

Osamu Saeki

(Institute of Mathematics for Industry, Kyushu University)

September 15, 2011

§1. An Example §2. General Results §3. Algebraic Knots §4. Classification

$\S1$. An Example

§1. An Example §2. General Results §3. Algebraic Knots §4. Classification

$$f(z_1, z_2) = z_1^2 - z_2^3$$

$$V = \{(z_1, z_2) \in \mathbb{C}^2 \mid f(z_1, z_2) = 0\} \text{ complex curve}$$

Example

 $\S1.$ An Example $\S2.$ General Results $\S3.$ Algebraic Knots $\,\S4.$ Classification

 $f(z_1, z_2) = z_1^2 - z_2^3$ $V = \{(z_1, z_2) \in \mathbb{C}^2 \mid f(z_1, z_2) = 0\} \text{ complex curve}$ $S_{\varepsilon}^3 = \{(z_1, z_2) \in \mathbb{C}^2 \mid |z_1|^2 + |z_2|^2 = \varepsilon^2\}, \ 0 < \varepsilon << 1$ $K = S_{\varepsilon}^3 \cap V \subset S_{\varepsilon}^3$

Example

§1. An Example §2. General Results §3. Algebraic Knots §4. Classification

$$\begin{split} f(z_1, z_2) &= z_1^2 - z_2^3 \\ V &= \{ (z_1, z_2) \in \mathbf{C}^2 \mid f(z_1, z_2) = 0 \} \text{ complex curve} \\ S_{\varepsilon}^3 &= \{ (z_1, z_2) \in \mathbf{C}^2 \mid |z_1|^2 + |z_2|^2 = \varepsilon^2 \}, \ 0 < \varepsilon << 1 \\ K &= S_{\varepsilon}^3 \cap V \subset S_{\varepsilon}^3 \\ K \text{ is a knot in } S^3 \text{ !} \end{split}$$

§1. An Example §2. General Results §3. Algebraic Knots §4. Classification

$$\exists ! r_1, r_2 > 0$$
 s.t. $r_1^2 = r_2^3$, $r_1^2 + r_2^2 = \varepsilon^2$

§1. An Example §2. General Results §3. Algebraic Knots §4. Classification

$$\exists !r_1, r_2 > 0 \text{ s.t. } r_1^2 = r_2^3, \quad r_1^2 + r_2^2 = \varepsilon^2$$

$$K = \{(z_1, z_2) \in S_{\varepsilon}^3 \mid z_1^2 = z_2^3\}$$

$$= \{(r_1 e^{3\pi i t}, r_2 e^{2\pi i t}) \in \mathbf{C}^2 \mid t \in \mathbf{R}\} \subset S_{r_1}^1 \times S_{r_2}^1 \subset S_{\varepsilon}^3$$

§1. An Example §2. General Results §3. Algebraic Knots §4. Classification

$$\exists !r_1, r_2 > 0 \text{ s.t. } r_1^2 = r_2^3, \quad r_1^2 + r_2^2 = \varepsilon^2$$

$$K = \{ (z_1, z_2) \in S_{\varepsilon}^3 \mid z_1^2 = z_2^3 \}$$

$$= \{ (r_1 e^{3\pi i t}, r_2 e^{2\pi i t}) \in \mathbf{C}^2 \mid t \in \mathbf{R} \} \subset S_{r_1}^1 \times S_{r_2}^1 \subset S_{\varepsilon}^3$$

This is a trefoil knot!

§1. An Example §2. General Results §3. Algebraic Knots §4. Classification

$$\exists !r_1, r_2 > 0 \text{ s.t. } r_1^2 = r_2^3, \quad r_1^2 + r_2^2 = \varepsilon^2$$

$$K = \{ (z_1, z_2) \in S_{\varepsilon}^3 \mid z_1^2 = z_2^3 \}$$

$$= \{ (r_1 e^{3\pi i t}, r_2 e^{2\pi i t}) \in \mathbf{C}^2 \mid t \in \mathbf{R} \} \subset S_{r_1}^1 \times S_{r_2}^1 \subset S_{\varepsilon}^3$$

This is a trefoil knot!

