1

λ+1,κ+1 ) → Hκ(Γλ,κ, ρ
Γλ,κ

λ,κ ).

Therefore, we have

(13.1) [sκc(f)] = [sκc(f
′)] ∈ H0(N ;Z2)

for every f that is Γ̃k-cobordant to a nonsingular map f ′ by Lemma 13.4 (see also
Remark 13.5). We see easily that (13.1) always vanishes, since κ > 0 and for a
nonsingular map f ′, we have sκc(f

′) = ∅.
Conversely, suppose that [sκc(f)] = 0 ∈ H0(N ;Z2) for every f as in the propo-

sition. Let F̃ be an arbitrary equivalence class of fibers in Γn,p of codimension

κ + 1 with respect to ρ
Γn,p
n,p , and g : M ′ → N ′ be an element of Tpr(n, p) such

that the fiber of g over a point y ∈ N ′ belongs to F̃. By the proof of Lemma 8.3,
we may assume that the stratum Σ containing y is of codimension κ + 1. Let N
be the boundary of a sufficiently small (κ + 1)-dimensional disk B in N ′ centered
at y and transverse to Σ such that N is transverse to g and to all the strata of
N ′. Note that B corresponds to BΣ in the argument just after Lemma 8.3. Then
f = g|M : M → N with M = g−1(N) is an element of Tpr(λ, κ). Furthermore,
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since Γλ,κ is transversely complete with respect to Γn,p by our assumption, we see
that f is a Γ∗

λ,κ-map.
It is easy to see that B contains a regular value y0 of g with y0 ∈ B r N . Set

C = B − IntB0, where B0 is a closed disk neighborhood of y0 in B rN consisting
only of regular values of g and IntB0 denotes its interior as a subspace of B. Note

that C is diffeomorphic to Sκ × [0, 1]. Then, we see that g| eC : C̃ → C with

C̃ = g−1(C) gives a Γ̃k-cobordism between f and a nonsingular map. Hence, by
our assumption, sκc(f) consists of an even number of points. This means that the

coefficient of F̃ in δκ(sκc) is zero (see (9.2)). Since this holds for an arbitrary F̃ of
codimension κ+ 1, we have δκ(sκc) = 0. This completes the proof. �

Now, let us apply the above proposition to a specific but important situation as
follows.

Corollary 13.12. Let us consider the complex

(13.2) C(S0
pr(5, 4)ori, ρ0

5,4(2))

of singular fibers for proper C0 stable maps of orientable 5-dimensional manifolds

into 4-dimensional manifolds with respect to the C0 equivalence modulo two circle

components. Let ÎII
8

o (or ÎII
8

e) be the C0 equivalence class modulo two circle compo-

nents of the suspension of III8o (resp. III8e). Then ÎII
8

o+ÎII
8

e is a 3-cocycle of the com-

plex (13.2) and represents a nontrivial cohomology class in H3(S0
pr(5, 4)ori, ρ0

5,4(2)).

For notations, refer to Fig. 8 and Proposition 10.4.

Proof. As in Proposition 4.1, we can obtain a similar characterization of proper C∞

stable maps of 5-dimensional manifolds into 4-dimensional manifolds. Using this
and Proposition 4.1 itself, we can show that S0

pr(4, 3)ori is transversely complete

with respect to S0
pr(5, 4)ori. Furthermore, an argument similar to that of the proof

of Corollary 4.9 shows that two elements of S0
pr(4, 3)ori∗ are C0 equivalent modulo

two circle components if and only if so are their suspensions in S0
pr(5, 4)ori∗. Hence,

we have s3(ÎII
8

o + ÎII
8

e) = III8o + III8e .
Now, suppose that a C0 stable map f : M → N of a closed orientable 4-manifold

into a closed 3-manifold is S̃0
pr(−1)-cobordant to a nonsingular map. Since the

source manifold of a nonsingular map always has zero Euler characteristic, we see
that the Euler characteristic of M should be even. Hence, by Theorem 6.1, the
number of elements in the set (III8o+III8e)(f) should be even, and hence it represents
the trivial homology class in H0(N ;Z2). Then, by Proposition 13.11, we see that
III8o + III8e is a cocycle of the complex (13.2).

