Cobordism of algebraic knots defined by

 Brieskorn-Pham type polynomialsOsamu Saeki (Kyushu University)
Joint work with Vincent Blanlœil (Université de Strasbourg)

September 16, 2011

Algebraic knot

§1. Introduction

- Algebraic knot
- Cobordism of knots
- Cobordism vs Isotopy
- Problem
§2. Results
§3. Proofs

Let $f \in \mathbf{C}\left[z_{1}, z_{2}, \ldots, z_{n+1}\right]$ be a polynomial with $f(\mathbf{0})=0$. We suppose f has an isolated critical point at 0 .

Algebraic knot

§1. Introduction

- Algebraic knot
- Cobordism of knots
- Cobordism vs Isotopy
- Problem
§2. Results
§3. Proofs
Let $f \in \mathbf{C}\left[z_{1}, z_{2}, \ldots, z_{n+1}\right]$ be a polynomial with $f(\mathbf{0})=0$. We suppose f has an isolated critical point at 0 .
For $0<\varepsilon \ll 1, K_{f}=f^{-1}(0) \cap S_{\varepsilon}^{2 n+1}$ is the algebraic knot associated with f.

Algebraic knot

§1. Introduction

- Algebraic knot
- Cobordism of knots
- Cobordism vs Isotopy
- Problem
§2. Results
§3. Proofs
Let $f \in \mathbf{C}\left[z_{1}, z_{2}, \ldots, z_{n+1}\right]$ be a polynomial with $f(\mathbf{0})=0$. We suppose f has an isolated critical point at 0 .
For $0<\varepsilon \ll 1, K_{f}=f^{-1}(0) \cap S_{\varepsilon}^{2 n+1}$ is the algebraic knot associated with f.
K_{f} is a $(2 n-1)$-dim. closed manifold embedded in $S_{\varepsilon}^{2 n+1}$.

Algebraic knot

§1. Introduction

- Algebraic knot
- Cobordism of knots
- Cobordism vs Isotopy
- Problem
§2. Results
§3. Proofs
Let $f \in \mathbf{C}\left[z_{1}, z_{2}, \ldots, z_{n+1}\right]$ be a polynomial with $f(\mathbf{0})=0$. We suppose f has an isolated critical point at 0 .
For $0<\varepsilon \ll 1, K_{f}=f^{-1}(0) \cap S_{\varepsilon}^{2 n+1}$ is the algebraic knot associated with f.
K_{f} is a $(2 n-1)$-dim. closed manifold embedded in $S_{\varepsilon}^{2 n+1}$.

Cobordism of knots

§1. Introduction

- Algebraic knot
- Cobordism of knots
- Cobordism vs Isotopy
- Problem
§2. Results
§3. Proofs

Cobordism of knots

§1. Introduction

- Algebraic knot
- Cobordism of knots
- Cobordism vs Isotopy
- Problem
§2. Results
§3. Proofs

Definition 1.1 An m-dimensional knot (m-knot, for short) is a closed oriented m-dim. submanifold of the oriented S^{m+2}.

Two m-knots K_{0} and K_{1} in S^{m+2} are cobordant if $\exists X \subset S^{m+2} \times[0,1]$, a properly embedded oriented $(m+1)$-dim. submanifold, such that

Cobordism of knots

§1. Introduction

- Algebraic knot
- Cobordism of knots
- Cobordism vs Isotopy
- Problem
§2. Results
§3. Proofs

Definition 1.1 An m-dimensional knot (m-knot, for short) is a closed oriented m-dim. submanifold of the oriented S^{m+2}.

Two m-knots K_{0} and K_{1} in S^{m+2} are cobordant if $\exists X \subset S^{m+2} \times[0,1]$, a properly embedded oriented $(m+1)$-dim. submanifold, such that

1. $X \cong K_{0} \times[0,1]$ (diffeo.), and

Cobordism of knots

§1. Introduction

- Algebraic knot
- Cobordism of knots
- Cobordism vs Isotopy
- Problem
§2. Results
§3. Proofs

Definition 1.1 An m-dimensional knot (m-knot, for short) is a closed oriented m-dim. submanifold of the oriented S^{m+2}.

Two m-knots K_{0} and K_{1} in S^{m+2} are cobordant if $\exists X \subset S^{m+2} \times[0,1]$, a properly embedded oriented $(m+1)$-dim. submanifold, such that

1. $X \cong K_{0} \times[0,1]$ (diffeo.), and
2. $\partial X=\left(K_{0} \times\{0\}\right) \cup\left(-K_{1} \times\{1\}\right)$.

Cobordism of knots

§1. Introduction

- Algebraic knot
- Cobordism of knots
- Cobordism vs Isotopy
- Problem
§2. Results
§3. Proofs

Definition 1.1 An m-dimensional knot (m-knot, for short) is a closed oriented m-dim. submanifold of the oriented S^{m+2}.

Two m-knots K_{0} and K_{1} in S^{m+2} are cobordant if $\exists X \subset S^{m+2} \times[0,1]$, a properly embedded oriented $(m+1)$-dim. submanifold, such that

1. $X \cong K_{0} \times[0,1]$ (diffeo.), and
2. $\partial X=\left(K_{0} \times\{0\}\right) \cup\left(-K_{1} \times\{1\}\right)$.
X is called a cobordism between K_{0} and K_{1}.

Cobordism vs Isotopy

$$
S^{m+2} \times\{0\} \quad S^{m+2} \times\{1\}
$$

Cobordism vs Isotopy

§1. Introduction

- Algebraic knot
- Cobordism of knots
- Cobordism vs Isotopy
- Problem
§2. Results
§3. Proofs

$$
S^{m+2} \times\{0\} \quad S^{m+2} \times\{1\}
$$

Isotopic
$\Downarrow \forall$
Cobordant

Cobordism vs Isotopy

§1. Introduction

- Algebraic knot
- Cobordism of knots
- Cobordism vs Isotopy
- Problem
§2. Results
§3. Proofs

$$
S^{m+2} \times\{0\} \quad S^{m+2} \times\{1\}
$$

> Isotopic\Downarrow 氏ौ
> Cobordant

If two algebraic knots K_{f} and K_{g} are cobordant, then the topological types of f and g are mildly related.
§1. Introduction

- Algebraic knot
- Cobordism of knots
- Cobordism vs Isotopy
- Problem
§2. Results
§3. Proofs

Problem 1.2 Given f and g,

Problem

§1. Introduction

- Algebraic knot
- Cobordism of knots
- Cobordism vs Isotopy
- Problem
§2. Results
Problem 1.2 Given f and g,
(1) determine whether f and g have the same topological type (i.e. whether K_{f} and K_{g} are isotopic),

Problem

§1. Introduction

- Algebraic knot
- Cobordism of knots
- Cobordism vs Isotopy
- Problem
§2. Results
§3. Proofs
Problem 1.2 Given f and g,
(1) determine whether f and g have the same topological type (i.e. whether K_{f} and K_{g} are isotopic),
(2) determine whether K_{f} and K_{g} are cobordant.

Problem

§1. Introduction

- Algebraic knot
- Cobordism of knots
- Cobordism vs Isotopy
- Problem
§2. Results
§3. Proofs

Problem 1.2 Given f and g,
(1) determine whether f and g have the same topological type (i.e. whether K_{f} and K_{g} are isotopic),
(2) determine whether K_{f} and K_{g} are cobordant.

The answers have been given in terms of Seifert forms, which are in general very difficult to compute.

Problem

§1. Introduction

- Algebraic knot
- Cobordism of knots
- Cobordism vs Isotopy
- Problem
§2. Results
§3. Proofs

Problem 1.2 Given f and g,
(1) determine whether f and g have the same topological type (i.e. whether K_{f} and K_{g} are isotopic),
(2) determine whether K_{f} and K_{g} are cobordant.

The answers have been given in terms of Seifert forms, which are in general very difficult to compute.
Even if we know the Seifert forms, it is still difficult to check if the corresponding knots are isotopic or cobordant.