Trefoil knot is a fibered knot. $f/|f|: S^3_{\varepsilon} \setminus K \to S^1 \subset \mathbb{C}$ locally trivial fibration §1. An Example §2. General Results §3. Algebraic Knots §4. Classification

\S **2. General Results**

 $\S1.$ An Example $\S2.$ General Results $\S3.$ Algebraic Knots $\,\S4.$ Classification

 $f = f(z_1, z_2, \dots, z_{n+1})$ complex polynomial with $f(\mathbf{0}) = 0$ s.t. **0** is an isolated critical point of f, i.e.,

$$\frac{\partial f}{\partial z_1}(z) = \dots = \frac{\partial f}{\partial z_{n+1}}(z) = 0 \iff z = \mathbf{0}$$

in a neighborhood of **0**.

 $\S1.$ An Example $\$ 2. General Results $\$ 3. Algebraic Knots $\$ 4. Classification

 $f = f(z_1, z_2, ..., z_{n+1})$ complex polynomial with $f(\mathbf{0}) = 0$ s.t. **0** is an isolated critical point of f, i.e.,

$$\frac{\partial f}{\partial z_1}(z) = \dots = \frac{\partial f}{\partial z_{n+1}}(z) = 0 \iff z = \mathbf{0}$$

in a neighborhood of 0. $V = f^{-1}(0) \subset \mathbb{C}^{n+1}$: complex hypersurface $K_f = f^{-1}(0) \cap S_{\varepsilon}^{2n+1} \subset S_{\varepsilon}^{2n+1}$: algebraic knot associated with f, $0 < \varepsilon << 1$.

 $\S1.$ An Example $\$ 2. General Results $\$ 3. Algebraic Knots $\$ 4. Classification

 $f = f(z_1, z_2, ..., z_{n+1})$ complex polynomial with $f(\mathbf{0}) = 0$ s.t. **0** is an isolated critical point of f, i.e.,

$$\frac{\partial f}{\partial z_1}(z) = \dots = \frac{\partial f}{\partial z_{n+1}}(z) = 0 \iff z = \mathbf{0}$$

in a neighborhood of 0. $V = f^{-1}(0) \subset \mathbb{C}^{n+1}$: complex hypersurface $K_f = f^{-1}(0) \cap S_{\varepsilon}^{2n+1} \subset S_{\varepsilon}^{2n+1}$: algebraic knot associated with f, $0 < \varepsilon << 1$.

 K_f is a (2n-1)-dim. smooth closed manifold embedded in S_{ε}^{2n+1} .

 $\S1.$ An Example $\$ 2. General Results $\$ 3. Algebraic Knots $\$ 4. Classification

 $f = f(z_1, z_2, ..., z_{n+1})$ complex polynomial with $f(\mathbf{0}) = 0$ s.t. **0** is an isolated critical point of f, i.e.,

$$\frac{\partial f}{\partial z_1}(z) = \dots = \frac{\partial f}{\partial z_{n+1}}(z) = 0 \iff z = \mathbf{0}$$

in a neighborhood of 0. $V = f^{-1}(0) \subset \mathbb{C}^{n+1}: \text{ complex hypersurface}$ $K_f = f^{-1}(0) \cap S_{\varepsilon}^{2n+1} \subset S_{\varepsilon}^{2n+1}: \text{ algebraic knot associated with } f,$ $0 < \varepsilon << 1.$

 K_f is a (2n-1)-dim. smooth closed manifold embedded in S_{ε}^{2n+1} .

In the following, we always assume that $\varepsilon > 0$ is sufficiently small.

Cone structure theorem

§1. An Example §2. General Results §3. Algebraic Knots §4. Classification

Cone structure theorem

 $\S1.$ An Example $\S2.$ General Results $\S3.$ Algebraic Knots $\,\S4.$ Classification

Theorem 2.1 (Milnor, 1968) $(D_{\varepsilon}^{2n+2}, f^{-1}(0) \cap D_{\varepsilon}^{2n+2}) \approx \operatorname{Cone}(S_{\varepsilon}^{2n+1}, K_f)$ (homeo.)

Cone structure theorem

 $\S1.$ An Example $\S2.$ General Results $\S3.$ Algebraic Knots $\,\S4.$ Classification

Theorem 2.1 (Milnor, 1968) $(D_{\varepsilon}^{2n+2}, f^{-1}(0) \cap D_{\varepsilon}^{2n+2}) \approx \operatorname{Cone}(S_{\varepsilon}^{2n+1}, K_f)$ (homeo.) Furthermore, $(S_{\varepsilon}^{2n+1}, K_f)$, or the isotopy class of K_f in S_{ε}^{2n+1} , does not depend on $0 < \varepsilon << 1$.