Note that there does exist a closed orientable 4-manifold whose Euler character-
istic is odd. Let g : M ′ → N ′ be a C0 stable map of such a 4-manifold M ′ into a
3-manifold N ′. Then, again by Theorem 6.1, we see that, for the homomorphism

ϕg : H3(S0
pr(5, 4)ori, ρ0

5,4(2)) → H3
c (N

′;Z2)

induced by g, we have ϕg([III
8
o + III8e ]) 6= 0. This shows that the cohomology class

[III8o + III8e ] is nontrivial. This completes the proof. �

The above corollary justifies the prediction given in Remark 11.12.
Let us end this section by the following proposition concerning Problem 12.14.

Proposition 13.13. Suppose that Γλ,κ is transversely complete with respect to

Γn,p, where 0 < κ < p and p − n = κ − λ = k. Then the following two are

equivalent.
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(1) A cochain c ∈ Cκ(Γn,p, ρ
Γn,p
n,p ) is a coboundary if and only if [sκc(f)] =

0 ∈ H0(N ;Z2) (or equivalently, ϕf ([sκc]) = 0 in Hκ(N ;Z2)) for every

Γ∗
λ,κ-map f : M → N such that both M and N are closed.

(2) If α ∈ Hκ(Γn,p, ρ
Γn,p
n,p ) is nonzero, then there exists a Γ∗

n,p-map g : M ′ → N ′

such that ϕg(α) 6= 0 in Hκ(N ′;Z2).

Proof. (1) =⇒ (2). Suppose that ϕg(α) = 0 in Hκ(N ′;Z2) for all Γ∗
n,p-map

g : M ′ → N ′. Then, by Lemma 12.11, for every Γ∗
λ,κ-map f : M → N , we

have ϕf (sκ∗α) = 0 in Hκ(N ;Z2). Now item (1) implies that α = 0. This is a
contradiction.

(2) =⇒ (1). Suppose that c is a coboundary. Then ϕf ([sκc]) = 0 in Hκ(N ;Z2),
since [sκc] = sκ∗[c] = 0. Conversely, suppose that [sκc(f)] = 0 ∈ H0(N ;Z2) for
every Γ∗

λ,κ-map f : M → N such that both M and N are closed. By Proposi-

tion 13.11, c is a cocycle. Then, by Lemma 12.10, ϕg([c]) = 0 for every Γ∗
n,p-map

g. Then item (2) implies that [c] = 0; i.e. c is a coboundary. This completes the
proof. �

Note that all the results in this subsection hold also for the universal complexes
of co-orientable singular fibers and the cohomology groups with Z-coefficients, pro-
vided that the target manifolds are oriented, except for Corollary 13.12.

Remark 13.14. Recall that Tpr(λ, κ) is always transversely complete with respect to
Tpr(n, p). Thus, in view of Proposition 13.13, a special case of Problem 12.14 can
be interpreted as follows at least for Thom maps. A cochain c ∈ Cκ(Tpr(n, p), ρ

0
n,p)

with 0 < κ < p of the universal complex is a cocycle if and only if sκc(f) is null-
homologous for all f cobordant to a nonsingular map. Is it true that a cocycle c is
a coboundary if and only if sκc(f) is null-homologous for all f?

14. Cobordism of maps with restricted local singularities

In this section, we consider another cobordism relation which is slightly different
from the one given in the previous section.

Let us consider a (mono-)germ η : (Rn, 0) → (Rn+k, 0) of a C∞ stable codi-
mension k map. We define its suspension Ση : (Rn+1, 0) → (Rn+1+k, 0) by
Ση(u, t) = (η(u), t) for u ∈ Rn and t ∈ R. For a fixed k ∈ Z, let us consider
the set of germs of C∞ stable codimension k maps, and the equivalence relation
generated by the C∞ right-left equivalence and the suspension. We call such an
equivalence class a singularity type (see [35]).

There is a hierarchy of singularity types. A singularity type A is said to be
under another singularity type B if for a representative f : (Rn, 0) → (Rn+k, 0) of
A, there is a germ of B arbitrary close to f , in the sense that there are points x
arbitrary close to the origin of Rn such that the germ of f at x belongs to B. In
this case, we also say that B is over A. (Compare this with Definition 9.18.)

Let τ be an ascending set of singularity types.