Problem

§1. Introduction

- Algebraic knot
- Cobordism of knots
- Cobordism vs Isotopy
- Problem
§2. Results
§3. Proofs

Problem 1.2 Given f and g,
(1) determine whether f and g have the same topological type (i.e. whether K_{f} and K_{g} are isotopic),
(2) determine whether K_{f} and K_{g} are cobordant.

The answers have been given in terms of Seifert forms, which are in general very difficult to compute.
Even if we know the Seifert forms, it is still difficult to check if the corresponding knots are isotopic or cobordant.

Today's Topic: Problem 1.2 (2) for weighted homogeneous polynomials (in particular, Brieskorn-Pham type polynomials).

- Two-variable case
§1. Introduction
§2. Results
- Higher dimensions
- Witt equivalence
- Weighted
homogeneous
polynomials
- Criterion for Witt
equivalence over \mathbf{R}
- Criterion for
isomorphism over \mathbf{R}
- Brieskorn-Pham type
polynomials
- Cobordism invariance
of exponents
- Cobordism invariance
of multiplicities
- Case of two or three
variables
§3. Proofs

S. Introduction
§2. Results
- Two-variable case
- Higher dimensions
- Algebraic cobordism
- Witt equivalence
- Weighted
homogeneous
polynomials
- Criterion for Witt
equivalence over \mathbf{R}
- Criterion for
isomorphism over \mathbf{R}
- Brieskorn-Pham type
polynomials
- Cobordism invariance
of exponents
- Cobordism invariance
of multiplicities
- Case of two or three
variables
§3. Proofs

Two-variable case

Case of $n=1$ and the polynomials are irreducible at $\mathbf{0}$.

Two-variable case

§1. Introduction

§2. Results

- Two-variable case
- Higher dimensions
- Algebraic cobordism
- Witt equivalence
- Weighted
homogeneous
polynomials
- Criterion for Witt
equivalence over \mathbf{R}
- Criterion for
isomorphism over \mathbf{R}
- Brieskorn-Pham type
polynomials
- Cobordism invariance
of exponents
- Cobordism invariance
of multiplicities
- Case of two or three variables
§3. Proofs

Case of $n=1$ and the polynomials are irreducible at $\mathbf{0}$.

Theorem 2.1 (Lê, 1972)

For algebraic knots K_{f} and K_{g} in S_{ε}^{3}, the following three are equivalent.
(1) K_{f} and K_{g} are isotopic.

Two-variable case

§1. Introduction

§2. Results

- Two-variable case
- Higher dimensions
- Algebraic cobordism
- Witt equivalence
- Weighted
homogeneous
polynomials
- Criterion for Witt
equivalence over \mathbf{R}
- Criterion for
isomorphism over \mathbf{R}
- Brieskorn-Pham type
polynomials
- Cobordism invariance
of exponents
- Cobordism invariance of multiplicities
- Case of two or three variables
§3. Proofs

Case of $n=1$ and the polynomials are irreducible at $\mathbf{0}$.

Theorem 2.1 (Lê, 1972)

For algebraic knots K_{f} and K_{g} in S_{ε}^{3}, the following three are equivalent.
(1) K_{f} and K_{g} are isotopic.
(2) K_{f} and K_{g} are cobordant.

Two-variable case

Case of $n=1$ and the polynomials are irreducible at 0 .
Theorem 2.1 (Lê, 1972)
For algebraic knots K_{f} and K_{g} in S_{ε}^{3}, the following three are equivalent.
(1) K_{f} and K_{g} are isotopic.
(2) K_{f} and K_{g} are cobordant.
(3) Alexander polynomials coincide: $\Delta_{f}(t)=\Delta_{g}(t)$.

Higher dimensions

§1. Introduction

§2. Results

- Two-variable case
- Higher dimensions
- Algebraic cobordism
- Witt equivalence
- Weighted
homogeneous
polynomials
- Criterion for Witt
equivalence over \mathbf{R}
- Criterion for
isomorphism over \mathbf{R}
- Brieskorn-Pham type
polynomials
- Cobordism invariance
of exponents
- Cobordism invariance
of multiplicities
- Case of two or three
variables
§3. Proofs

Higher dimensions

It has long been conjectured that cobordant algebraic knots would be isotopic.
This conjecture was negatively answered almost twenty years later.

Higher dimensions

It has long been conjectured that cobordant algebraic knots would be isotopic.
This conjecture was negatively answered almost twenty years later.

du Bois-Michel, 1993

Examples of two algebraic (spherical) knots that are cobordant, but are not isotopic.

Algebraic cobordism

§1. Introduction

§2. Results

- Two-variable case
- Higher dimensions
- Algebraic cobordism
- Witt equivalence
- Weighted
homogeneous
polynomials
- Criterion for Witt
equivalence over \mathbf{R}
- Criterion for
isomorphism over \mathbf{R}
- Brieskorn-Pham type
polynomials
- Cobordism invariance
of exponents
- Cobordism invariance
of multiplicities
- Case of two or three
variables
§3. Proofs
Let $L_{i}: G_{i} \times G_{i} \rightarrow \mathbf{Z}, i=0,1$, be two bilinear forms defined on free Z-modules of finite ranks.

Algebraic cobordism

§1. Introduction

§2. Results

- Two-variable case
- Higher dimensions
- Algebraic cobordism
- Witt equivalence
- Weighted
homogeneous
polynomials
- Criterion for Witt
equivalence over \mathbf{R}
- Criterion for
isomorphism over \mathbf{R}
- Brieskorn-Pham type
polynomials
- Cobordism invariance
of exponents
- Cobordism invariance
of multiplicities
- Case of two or three
variables
§3. Proofs
Let $L_{i}: G_{i} \times G_{i} \rightarrow \mathbf{Z}, i=0,1$, be two bilinear forms defined on free Z-modules of finite ranks.
Set $G=G_{0} \oplus G_{1}$ and $L=L_{0} \oplus\left(-L_{1}\right)$.

Algebraic cobordism

§1. Introduction
§2. Results

- Two-variable case
- Higher dimensions
- Algebraic cobordism
- Witt equivalence
- Weighted
homogeneous
polynomials
- Criterion for Witt
equivalence over \mathbf{R}
- Criterion for
isomorphism over \mathbf{R}
- Brieskorn-Pham type
polynomials
- Cobordism invariance
of exponents
- Cobordism invariance of multiplicities
- Case of two or three variables
§3. Proofs

Let $L_{i}: G_{i} \times G_{i} \rightarrow \mathbf{Z}, i=0,1$, be two bilinear forms defined on free Z -modules of finite ranks.
Set $G=G_{0} \oplus G_{1}$ and $L=L_{0} \oplus\left(-L_{1}\right)$.
Definition 2.2 Suppose $m=\operatorname{rank} G$ is even. A direct summand $M \subset G$ is called a metabolizer if $\operatorname{rank} M=m / 2$ and L vanishes on M.

\|
§1. Introduction
§2. Results
- Two-variable case
- Higher dimensions
- Algebraic cobordism
- Witt equivalence
- Weighted
homogeneous
polynomials
- Criterion for Witt
equivalence over \mathbf{R}
- Criterion for
isomorphism over \mathbf{R}
- Brieskorn-Pham type
polynomials
- Cobordism invariance
of exponents
- Cobordism invariance
of multiplicities
- Case of two or three
variables
§3. Proofs

Algebraic cobordism

Let $L_{i}: G_{i} \times G_{i} \rightarrow \mathbf{Z}, i=0,1$, be two bilinear forms defined on free Z-modules of finite ranks.
Set $G=G_{0} \oplus G_{1}$ and $L=L_{0} \oplus\left(-L_{1}\right)$.
Definition 2.2 Suppose $m=\operatorname{rank} G$ is even. A direct summand $M \subset G$ is called a metabolizer if rank $M=m / 2$ and L vanishes on M.
L_{0} is algebraically cobordant to L_{1} if there exists a metabolizer satisfying additional properties about $S=L \pm L^{T}$.