 $\S1.$ An Example $~\S2.$ General Results $~\S3.$ Algebraic Knots $~\S4.$ Classification

Theorem 2.2 (Milnor, 1968) (1) $\varphi_f = f/|f| : S_{\varepsilon}^{2n+1} \setminus K_f \to S^1$ is a locally trivial fibration.

 $\S1.$ An Example $~\S2.$ General Results $~\S3.$ Algebraic Knots $~\S4.$ Classification

Theorem 2.2 (Milnor, 1968) (1) $\varphi_f = f/|f| : S_{\varepsilon}^{2n+1} \setminus K_f \to S^1$ is a locally trivial fibration. (2) K_f is (n-2)-connected, i.e., $\pi_i(K_f) = 0 \ \forall i \le n-2$.

 $\S1.$ An Example $\$ 2. General Results $\$ 3. Algebraic Knots $\$ 4. Classification

Theorem 2.2 (Milnor, 1968) (1) $\varphi_f = f/|f| : S_{\varepsilon}^{2n+1} \setminus K_f \to S^1$ is a locally trivial fibration. (2) K_f is (n-2)-connected, i.e., $\pi_i(K_f) = 0 \ \forall i \le n-2$. (3) Fibers of φ_f are (n-1)-connected.

 $\S1.$ An Example $~\S2.$ General Results $~\S3.$ Algebraic Knots $~\S4.$ Classification

Theorem 2.2 (Milnor, 1968) (1) $\varphi_f = f/|f| : S_{\varepsilon}^{2n+1} \setminus K_f \to S^1$ is a locally trivial fibration. (2) K_f is (n-2)-connected, i.e., $\pi_i(K_f) = 0 \ \forall i \le n-2$. (3) Fibers of φ_f are (n-1)-connected.

 $\S1.$ An Example $~\S2.$ General Results $~\S3.$ Algebraic Knots $~\S4.$ Classification

Theorem 2.2 (Milnor, 1968) (1) $\varphi_f = f/|f| : S_{\varepsilon}^{2n+1} \setminus K_f \to S^1$ is a locally trivial fibration. (2) K_f is (n-2)-connected, i.e., $\pi_i(K_f) = 0 \ \forall i \le n-2$. (3) Fibers of φ_f are (n-1)-connected.

 K_f is a fibered knot, but K_f may not be a sphere.

§1. An Example §2. General Results §3. Algebraic Knots §4. Classification

\S **3. Algebraic Knots**

 $\S1.$ An Example $\S2.$ General Results $\S3.$ Algebraic Knots $\,\S4.$ Classification

 $K_f \subset S_{\varepsilon}^{2n+1}$ is called the **algebraic knot** associated with f.

§1. An Example §2. General Results §3. Algebraic Knots §4. Classification

 $K_f \subset S_{\varepsilon}^{2n+1}$ is called the algebraic knot associated with f. We put $F_f = \overline{\varphi_f^{-1}(1)} = \varphi_f^{-1}(1) \cup K_f$, which is called the Milnor fiber.

§1. An Example §2. General Results §3. Algebraic Knots §4. Classification

 $K_f \subset S_{\varepsilon}^{2n+1}$ is called the **algebraic knot** associated with f. We put $F_f = \overline{\varphi_f^{-1}(1)} = \varphi_f^{-1}(1) \cup K_f$, which is called the **Milnor fiber**. $\partial F_f = K_f$: F_f is a Seifert manifold for K_f .

 $\S1.$ An Example $\S2.$ General Results $\S3.$ Algebraic Knots $\,\S4.$ Classification

 $K_f \subset S_{\varepsilon}^{2n+1}$ is called the algebraic knot associated with f. We put $F_f = \overline{\varphi_f^{-1}(1)} = \varphi_f^{-1}(1) \cup K_f$, which is called the Milnor fiber. $\partial F_f = K_f$: F_f is a Seifert manifold for K_f . $\dim K_f = 2n - 1$, $\dim F_f = 2n$.

 $\S1.$ An Example $~\S2.$ General Results $~\S3.$ Algebraic Knots $~\S4.$ Classification

 $K_f \subset S_{\varepsilon}^{2n+1}$ is called the algebraic knot associated with f. We put $F_f = \overline{\varphi_f^{-1}(1)} = \varphi_f^{-1}(1) \cup K_f$, which is called the Milnor fiber. $\partial F_f = K_f$: F_f is a Seifert manifold for K_f . $\dim K_f = 2n - 1$, $\dim F_f = 2n$.

