
CONNECTED COMPONENTS OF REGULAR FIBERS OF

DIFFERENTIABLE MAPS

JORGE T. HIRATUKA AND OSAMU SAEKI

Dedicated to Professors Satoshi Koike and Laurentiu Paunescu

on the occasion of their sixtieth birthdays

Abstract. For a map between smooth manifolds, the space of the connected
components of its fibers is called the Stein factorization. In our previous
paper, we showed that for generic smooth maps, the Stein factorizations are
triangulable. As an application, we show that every connected component of
a regular fiber is null-cobordant if the top dimensional homology of the Stein
factorization vanishes.

1. Introduction

Let f : M → N be a generic C∞ map between smooth manifolds. The space
of the connected components of fibers of f is denoted by Wf . Then, we have the
canonical quotient map qf : M → Wf and the natural map f̄ : Wf → N such that
f = f̄ ◦ qf . Such a decomposition of f into the composition of qf and f̄ is called
the Stein factorization of f . Sometimes the quotient space Wf is also called the
Stein factorization of f .

It is known that when dimM > dimN , the Stein factorization of f : M → N ,
or the quotient space Wf , is a very important tool in studying the topological
properties of the map f . Refer to [1, 7, 8, 9, 10, 11, 15], for example. In our
previous paper [5], the authors have shown that the Stein factorization, and in
particular the quotient space Wf , is triangulable for a large class of generic smooth
maps f .

In this paper, we use the triangulation of the Stein factorization in order to study
the cobordism classes of the components of regular fibers of generic smooth maps.
It is known that if the target manifold N of a smooth map f : M → N is connected,
then the regular fibers of f are all cobordant. However, the components of regular
fibers may not be cobordant to each other. We show that for a generic smooth
map f : M → N , we can associate a top dimensional homology class γf ∈ Hn(Wf ),
n = dimN , in such a way that if f has a regular fiber component that is not null-
cobordant, then γf does not vanish, where the coefficient group is the cobordism
group of manifolds of dimension m− n, m = dimM .

The paper is organized as follows. In §2 we give a precise definition of the Stein
factorization of a continuous map between topological spaces and its triangulation.
We also recall the cobordism group of manifolds, and state our main theorem. In
§3 we define the homology class γf and prove our main theorem. We also give
some enlightening examples. In §4, we show that the above homology class γf
gives a bordism invariant for maps whose fibers are connected. We also give some
observations which show that the cobordism classes of regular fibers have little
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relation to the cobordism class of the source manifold in general. Finally we give
some related problems.

Throughout the paper, we will often abuse the terminology “simplicial complex”
(or “simplicial map”) to indicate the corresponding polyhedron (resp. PL map).
The symbol “≈” denotes a homeomorphism between topological spaces.

2. Preliminaries

In this section, we define the notion of a triangulation of the Stein factorization
of a map and state our main theorem.

Definition 2.1. Let g : X → Y be a continuous map between topological spaces
X and Y . Two points x, x′ ∈ X are g-equivalent if g(x) = g(x′) and the points
x and x′ are in the same connected component of g−1(g(x)) = g−1(g(x′)). We
denote by Wg the quotient space with respect to the g-equivalence, endowed with
the quotient topology. The quotient map is denoted by qg : X → Wg. Then there
exists a unique continuous map ḡ : Wg → Y such that g = ḡ ◦ qg. The quotient
space Wg or the commutative diagram

................................................................................................
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.......
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.......
.......
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.......
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Wg

ḡ

X Y
g

	

is called the Stein factorization of g.

There is a one-to-one correspondence between the quotient space and the space
of the connected components of the fibers of g. Note that each fiber of the quotient
map qg is connected.

Remark 2.2. The space Wg is often called the quotient space or the Reeb space (or
the Reeb complex ) of g.

Let g : X → Y be a continuous map between topological spaces. Then, g is
said to be triangulable if there exist simplicial complexes K and L, a simplicial
map s : K → L, and homeomorphisms λ : |K| → X and µ : |L| → Y such that the
following diagram is commutative:

X
g

−−−−→ Y

λ

x
xµ

|K|
|s|

−−−−→ |L|,

where |K| and |L| are polyhedrons associated with K and L, respectively, and |s|
is the PL map associated with s.

In [5], the authors have proved the following.