Algebraic cobordism

§1. Introduction
§2. Results

- Two-variable case
- Higher dimensions
- Algebraic cobordism
- Witt equivalence
- Weighted
homogeneous polynomials
- Criterion for Witt equivalence over \mathbf{R}
- Criterion for
isomorphism over \mathbf{R}
- Brieskorn-Pham type polynomials
- Cobordism invariance
of exponents
- Cobordism invariance of multiplicities
- Case of two or three variables
§3. Proofs

Let $L_{i}: G_{i} \times G_{i} \rightarrow \mathbf{Z}, i=0,1$, be two bilinear forms defined on free Z-modules of finite ranks.
Set $G=G_{0} \oplus G_{1}$ and $L=L_{0} \oplus\left(-L_{1}\right)$.
Definition 2.2 Suppose $m=\operatorname{rank} G$ is even. A direct summand $M \subset G$ is called a metabolizer if rank $M=m / 2$ and L vanishes on M.
L_{0} is algebraically cobordant to L_{1} if there exists a metabolizer satisfying additional properties about $S=L \pm L^{T}$.

Theorem 2.3 (Blanlœil-Michel, 1997) For $n \geq 3$, two algebraic knots K_{f} and K_{g} are cobordant
\Longleftrightarrow Seifert forms L_{f} and L_{g} are algebraically cobordant.

Witt equivalence

§1. Introduction

§2. Results

- Two-variable case
- Higher dimensions
- Algebraic cobordism
- Witt equivalence
- Weighted
homogeneous
polynomials
- Criterion for Witt
equivalence over \mathbf{R}
- Criterion for
isomorphism over \mathbf{R}
- Brieskorn-Pham type
polynomials
- Cobordism invariance
of exponents
- Cobordism invariance
of multiplicities
- Case of two or three variables
§3. Proofs
Remark 2.4 At present, there is no efficient criterion for algebraic cobordism.
It is usually very difficult to determine whether given two forms are algebraically cobordant or not.

Witt equivalence

Remark 2.4 At present, there is no efficient criterion for algebraic cobordism.
It is usually very difficult to determine whether given two forms are algebraically cobordant or not.

Two forms L_{0} and L_{1} are Witt equivalent over \mathbf{R} if there exists a metabolizer over \mathbf{R} for $L_{0} \otimes \mathbf{R}$ and $L_{1} \otimes \mathbf{R}$.

Witt equivalence

Remark 2.4 At present, there is no efficient criterion for algebraic cobordism.
It is usually very difficult to determine whether given two forms are algebraically cobordant or not.

Two forms L_{0} and L_{1} are Witt equivalent over \mathbf{R} if there exists a metabolizer over \mathbf{R} for $L_{0} \otimes \mathbf{R}$ and $L_{1} \otimes \mathbf{R}$.

Lemma 2.5 If two algebraic knots K_{f} and K_{g} are cobordant, then their Seifert forms L_{f} and L_{g} are Witt equivalent over \mathbf{R}.

I
§1. Introduction
§2. Results
- Two-variable case
- Higher dimensions
- Algebraic cobordism
- Witt equivalence
- Weighted
homogeneous
polynomials
- Criterion for Witt
equivalence over \mathbf{R}
- Criterion for
isomorphism over \mathbf{R}
- Brieskorn-Pham type
polynomials
- Cobordism invariance
of exponents
- Cobordism invariance
of multiplicities
- Case of two or three
variables
§3. Proofs

Weighted homogeneous polynomials

$$
\text { Let } f \text { be a weighted homogeneous polynomial in } \mathrm{C}^{n+1} \text {, }
$$

Weighted homogeneous polynomials

§1. Introduction
§2. Results

- Two-variable case
- Higher dimensions
- Algebraic cobordism
- Witt equivalence
- Weighted
homogeneous
polynomials
- Criterion for Witt
equivalence over \mathbf{R}
- Criterion for
isomorphism over \mathbf{R}
- Brieskorn-Pham type
polynomials
- Cobordism invariance
of exponents
- Cobordism invariance of multiplicities
- Case of two or three variables
§3. Proofs

Let f be a weighted homogeneous polynomial in \mathbf{C}^{n+1},
i.e. $\exists\left(w_{1}, w_{2}, \ldots, w_{n+1}\right) \in \mathbf{Q}_{>0}^{n+1}$, called weights, such that for each monomial $c z_{1}^{k_{1}} z_{2}^{k_{2}} \cdots z_{n+1}^{k_{n+1}}, c \neq 0$, of f, we have

$$
\sum_{j=1}^{n+1} \frac{k_{j}}{w_{j}}=1
$$

Weighted homogeneous polynomials

- Two-variable case
- Higher dimensions
- Algebraic cobordism
- Witt equivalence
- Weighted
homogeneous
polynomials
- Criterion for Witt
equivalence over \mathbf{R}
- Criterion for
isomorphism over \mathbf{R}
- Brieskorn-Pham type polynomials
- Cobordism invariance
of exponents
- Cobordism invariance of multiplicities
- Case of two or three variables
§3. Proofs

Let f be a weighted homogeneous polynomial in \mathbf{C}^{n+1}, i.e. $\exists\left(w_{1}, w_{2}, \ldots, w_{n+1}\right) \in \mathbf{Q}_{>0}^{n+1}$, called weights, such that for each monomial $c z_{1}^{k_{1}} z_{2}^{k_{2}} \cdots z_{n+1}^{k_{n+1}}, c \neq 0$, of f, we have

$$
\sum_{j=1}^{n+1} \frac{k_{j}}{w_{j}}=1
$$

f is non-degenerate if it has an isolated critical point at $\mathbf{0}$.

Weighted homogeneous polynomials

§1. Introduction
§2. Results

- Two-variable case
- Higher dimensions
- Algebraic cobordism
- Witt equivalence
- Weighted
homogeneous
polynomials
- Criterion for Witt
equivalence over \mathbf{R}
- Criterion for
isomorphism over \mathbf{R}
- Brieskorn-Pham type polynomials
- Cobordism invariance
of exponents
- Cobordism invariance of multiplicities
- Case of two or three variables
§3. Proofs

Let f be a weighted homogeneous polynomial in \mathbf{C}^{n+1}, i.e. $\exists\left(w_{1}, w_{2}, \ldots, w_{n+1}\right) \in \mathbf{Q}_{>0}^{n+1}$, called weights, such that for each monomial $c z_{1}^{k_{1}} z_{2}^{k_{2}} \cdots z_{n+1}^{k_{n+1}}, c \neq 0$, of f, we have

$$
\sum_{j=1}^{n+1} \frac{k_{j}}{w_{j}}=1
$$

f is non-degenerate if it has an isolated critical point at $\mathbf{0}$.
According to Saito, if f is non-degenerate, then by an analytic change of coordinates, f can be transformed to a weighted homogeneous polynomial with all weights ≥ 2.

Weighted homogeneous polynomials

§1. Introduction
§2. Results

- Two-variable case
- Higher dimensions
- Algebraic cobordism
- Witt equivalence
- Weighted
homogeneous
polynomials
- Criterion for Witt
equivalence over \mathbf{R}
- Criterion for
isomorphism over \mathbf{R}
- Brieskorn-Pham type polynomials
- Cobordism invariance
of exponents
- Cobordism invariance of multiplicities
- Case of two or three variables
§3. Proofs

Let f be a weighted homogeneous polynomial in \mathbf{C}^{n+1}, i.e. $\exists\left(w_{1}, w_{2}, \ldots, w_{n+1}\right) \in \mathbf{Q}_{>0}^{n+1}$, called weights, such that for each monomial $c z_{1}^{k_{1}} z_{2}^{k_{2}} \cdots z_{n+1}^{k_{n+1}}, c \neq 0$, of f, we have

$$
\sum_{j=1}^{n+1} \frac{k_{j}}{w_{j}}=1
$$

f is non-degenerate if it has an isolated critical point at $\mathbf{0}$.
According to Saito, if f is non-degenerate, then by an analytic change of coordinates, f can be transformed to a weighted homogeneous polynomial with all weights ≥ 2.
Furthermore, then the weights ≥ 2 are analytic invariants of the polynomial.

