CONNECTED COMPONENTS OF REGULAR FIBERS OF DIFFERENTIABLE MAPS

JORGE T. HIRATUKA AND OSAMU SAEKI

Dedicated to Professors Satoshi Koike and Laurentiu Paunescu on the occasion of their sixtieth birthdays

Abstract

For a map between smooth manifolds, the space of the connected components of its fibers is called the Stein factorization. In our previous paper, we showed that for generic smooth maps, the Stein factorizations are triangulable. As an application, we show that every connected component of a regular fiber is null-cobordant if the top dimensional homology of the Stein factorization vanishes.

1. Introduction

Let $f: M \rightarrow N$ be a generic C^{∞} map between smooth manifolds. The space of the connected components of fibers of f is denoted by W_{f}. Then, we have the canonical quotient $\operatorname{map} q_{f}: M \rightarrow W_{f}$ and the natural map $\bar{f}: W_{f} \rightarrow N$ such that $f=\bar{f} \circ q_{f}$. Such a decomposition of f into the composition of q_{f} and \bar{f} is called the Stein factorization of f. Sometimes the quotient space W_{f} is also called the Stein factorization of f.

It is known that when $\operatorname{dim} M>\operatorname{dim} N$, the Stein factorization of $f: M \rightarrow N$, or the quotient space W_{f}, is a very important tool in studying the topological properties of the map f. Refer to $[1,7,8,9,10,11,15]$, for example. In our previous paper [5], the authors have shown that the Stein factorization, and in particular the quotient space W_{f}, is triangulable for a large class of generic smooth maps f.

In this paper, we use the triangulation of the Stein factorization in order to study the cobordism classes of the components of regular fibers of generic smooth maps. It is known that if the target manifold N of a smooth map $f: M \rightarrow N$ is connected, then the regular fibers of f are all cobordant. However, the components of regular fibers may not be cobordant to each other. We show that for a generic smooth $\operatorname{map} f: M \rightarrow N$, we can associate a top dimensional homology class $\gamma_{f} \in H_{n}\left(W_{f}\right)$, $n=\operatorname{dim} N$, in such a way that if f has a regular fiber component that is not nullcobordant, then γ_{f} does not vanish, where the coefficient group is the cobordism group of manifolds of dimension $m-n, m=\operatorname{dim} M$.

The paper is organized as follows. In $\S 2$ we give a precise definition of the Stein factorization of a continuous map between topological spaces and its triangulation. We also recall the cobordism group of manifolds, and state our main theorem. In $\S 3$ we define the homology class γ_{f} and prove our main theorem. We also give some enlightening examples. In $\S 4$, we show that the above homology class γ_{f} gives a bordism invariant for maps whose fibers are connected. We also give some observations which show that the cobordism classes of regular fibers have little

[^0]relation to the cobordism class of the source manifold in general. Finally we give some related problems.

Throughout the paper, we will often abuse the terminology "simplicial complex" (or "simplicial map") to indicate the corresponding polyhedron (resp. PL map). The symbol " \approx " denotes a homeomorphism between topological spaces.

2. Preliminaries

In this section, we define the notion of a triangulation of the Stein factorization of a map and state our main theorem.

Definition 2.1. Let $g: X \rightarrow Y$ be a continuous map between topological spaces X and Y. Two points $x, x^{\prime} \in X$ are g-equivalent if $g(x)=g\left(x^{\prime}\right)$ and the points x and x^{\prime} are in the same connected component of $g^{-1}(g(x))=g^{-1}\left(g\left(x^{\prime}\right)\right)$. We denote by W_{g} the quotient space with respect to the g-equivalence, endowed with the quotient topology. The quotient map is denoted by $q_{g}: X \rightarrow W_{g}$. Then there exists a unique continuous map $\bar{g}: W_{g} \rightarrow Y$ such that $g=\bar{g} \circ q_{g}$. The quotient space W_{g} or the commutative diagram

is called the Stein factorization of g.
There is a one-to-one correspondence between the quotient space and the space of the connected components of the fibers of g. Note that each fiber of the quotient map q_{g} is connected.