Theorem 2.3. Let g : X → Y be a proper continuous map between locally compact

topological spaces X and Y . If g is triangulable, then so is the Stein factorization
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of g. More precisely, we have the commutative diagram

..........................................................................................
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ḡ

|K ′| |L′|

|V |
|ϕ|

qg

µ

Y
g

|s′|

λ

|ψ|

for some finite simplicial complexes K ′, L′ and V , some simplicial maps s′ : K ′ →
L′, ϕ : K ′ → V and ψ : V → L′, and some homeomorphisms λ, µ and Θ.

Let us recall the notion of a cobordism of manifolds. Let M0 and M1 be closed
oriented manifolds with dimM0 = dimM1(= m). We say that M0 and M1 are
oriented cobordant if there exists a compact oriented (m + 1)-dimensional mani-
fold Q such that ∂Q = (−M0) ∪M1, where −M0 denotes the manifold M0 with
the orientation reversed. Such a manifold Q is often called an oriented cobordism

between M0 and M1. The above relation clearly defines an equivalence relation.
The equivalence class of a manifold M will be denoted by [M ]. We can define
[M ] + [M ′] = [M ∪M ′], in such a way that the set Ωm of all oriented cobordism
classes of closed oriented m-dimensional manifolds forms an additive group. This
is called the m-dimensional oriented cobordism group.

In the above definition, if we ignore the orientations of the manifolds, then we
get the m-dimensional (unoriented) cobordism group, denoted by Nm.

The groups Ωm and Nm have been extensively studied and their structures have
been completely determined (see [16, 17]). For example, the following is known.

• Ωm is a finitely generated abelian group.
• Nm is a finitely generated Z2-module.
• Ωm is a finite group unless m is a multiple of four.
• Ω0

∼= Z, Ω1 = Ω2 = Ω3 = 0, Ω4
∼= Z, Ω5

∼= Z2, . . .
• N0

∼= Z2, N1 = 0, N2
∼= Z2, N3 = 0, N4

∼= Z2
2, N5

∼= Z2, . . .

A closed (oriented) manifold M with [M ] = 0 is said to be (oriented) null-

cobordant.
Our main theorem of this paper is the following.

Theorem 2.4. Let M be a closed manifold and f : M → N a smooth map into a

manifold N with m = dimM ≥ dimN = n. Assume that f is triangulable (e.g. a
topologically stable map). Then, we have the following.

(1) If there exists a regular fiber component of f which is not null-cobordant,

then Hn(Wf ;Z2) 6= 0.
(2) Suppose that both M and N are oriented (note that then the regular fibers

are naturally oriented ). If there exists a regular fiber component of f which is not

oriented null-cobordant, then Hn(Wf ; Ωm−n) 6= 0.

3. Proof of Theorem 2.4

Proof. Let s : K → L be a triangulation of f : M → N . Then, for the barycentric
subdivision L′ of L, there exist a subdivisionK ′ ofK and a simplicial map s′ : K ′ →
L′ such that |s′| = |s| (for example, see [6]). By Theorem 2.3 (see also [5]), we have
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a triangulation of the Stein factorization as in the commutative diagram

..........................................................................................
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where V is a finite simplicial complex of dimension n, ϕ : K ′ → V and ψ : V → L′

are simplicial maps with ψ being non-degenerate, and λ, Θ and µ are homeomor-
phisms. Here, a simplicial map is non-degenerate if it preserves the dimension of
each simplex.

For each n-simplex σ ∈ V , λ maps |ϕ|−1(bσ) homeomorphically onto q−1

f (Θ(bσ)),
which is a component of a fiber of f , where bσ is a point in the interior of σ. By the
Sard theorem, we may assume that f̄(Θ(bσ)) is a regular value of f . Then, define

ωσ = [q−1

f (Θ(bσ))] ∈ Nm−n,

which is the cobordism class of the regular fiber component corresponding to σ ⊂
|V | ≈Wf .

Lemma 3.1. The cobordism class [q−1

f (Θ(bσ))] does not depend on a choice of

bσ ∈ Intσ.