Weighted homogeneous polynomials

§1. Introduction
§2. Results

- Two-variable case
- Higher dimensions
- Algebraic cobordism
- Witt equivalence
- Weighted
homogeneous
polynomials
- Criterion for Witt
equivalence over \mathbf{R}
- Criterion for
isomorphism over \mathbf{R}
- Brieskorn-Pham type polynomials
- Cobordism invariance
of exponents
- Cobordism invariance of multiplicities
- Case of two or three variables
§3. Proofs

Let f be a weighted homogeneous polynomial in \mathbf{C}^{n+1}, i.e. $\exists\left(w_{1}, w_{2}, \ldots, w_{n+1}\right) \in \mathbf{Q}_{>0}^{n+1}$, called weights, such that for each monomial $c z_{1}^{k_{1}} z_{2}^{k_{2}} \cdots z_{n+1}^{k_{n+1}}, c \neq 0$, of f, we have

$$
\sum_{j=1}^{n+1} \frac{k_{j}}{w_{j}}=1
$$

f is non-degenerate if it has an isolated critical point at $\mathbf{0}$.
According to Saito, if f is non-degenerate, then by an analytic change of coordinates, f can be transformed to a weighted homogeneous polynomial with all weights ≥ 2.
Furthermore, then the weights ≥ 2 are analytic invariants of the polynomial.
In the following, we will always assume \forall weights ≥ 2.

$\underline{\text { Criterion for Witt equivalence over } \mathrm{R}}$

§1. Introduction
§2. Results

- Two-variable case
- Higher dimensions
- Algebraic cobordism
- Witt equivalence
- Weighted
homogeneous
polynomials
- Criterion for Witt
equivalence over \mathbf{R}
- Criterion for
isomorphism over \mathbf{R}
- Brieskorn-Pham type
polynomials
- Cobordism invariance
of exponents
- Cobordism invariance
of multiplicities
- Case of two or three
variables
§3. Proofs

Set

$$
P_{f}(t)=\prod_{j=1}^{n+1} \frac{t-t^{1 / w_{j}}}{t^{1 / w_{j}}-1}
$$

$P_{f}(t)$ is a polynomial in $t^{1 / m}$ over \mathbf{Z} for some integer $m>0$.

Criterion for Witt equivalence over R

§1. Introduction
§2. Results

- Two-variable case
- Higher dimensions
- Algebraic cobordism
- Witt equivalence
- Weighted
homogeneous
polynomials
- Criterion for Witt
equivalence over \mathbf{R}
- Criterion for
isomorphism over \mathbf{R}
- Brieskorn-Pham type polynomials
- Cobordism invariance
of exponents
- Cobordism invariance of multiplicities
- Case of two or three variables
§3. Proofs

Set

$$
P_{f}(t)=\prod_{j=1}^{n+1} \frac{t-t^{1 / w_{j}}}{t^{1 / w_{j}}-1}
$$

$P_{f}(t)$ is a polynomial in $t^{1 / m}$ over \mathbf{Z} for some integer $m>0$.
Two non-degenerate weighted homogeneous polynomials f and g have the same weights if and only if $P_{f}(t)=P_{g}(t)$.

Criterion for Witt equivalence over R

§1. Introduction
§2. Results

- Two-variable case
- Higher dimensions
- Algebraic cobordism
- Witt equivalence
- Weighted
homogeneous polynomials
- Criterion for Witt equivalence over \mathbf{R}
- Criterion for
isomorphism over \mathbf{R}
- Brieskorn-Pham type polynomials
- Cobordism invariance
of exponents
- Cobordism invariance of multiplicities
- Case of two or three variables
§3. Proofs

Set

$$
P_{f}(t)=\prod_{j=1}^{n+1} \frac{t-t^{1 / w_{j}}}{t^{1 / w_{j}}-1}
$$

$P_{f}(t)$ is a polynomial in $t^{1 / m}$ over \mathbf{Z} for some integer $m>0$.
Two non-degenerate weighted homogeneous polynomials f and g have the same weights if and only if $P_{f}(t)=P_{g}(t)$.

Theorem 2.6 Let f and g be non-degenerate weighted homogeneous polynomials in C^{n+1}. Then, their Seifert forms L_{f} and L_{g} are Witt equivalent over \mathbf{R} iff

$$
P_{f}(t) \equiv P_{g}(t) \quad \bmod t+1
$$

$\underline{\text { Criterion for isomorphism over } \mathrm{R}}$

§1. Introduction
§2. Results

- Two-variable case
- Higher dimensions
- Algebraic cobordism
- Witt equivalence
- Weighted
homogeneous
polynomials
- Criterion for Witt
equivalence over \mathbf{R}
- Criterion for
isomorphism over \mathbf{R}
- Brieskorn-Pham type
polynomials
- Cobordism invariance
of exponents
- Cobordism invariance of multiplicities
- Case of two or three variables
§3. Proofs

The above theorem should be compared with the following.
Remark 2.7 The Seifert forms L_{f} and L_{g} associated with non-degenerate weighted homogeneous polynomials f and g are isomorphic over R iff

$$
P_{f}(t) \equiv P_{g}(t) \quad \bmod t^{2}-1
$$

Brieskorn-Pham type polynomials

§1. Introduction
§2. Results

- Two-variable case
- Higher dimensions
- Algebraic cobordism
- Witt equivalence
- Weighted
homogeneous
polynomials
- Criterion for Witt equivalence over \mathbf{R}
- Criterion for
isomorphism over \mathbf{R}
- Brieskorn-Pham type polynomials
- Cobordism invariance
of exponents
- Cobordism invariance
of multiplicities
- Case of two or three
variables
§3. Proofs

Proposition 2.8 Let

$$
f(z)=\sum_{j=1}^{n+1} z_{j}^{a_{j}} \quad \text { and } \quad g(z)=\sum_{j=1}^{n+1} z_{j}^{b_{j}}
$$

be Brieskorn-Pham type polynomials.

Brieskorn-Pham type polynomials

§1. Introduction
§2. Results

- Two-variable case
- Higher dimensions
- Algebraic cobordism
- Witt equivalence
- Weighted
homogeneous
polynomials
- Criterion for Witt
equivalence over \mathbf{R}
- Criterion for
isomorphism over \mathbf{R}
- Brieskorn-Pham type
polynomials
- Cobordism invariance
of exponents
- Cobordism invariance
of multiplicities
- Case of two or three variables
§3. Proofs

Proposition 2.8 Let

$$
f(z)=\sum_{j=1}^{n+1} z_{j}^{a_{j}} \quad \text { and } \quad g(z)=\sum_{j=1}^{n+1} z_{j}^{b_{j}}
$$

be Brieskorn-Pham type polynomials.
Then, their Seifert forms are Witt equivalent over \mathbf{R} iff

$$
\prod_{j=1}^{n+1} \cot \frac{\pi \ell}{2 a_{j}}=\prod_{j=1}^{n+1} \cot \frac{\pi \ell}{2 b_{j}}
$$

holds for all odd integers ℓ.

Cobordism invariance of exponents

- Higher dimensions
- Algebraic cobordism
- Witt equivalence
- Weighted
homogeneous
polynomials
- Criterion for Witt equivalence over \mathbf{R}
- Criterion for
isomorphism over \mathbf{R}
- Brieskorn-Pham type polynomials
- Cobordism invariance
of exponents
- Cobordism invariance of multiplicities
- Case of two or three variables
§3. Proofs
Theorem 2.9 Suppose that for each of the BrieskornPham type polynomials

$$
f(z)=\sum_{j=1}^{n+1} z_{j}^{a_{j}} \quad \text { and } \quad g(z)=\sum_{j=1}^{n+1} z_{j}^{b_{j}}
$$

no exponent is a multiple of another one.