Remark 2.2. The space W_{g} is often called the quotient space or the Reeb space (or the Reeb complex) of g.

Let $g: X \rightarrow Y$ be a continuous map between topological spaces. Then, g is said to be triangulable if there exist simplicial complexes K and L, a simplicial map $s: K \rightarrow L$, and homeomorphisms $\lambda:|K| \rightarrow X$ and $\mu:|L| \rightarrow Y$ such that the following diagram is commutative:

where $|K|$ and $|L|$ are polyhedrons associated with K and L, respectively, and $|s|$ is the PL map associated with s.

In [5], the authors have proved the following.
Theorem 2.3. Let $g: X \rightarrow Y$ be a proper continuous map between locally compact topological spaces X and Y. If g is triangulable, then so is the Stein factorization
of g. More precisely, we have the commutative diagram

for some finite simplicial complexes K^{\prime}, L^{\prime} and V, some simplicial maps $s^{\prime}: K^{\prime} \rightarrow$ $L^{\prime}, \varphi: K^{\prime} \rightarrow V$ and $\psi: V \rightarrow L^{\prime}$, and some homeomorphisms λ, μ and Θ.

Let us recall the notion of a cobordism of manifolds. Let M_{0} and M_{1} be closed oriented manifolds with $\operatorname{dim} M_{0}=\operatorname{dim} M_{1}(=m)$. We say that M_{0} and M_{1} are oriented cobordant if there exists a compact oriented $(m+1)$-dimensional manifold Q such that $\partial Q=\left(-M_{0}\right) \cup M_{1}$, where $-M_{0}$ denotes the manifold M_{0} with the orientation reversed. Such a manifold Q is often called an oriented cobordism between M_{0} and M_{1}. The above relation clearly defines an equivalence relation. The equivalence class of a manifold M will be denoted by $[M]$. We can define $[M]+\left[M^{\prime}\right]=\left[M \cup M^{\prime}\right]$, in such a way that the set Ω_{m} of all oriented cobordism classes of closed oriented m-dimensional manifolds forms an additive group. This is called the m-dimensional oriented cobordism group.

In the above definition, if we ignore the orientations of the manifolds, then we get the m-dimensional (unoriented) cobordism group, denoted by \mathfrak{N}_{m}.

The groups Ω_{m} and \mathfrak{N}_{m} have been extensively studied and their structures have been completely determined (see $[16,17]$). For example, the following is known.

- Ω_{m} is a finitely generated abelian group.
- \mathfrak{N}_{m} is a finitely generated \mathbb{Z}_{2}-module.
- Ω_{m} is a finite group unless m is a multiple of four.
- $\Omega_{0} \cong \mathbb{Z}, \Omega_{1}=\Omega_{2}=\Omega_{3}=0, \Omega_{4} \cong \mathbb{Z}, \Omega_{5} \cong \mathbb{Z}_{2}, \ldots$
- $\mathfrak{N}_{0} \cong \mathbb{Z}_{2}, \mathfrak{N}_{1}=0, \mathfrak{N}_{2} \cong \mathbb{Z}_{2}, \mathfrak{N}_{3}=0, \mathfrak{N}_{4} \cong \mathbb{Z}_{2}^{2}, \mathfrak{N}_{5} \cong \mathbb{Z}_{2}, \ldots$

A closed (oriented) manifold M with $[M]=0$ is said to be (oriented) nullcobordant.