Definition 14.1. We say that a smooth map f : M → N between smooth
manifolds is a τ-map if its singularities (as mono-germs) in the source manifold
M all lie in τ . If M is a manifold with boundary, then we also suppose that
f(∂M) ⊂ ∂N and for collar neighborhoods C and C′ of ∂M and ∂N respectively,
we have f |C = Σ(f |∂M ).

Definition 14.2. For a smooth manifold N , two τ -maps f0 : M0 → N and f1 :
M1 → N of closed manifolds M0 and M1 are said to be τ-cobordant if there exist
a compact manifold W with boundary the disjoint union M0 ∐M1, and a τ -map
F : W → N × [0, 1] such that fi = F |Mi

: Mi → N × {i}, i = 0, 1. We call F a
τ-cobordism between f0 and f1.
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When Mi are oriented andW can be taken to be oriented so that ∂W = (−M0)∐
M1, then we say that f0 and f1 are oriented τ-cobordant.

Lemma 14.3. Every τ-map of a closed manifold is τ-cobordant to a τ-map which

is a Thom map.

Proof. Suppose that a τ -map f : M → N is given, where M is a closed manifold.

Then there exists a τ -map f̃ : M → N which is a Thom map and which is sufficiently
close to f in the mapping space C∞(M,N), since the set of Thom maps is dense
in C∞(M,N) and the local singularities of f are all C∞ stable (and hence the set
of all τ -maps is open in the mapping space). In particular, we may assume that f

and f̃ are homotopic through τ -maps and hence are τ -cobordant. This completes
the proof. �

Remark 14.4. Suppose that two τ -maps fi : Mi → N , i = 0, 1, of closed manifolds
are Thom maps. If they are τ -cobordant, then a τ -cobordism between them can be
chosen as a Thom map. This is proved by first taking any τ -cobordism and then
by approximating it by a Thom map.

In what follows, we fix the codimension k ∈ Z. For an ascending set τ of
singularity types of codimension k and for a dimension pair (n, p) with p − n =
k, let us denote by τ(n, p) the set of all proper Thom maps which are τ -maps.
Furthermore, we set

τ̃ (k) =
⋃

p

τ(p− k, p),

and let us consider a stable system of admissible equivalence relations Rτ
k =

{ρτp−k,p}p for the fibers of elements of τ̃ (k). Note that the set τ̃ (k) is closed under
suspension.

Definition 14.5. Let f : M → N be an arbitrary τ -map, which may not necessarily
be a Thom map, where we assume that M is closed. Then by Lemma 14.3, f is

τ -cobordant to a τ -map f̃ : M → N which is a Thom map. Then we define

ϕf : Im sκ∗ → Hκ(N ;Z2)

by ϕf = ϕef |Im sκ∗
, where

sκ∗ : Hκ(τ(n + 1, p+ 1), ρτn+1,p+1) → Hκ(τ(n, p), ρτn,p)

is the homomorphism induced by the suspension, and

ϕef : Hκ(τ(n, p), ρτn,p) → Hκ(N ;Z2)

is the homomorphism induced by the Thom map f̃ . The homomorphism ϕf is
well-defined by virtue of Lemma 13.4 together with Remark 14.4.

By Lemma 13.4, we see that if f0 and f1 are τ -maps of closed manifolds into a
p-dimensional manifold N which are τ -cobordant, then ϕf0 = ϕf1 . In other words,
the correspondence f 7→ ϕf defines a τ -cobordism invariant of τ -maps into N .

Remark 14.6. If τ is big enough, or more precisely, if the space of τ -maps is always
dense in the corresponding mapping space, then for every smooth map f : M → N

of a closed manifold, we can define ϕf to be ϕef , where f̃ is an approximation of f

which is a τ -map. Then, we can show that this is well-defined, and that it defines
a bordism invariant of smooth maps into N , where two smooth maps f0 : M0 → N
and f1 : M1 → N of closed manifolds M0 and M1 are said to be bordant if there
exist a compact manifold W with boundary the disjoint union M0 ∐M1, and a
smooth map F : W → N × [0, 1] such that fi = F |Mi