Cobordism invariance of exponents

§1. Introduction
§2. Results

- Two-variable case
- Higher dimensions
- Algebraic cobordism
- Witt equivalence
- Weighted
homogeneous
polynomials
- Criterion for Witt equivalence over \mathbf{R}
- Criterion for
isomorphism over \mathbf{R}
- Brieskorn-Pham type polynomials
- Cobordism invariance
of exponents
- Cobordism invariance of multiplicities
- Case of two or three variables
§3. Proofs

Theorem 2.9 Suppose that for each of the BrieskornPham type polynomials

$$
f(z)=\sum_{j=1}^{n+1} z_{j}^{a_{j}} \quad \text { and } \quad g(z)=\sum_{j=1}^{n+1} z_{j}^{b_{j}}
$$

no exponent is a multiple of another one. Then, the knots K_{f} and K_{g} are cobordant iff

$$
a_{j}=b_{j}, \quad j=1,2, \ldots, n+1
$$

up to order.

Cobordism invariance of multiplicities

§1. Introduction

§2. Results

- Two-variable case
- Higher dimensions
- Algebraic cobordism
- Witt equivalence
- Weighted
homogeneous
polynomials
- Criterion for Witt
equivalence over \mathbf{R}
- Criterion for
isomorphism over \mathbf{R}
- Brieskorn-Pham type
polynomials
- Cobordism invariance
of exponents
- Cobordism invariance
of multiplicities
- Case of two or three
variables
§3. Proofs
The smallest degree of a polynomial is called its multiplicity.

Cobordism invariance of multiplicities

The smallest degree of a polynomial is called its multiplicity.

Zariski Conjecture

The multiplicity is a topological invariant of a complex hypersurface singularity.

Cobordism invariance of multiplicities

§1. Introduction
§2. Results

- Two-variable case
- Higher dimensions
- Algebraic cobordism
- Witt equivalence
- Weighted
homogeneous
polynomials
- Criterion for Witt
equivalence over \mathbf{R}
- Criterion for
isomorphism over \mathbf{R}
- Brieskorn-Pham type polynomials
- Cobordism invariance
of exponents
- Cobordism invariance
of multiplicities
- Case of two or three variables
§3. Proofs

The smallest degree of a polynomial is called its multiplicity.

Zariski Conjecture

The multiplicity is a topological invariant of a complex hypersurface singularity.

Proposition 2.10 Suppose that for each of the Brieskorn-Pham type polynomials

$$
f(z)=\sum_{j=1}^{n+1} z_{j}^{a_{j}} \quad \text { and } \quad g(z)=\sum_{j=1}^{n+1} z_{j}^{b_{j}}
$$

the exponents are pairwise distinct.

Cobordism invariance of multiplicities

§1. Introduction
§2. Results

- Two-variable case
- Higher dimensions
- Algebraic cobordism
- Witt equivalence
- Weighted
homogeneous
polynomials
- Criterion for Witt
equivalence over R
- Criterion for
isomorphism over \mathbf{R}
- Brieskorn-Pham type
polynomials
- Cobordism invariance
of exponents
- Cobordism invariance
of multiplicities
- Case of two or three variables
§3. Proofs

The smallest degree of a polynomial is called its multiplicity.

Zariski Conjecture

The multiplicity is a topological invariant of a complex hypersurface singularity.

Proposition 2.10 Suppose that for each of the Brieskorn-Pham type polynomials

$$
f(z)=\sum_{j=1}^{n+1} z_{j}^{a_{j}} \quad \text { and } \quad g(z)=\sum_{j=1}^{n+1} z_{j}^{b_{j}}
$$

the exponents are pairwise distinct. If K_{f} and K_{g} are cobordant, then the multiplicities of f and g coincide.

Case of two or three variables

- Higher dimensions
- Algebraic cobordism
- Witt equivalence
- Weighted
homogeneous
polynomials
- Criterion for Witt
equivalence over \mathbf{R}
- Criterion for
isomorphism over \mathbf{R}
- Brieskorn-Pham type
polynomials
- Cobordism invariance
of exponents
- Cobordism invariance of multiplicities
- Case of two or three variables
§3. Proofs

Proposition 2.11 Let f and g be weighted homogeneous polynomials of two variables with weights $\left(w_{1}, w_{2}\right)$ and $\left(w_{1}^{\prime}, w_{2}^{\prime}\right)$, respectively, with $w_{j}, w_{j}^{\prime} \geq 2$.
If their Seifert forms are Witt equivalent over \mathbf{R}, then

$$
w_{j}=w_{j}^{\prime}, j=1,2, \text { up to order. }
$$

Case of two or three variables

§1. Introduction
§2. Results

- Two-variable case
- Higher dimensions
- Algebraic cobordism
- Witt equivalence
- Weighted
homogeneous
polynomials
- Criterion for Witt equivalence over \mathbf{R}
- Criterion for
isomorphism over \mathbf{R}
- Brieskorn-Pham type polynomials
- Cobordism invariance
of exponents
- Cobordism invariance of multiplicities
- Case of two or three variables
§3. Proofs

Proposition 2.11 Let f and g be weighted homogeneous polynomials of two variables with weights $\left(w_{1}, w_{2}\right)$ and $\left(w_{1}^{\prime}, w_{2}^{\prime}\right)$, respectively, with $w_{j}, w_{j}^{\prime} \geq 2$. If their Seifert forms are Witt equivalent over \mathbf{R}, then $w_{j}=w_{j}^{\prime}, j=1,2$, up to order.

Proposition 2.12 Let $f(z)=z_{1}^{a_{1}}+z_{2}^{a_{2}}+z_{3}^{a_{3}}$ and $g(z)=z_{1}^{b_{1}}+z_{2}^{b_{2}}+z_{3}^{b_{3}}$ be Brieskorn-Pham type polynomials of three variables.
If the Seifert forms L_{f} and L_{g} are Witt equivalent over \mathbf{R}, then $a_{j}=b_{j}, j=1,2,3$, up to order.
§2. Results
§3. Proofs

- Proof of Theorem 2.6
- Proof of Theorem 2.6
(Continued)
- Proof of

Proposition 2.8

- Proof of

Proposition 2.8
(Continued)

- Proof of Theorem 2.9
- Open problem
- Cobordism and
isotopy for
Brieskorn-Pham type
polynomials

Proof of Theorem 2.6

§1. Introduction
§2. Results
§3. Proofs

- Proof of Theorem 2.6
- Proof of Theorem 2.6
(Continued)
- Proof of

Proposition 2.8

- Proof of

Proposition 2.8
(Continued)

- Proof of Theorem 2.9
- Open problem
- Cobordism and isotopy for
Brieskorn-Pham type polynomials

Theorem 2.6 Let f and g be non-degenerate weighted homogeneous polynomials in C^{n+1}. Then, their Seifert forms L_{f} and L_{g} are Witt equivalent over \mathbf{R} iff

$$
P_{f}(t) \equiv P_{g}(t) \quad \bmod t+1
$$

Proof of Theorem 2.6

§1. Introduction
§2. Results
§3. Proofs

- Proof of Theorem 2.6
- Proof of Theorem 2.6
(Continued)
- Proof of

Proposition 2.8

- Proof of

Proposition 2.8
(Continued)

- Proof of Theorem 2.9
- Open problem
- Cobordism and isotopy for Brieskorn-Pham type polynomials

Theorem 2.6 Let f and g be non-degenerate weighted homogeneous polynomials in \mathbf{C}^{n+1}. Then, their Seifert forms L_{f} and L_{g} are Witt equivalent over \mathbf{R} iff

$$
P_{f}(t) \equiv P_{g}(t) \quad \bmod t+1
$$

Proof. For simplicity, we consider the case of n even.