Our main theorem of this paper is the following.
Theorem 2.4. Let M be a closed manifold and $f: M \rightarrow N$ a smooth map into a manifold N with $m=\operatorname{dim} M \geq \operatorname{dim} N=n$. Assume that f is triangulable (e.g. a topologically stable map). Then, we have the following.
(1) If there exists a regular fiber component of f which is not null-cobordant, then $H_{n}\left(W_{f} ; \mathbb{Z}_{2}\right) \neq 0$.
(2) Suppose that both M and N are oriented (note that then the regular fibers are naturally oriented). If there exists a regular fiber component of f which is not oriented null-cobordant, then $H_{n}\left(W_{f} ; \Omega_{m-n}\right) \neq 0$.

3. Proof of Theorem 2.4

Proof. Let $s: K \rightarrow L$ be a triangulation of $f: M \rightarrow N$. Then, for the barycentric subdivision L^{\prime} of L, there exist a subdivision K^{\prime} of K and a simplicial map $s^{\prime}: K^{\prime} \rightarrow$ L^{\prime} such that $\left|s^{\prime}\right|=|s|$ (for example, see [6]). By Theorem 2.3 (see also [5]), we have
a triangulation of the Stein factorization as in the commutative diagram

where V is a finite simplicial complex of dimension $n, \varphi: K^{\prime} \rightarrow V$ and $\psi: V \rightarrow L^{\prime}$ are simplicial maps with ψ being non-degenerate, and λ, Θ and μ are homeomorphisms. Here, a simplicial map is non-degenerate if it preserves the dimension of each simplex.

For each n-simplex $\sigma \in V, \lambda$ maps $|\varphi|^{-1}\left(b_{\sigma}\right)$ homeomorphically onto $q_{f}^{-1}\left(\Theta\left(b_{\sigma}\right)\right)$, which is a component of a fiber of f, where b_{σ} is a point in the interior of σ. By the Sard theorem, we may assume that $\bar{f}\left(\Theta\left(b_{\sigma}\right)\right)$ is a regular value of f. Then, define

$$
\omega_{\sigma}=\left[q_{f}^{-1}\left(\Theta\left(b_{\sigma}\right)\right)\right] \in \mathfrak{N}_{m-n},
$$

which is the cobordism class of the regular fiber component corresponding to $\sigma \subset$ $|V| \approx W_{f}$.

Lemma 3.1. The cobordism class $\left[q_{f}^{-1}\left(\Theta\left(b_{\sigma}\right)\right)\right]$ does not depend on a choice of $b_{\sigma} \in \operatorname{Int} \sigma$.

Proof. Let b_{σ}^{\prime} be another point in $\operatorname{Int} \sigma$ such that $\bar{f}\left(\Theta\left(b_{\sigma}^{\prime}\right)\right)$ is a regular value of f. We can choose an embedded arc γ in Int σ connecting b_{σ} and b_{σ}^{\prime} in such a way that $\bar{f}(\Theta(\gamma))$ is transverse to f (for example, see [3, §4.3]). Then, $\lambda\left(|\varphi|^{-1}(\gamma)\right)$ gives a smooth cobordism between $q_{f}^{-1}\left(\Theta\left(b_{\sigma}\right)\right)$ and $q_{f}^{-1}\left(\Theta\left(b_{\sigma}^{\prime}\right)\right)$.

Set

$$
c_{f}=\sum_{\sigma} \omega_{\sigma} \sigma \in C_{n}\left(V ; \mathfrak{N}_{m-n}\right),
$$

where σ runs over all n-simplices of V, and $C_{n}\left(V ; \mathfrak{N}_{m-n}\right)$ denotes the n-th chain group of V with coefficients in \mathfrak{N}_{m-n}.