Proof. Let b′σ be another point in Intσ such that f̄(Θ(b′σ)) is a regular value of f .
We can choose an embedded arc γ in Intσ connecting bσ and b′σ in such a way that
f̄(Θ(γ)) is transverse to f (for example, see [3, §4.3]). Then, λ(|ϕ|−1(γ)) gives a
smooth cobordism between q−1

f (Θ(bσ)) and q
−1

f (Θ(b′σ)). �

Set

cf =
∑

σ

ωσσ ∈ Cn(V ;Nm−n),

where σ runs over all n-simplices of V , and Cn(V ;Nm−n) denotes the n-th chain
group of V with coefficients in Nm−n.

Lemma 3.2. We have ∂cf = 0 in Cn−1(V ;Nm−n), i.e. cf is an n-cycle.

Proof. Let τ be an arbitrary (n − 1)-simplex of V , and let σ1, σ2, . . . , σr be the
n-simplices of V containing τ as a face (see Fig. 1). We have only to show

r∑

j=1

ωσj
= 0

in Nm−n, i.e. the vanishing of the coefficient of τ in ∂cf .
Let ᾱ be a small arc in |L′| which intersects τ̄ = ψ(τ) transversely in one point

(see Fig. 1), and let σ̄1 and σ̄2 be the n-simplices of L′ adjacent to τ̄ . Note that
ψ(σi) coincides with either σ̄1 or σ̄2. We take ᾱ so that µ(ᾱ) is a smooth arc in
N transverse to f . Let α be the component of |ψ|−1(ᾱ) that intersects τ . Then,
Q = q−1

f (Θ(α)) is an (m− n+ 1)-dimensional compact manifold and

∂Q =
r⋃

j=1

λ(|ϕ|−1(bσj
)).
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|K ′|
λ
≈M

|L′|
µ
≈ N

|s′|

σ1

σ2

σr

|V |
Θ

≈Wf

|ϕ|

|ψ|

τ τ̄

σ̄1

σ̄2

ᾱ

α

Figure 1. The small arc ᾱ

Therefore, we have
r∑

j=1

ωσj
=

r∑

j=1

[
λ(|ϕ|−1(bσj

))
]
= 0

in Nm−n. �

Thus, cf defines a homology class

(3.1) γf ∈ Hn(Wf ;Nm−n).

Furthermore, since dimWf = n, we have γf 6= 0 if and only if cf 6= 0. Moreover,
cf 6= 0 if and only if there exists a component of a regular fiber of f which is
not null-cobordant. Therefore, if such a regular fiber component exists, we have
Hn(Wf ;Z2) 6= 0, since Nm−n is isomorphic to Z2 ⊕ Z2 ⊕ · · · ⊕ Z2, the direct sum
of a finite number of copies of Z2.

The case where bothM andN are oriented can be treated similarly. (In this case,
the orientation of N induces an orientation of each n-simplex of V . Therefore, the
argument also works with coefficients in the abelian group Ωm−n.) This completes
the proof of Theorem 2.4. �

Example 3.3. Let us consider a tree T . Then, since H1(T ;Z2) = 0, there exists no
Morse function f1 : M

5
1 → R on a closed 5-dimensional manifold M5

1 such that the
quotient space Wf1 is homeomorphic to T and that f1 has CP 2 as a component of
a regular fiber. (Recall that CP 2 is not null-cobordant.)

Example 3.4. There exists a Morse function f2 : M
5
2 → R on a closed 5-dimensional

manifold M5
2 whose quotient space is as depicted in Fig. 2. The integer at each

vertex denotes the index of the corresponding critical point, and the 4-manifold
attached to each edge denotes the corresponding regular fiber component.

Note that H1(Wf2 ;Z)
∼= H1(Wf2 ; Ω4) ∼= Z is generated by the homology class

γf2 of (3.1).
We note that the 5-dimensional manifold M5

2 can be chosen to be diffeomorphic
to S1 × CP 2, which is null-cobordant.

Example 3.5. There exists a Morse function f3 : M
5
3 → R on a closed 5-dimensional

manifold M5
3 whose quotient space is as depicted in Fig. 3. Note that the quotient

space Wf3 is homeomorphic to Wf2 ; however, γf3 = 0 in H1(Wf3 ;Z)
∼= Z, while

γf2 6= 0 in H1(Wf2 ;Z). This means that even if the top dimensional homology
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S4

S4

CP 2

CP 2

CP 2♯CP 2CP 2♯CP 2

0 12 34 5

Figure 2. An example with non-vanishing γf2

S4

S4

S2 × S2

S4

S2 × S2S2 × S2

0 12 34 5

Figure 3. An example with vanishing γf3

group of the quotient space does not vanish, the map may not have a regular fiber
component that is not null-cobordant.