Proof of Theorem 2.6

§1. Introduction
§2. Results
§3. Proofs

- Proof of Theorem 2.6
- Proof of Theorem 2.6
(Continued)
- Proof of

Proposition 2.8

- Proof of

Proposition 2.8
(Continued)

- Proof of Theorem 2.9
- Open problem
- Cobordism and isotopy for Brieskorn-Pham type polynomials

Theorem 2.6 Let f and g be non-degenerate weighted homogeneous polynomials in C^{n+1}. Then, their Seifert forms L_{f} and L_{g} are Witt equivalent over \mathbf{R} iff

$$
P_{f}(t) \equiv P_{g}(t) \quad \bmod t+1
$$

Proof. For simplicity, we consider the case of n even.
Let $\Delta_{f}(t)$ be the characteristic polynomial of the monodromy

$$
h_{*}: H_{n}\left(\operatorname{Int} F_{f} ; \mathbf{C}\right) \rightarrow H_{f}\left(\operatorname{Int} F_{f} ; \mathbf{C}\right),
$$

where $h: \operatorname{Int} F_{f} \rightarrow \operatorname{Int} F_{f}$ is the characteristic diffeomorphism of the Milnor fibration $\varphi_{f}: S_{\varepsilon}^{2 n+1} \backslash K_{f} \rightarrow S^{1}$.

Proof of Theorem 2.6 (Continued)

§1. Introduction

§2. Results
§3. Proofs

- Proof of Theorem 2.6
- Proof of Theorem 2.6
(Continued)
- Proof of

Proposition 2.8

- Proof of

Proposition 2.8
(Continued)

- Proof of Theorem 2.9
- Open problem
- Cobordism and
isotopy for
Brieskorn-Pham type polynomials

We have

$$
H^{n}\left(F_{f} ; \mathbf{C}\right)=\oplus_{\lambda} H^{n}\left(F_{f} ; \mathbf{C}\right)_{\lambda},
$$

where λ runs over all the roots of $\Delta_{f}(t)$, and $H^{n}\left(F_{f} ; \mathbf{C}\right)_{\lambda}$ is the eigenspace of h_{*} corresponding to the eigenvalue λ.

Proof of Theorem 2.6 (Continued)

§1. Introduction
§2. Results
§3. Proofs

- Proof of Theorem 2.6
- Proof of Theorem 2.6
(Continued)
- Proof of

Proposition 2.8

- Proof of

Proposition 2.8
(Continued)

- Proof of Theorem 2.9
- Open problem
- Cobordism and isotopy for Brieskorn-Pham type polynomials

We have

$$
H^{n}\left(F_{f} ; \mathbf{C}\right)=\oplus_{\lambda} H^{n}\left(F_{f} ; \mathbf{C}\right)_{\lambda}
$$

where λ runs over all the roots of $\Delta_{f}(t)$, and $H^{n}\left(F_{f} ; \mathbf{C}\right)_{\lambda}$ is the eigenspace of h_{*} corresponding to the eigenvalue λ.

The intersection form $S_{f}=L_{f}+L_{f}^{T}$ of F_{f} on $H^{n}\left(F_{f} ; \mathbf{C}\right)$ decomposes as the orthogonal direct sum of $\left.\left(S_{f}\right)\right|_{H^{n}\left(F_{f} ; \mathbf{C}\right)_{\lambda}}$.

Proof of Theorem 2.6 (Continued)

- Proof of Theorem 2.6
- Proof of Theorem 2.6
(Continued)
- Proof of

Proposition 2.8

- Proof of

Proposition 2.8
(Continued)

- Proof of Theorem 2.9
- Open problem
- Cobordism and isotopy for Brieskorn-Pham type polynomials

We have

$$
H^{n}\left(F_{f} ; \mathbf{C}\right)=\oplus_{\lambda} H^{n}\left(F_{f} ; \mathbf{C}\right)_{\lambda},
$$

where λ runs over all the roots of $\Delta_{f}(t)$, and $H^{n}\left(F_{f} ; \mathbf{C}\right)_{\lambda}$ is the eigenspace of h_{*} corresponding to the eigenvalue λ.

The intersection form $S_{f}=L_{f}+L_{f}^{T}$ of F_{f} on $H^{n}\left(F_{f} ; \mathbf{C}\right)$ decomposes as the orthogonal direct sum of $\left.\left(S_{f}\right)\right|_{H^{n}\left(F_{f} ; \mathbf{C}\right)_{\lambda}}$. Let $\mu(f)_{\lambda}^{+}$(resp. $\mu(f)_{\lambda}^{-}$) denote the number of positive (resp. negative) eigenvalues of $\left.\left(S_{f}\right)\right|_{H^{n}(F ; \mathbf{C})_{\lambda}}$.

Proof of Theorem 2.6 (Continued)

§1. Introduction
§2. Results
§3. Proofs

- Proof of Theorem 2.6
- Proof of Theorem 2.6
(Continued)
- Proof of

Proposition 2.8

- Proof of

Proposition 2.8
(Continued)

- Proof of Theorem 2.9
- Open problem
- Cobordism and isotopy for
Brieskorn-Pham type polynomials

We have

$$
H^{n}\left(F_{f} ; \mathbf{C}\right)=\oplus_{\lambda} H^{n}\left(F_{f} ; \mathbf{C}\right)_{\lambda},
$$

where λ runs over all the roots of $\Delta_{f}(t)$, and $H^{n}\left(F_{f} ; \mathbf{C}\right)_{\lambda}$ is the eigenspace of h_{*} corresponding to the eigenvalue λ.

The intersection form $S_{f}=L_{f}+L_{f}^{T}$ of F_{f} on $H^{n}\left(F_{f} ; \mathbf{C}\right)$ decomposes as the orthogonal direct sum of $\left.\left(S_{f}\right)\right|_{H^{n}\left(F_{f} ; \mathbf{C}\right)_{\lambda}}$. Let $\mu(f)_{\lambda}^{+}$(resp. $\mu(f)_{\lambda}^{-}$) denote the number of positive (resp. negative) eigenvalues of $\left.\left(S_{f}\right)\right|_{H^{n}(F ; \mathbf{C})_{\lambda}}$.
The integer

$$
\sigma_{\lambda}(f)=\mu(f)_{\lambda}^{+}-\mu(f)_{\lambda}^{-}
$$

is called the equivariant signature of f with respect to λ.

Proof of Theorem 2.6 (Continued)

§1. Introduction
§2. Results
§3. Proofs

- Proof of Theorem 2.6
- Proof of Theorem 2.6
(Continued)
- Proof of

Proposition 2.8

- Proof of

Proposition 2.8
(Continued)

- Proof of Theorem 2.9
- Open problem
- Cobordism and isotopy for Brieskorn-Pham type polynomials

Lemma 3.1 (Steenbrink, 1977)
Set $P_{f}(t)=\sum c_{\alpha} t^{\alpha}$. Then we have

$$
\sigma_{\lambda}(f)=\sum_{\substack{\lambda=\exp (-2 \pi i \alpha) \\\lfloor\alpha\rfloor: \text { even }}} c_{\alpha}-\sum_{\substack{\lambda=\exp (-2 \pi i \alpha),\lfloor\alpha\rfloor: \text { odd }}} c_{\alpha}
$$

for $\lambda \neq 1$, where $i=\sqrt{-1}$, and $\lfloor\alpha\rfloor$ is the largest integer not exceeding α.

Proof of Theorem 2.6 (Continued)

- Open problem
- Cobordism and
isotopy for
Brieskorn-Pham type polynomials

Lemma 3.1 (Steenbrink, 1977)
Set $P_{f}(t)=\sum c_{\alpha} t^{\alpha}$. Then we have

$$
\sigma_{\lambda}(f)=\sum_{\substack{\lambda=\exp (-2 \pi i \alpha) \\\lfloor\alpha\rfloor: \text { even }}} c_{\alpha}-\sum_{\substack{\lambda=\exp (-2 \pi i \alpha),\lfloor\alpha\rfloor: \text { odd }}} c_{\alpha}
$$

for $\lambda \neq 1$, where $i=\sqrt{-1}$, and $\lfloor\alpha\rfloor$ is the largest integer not exceeding α.

Remark 3.2 The equivariant signature for $\lambda=1$ is always equal to zero.