Lemma 3.2. We have $\partial c_{f}=0$ in $C_{n-1}\left(V ; \mathfrak{N}_{m-n}\right)$, i.e. c_{f} is an n-cycle.
Proof. Let τ be an arbitrary ($n-1$)-simplex of V, and let $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{r}$ be the n-simplices of V containing τ as a face (see Fig. 1). We have only to show

$$
\sum_{j=1}^{r} \omega_{\sigma_{j}}=0
$$

in \mathfrak{N}_{m-n}, i.e. the vanishing of the coefficient of τ in ∂c_{f}.
Let $\bar{\alpha}$ be a small arc in $\left|L^{\prime}\right|$ which intersects $\bar{\tau}=\psi(\tau)$ transversely in one point (see Fig. 1), and let $\bar{\sigma}_{1}$ and $\bar{\sigma}_{2}$ be the n-simplices of L^{\prime} adjacent to $\bar{\tau}$. Note that $\psi\left(\sigma_{i}\right)$ coincides with either $\bar{\sigma}_{1}$ or $\bar{\sigma}_{2}$. We take $\bar{\alpha}$ so that $\mu(\bar{\alpha})$ is a smooth arc in N transverse to f. Let α be the component of $|\psi|^{-1}(\bar{\alpha})$ that intersects τ. Then, $Q=q_{f}^{-1}(\Theta(\alpha))$ is an $(m-n+1)$-dimensional compact manifold and

$$
\partial Q=\bigcup_{j=1}^{r} \lambda\left(|\varphi|^{-1}\left(b_{\sigma_{j}}\right)\right) .
$$

Figure 1. The small arc $\bar{\alpha}$
Therefore, we have

$$
\sum_{j=1}^{r} \omega_{\sigma_{j}}=\sum_{j=1}^{r}\left[\lambda\left(|\varphi|^{-1}\left(b_{\sigma_{j}}\right)\right)\right]=0
$$

in \mathfrak{N}_{m-n}.
Thus, c_{f} defines a homology class

$$
\begin{equation*}
\gamma_{f} \in H_{n}\left(W_{f} ; \mathfrak{N}_{m-n}\right) \tag{3.1}
\end{equation*}
$$

Furthermore, since $\operatorname{dim} W_{f}=n$, we have $\gamma_{f} \neq 0$ if and only if $c_{f} \neq 0$. Moreover, $c_{f} \neq 0$ if and only if there exists a component of a regular fiber of f which is not null-cobordant. Therefore, if such a regular fiber component exists, we have $H_{n}\left(W_{f} ; \mathbb{Z}_{2}\right) \neq 0$, since \mathfrak{N}_{m-n} is isomorphic to $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \cdots \oplus \mathbb{Z}_{2}$, the direct sum of a finite number of copies of \mathbb{Z}_{2}.

The case where both M and N are oriented can be treated similarly. (In this case, the orientation of N induces an orientation of each n-simplex of V. Therefore, the argument also works with coefficients in the abelian group Ω_{m-n}.) This completes the proof of Theorem 2.4.

Example 3.3. Let us consider a tree T. Then, since $H_{1}\left(T ; \mathbb{Z}_{2}\right)=0$, there exists no Morse function $f_{1}: M_{1}^{5} \rightarrow \mathbb{R}$ on a closed 5 -dimensional manifold M_{1}^{5} such that the quotient space $W_{f_{1}}$ is homeomorphic to T and that f_{1} has $\mathbb{C} P^{2}$ as a component of a regular fiber. (Recall that $\mathbb{C} P^{2}$ is not null-cobordant.)

Example 3.4. There exists a Morse function $f_{2}: M_{2}^{5} \rightarrow \mathbb{R}$ on a closed 5 -dimensional manifold M_{2}^{5} whose quotient space is as depicted in Fig. 2. The integer at each vertex denotes the index of the corresponding critical point, and the 4 -manifold attached to each edge denotes the corresponding regular fiber component.

Note that $H_{1}\left(W_{f_{2}} ; \mathbb{Z}\right) \cong H_{1}\left(W_{f_{2}} ; \Omega_{4}\right) \cong \mathbb{Z}$ is generated by the homology class $\gamma_{f_{2}}$ of (3.1).

We note that the 5 -dimensional manifold M_{2}^{5} can be chosen to be diffeomorphic to $S^{1} \times \mathbb{C} P^{2}$, which is null-cobordant.