We note that the 5-dimensional manifold M5
3 can be chosen to be diffeomorphic

to S1 × S4, which is null-cobordant.

By considering the product maps f̃i = fi × idSk : M5
i × Sk → R × Sk, k ≥ 1,

i = 1, 2, 3, where idSk denotes the identity map of Sk, we can construct examples
of higher dimensional quotient spaces as well.

Remark 3.6. For a smooth map f : M → N as in Theorem 2.4 with N being a
closed manifold, we see that f̄∗γf ∈ Hn(N ;Nm−n) ∼= Hn(N ;Z2)⊗Nm−n coincides
with [N ]⊗ Ff , where f̄ : Wf → N is the continuous map that appears in the Stein
factorization of f , [N ] ∈ Hn(N ;Z2) is the fundamental class of N , and Ff ∈ Nm−n

is the unoriented cobordism class of a regular fiber of f . Note that when N is a
closed manifold, the unoriented cobordism class Ff can be determined by the Stiefel-
Whitney classes of M together with f∗(1∗) ∈ Hn(M ;Z2), where 1∗ ∈ Hn(N ;Z2)
is the Poincaré dual of the canonical generator 1 ∈ H0(N ;Z2). A similar remark is
also valid in the oriented case. For details, see [12, §3].

Remark 3.7. Even if every component of every regular fiber is null-cobordant, the
source manifold may not be null-cobordant.

For example, consider a C∞ stable map f : CP 2 → R3. Every component of
every regular fiber is diffeomorphic to S1, which is null-cobordant. However, CP 2

is not null-cobordant.
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Figure 4. The singular fiber that determines the cobordism class

In fact, for a C∞ stable map f : M4 → R3 of a closed oriented 4-dimensional
manifoldM4, the cobordism class ofM4 is determined by singular fibers as depicted
in Fig. 4 (see [13, 14]).

Remark 3.8. Let M be a closed connected m-dimensional manifold. For a given
Morse function f ′ : M → R, we can modify it by homotopy so that we get an
ordered Morse function f : M → R. Here, a Morse function f is ordered if for every
pair of critical points p and q of f with index(p) < index(q), we have f(p) < f(q).
As is observed in [4], if f is an ordered Morse function with m ≥ 3, then every fiber
of f is connected, and hence Wf is homeomorphic to a line segment. In this case,
we have γf = 0, although the source manifold M may not be null-cobordant.

4. Further results

Let f ′ : M → S1 be a continuous map of a smooth closed connected manifold M
of dimension m ≥ 3 into the circle. We assume that the induced homomorphism
f ′
∗ : π1(M) → π1(S

1) is surjective. Then, it is known that f ′ is homotopic to a Morse
map f : M → S1 whose fibers are all non-empty and connected, where a Morse map

is a smooth map whose critical points are all non-degenerate (for example, see [4,
Theorem 1.3]). In this case, the quotient space Wf is canonically homeomorphic to
S1 through f̄ . In the following, a map is said to be fiber-connected if all of its fibers
are non-empty and connected. For such a map, the quotient space is canonically
homeomorphic to the target manifold.

Definition 4.1. Let fi : Mi → N be smooth maps of closed m-dimensional mani-
foldsMi into a manifoldN , i = 0, 1. We say that f0 and f1 are bordant if there exists
a cobordism Q between M0 andM1 (i.e. Q is a compact (m+1)-dimensional mani-
fold with ∂Q being identified with M0∪M1), and a smooth map F : Q→ N × [0, 1]
such that fi = F |Mi

: Mi → N × {i}, i = 0, 1. Such a map F is often called a
bordism between f0 and f1. If everything is oriented, then we say that f0 and f1
are oriented bordant (for details, see [2], for example).

For example, if two smooth maps are homotopic, then they are bordant.

Proposition 4.2. Let fi : Mi → N be smooth maps of m-dimensional closed con-

nected manifolds Mi into a connected n-dimensional manifold N with m ≥ n ≥ 1,
i = 0, 1. We suppose that fi are topologically stable and are fiber-connected,

i = 0, 1. If f0 and f1 are bordant, then we have γf0 = γf1 ∈ Hn(N ;Nm−n). If

M0, M1 and N are oriented, and f0 and f1 are oriented bordant, then we have

γf0 = γf1 ∈ Hn(N ; Ωm−n).