: Mi → N × {i}, i = 0, 1 (for
details, see [5]). In particular, if N is contractible, it defines a cobordism invariant
of the source manifold.
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Remark 14.7. So far, we have considered Thom maps which are τ -maps. It is easy
to see that we could as well consider C0 stable maps which are Thom maps (or C∞

stable maps for nice dimension pairs (n, p) in the sense of Mather [27]) instead of
Thom maps, since the corresponding sets are dense in the mapping spaces. Let us
denote by τ0(n, p) the set of C0 stable maps in Tpr(n, p) which are τ -maps. Then,
for a τ -map f : M → N with M being closed, we can define the homomorphism

ϕf : Im s0κ∗ → Hκ(N ;Z2),

which is a τ -cobordism invariant, where

s0κ∗ : Hκ(τ0(n+ 1, p+ 1), ρτn+1,p+1) → Hκ(τ0(n, p), ρτn,p)

is the homomorphism induced by the suspension.
In fact, we can show that the diagram

Hκ(τ(n+ 1, p+ 1), ρτn+1,p+1)
sκ∗−−−−−→ Hκ(τ(n, p), ρτn,p)yπτ(n+1,p+1),τ0(n+1,p+1)∗

yπτ(n,p),τ0(n,p)∗

Hκ(τ0(n+ 1, p+ 1), ρτn+1,p+1)
s0κ∗−−−−−→ Hκ(τ0(n, p), ρτn,p)

is commutative, and that

ϕf : Im sκ∗ → Hκ(N ;Z2)

coincides with the composition of the natural homomorphism induced by the pro-
jection

πτ(n,p),τ0(n,p)∗|Im sκ∗
: Im sκ∗ → Im s0κ∗

and

ϕf : Im s0κ∗ → Hκ(N ;Z2).

Let us consider τ -maps into N = N ′ × R, where N ′ is a (p − 1)-dimensional
manifold. Then, the set of all τ -cobordism classes of τ -maps of closed manifolds
into N , denoted by Cobτ (N), forms an abelian group with respect to the “far
away disjoint union”. (When we take the orientations into account, we denote

the corresponding abelian group by Cobori
τ (N).) More precisely, for two τ -maps

fi : Mi → N of closed manifolds Mi, i = 0, 1, there exists a real number r such that
f0(M0) ∩ (Tr ◦ f1(M1)) = ∅, where the diffeomorphism Tr : N ′ × R → N ′ × R is
defined by Tr(x, t) = (x, t+r). Then, it is not difficult to show that the τ -cobordism
class of the disjoint union of the two maps f0 and Tr ◦ f1 depends only on the τ -
cobordism classes of f0 and f1. Furthermore, the resulting τ -cobordism class does
not change even if we exchange f0 and f1. Thus, we define [f0]+[f1] = [f0∐(Tr◦f1)],
where [∗] denotes the τ -cobordism class of ∗. The neutral element is the map of
the empty set, and the inverse element of a τ -map f : M → N ′ × R is given by
−f : M → N ′ × R defined by −f = R ◦ f , where R : N ′ × R → N ′ × R is the
diffeomorphism defined by R(x, t) = (x,−t). (When we take the orientations into
account, the source manifold of −f is understood to be −M .)

Then, the following is a direct consequence of the above definitions.

Proposition 14.8. In the above situation, the map

Φκ : Cobτ (N) → Hom(Im sκ∗, H
κ(N ;Z2))

defined by Φκ([f ]) = ϕf for a τ-maps f of a closed manifold into N is a homomor-

phism of abelian groups for every κ, where

sκ∗ : Hκ(τ(n + 1, p+ 1), ρτn+1,p+1) → Hκ(τ(n, p), ρτn,p)

is the homomorphism induced by the suspension.
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Note that a similar map

Φκ : Cobτ (N) → Hom(Im s0κ∗, H
κ(N ;Z2))

can also be defined and is a homomorphism of abelian groups for every κ (see
Remark 14.7).

We do not know if the homomorphism ⊕κΦκ is injective or not for some ρτn,p
and ρτn+1,p+1.

Remark 14.9. Note that the above proposition holds also for Γ̃k-maps in the sense
of §9.6 or §13. However, we do not know if the group operation defined on the set
of cobordism classes is commutative or not. If N = N ′′ × R2 for some (p − 2)-
dimensional manifold N ′′, then we can show that the resulting group is abelian.

Note that all the results in this section hold also for the universal complexes of co-
orientable singular fibers and the cohomology groups with Z-coefficients, provided
that the target manifolds are oriented.