Example 3.5. There exists a Morse function $f_{3}: M_{3}^{5} \rightarrow \mathbb{R}$ on a closed 5 -dimensional manifold M_{3}^{5} whose quotient space is as depicted in Fig. 3. Note that the quotient space $W_{f_{3}}$ is homeomorphic to $W_{f_{2}}$; however, $\gamma_{f_{3}}=0$ in $H_{1}\left(W_{f_{3}} ; \mathbb{Z}\right) \cong \mathbb{Z}$, while $\gamma_{f_{2}} \neq 0$ in $H_{1}\left(W_{f_{2}} ; \mathbb{Z}\right)$. This means that even if the top dimensional homology

Figure 2. An example with non-vanishing $\gamma_{f_{2}}$

Figure 3. An example with vanishing $\gamma_{f_{3}}$
group of the quotient space does not vanish, the map may not have a regular fiber component that is not null-cobordant.

We note that the 5 -dimensional manifold M_{3}^{5} can be chosen to be diffeomorphic to $S^{1} \times S^{4}$, which is null-cobordant.

By considering the product maps $\widetilde{f}_{i}=f_{i} \times \mathrm{id}_{S^{k}}: M_{i}^{5} \times S^{k} \rightarrow \mathbb{R} \times S^{k}, k \geq 1$, $i=1,2,3$, where $\operatorname{id}_{S^{k}}$ denotes the identity map of S^{k}, we can construct examples of higher dimensional quotient spaces as well.

Remark 3.6. For a smooth map $f: M \rightarrow N$ as in Theorem 2.4 with N being a closed manifold, we see that $\bar{f}_{*} \gamma_{f} \in H_{n}\left(N ; \mathfrak{N}_{m-n}\right) \cong H_{n}\left(N ; \mathbb{Z}_{2}\right) \otimes \mathfrak{N}_{m-n}$ coincides with $[N] \otimes F_{f}$, where $\bar{f}: W_{f} \rightarrow N$ is the continuous map that appears in the Stein factorization of $f,[N] \in H_{n}\left(N ; \mathbb{Z}_{2}\right)$ is the fundamental class of N, and $F_{f} \in \mathfrak{N}_{m-n}$ is the unoriented cobordism class of a regular fiber of f. Note that when N is a closed manifold, the unoriented cobordism class F_{f} can be determined by the StiefelWhitney classes of M together with $f^{*}\left(1^{*}\right) \in H^{n}\left(M ; \mathbb{Z}_{2}\right)$, where $1^{*} \in H^{n}\left(N ; \mathbb{Z}_{2}\right)$ is the Poincaré dual of the canonical generator $1 \in H_{0}\left(N ; \mathbb{Z}_{2}\right)$. A similar remark is also valid in the oriented case. For details, see [12, §3].

Remark 3.7. Even if every component of every regular fiber is null-cobordant, the source manifold may not be null-cobordant.

For example, consider a C^{∞} stable map $f: \mathbb{C} P^{2} \rightarrow \mathbb{R}^{3}$. Every component of every regular fiber is diffeomorphic to S^{1}, which is null-cobordant. However, $\mathbb{C} P^{2}$ is not null-cobordant.

Figure 4. The singular fiber that determines the cobordism class

In fact, for a C^{∞} stable map $f: M^{4} \rightarrow \mathbb{R}^{3}$ of a closed oriented 4-dimensional manifold M^{4}, the cobordism class of M^{4} is determined by singular fibers as depicted in Fig. 4 (see [13, 14]).

Remark 3.8. Let M be a closed connected m-dimensional manifold. For a given Morse function $f^{\prime}: M \rightarrow \mathbb{R}$, we can modify it by homotopy so that we get an ordered Morse function $f: M \rightarrow \mathbb{R}$. Here, a Morse function f is ordered if for every pair of critical points p and q of f with index $(p)<\operatorname{index}(q)$, we have $f(p)<f(q)$. As is observed in [4], if f is an ordered Morse function with $m \geq 3$, then every fiber of f is connected, and hence W_{f} is homeomorphic to a line segment. In this case, we have $\gamma_{f}=0$, although the source manifold M may not be null-cobordant.