Algebraic knots are odd dim. fibered knots that are "highly connected".

 $\S1.$ An Example $~\S2.$ General Results $~\S3.$ Algebraic Knots $~\S4.$ Classification

 $K_f \subset S_{\varepsilon}^{2n+1}$ is called the algebraic knot associated with f. We put $F_f = \overline{\varphi_f^{-1}(1)} = \varphi_f^{-1}(1) \cup K_f$, which is called the Milnor fiber. $\partial F_f = K_f$: F_f is a Seifert manifold for K_f . $\dim K_f = 2n - 1$, $\dim F_f = 2n$.

Algebraic knots are odd dim. fibered knots that are "highly connected". $\widetilde{H}_i(K_f; \mathbf{Z}) = 0$ for $i \neq n - 1, n$.

 $\S1.$ An Example $~\S2.$ General Results $~\S3.$ Algebraic Knots $~\S4.$ Classification

 $K_f \subset S_{\varepsilon}^{2n+1}$ is called the algebraic knot associated with f. We put $F_f = \overline{\varphi_f^{-1}(1)} = \varphi_f^{-1}(1) \cup K_f$, which is called the Milnor fiber. $\partial F_f = K_f$: F_f is a Seifert manifold for K_f . $\dim K_f = 2n - 1$, $\dim F_f = 2n$.

Algebraic knots are odd dim. fibered knots that are "highly connected". $\widetilde{H}_i(K_f; \mathbf{Z}) = 0$ for $i \neq n - 1, n$. $F_f \simeq \vee^{\mu} S^n$: homotopy equivalent to a bouquet of *n*-spheres. The number μ is called the **Milnor number**.

 $\S1.$ An Example $~\S2.$ General Results $~\S3.$ Algebraic Knots $~\S4.$ Classification

 $K_f \subset S_{\varepsilon}^{2n+1}$ is called the algebraic knot associated with f. We put $F_f = \overline{\varphi_f^{-1}(1)} = \varphi_f^{-1}(1) \cup K_f$, which is called the Milnor fiber. $\partial F_f = K_f$: F_f is a Seifert manifold for K_f . $\dim K_f = 2n - 1$, $\dim F_f = 2n$.

Algebraic knots are odd dim. fibered knots that are "highly connected". $\widetilde{H}_i(K_f; \mathbf{Z}) = 0$ for $i \neq n - 1, n$. $F_f \simeq \vee^{\mu} S^n$: homotopy equivalent to a bouquet of *n*-spheres. The number μ is called the Milnor number.

n = 1: fibered link in S^3

n = 2: connected 3-manifold in S^5 with simply connected fibers

n = 3: simply connected 5-manifold in S^7 with 2-connected fibers

 $\S1.$ An Example $\S2.$ General Results $\S3.$ Algebraic Knots $\,\S4.$ Classification

Case of n = 1: K_f is a classical link in S^3_{ε} .

Suppose f is **irreducible** at **0**. Then K_f is a knot.

 $\S1.$ An Example $~\S2.$ General Results $~\S3.$ Algebraic Knots $~\S4.$ Classification

Case of n = 1: K_f is a classical link in S_{ε}^3 .

Suppose f is **irreducible** at 0. Then K_f is a knot. $f(z_1, z_2) = 0 \iff \text{We can "solve" } z_2$ as a function of z_1 (polynomial with rational exponents), which is called a **Puiseux expansion**.

 $\S1.$ An Example $\S2.$ General Results $~\S3.$ Algebraic Knots $~\S4.$ Classification

Case of n = 1: K_f is a classical link in S^3_{ε} .

Suppose f is **irreducible** at 0. Then K_f is a knot. $f(z_1, z_2) = 0 \iff \text{We can "solve" } z_2$ as a function of z_1 (polynomial with rational exponents), which is called a **Puiseux expansion**.

Proposition 3.1 K_f is a certain **iterated torus knot**, *i.e.*, *it is a cable of a cable of a* \cdots *of a torus knot*.

 $\S1.$ An Example $~\S2.$ General Results $~\S3.$ Algebraic Knots $~\S4.$ Classification

Case of n = 1: K_f is a classical link in S^3_{ε} .