Proof of Theorem 2.6 (Continued)

§1. Introduction
§2. Results
§3. Proofs

- Proof of Theorem 2.6
- Proof of Theorem 2.6
(Continued)
- Proof of

Proposition 2.8

- Proof of

Proposition 2.8
(Continued)

- Proof of Theorem 2.9
- Open problem
- Cobordism and
isotopy for
Brieskorn-Pham type polynomials

Seifert forms L_{f} and L_{g} are Witt equivalent over \mathbf{R}.
$\Longrightarrow \quad \sigma_{\lambda}(f)=\sigma_{\lambda}(g)$ for all λ.

Proof of Theorem 2.6 (Continued)

§1. Introduction
§2. Results
§3. Proofs

- Proof of Theorem 2.6
- Proof of Theorem 2.6
(Continued)
- Proof of

Proposition 2.8

- Proof of

Proposition 2.8
(Continued)

- Proof of Theorem 2.9
- Open problem
- Cobordism and
isotopy for
Brieskorn-Pham type polynomials

Seifert forms L_{f} and L_{g} are Witt equivalent over \mathbf{R}.
$\Longrightarrow \quad \sigma_{\lambda}(f)=\sigma_{\lambda}(g)$ for all λ.
Set

$$
\begin{aligned}
& P_{f}(t)=P_{f}^{0}(t)+P_{f}^{1}(t), \text { where } \\
P_{f}^{0}(t)= & \sum_{\lfloor\alpha\rfloor \equiv 0} c_{\alpha} t^{\alpha} \\
P_{f}^{1}(t)= & \sum_{\lfloor\alpha\rfloor \equiv 1} c_{\alpha} t^{\alpha}
\end{aligned}
$$

We define $P_{g}^{0}(t)$ and $P_{g}^{1}(t)$ similarly.

Proof of Theorem 2.6 (Continued)

Seifert forms L_{f} and L_{g} are Witt equivalent over \mathbf{R}.
$\Longrightarrow \quad \sigma_{\lambda}(f)=\sigma_{\lambda}(g) \quad$ for all λ.
§3. Proofs

- Proof of Theorem 2.6
- Proof of Theorem 2.6
(Continued)
- Proof of

Proposition 2.8

- Proof of

Proposition 2.8
(Continued)

- Proof of Theorem 2.9
- Open problem
- Cobordism and
isotopy for
Brieskorn-Pham type polynomials

Set

$$
\begin{aligned}
& P_{f}(t)=P_{f}^{0}(t)+P_{f}^{1}(t), \quad \text { where } \\
P_{f}^{0}(t)= & \sum_{\lfloor\alpha\rfloor \equiv 0} c_{\alpha} t^{\alpha} \\
P_{f}^{1}(t)= & \sum_{\lfloor\alpha\rfloor \equiv 1} c_{\alpha} t^{\alpha}
\end{aligned}
$$

We define $P_{g}^{0}(t)$ and $P_{g}^{1}(t)$ similarly.
Since the equivariant signatures of f and g coincide, we have

$$
\begin{aligned}
t P_{f}^{0}(t)-P_{f}^{1}(t) & \equiv t P_{g}^{0}(t)-P_{g}^{1}(t) \quad \bmod t^{2}-1 \\
t P_{f}^{1}(t)-P_{f}^{0}(t) & \equiv t P_{g}^{1}(t)-P_{g}^{0}(t) \quad \bmod t^{2}-1
\end{aligned}
$$

Proof of Theorem 2.6 (Continued)

§1. Introduction
§2. Results
§3. Proofs

- Proof of Theorem 2.6
- Proof of Theorem 2.6
(Continued)
- Proof of

Proposition 2.8

- Proof of

Proposition 2.8
(Continued)

- Proof of Theorem 2.9
- Open problem
- Cobordism and
isotopy for
Brieskorn-Pham type polynomials

Adding up these two congruences we have

$$
\begin{equation*}
(t-1) P_{f}(t) \equiv(t-1) P_{g}(t) \quad \bmod t^{2}-1, \tag{1}
\end{equation*}
$$

Proof of Theorem 2.6 (Continued)

§1. Introduction
§2. Results
§3. Proofs

- Proof of Theorem 2.6
- Proof of Theorem 2.6
(Continued)
- Proof of

Proposition 2.8

- Proof of

Proposition 2.8
(Continued)

- Proof of Theorem 2.9
- Open problem
- Cobordism and isotopy for Brieskorn-Pham type polynomials

Adding up these two congruences we have

$$
\begin{equation*}
(t-1) P_{f}(t) \equiv(t-1) P_{g}(t) \quad \bmod t^{2}-1, \tag{1}
\end{equation*}
$$

which implies

$$
\begin{equation*}
P_{f}(t) \equiv P_{g}(t) \quad \bmod t+1 \tag{2}
\end{equation*}
$$

Proof of Theorem 2.6 (Continued)

§1. Introduction
§2. Results
§3. Proofs

- Proof of Theorem 2.6
- Proof of Theorem 2.6
(Continued)
- Proof of Theorem 2.6
(Continued)
- Proof of Theorem 2.6 (Continued)
- Proof of Theorem 2.6
(Continued)
- Proof of

Proposition 2.8

- Proof of

Proposition 2.8
(Continued)

- Proof of Theorem 2.9
- Open problem
- Cobordism and isotopy for Brieskorn-Pham type polynomials

Adding up these two congruences we have

$$
\begin{equation*}
(t-1) P_{f}(t) \equiv(t-1) P_{g}(t) \quad \bmod t^{2}-1, \tag{1}
\end{equation*}
$$

which implies

$$
\begin{equation*}
P_{f}(t) \equiv P_{g}(t) \quad \bmod t+1 \tag{2}
\end{equation*}
$$

Conversely, suppose that (2) holds.
$\Longrightarrow \quad$ (1) holds.
$\Longrightarrow \quad f$ and g have the same equivariant signatures.

Proof of Theorem 2.6 (Continued)

§1. Introduction
§2. Results
§3. Proofs

- Proof of Theorem 2.6
- Proof of Theorem 2.6
(Continued)
- Proof of Theorem 2.6
(Continued)
- Proof of Theorem 2.6 (Continued)
- Proof of Theorem 2.6
(Continued)
- Proof of

Proposition 2.8

- Proof of

Proposition 2.8
(Continued)

- Proof of Theorem 2.9
- Open problem
- Cobordism and
isotopy for
Brieskorn-Pham type polynomials

Adding up these two congruences we have

$$
\begin{equation*}
(t-1) P_{f}(t) \equiv(t-1) P_{g}(t) \quad \bmod t^{2}-1, \tag{1}
\end{equation*}
$$

which implies

$$
\begin{equation*}
P_{f}(t) \equiv P_{g}(t) \quad \bmod t+1 \tag{2}
\end{equation*}
$$

Conversely, suppose that (2) holds.
$\Longrightarrow \quad$ (1) holds.
$\Longrightarrow \quad f$ and g have the same equivariant signatures.
Then, we can prove that they are Witt equivalent over \mathbf{R}.
This completes the proof.

Proof of Proposition 2.8

§1. Introduction
§2. Results
§3. Proofs

- Proof of Theorem 2.6
- Proof of Theorem 2.6
(Continued)
- Proof of

Proposition 2.8

- Proof of

Proposition 2.8
(Continued)

- Proof of Theorem 2.9
- Open problem
- Cobordism and
isotopy for
Brieskorn-Pham type polynomials

Proposition 2.8 Let

$$
f(z)=\sum_{j=1}^{n+1} z_{j}^{a_{j}} \quad \text { and } \quad g(z)=\sum_{j=1}^{n+1} z_{j}^{b_{j}}
$$

be Brieskorn-Pham type polynomials. Then, their Seifert forms are Witt equivalent over \mathbf{R} iff

$$
\prod_{j=1}^{n+1} \cot \frac{\pi \ell}{2 a_{j}}=\prod_{j=1}^{n+1} \cot \frac{\pi \ell}{2 b_{j}}
$$

holds for all odd integers ℓ.