4. Further results

Let $f^{\prime}: M \rightarrow S^{1}$ be a continuous map of a smooth closed connected manifold M of dimension $m \geq 3$ into the circle. We assume that the induced homomorphism $f_{*}^{\prime}: \pi_{1}(M) \rightarrow \pi_{1}\left(S^{1}\right)$ is surjective. Then, it is known that f^{\prime} is homotopic to a Morse map $f: M \rightarrow S^{1}$ whose fibers are all non-empty and connected, where a Morse map is a smooth map whose critical points are all non-degenerate (for example, see [4, Theorem 1.3]). In this case, the quotient space W_{f} is canonically homeomorphic to S^{1} through \bar{f}. In the following, a map is said to be fiber-connected if all of its fibers are non-empty and connected. For such a map, the quotient space is canonically homeomorphic to the target manifold.

Definition 4.1. Let $f_{i}: M_{i} \rightarrow N$ be smooth maps of closed m-dimensional manifolds M_{i} into a manifold $N, i=0,1$. We say that f_{0} and f_{1} are bordant if there exists a cobordism Q between M_{0} and M_{1} (i.e. Q is a compact $(m+1)$-dimensional manifold with ∂Q being identified with $M_{0} \cup M_{1}$), and a smooth map $F: Q \rightarrow N \times[0,1]$ such that $f_{i}=\left.F\right|_{M_{i}}: M_{i} \rightarrow N \times\{i\}, i=0,1$. Such a map F is often called a bordism between f_{0} and f_{1}. If everything is oriented, then we say that f_{0} and f_{1} are oriented bordant (for details, see [2], for example).

For example, if two smooth maps are homotopic, then they are bordant.
Proposition 4.2. Let $f_{i}: M_{i} \rightarrow N$ be smooth maps of m-dimensional closed connected manifolds M_{i} into a connected n-dimensional manifold N with $m \geq n \geq 1$, $i=0,1$. We suppose that f_{i} are topologically stable and are fiber-connected, $i=0,1$. If f_{0} and f_{1} are bordant, then we have $\gamma_{f_{0}}=\gamma_{f_{1}} \in H_{n}\left(N ; \mathfrak{N}_{m-n}\right)$. If M_{0}, M_{1} and N are oriented, and f_{0} and f_{1} are oriented bordant, then we have $\gamma_{f_{0}}=\gamma_{f_{1}} \in H_{n}\left(N ; \Omega_{m-n}\right)$.
Proof. Let $F: Q \rightarrow N \times[0,1]$ be the map as in Definition 4.1. By the Sard theorem, we can choose a point $y \in N$ which is a common regular value of f_{0} and f_{1}. Then, by slightly perturbing F on the interior of Q, we may assume that F is transverse
to the line segment $\{y\} \times[0,1]$. Then, we see that $Q^{\prime}=F^{-1}(\{y\} \times[0,1])$ gives a cobordism between regular fibers of f_{0} and f_{1}. Since, for each $i=0,1$, the regular fibers of f_{i} are all cobordant, we get the required result.

The above proposition implies that if two topologically stable fiber-connected maps $f_{i}: M_{i} \rightarrow N, i=0,1$, satisfy $\gamma_{f_{0}} \neq \gamma_{f_{1}}$, then they are not bordant. In particular, when $M_{0}=M_{1}, f_{0}$ and f_{1} cannot be homotopic.

Remark 4.3. Suppose that $f_{i}: M_{i} \rightarrow N, i=0,1$, are bordant as in Definition 4.1. We further assume that f_{i} are topologically stable, $i=0,1$, and that $\gamma_{f_{0}}$ does not vanish. Under these assumptions, we have a sufficient condition for the nonvanishing of $\gamma_{f_{1}}$ as follows.