Suppose f is **irreducible** at 0. Then K_f is a knot. $f(z_1, z_2) = 0 \iff \text{We can "solve" } z_2$ as a function of z_1 (polynomial with rational exponents), which is called a **Puiseux expansion**.

Proposition 3.1 K_f is a certain **iterated torus knot**, *i.e.*, *it is a cable of a cable of a* \cdots *of a torus knot*.

In particular, K_f is a **prime knot**.

 $\S1.$ An Example $~\S2.$ General Results $~\S3.$ Algebraic Knots $~\S4.$ Classification

Case of n = 1: K_f is a classical link in S^3_{ε} .

Suppose f is **irreducible** at 0. Then K_f is a knot. $f(z_1, z_2) = 0 \iff \text{We can "solve" } z_2$ as a function of z_1 (polynomial with rational exponents), which is called a **Puiseux expansion**.

Proposition 3.1 K_f is a certain **iterated torus knot**, *i.e.*, *it is a cable of a cable of a* \cdots *of a torus knot*.

In particular, K_f is a **prime knot**.

However, in higher dimensions, this is no longer true.

Theorem 3.2 (Michel–Weber, 1982 ($n \ge 3$); S, 1987 (n = 2)) There exist decomposable algebraic (2n - 1)-knots.
General two-variable case

 $\S1.$ An Example $\S2.$ General Results $\S3.$ Algebraic Knots $\,\S4.$ Classification

Let us consider the general case where f may not be irreducible at 0. According to Zariski's theory of resolution of curve singularities, we have

General two-variable case

 $\S1.$ An Example $~\S2.$ General Results $~\S3.$ Algebraic Knots $~\S4.$ Classification

Let us consider the general case where f may not be irreducible at 0. According to Zariski's theory of resolution of curve singularities, we have

Proposition 3.3 The isotopy class of the link K_f is completely determined by the components and their linking numbers.

General two-variable case

 $\S1.$ An Example $~\S2.$ General Results $~\S3.$ Algebraic Knots $~\S4.$ Classification

Let us consider the general case where f may not be irreducible at 0. According to Zariski's theory of resolution of curve singularities, we have

Proposition 3.3 The isotopy class of the link K_f is completely determined by the components and their linking numbers.

We also have the following

Theorem 3.4 (Yamamoto, 1984)

Two algebraic links are isotopic iff they have the same multi-variable Alexander polynomials.

 $\S1.$ An Example $\$ 2. General Results $\$ 3. Algebraic Knots $\$ 4. Classification

Case of n = 2: K_f is a 3-manifold.

 $\S1.$ An Example $\S2.$ General Results $\S3.$ Algebraic Knots $\,\S4.$ Classification

Case of n = 2: K_f is a 3-manifold.

Theorem 3.5 (Mumford) K_f is simply connected iff $V = f^{-1}(0)$ is non-singular at **0**.

 $\S1.$ An Example $~\S2.$ General Results $~\S3.$ Algebraic Knots $~\S4.$ Classification

Case of n = 2: K_f is a 3-manifold.

Theorem 3.5 (Mumford)

 K_f is simply connected iff $V = f^{-1}(0)$ is non-singular at **0**.

In fact, according to the theory of resolution of surface singularities, K_f is a so-called **graph manifold**; i.e., it is a union of circle bundles over surfaces attached along their torus boundaries.

 $\S1.$ An Example $~\S2.$ General Results $~\S3.$ Algebraic Knots $~\S4.$ Classification

Case of n = 2: K_f is a 3-manifold.

Theorem 3.5 (Mumford)

 K_f is simply connected iff $V = f^{-1}(0)$ is non-singular at **0**.

In fact, according to the theory of resolution of surface singularities, K_f is a so-called **graph manifold**; i.e., it is a union of circle bundles over surfaces attached along their torus boundaries. Mumford's result corresponds to the solution to the Poincaré Conjecture for algebraic 3-knots.

 $\S1.$ An Example $~\S2.$ General Results $~\S3.$ Algebraic Knots $~\S4.$ Classification

Case of n = 2: K_f is a 3-manifold.

Theorem 3.5 (Mumford)

 K_f is simply connected iff $V = f^{-1}(0)$ is non-singular at **0**.

In fact, according to the theory of resolution of surface singularities, K_f is a so-called **graph manifold**; i.e., it is a union of circle bundles over surfaces attached along their torus boundaries. Mumford's result corresponds to the solution to the Poincaré Conjecture for algebraic 3-knots.