Proof of Proposition 2.8 (Continued)

§1. Introduction
§2. Results
§3. Proofs

- Proof of Theorem 2.6
- Proof of Theorem 2.6
(Continued)
- Proof of

Proposition 2.8

- Proof of

Proposition 2.8
(Continued)

- Proof of Theorem 2.9
- Open problem
- Cobordism and isotopy for Brieskorn-Pham type polynomials

Proof.
$P_{f}(t)$ and $P_{g}(t)$ are polynomials in $s=t^{1 / m}$ for some m.
Put $Q_{f}(s)=P_{f}(t)$ and $Q_{g}(s)=P_{g}(t)$.
Then, $P_{f}(t) \equiv P_{g}(t) \bmod t+1$ holds
$\Longleftrightarrow \quad Q_{f}(\xi)=Q_{g}(\xi)$ for all ξ with $\xi^{m}=-1$.

Proof of Proposition 2.8 (Continued)

- Proof of Theorem 2.6
- Proof of Theorem 2.6
(Continued)
- Proof of

Proposition 2.8

- Proof of

Proposition 2.8
(Continued)

- Proof of Theorem 2.9
- Open problem
- Cobordism and
isotopy for
Brieskorn-Pham type polynomials

Proof.
$P_{f}(t)$ and $P_{g}(t)$ are polynomials in $s=t^{1 / m}$ for some m.
Put $Q_{f}(s)=P_{f}(t)$ and $Q_{g}(s)=P_{g}(t)$.
Then, $P_{f}(t) \equiv P_{g}(t) \bmod t+1$ holds
$\Longleftrightarrow \quad Q_{f}(\xi)=Q_{g}(\xi)$ for all ξ with $\xi^{m}=-1$.
Note that ξ is of the form

$$
\exp (\pi \sqrt{-1} \ell / m)
$$

with ℓ odd and that

$$
\frac{-1-\exp \left(\pi \sqrt{-1} \ell / a_{j}\right)}{\exp \left(\pi \sqrt{-1} \ell / a_{j}\right)-1}=\sqrt{-1} \cot \frac{\pi \ell}{2 a_{j}} .
$$

Then, we immediately get Proposition 2.8.

Proof of Theorem 2.9

§1. Introduction
§2. Results
§3. Proofs

- Proof of Theorem 2.6
- Proof of Theorem 2.6
(Continued)
- Proof of

Proposition 2.8

- Proof of

Proposition 2.8
(Continued)

- Proof of Theorem 2.9
- Open problem
- Cobordism and isotopy for
Brieskorn-Pham type polynomials

Theorem 2.9 Suppose that for each of the Brieskorn-Pham type polynomials

$$
f(z)=\sum_{j=1}^{n+1} z_{j}^{a_{j}} \quad \text { and } \quad g(z)=\sum_{j=1}^{n+1} z_{j}^{b_{j}}
$$

no exponent is a multiple of another one.
Then, the knots K_{f} and K_{g} are cobordant iff

$$
a_{j}=b_{j}, \quad j=1,2, \ldots, n+1
$$

up to order.

Proof of Theorem 2.9

§1. Introduction
§2. Results
§3. Proofs

- Proof of Theorem 2.6
- Proof of Theorem 2.6
(Continued)
- Proof of

Proposition 2.8

- Proof of

Proposition 2.8
(Continued)

- Proof of Theorem 2.9
- Open problem
- Cobordism and isotopy for
Brieskorn-Pham type polynomials

Theorem 2.9 Suppose that for each of the Brieskorn-Pham type polynomials

$$
f(z)=\sum_{j=1}^{n+1} z_{j}^{a_{j}} \quad \text { and } \quad g(z)=\sum_{j=1}^{n+1} z_{j}^{b_{j}}
$$

no exponent is a multiple of another one.
Then, the knots K_{f} and K_{g} are cobordant iff

$$
a_{j}=b_{j}, \quad j=1,2, \ldots, n+1
$$

up to order.

This is a consequence of the "Fox-Milnor type relation" for the Alexander polynomials of cobordant algebraic knots.

Open problem

§1. Introduction
§2. Results
§3. Proofs

- Proof of Theorem 2.6
- Proof of Theorem 2.6
(Continued)
- Proof of

Proposition 2.8

- Proof of

Proposition 2.8
(Continued)

- Proof of Theorem 2.9
- Open problem
- Cobordism and isotopy for Brieskorn-Pham type polynomials

Problem 3.3 Are the exponents cobordism invariants for Brieskorn-Pham type polynomials?

Open problem

§1. Introduction
§2. Results
§3. Proofs

- Proof of Theorem 2.6
- Proof of Theorem 2.6
(Continued)
- Proof of

Proposition 2.8

- Proof of

Proposition 2.8
(Continued)

- Proof of Theorem 2.9
- Open problem
- Cobordism and isotopy for Brieskorn-Pham type polynomials

Problem 3.3 Are the exponents cobordism invariants for Brieskorn-Pham type polynomials?

Proposition 2.8 reduces the above problem to a number theoretical problem involving cotangents.

Open problem

§1. Introduction
§2. Results
§3. Proofs

- Proof of Theorem 2.6
- Proof of Theorem 2.6
(Continued)
- Proof of

Proposition 2.8

- Proof of

Proposition 2.8
(Continued)

- Proof of Theorem 2.9
- Open problem
- Cobordism and isotopy for Brieskorn-Pham type polynomials

Problem 3.3 Are the exponents cobordism invariants for Brieskorn-Pham type polynomials?

Proposition 2.8 reduces the above problem to a number theoretical problem involving cotangents.

$$
\begin{aligned}
& \prod_{j=1}^{n+1} \cot \frac{\pi \ell}{2 a_{j}}=\prod_{j=1}^{n+1} \cot \frac{\pi \ell}{2 b_{j}} \quad \forall \text { odd integers } \ell \\
\Longrightarrow & a_{j}=b_{j} \text { up to order? }
\end{aligned}
$$

Cobordism and isotopy for Brieskorn-Pham type polynomials

§1. Introduction
§2. Results
§3. Proofs

- Proof of Theorem 2.6
- Proof of Theorem 2.6
(Continued)
- Proof of

Proposition 2.8

- Proof of

Proposition 2.8
(Continued)

- Proof of Theorem 2.9
- Open problem
- Cobordism and isotopy for
Brieskorn-Pham type polynomials

Remark 3.4 Theorem 2.9 implies that two algebraic knots K_{f} and K_{g} associated with certain Brieskorn-Pham type polynomials are isotopic if and only of they are cobordant.

Cobordism and isotopy for Brieskorn-Pham type polynomials

§1. Introduction
§2. Results
§3. Proofs

- Proof of Theorem 2.6
- Proof of Theorem 2.6
(Continued)
- Proof of

Proposition 2.8

- Proof of

Proposition 2.8
(Continued)

- Proof of Theorem 2.9
- Open problem
- Cobordism and isotopy for
Brieskorn-Pham type polynomials

Remark 3.4 Theorem 2.9 implies that two algebraic knots K_{f} and K_{g} associated with certain Brieskorn-Pham type polynomials are isotopic if and only of they are cobordant.

According to Yoshinaga-Suzuki, two algebraic knots associated with Brieskorn-Pham type polynomials in general are isotopic if and only if they have the same set of exponents.

Cobordism and isotopy for Brieskorn-Pham type polynomials

Remark 3.4 Theorem 2.9 implies that two algebraic knots K_{f} and K_{g} associated with certain Brieskorn-Pham type polynomials are isotopic if and only of they are cobordant.

According to Yoshinaga-Suzuki, two algebraic knots associated with Brieskorn-Pham type polynomials in general are isotopic if and only if they have the same set of exponents.

In fact, they showed that the characteristic polynomials coincide if and only if the Brieskorn-Pham type polynomials have the same set of exponents.
§2. Results
§3. Proofs

- Proof of Theorem 2.6
- Proof of Theorem 2.6
(Continued)
- Proof of

Proposition 2.8

- Proof of

Proposition 2.8
(Continued)

- Proof of Theorem 2.9
- Open problem
- Cobordism and
isotopy for
Brieskorn-Pham type
polynomials

Thank you!

$+$