Let $F: Q \rightarrow N \times[0,1]$ be the smooth map that gives a bordism between f_{0} and f_{1}. Let y be a regular value of f_{0} such that $f_{0}^{-1}(y)$ contains a component which is not null-cobordant. Let $\alpha:[0,1] \rightarrow N \times[0,1]$ be a smooth embedding with $\alpha(0)=y \times\{0\}$ such that $\alpha(1) \in N \times\{1\}$ corresponds to a regular value of f_{1} and that α is transverse to F. Let R be the component of $F^{-1}(\alpha([0,1]))$ which contains the component of $f_{0}^{-1}(y)$ which is not null-cobordant. By choosing α and F generic enough, we may further assume that the map $h=\alpha^{-1} \circ F: R \rightarrow[0,1]$ is a Morse function. If this Morse function has no critical points of index 1, then we can show that $\gamma_{f_{1}}$ does not vanish.

Proposition 4.4. Let m be an integer with $m \geq 3$. For an arbitrary $c \in \mathfrak{N}_{m}$ and for an arbitrary finite number of elements $c_{j} \in \mathfrak{N}_{m-1}, j=1,2, \ldots, k$, there exist a smooth closed connected m-dimensional manifold M and fiber-connected Morse maps $f_{j}: M \rightarrow S^{1}$ such that $[M]=c$ and $\gamma_{f_{j}} \in H_{1}\left(S^{1} ; \mathfrak{N}_{m-1}\right) \cong \mathfrak{N}_{m-1}$ corresponds to $c_{j}, j=1,2, \ldots, k$.

We also have a corresponding proposition for maps between oriented manifolds.
Proof of Proposition 4.4. Take a closed connected $(m-1)$-dimensional manifold F_{j} in the cobordism class c_{j} for each j, and a closed connected m-dimensional manifold M^{\prime} with $\left[M^{\prime}\right]=c$. Let us consider the closed connected m-dimensional manifold M given by

$$
M=M^{\prime} \sharp\left(\sharp_{j=1}^{k}\left(S^{1} \times F_{j}\right)\right) .
$$

Since $S^{1} \times F_{j}$ bounds $D^{2} \times F_{j}$, it is null-cobordant, and hence we have $[M]=$ $\left[M^{\prime}\right]=c$.

Note that for each j, M naturally decomposes as $\left(\left(S^{1} \times F_{j}\right) \backslash \operatorname{Int} D^{m}\right) \cup M_{j}^{\prime}$, where $\left(S^{1} \times F_{j}\right) \backslash \operatorname{Int} D^{m}$ and M_{j}^{\prime} are attached along their sphere boundaries. Let us construct a continuous map $f_{j}^{\prime}: M \rightarrow S^{1}$ as follows. On $\left(S^{1} \times F_{j}\right) \backslash \operatorname{Int} D^{m}$, it is homotopic to the restriction of the projection $S^{1} \times F_{j} \rightarrow S^{1}$ to the first factor and is a constant map on the boundary of $\left(S^{1} \times F_{j}\right) \backslash \operatorname{Int} D^{m}$. We define f_{j}^{\prime} on M_{j}^{\prime} to be the constant map to the same value in S^{1}. We may assume that f_{j}^{\prime} is smooth on $\left(S^{1} \times F_{j}\right) \backslash \operatorname{Int} D^{m}$ and it has $\{*\} \times F_{j}$ as a regular fiber. Then by [4, Theorem 1.3], f_{j}^{\prime} is homotopic to a fiber-connected Morse map $f_{j}: M \rightarrow S^{1}$. By construction, the regular fibers of f_{j} are all cobordant to F_{j}. Hence, f_{j} satisfy the desired properties.

Proposition 4.4 shows that at least for fiber-connected maps f, γ_{f} carries no information on the cobordism class of the source manifold.