Furthermore, K_f is always irreducible as a 3-manifold. (But, as a 3-knot, it can be decomposable.)

1. An Example 2. General Results 3. Algebraic Knots 4. Classification

Milnor (1956) discovered exotic smooth structures on S^7 .

 $\S1.$ An Example $\S2.$ General Results $\S3.$ Algebraic Knots $\,\S4.$ Classification

Milnor (1956) discovered exotic smooth structures on S^7 .

Kervaire–Milnor (1963)

For dimension $j \ge 5$, the smooth structures on the sphere S^j form an additive group Θ_j under connected sum. Furthermore, Θ_j is a finite abelian group.

 $\S1.$ An Example $\S2.$ General Results $\S3.$ Algebraic Knots $\,\S4.$ Classification

Milnor (1956) discovered exotic smooth structures on S^7 .

Kervaire–Milnor (1963)

For dimension $j \ge 5$, the smooth structures on the sphere S^j form an additive group Θ_j under connected sum. Furthermore, Θ_j is a finite abelian group.

We have an important subgroup bP_{j+1} , which consists of smooth structures that bound a compact parallelizable (j + 1)-dim. manifold.

\$1. An Example \$2. General Results \$3. Algebraic Knots \$4. Classification

Milnor (1956) discovered exotic smooth structures on S^7 .

Kervaire–Milnor (1963)

For dimension $j \ge 5$, the smooth structures on the sphere S^j form an additive group Θ_j under connected sum. Furthermore, Θ_j is a finite abelian group.

We have an important subgroup bP_{j+1} , which consists of smooth structures that bound a compact parallelizable (j + 1)-dim. manifold. For $k \ge 1$ and $m \ge 2$, set

$$f = z_1^2 + \dots + z_{2m-1}^2 + z_{2m}^3 + z_{2m+1}^{6k-1}$$

 $\S1.$ An Example $\S2.$ General Results $\S3.$ Algebraic Knots $\,\S4.$ Classification

Milnor (1956) discovered exotic smooth structures on S^7 .

Kervaire–Milnor (1963)

For dimension $j \ge 5$, the smooth structures on the sphere S^j form an additive group Θ_j under connected sum. Furthermore, Θ_j is a finite abelian group.

We have an important subgroup bP_{j+1} , which consists of smooth structures that bound a compact parallelizable (j + 1)-dim. manifold. For $k \ge 1$ and $m \ge 2$, set

$$f = z_1^2 + \dots + z_{2m-1}^2 + z_{2m}^3 + z_{2m+1}^{6k-1}$$

Theorem 3.6 (Brieskorn–Hirzebruch, 1966)

The (4m-1)-dimensional manifold K_f is homeomorphic to a sphere. Furthermore, they exhaust all the differentiable structures in bP_{4m} .

 $\S1.$ An Example $\S2.$ General Results $\S3.$ Algebraic Knots $\,\S4.$ Classification

In general, $\varphi_f : S_{\varepsilon}^{2n+1} \setminus K_f \to S^1$ is a smooth fibration with fiber $\operatorname{Int} F_f$.

 $\S1.$ An Example $\S2.$ General Results $\S3.$ Algebraic Knots $\,\S4.$ Classification

In general, $\varphi_f : S_{\varepsilon}^{2n+1} \setminus K_f \to S^1$ is a smooth fibration with fiber $\operatorname{Int} F_f$. Let $h : \operatorname{Int} F_f \xrightarrow{\cong} \operatorname{Int} F_f$ be the **geometric monodromy**. We denote by $\Delta_f(t)$ the characteristic polynomial of

 $h_*: H_n(\operatorname{Int} F_f; \mathbf{Z}) \to H_n(\operatorname{Int} F_f; \mathbf{Z}).$

 $\S1.$ An Example $~\S2.$ General Results $~\S3.$ Algebraic Knots $~\S4.$ Classification

In general, $\varphi_f : S_{\varepsilon}^{2n+1} \setminus K_f \to S^1$ is a smooth fibration with fiber $\operatorname{Int} F_f$. Let $h : \operatorname{Int} F_f \xrightarrow{\cong} \operatorname{Int} F_f$ be the **geometric monodromy**. We denote by $\Delta_f(t)$ the characteristic polynomial of

 $h_*: H_n(\operatorname{Int} F_f; \mathbf{Z}) \to H_n(\operatorname{Int} F_f; \mathbf{Z}).$

It is known that $\Delta_f(t)$ coincides with the **Alexander polynomial** of K_f .