Proof. Let F : Q→ N× [0, 1] be the map as in Definition 4.1. By the Sard theorem,
we can choose a point y ∈ N which is a common regular value of f0 and f1. Then,
by slightly perturbing F on the interior of Q, we may assume that F is transverse
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to the line segment {y} × [0, 1]. Then, we see that Q′ = F−1({y} × [0, 1]) gives a
cobordism between regular fibers of f0 and f1. Since, for each i = 0, 1, the regular
fibers of fi are all cobordant, we get the required result. �

The above proposition implies that if two topologically stable fiber-connected
maps fi : Mi → N , i = 0, 1, satisfy γf0 6= γf1 , then they are not bordant. In
particular, when M0 =M1, f0 and f1 cannot be homotopic.

Remark 4.3. Suppose that fi : Mi → N , i = 0, 1, are bordant as in Definition 4.1.
We further assume that fi are topologically stable, i = 0, 1, and that γf0 does
not vanish. Under these assumptions, we have a sufficient condition for the non-
vanishing of γf1 as follows.

Let F : Q → N × [0, 1] be the smooth map that gives a bordism between f0
and f1. Let y be a regular value of f0 such that f−1

0
(y) contains a component

which is not null-cobordant. Let α : [0, 1] → N× [0, 1] be a smooth embedding with
α(0) = y × {0} such that α(1) ∈ N × {1} corresponds to a regular value of f1 and
that α is transverse to F . Let R be the component of F−1(α([0, 1])) which contains
the component of f−1

0
(y) which is not null-cobordant. By choosing α and F generic

enough, we may further assume that the map h = α−1 ◦ F : R → [0, 1] is a Morse
function. If this Morse function has no critical points of index 1, then we can show
that γf1 does not vanish.

Proposition 4.4. Let m be an integer with m ≥ 3. For an arbitrary c ∈ Nm and

for an arbitrary finite number of elements cj ∈ Nm−1, j = 1, 2, . . . , k, there exist

a smooth closed connected m-dimensional manifold M and fiber-connected Morse

maps fj : M → S1 such that [M ] = c and γfj ∈ H1(S
1;Nm−1) ∼= Nm−1 corresponds

to cj, j = 1, 2, . . . , k.

We also have a corresponding proposition for maps between oriented manifolds.

Proof of Proposition 4.4. Take a closed connected (m−1)-dimensional manifold Fj
in the cobordism class cj for each j, and a closed connectedm-dimensional manifold
M ′ with [M ′] = c. Let us consider the closed connected m-dimensional manifold
M given by

M =M ′♯
(
♯kj=1(S

1 × Fj)
)
.

Since S1 × Fj bounds D2 × Fj , it is null-cobordant, and hence we have [M ] =
[M ′] = c.

Note that for each j, M naturally decomposes as ((S1 × Fj) r IntDm) ∪M ′
j ,

where (S1 × Fj)r IntDm and M ′
j are attached along their sphere boundaries. Let

us construct a continuous map f ′
j : M → S1 as follows. On (S1 × Fj) r IntDm, it

is homotopic to the restriction of the projection S1 × Fj → S1 to the first factor
and is a constant map on the boundary of (S1 × Fj) r IntDm. We define f ′

j on

M ′
j to be the constant map to the same value in S1. We may assume that f ′

j is

smooth on (S1 × Fj)r IntDm and it has {∗} × Fj as a regular fiber. Then by [4,
Theorem 1.3], f ′

j is homotopic to a fiber-connected Morse map fj : M → S1. By
construction, the regular fibers of fj are all cobordant to Fj . Hence, fj satisfy the
desired properties. �

Proposition 4.4 shows that at least for fiber-connected maps f , γf carries no
information on the cobordism class of the source manifold.

We end this paper by posing some problems.

Problem 4.5. (1) How about the case of maps of manifolds with non-empty bound-
aries?
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(2) By associating an “invariant” of a (regular or singular) fiber component
corresponding to certain dimensional simplices of Wf , can we define a homology
class of Wf ?

(3) Study such kind of homology classes and their relations to the geometry and
topology of the manifolds and the map. For example, can we define Vassiliev type
invariants for maps using such homology classes?
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