We end this paper by posing some problems.
Problem 4.5. (1) How about the case of maps of manifolds with non-empty boundaries?
(2) By associating an "invariant" of a (regular or singular) fiber component corresponding to certain dimensional simplices of W_{f}, can we define a homology class of W_{f} ?
(3) Study such kind of homology classes and their relations to the geometry and topology of the manifolds and the map. For example, can we define Vassiliev type invariants for maps using such homology classes?

Acknowledgements

The authors would like to thank the anonymous referee for stimulating questions and comments. The propositions in $\S 4$ were added after the referee's question.

The first author has been supported in part by CAPES, Brazil. The second author has been supported in part by JSPS KAKENHI Grant Number 23244008, 23654028.

References

[1] O. Burlet and G. de Rham, Sur certaines applications génériques d'une variété close à 3 dimensions dans le plan, Enseignement Math. (2) 20 (1974), 275-292.
[2] P.E. Conner and E.E. Floyd, Differentiable periodic maps, Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F., Band 33, Academic Press Inc., Publishers, New York; SpringerVerlag, Berlin-Göttingen-Heidelberg, 1964.
[3] S.K. Donaldson and P.B. Kronheimer, The geometry of four-manifolds, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1990.
[4] D.T. Gay and R. Kirby, Indefinite Morse 2-functions; broken fibrations and generalizations, arXiv:1102.0750v2 [math.GT].
[5] J.T. Hiratuka and O. Saeki, Triangulating Stein factorizations of generic maps and Euler characteristic formulas, to appear in RIMS Kôkyûroku Bessatsu.
[6] J.F.P. Hudson, Piecewise Linear Topology, W.A. Benjamin, Inc., New York, 1969.
[7] M. Kobayashi and O. Saeki, Simplifying stable mappings into the plane from a global viewpoint, Trans. Amer. Math. Soc. 348 (1996), 2607-2636.
[8] L. Kushner, H. Levine and P. Porto, Mapping three-manifolds into the plane I, Boletin de la Sociedad Matemática Mexicana 29 (1984), 11-31.
[9] H. Levine, Classifying Immersions into \mathbb{R}^{4} over Stable Maps of 3-Manifolds into \mathbb{R}^{2}, Lecture Notes in Math., Vol. 1157, Springer-Verlag, Berlin, New York, 1985.
[10] W. Motta, P. Porto Jr. and O. Saeki, Stable maps of 3-manifolds into the plane and their quotient spaces, Proc. London Math. Soc. (3) 71 (1995), 158-174.
[11] P. Porto Jr and Y.K.S. Furuya, On special generic maps from a closed manifold into the plane, Topology Appl. 35 (1990), 41-52.
[12] O. Saeki, Studying the topology of Morin singularities from a global viewpoint, Math. Proc. Camb. Phil. Soc. 117 (1995) 223-235.
[13] O. Saeki, Singular fibers and 4-dimensional cobordism group, Pacific J. Math. 248 (2010), 233-256.
[14] O. Saeki and T. Yamamoto, Singular fibers of stable maps and signatures of 4-manifolds, Geom. Topol. 10 (2006), 359-399.
[15] K. Sakuma, On the topology of simple fold maps, Tokyo J. Math. 17 (1994), 21-31.
[16] R. Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17-86.
[17] C.T.C. Wall, Determination of the cobordism ring, Ann. of Math. 72 (1960), 292-311.
(O. Saeki) Institute of Mathematics for Industry, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan

E-mail address: saeki@imi.kyushu-u.ac.jp
(J. T. Hiratuka) Departamento de Matemática, Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 66.281, CEP: 05389-970, São Paulo, SP, Brazil

E-mail address: jotahira@ime.usp.br

[^0]: Date: December 6, 2012.
 2000 Mathematics Subject Classification. Primary 57R45; Secondary 57R75, 57R20, 57R05.
 Key words and phrases. Cobordism, regular fiber component, Stein factorization, generic map, triangulation.