 $\S1.$ An Example $~\S2.$ General Results $~\S3.$ Algebraic Knots $~\S4.$ Classification

In general, $\varphi_f : S_{\varepsilon}^{2n+1} \setminus K_f \to S^1$ is a smooth fibration with fiber $\operatorname{Int} F_f$. Let $h : \operatorname{Int} F_f \xrightarrow{\cong} \operatorname{Int} F_f$ be the **geometric monodromy**. We denote by $\Delta_f(t)$ the characteristic polynomial of

 $h_*: H_n(\operatorname{Int} F_f; \mathbf{Z}) \to H_n(\operatorname{Int} F_f; \mathbf{Z}).$

It is known that $\Delta_f(t)$ coincides with the **Alexander polynomial** of K_f .

Theorem 3.7 (Milnor, 1968) For $n \neq 2$, K_f is homeomorphic to S^{2n-1} if and only of $\Delta_f(1) = \pm 1$.

 $\S1.$ An Example $~\S2.$ General Results $~\S3.$ Algebraic Knots $~\S4.$ Classification

In general, $\varphi_f : S_{\varepsilon}^{2n+1} \setminus K_f \to S^1$ is a smooth fibration with fiber $\operatorname{Int} F_f$. Let $h : \operatorname{Int} F_f \xrightarrow{\cong} \operatorname{Int} F_f$ be the **geometric monodromy**. We denote by $\Delta_f(t)$ the characteristic polynomial of

 $h_*: H_n(\operatorname{Int} F_f; \mathbf{Z}) \to H_n(\operatorname{Int} F_f; \mathbf{Z}).$

It is known that $\Delta_f(t)$ coincides with the **Alexander polynomial** of K_f .

Theorem 3.7 (Milnor, 1968) For $n \neq 2$, K_f is homeomorphic to S^{2n-1} if and only of $\Delta_f(1) = \pm 1$.

When $K_f \approx S^{2n-1}$ (homeo.), the diffeomorphism type of K_f is determined by (1) the signature of F_f if n is even, and (2) $\Delta_f(-1) \pmod{8}$ if n is odd. §1. An Example §2. General Results §3. Algebraic Knots §4. Classification

\S **4.** Classification

Seifert form

 $\S1.$ An Example $\S2.$ General Results $\S3.$ Algebraic Knots $\,\S4.$ Classification

The **Seifert form** associated with f is the bilinear form

$$L_f: H_n(F_f; \mathbf{Z}) \times H_n(F_f; \mathbf{Z}) \to \mathbf{Z}$$
 define by
 $L_f(\alpha, \beta) = lk(a_+, b),$ where

Seifert form

 $\S1.$ An Example $~\S2.$ General Results $~\S3.$ Algebraic Knots $~\S4.$ Classification

The **Seifert form** associated with f is the bilinear form

 $L_f: H_n(F_f; \mathbf{Z}) \times H_n(F_f; \mathbf{Z}) \to \mathbf{Z}$ define by

 $L_f(\alpha, \beta) = \operatorname{lk}(a_+, b), \text{ where}$

- \blacksquare and b are n-cycles representing $\alpha, \beta \in H_n(F_f; \mathbb{Z})$,
- a_+ is obtained by pushing a into the positive normal direction of $F_f \subset S_{\epsilon}^{2n+1}$,

Ik is the linking number in S_{ε}^{2n+1} .

Seifert form

 $\S1.$ An Example $~\S2.$ General Results $~\S3.$ Algebraic Knots $~\S4.$ Classification

The **Seifert form** associated with f is the bilinear form

 $L_f: H_n(F_f; \mathbf{Z}) \times H_n(F_f; \mathbf{Z}) \to \mathbf{Z}$ define by

 $L_f(\alpha, \beta) = \operatorname{lk}(a_+, b), \text{ where}$

- \blacksquare and b are n-cycles representing $\alpha, \beta \in H_n(F_f; \mathbb{Z})$,
- a_+ is obtained by pushing a into the positive normal direction of $F_f \subset S_{\epsilon}^{2n+1}$,

Ik is the linking number in S_{ε}^{2n+1} .

Theorem 4.1 (Durfee, Kato, 1974) For $n \ge 3$, two algebraic knots K_f and K_g are isotopic \iff the Seifert forms L_f and L_g are isomorphic.