15. Examples of cobordism invariants

In this section, we shall construct explicit cobordism invariants in specific situa-
tions following the procedure introduced in the previous sections. Throughout the
section, the codimension will always be equal to −1. Furthermore, we shall work
only with nice dimension pairs, and we shall consider C0 stable maps instead of
Thom maps following Remark 14.7.

15.1. Cobordism of stable maps. Let τ be the set of singularity types corre-
sponding to a regular point and a Morin singularity [29], i.e., a fold point, a cusp
point, a swallowtail, etc. Note that if the dimension of the source manifold is less
than or equal to 4, this set is big enough in the sense of Remark 14.6.

Let us consider C0 stable maps of surfaces and 3-manifolds. By Proposition 10.7,
the first cohomology group of the universal complex of singular fibers

C(S0
pr(3, 2), ρ0

3,2(2)) = C(τ0(3, 2), ρ0
3,2(2))

with respect to the C0 equivalence modulo two circle components for τ0(3, 2)-

maps is isomorphic to Z2 ⊕ Z2 and is generated by α1 = [̃I0o + Ĩ1e ] = [̃I0e + Ĩ1o] and

α2 = [̃I2o + Ĩ2e ]. In the following, let

s01∗ : H1(τ0(3, 2), ρ0
3,2(2)) → H1(τ0(2, 1), ρ0

2,1(2))

be the homomorphism induced by the suspension.

Let us first consider α2 = [̃I2o + Ĩ2e ]. For a C∞ stable map f : M → N of a closed
surface into a connected 1-dimensional manifold N , (s01∗α2)(f) ∈ H0(N ;Z2) ∼= Z2

is nothing but the number modulo two of the singular fibers as depicted in Fig. 3
(3). By Lemma 13.4 and Remark 14.6, this is a bordism invariant. On the other
hand, by Corollary 3.4 and Remark 3.7, the number modulo two coincides with
the parity of the Euler characteristic of the source surface M . Thus, (s01∗α2)(f)
coincides with the parity of the Euler characteristic of its source surface. When
N = R, this is a complete bordism (or τ -cobordism) invariant for (τ -)maps of
closed surfaces into N .

For α1 = [̃I0o + Ĩ1e ] = [̃I0e + Ĩ1o], we have the following.

Lemma 15.1. For every τ0(2, 1)-map f : M → N of a closed surface M into a

1-dimensional manifold N , (s01∗α1)(f) ∈ H0(N ;Z2) vanishes.

Proof. Let 0o(f) be the set

{y ∈ N : y is a regular value of f and b0(f
−1(y)) is odd}.
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Since every 1-dimensional manifold is orientable, we give an orientation to N . Then
each connected component of 0o(f), which is either an arc or a circle, has an induced

orientation. Note that the end points of the arc components of 0o(f) correspond
to

(̃I0o + Ĩ1e + Ĩ0e + Ĩ1o)(f).

For an arc component, we say that it is of type ++ (or −−) if the number of
connected components of a regular fiber of f increases (resp. decreases) by one when
the target point passes through its starting point and also when it passes through
its terminal point. We say that it is of type +− (or −+) if the number increases
(resp. decreases) by one when the target point passes through its starting point and
it decreases (resp. increases) by one when it passes through its terminal point. In

this way, the arc components of 0o(f) can be classified into these four types. We
denote by n(++), n(−−), n(+−) and n(−+) the numbers of arc components of
types ++, −−, +− and −+ respectively.

Then, it is easy to show that

|̃I0o(f)| + |̃I1e(f)| = n(++) + n(−−) + 2n(+−),

|̃I0e(f)| + |̃I1o(f)| = n(++) + n(−−) + 2n(−+).

Since we should have n(++) = n(−−), we obtain

|̃I0o(f)| + |̃I1e(f)| ≡ |̃I0e(f)| + |̃I1o(f)| ≡ 0 (mod 2).

This implies that (s01∗α1)(f) = 0 in H0(N ;Z2). This completes the proof. �

Remark 15.2. Note that s01∗α1 does not vanish as an element ofH1(τ0(2, 1), ρ0
2,1(2)).

Hence, the above lemma shows that even if we take a nontrivial cohomology class
of the universal complex with respect to an admissible equivalence relation, the
corresponding homology class in the target manifold can be trivial. Hence, the
answer to the problem mentioned in Problem 12.14 is negative in general, if we
replace the C0 equivalence relation ρ0

n,p with an arbitrary admissible equivalence
relation, at least for the cohomology group (12.2). See also Remark 13.14.

Let us consider the homomorphism

ερ02,1(2),ρ02,1∗
: H1(S0

pr(2, 1), ρ0
2,1(2)) → H1(S0

pr(2, 1), ρ0
2,1)

induced by the cochain map

ερ02,1(2),ρ02,1
: C(S0

pr(2, 1), ρ0
2,1(2)) → C(S0

pr(2, 1), ρ0
2,1)

defined in §9.6. If the image of s01∗α1 ∈ H1(S0
pr(2, 1), ρ0

2,1(2)) by ερ02,1(2),ρ02,1∗
is

nontrivial, then the problem mentioned in Problem 12.14 is negatively solved. The
author conjectures that ερ02,1(2),ρ02,1∗

(s01∗α1) 6= 0.

In [53], Yamamoto considers an equivalence relation among the fibers of a given
map which takes into account their positions from a global viewpoint. In other
words, even if two fibers are C0 equivalent, if their positions are different from
each other in a certain global sense, then one considers them to be nonequivalent.
Probably, we can construct universal complexes of singular fibers with respect to
such “global” equivalence relations. Then, the author conjectures that for such a
universal complex with respect to a certain global equivalence relation, the answer
to the problem mentioned in Problem 12.14 should be positive.

If we consider a C0 stable map f : M → N of a closed 3-manifold into a surface,
then α1(f) and α2(f) are defined as elements of H1(N ;Z2). We see that α2(f) can
be nontrivial by the example constructed as follows.

Let g : RP 2 → R be an arbitrary Morse function. Note that (s01∗α2)(g) is
nontrivial by Corollary 3.4. We define f = g × idS1 : RP 2 × S1 → R × S1. Then
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we see that α2(f) does not vanish in H1(R × S1;Z2). (This implies, for example,
that f : RP 2 × S1 → R × S1 is not bordant to a constant map.)

On the other hand, α1(f) always vanishes. This follows from Lemma 12.10,
since (s01∗α1)(h) always vanishes for a τ0(2, 1)-map h of a closed surface into a 1-
dimensional manifold as mentioned above. Note that τ0(2, 1) is transversely com-
plete with respect to τ0(3, 2).

15.2. Cobordism of fold maps. Let us now consider an example of τ which is not
big in the sense of Remark 14.6. Let τ be the set of singularity types corresponding
to a regular point and a fold point. In this case, a τ -map is called a fold map.
(Recall that this notion was already introduced in §7). In the following, we denote
by τ0(n, p)ori the set of all C0 equivalence classes of fibers for proper C0 stable
τ -maps in Tpr(n, p) of orientable n-dimensional manifolds.

Then the following proposition can be proved. Details are left to the reader.

Proposition 15.3. The cohomology groups of the universal complex

CO(τ0(3, 2)ori, ρ0
3,2(2))

of co-orientable singular fibers for proper C0 stable fold maps of orientable 3-
manifolds into surfaces with respect to the C0 equivalence modulo two circle com-

ponents are given as follows:

H0(CO(τ0(3, 2)ori, ρ0
3,2(2))) ∼= Z (generated by [0o + 0e]),

H1(CO(τ0(3, 2)ori, ρ0
3,2(2))) ∼= Z ⊕ Z (generated by α1 = [̃I0o + Ĩ1e ] = [̃I0e + Ĩ1o],

α2 = [̃I0o + Ĩ0e ], and α3 = [̃I1o + Ĩ1e ]

with 2α1 = α2 + α3),

where for a C0 equivalence class F of fibers, Fo (or Fe) denotes the C0 equivalence

class modulo two circle components represented by Fℓ with ℓ odd (resp. even), and

[∗] denotes the cohomology class represented by the cocycle ∗.

Let f : M → R be a Morse function, which is a fold map, of a closed oriented
surface M . Then (s01∗α2)(f) ∈ H0(R;Z) ∼= Z coincides with max(f) − min(f),
where max(f) (or min(f)) is the number of local maxima (resp. minima) of the
Morse function f . Furthermore, (s01∗α3)(f) coincides with the τ -cobordism invari-
ant introduced in [18]. Since we can show that (s01∗α1)(f) always vanishes as in
Lemma 15.1, we have (s01∗α2)(f) = −(s01∗α3)(f).

Note that by [18], two Morse functions f0 and f1 on closed oriented surfaces
are oriented τ -cobordant if and only if (s01∗α2)(f0) = (s01∗α2)(f1). In other words,
the cohomology class s01∗α2 of the universal complex of co-orientable singular fibers
with respect to the C0 equivalence modulo two circle components gives a complete
invariant for τ -cobordisms of τ -maps of oriented surfaces into R.

16. Applications

In this section, we give some applications of the ideas developed in §8 to the
topology of generic maps.

First, we prepare some lemmas.

Lemma 16.1. Let W be a compact m-dimensional manifold such that its boundary

is a disjoint union of open and closed subsets V0 and V1. If there exists a Morse

function g : W → R such that g(W ) = [a, b] for some a < b, V0 = g−1(a),
V1 = g−1(b), and that g has a unique critical point in the interior of W , then the

difference between the Euler characteristics of V0 and V1 is equal to ±2, provided

that m is odd.
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Proof. Let λ be the index of the critical point. Then by Morse theory, we see that
V1 is diffeomorphic to

(V0 r Int(Sλ−1 ×Dm−λ)) ∪ (Dλ × Sm−λ−1).

Then the result follows immediately. �

Definition 16.2. Let V0 and V1 be closed oriented (4k+1)-dimensional manifolds
with k ≥ 0. Suppose that there exists an oriented cobordism W between V0 and V1.
Then, we define d(V0, V1) to be the Euler characteristic modulo two of W . Since
every closed orientable (4k+2)-dimensional manifold has even Euler characteristic,
d(V0, V1) ∈ Z2 does not depend of the choice of W . In fact, d(V0, V1) coincides with
the difference between the semi-characteristics χ∗(V0) and χ∗(V1) with respect to
any coefficient field (see [26]).

Then the following lemma follows from the very definition.

Lemma 16.3. Let W be a compact (4k + 2)-dimensional oriented manifold such

that its boundary is a disjoint union of open and closed subsets V0 and V1. If there

exists a Morse function g : W → R such that g(W ) = [a, b] for some a < b,
V0 = g−1(a), V1 = g−1(b), and that g has a unique critical point in the interior of

W , then d(V0, V1) defined above is equal to 1 ∈ Z2.

With the help of the above lemmas, we prove the following. Recall that a smooth
map between smooth manifolds is a Boardman map if its jet extensions are trans-
verse to all the Thom-Boardman subbundles (see [3] and [13, Chapter VI, §5]).
Furthermore, such a map satisfies the normal crossing condition if its restrictions
to the Thom-Boardman strata intersect in general position (for more details, see
[13, Chapter VI, §5]).

Proposition 16.4. Let f : M → N be a Boardman map of a closed n-dimensional

manifold M into a p-dimensional manifold with n ≥ p. Suppose either that n − p
is even, or that n − p ≡ 1 (mod 4) and M is orientable. Then f∗[S(f)]2 = 0 ∈
Hp−1(N ;Z2), where [S(f)]2 ∈ Hp−1(M ;Z2) is the Z2-homology class represented

by the singular set S(f) of f .

Proof. We may assume that N is connected. We may also assume that f satisfies
the normal crossing condition by perturbing f slightly. When n− p ≡ 1 (mod 4),
we fix an orientation of M . Take a regular value y0 ∈ N of f and fix it, where
we take y0 ∈ N r f(M) if N is open. Let R be the closure of the set of points
y ∈ N r f(S(f)) such that

χ(f−1(y)) − χ(f−1(y0))

2

is odd for n− p ≡ 0 (mod 2) and that

d(f−1(y0), f
−1(y1)) ≡ 1 (mod 2)

for n − p ≡ 1 (mod 4). Note that if A is an embedded arc connecting y and y0
transverse to f , then f−1(A) gives a (oriented) cobordism between f−1(y) and
f−1(y0), and hence χ(f−1(y))−χ(f−1(y0)) is always an even integer for n− p ≡ 0
(mod 2) and d(f−1(y0), f

−1(y1)) ∈ Z2 is well-defined for n− p ≡ 1 (mod 4). Then
it is easy to see that R is compact.

Since f is a Boardman map, S(f) is naturally stratified into the Thom-Boardman
strata, and the top dimensional strata of S(f) consist of fold points. Let J be
an arc embedded in N such that J intersects f(S(f)) transversely at a unique
interior point z such that f−1(z)∩ S(f) consists of a fold point. Then by applying
Lemmas 16.1 and 16.3 to the (oriented) cobordism f−1(J) and the Morse function
f |f−1(J) : f−1(J) → J , we see that exactly one end point of J belongs to R.
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Therefore, f∗[S(f)]2 coincides with the Z2-homology class represented by ∂R, since
f satisfies the normal crossing condition. Thus the result follows. �

Remark 16.5. Proposition 16.4 does not hold for general Thom maps. For example,
let f : S1 → S1 be a C∞ homeomorphism such that f is equivalent to the function
x 7→ x3 at a point. Then, f is a Thom map, but S(f) consists exactly of one point.

By Thom [49], the Poincaré dual of [S(f)]2 ∈ Hp−1(M ;Z2) coincides with the
(n− p+ 1)-st Stiefel-Whitney class wn−p+1(TM − f∗TN) of the difference bundle
TM − f∗TN . Since every continuous map between smooth manifolds is homotopic
to a Boardman map, we obtain the following.

Corollary 16.6. Let f : M → N be a continuous map of a smooth closed n-
dimensional manifold M into a smooth p-dimensional manifold with n ≥ p. Suppose

either that n− p is even, or that n− p ≡ 1 (mod 4) and M is orientable. Then we

have f!wn−p+1(TM − f∗TN) = 0 ∈ H1(N ;Z2), where

f! : Hn−p+1(M ;Z2) → H1(N ;Z2)

denotes the Gysin homomorphism induced by f .

As another corollary to Proposition 16.4, we have the following.

Corollary 16.7. Let f : M → N be a C∞ stable map of a closed n-dimensional

manifold M into a p-dimensional manifold N with n ≥ p such that f has only fold

points as its singularities. Suppose either that n and p are odd, or that n − p ≡ 1
(mod 4), p ≡ 1 (mod 2) and M is orientable. Then the Euler characteristic of

f(S(f)) is even.

The above corollary follows from the fact that in the above situation, S(f) is
a (p − 1)-dimensional closed submanifold of M and that f |S(f) is an immersion
with normal crossings (for example, see [13, Chapter III, §4]), together with [32,
Corollary 7.3].

Now, let f : M → N be a C∞ stable map of a closed n-dimensional manifold M
into a p-dimensional manifold N such that f has only fold points as its singularities.
For m ≥ 0, we put

Σm(f) = {y ∈ N : f−1(y) ∩ S(f) consists exactly of m points},

and for m ≥ 1, we put

Σ̃m(f) = f−1(Σm(f)) ∩ S(f).

Note that Σm(f) is a regular submanifold of N of dimension p−m, and that Σ̃m(f)
is a regular submanifold of M of dimension p−m.

Then we have the following.

Proposition 16.8. Let f : M → N be a C∞ stable map of a closed n-dimensional

manifold M into a p-dimensional manifold N with n ≥ p such that f has only fold

points as its singularities. Suppose that n− p is even. Then, the Z2-homology class

[Σm(f)]2 ∈ Hp−m(Σm−1(f);Z2)

represented by Σm(f) vanishes for m odd. Furthermore, the Z2-homology class

[Σ̃m(f)]2 ∈ Hp−m(Σ̃m−1(f);Z2)

represented by Σ̃m(f) vanishes for m even.
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Proof. Take a point y0 ∈ Σm−1(f). Let R ⊂ Σm−1(f) be the the closure of the set
of points y ∈ Σm−1(f) such that

χ(f−1(y)) − χ(f−1(y0))

2

is odd. Then by an argument similar to that in the proof of Proposition 16.4, we
see that [Σm(f)]2 coincides with the Z2-homology class represented by ∂R, since
m is odd. Hence the first half of the proposition follows. The second half follows
from a similar argument. �

The above proposition shows, for example, that the singular value set f(S(f))

of the C∞ stable map f : CP 2♯2CP 2 → R3 constructed in §7 cannot be realized
as the singular value set of a C∞ stable map of a closed n-dimensional manifold
into R3 for n ≥ 3 odd.
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