Simple fibered knots

 $\S1.$ An Example $\S2.$ General Results $\S3.$ Algebraic Knots $~\S4.$ Classification

A (2n-1)-dim. fibered knot K in S^{2n+1} is **simple** if (1) K is (n-2)-connected, and (2) the fibers are (n-1)-connected.

Simple fibered knots

 $\S1.$ An Example $~\S2.$ General Results $~\S3.$ Algebraic Knots $~\S4.$ Classification

A (2n-1)-dim. fibered knot K in S^{2n+1} is **simple** if (1) K is (n-2)-connected, and (2) the fibers are (n-1)-connected.

In fact, we have the following.

Theorem 4.2 (Durfee, Kato, 1974) For $n \ge 3$, (2n - 1)-dim. simple fibered knots are in one-to-one correspondence with the isomorphism classes of integral unimodular bilinear forms.

Simple fibered knots

 $\S1.$ An Example $~\S2.$ General Results $~\S3.$ Algebraic Knots $~\S4.$ Classification

A (2n-1)-dim. fibered knot K in S^{2n+1} is **simple** if (1) K is (n-2)-connected, and (2) the fibers are (n-1)-connected.

In fact, we have the following.

Theorem 4.2 (Durfee, Kato, 1974) For $n \ge 3$, (2n - 1)-dim. simple fibered knots are in one-to-one correspondence with the isomorphism classes of integral unimodular bilinear forms.

For n = 1, 2, the above theorem does not hold.

Theorem 4.3 (S, 1999) For every $k \ge 2$, there exist simple fibered 3-knots K_1, K_2, \ldots, K_k s.t.

(1) they are all diffeomorphic as abstract 3-manifolds,

(2) their Seifert forms are all isomorphic,

(3) K_i and K_j are not isotopic if $i \neq j$.

μ -constant deformation

 $\S1.$ An Example $\S2.$ General Results $~\S3.$ Algebraic Knots $~\S4.$ Classification

 $f_t(z_1, z_2, ..., z_{n+1}), t \in (-\delta, \delta).$ A family of complex polynomials with isolated critical points at **0**.

μ -constant deformation

 $\S1.$ An Example $~\S2.$ General Results $~\S3.$ Algebraic Knots $~\S4.$ Classification

 $f_t(z_1, z_2, \ldots, z_{n+1}), t \in (-\delta, \delta).$

A family of complex polynomials with isolated critical points at 0. We say that f_t defines a μ -constant deformation if the Milnor number $\mu(f_t)$ is constant for t.

μ -constant deformation

 $\S1.$ An Example $~\S2.$ General Results $~\S3.$ Algebraic Knots $~\S4.$ Classification

 $f_t(z_1, z_2, \ldots, z_{n+1}), t \in (-\delta, \delta).$

A family of complex polynomials with isolated critical points at 0. We say that f_t defines a μ -constant deformation if the Milnor number $\mu(f_t)$ is constant for t.

Theorem 4.4 (Lê–Ramanujam, 1976) For $n \neq 2$, μ -constant deformation is topologically constant, i.e., K_{f_t} are all isotopic.

For n = 2, this is still an open problem. (Mainly due to the failure of the h-cobordism theorem in low dimensions.)

 $\S1.$ An Example $\S2.$ General Results $\S3.$ Algebraic Knots $\,\S4.$ Classification

For $a_1, a_2, ..., a_{n+1} \ge 2$, set

$$f(z_1, z_2, \dots, z_{n+1}) = z_1^{a_1} + z_2^{a_2} + \dots + z_{n+1}^{a_{n+1}}$$

which is called a Brieskorn–Pham type polynomial.

 $\S1.$ An Example $\$ 2. General Results $\$ 3. Algebraic Knots $\$ 4. Classification

For $a_1, a_2, ..., a_{n+1} \ge 2$, set

$$f(z_1, z_2, \dots, z_{n+1}) = z_1^{a_1} + z_2^{a_2} + \dots + z_{n+1}^{a_{n+1}},$$

which is called a **Brieskorn–Pham type polynomial**. The integers $a_1, a_2, \ldots, a_{n+1}$ are called the **exponents**.

 $\S1.$ An Example $\$ 2. General Results $\$ 3. Algebraic Knots $\$ 4. Classification

For $a_1, a_2, ..., a_{n+1} \ge 2$, set

$$f(z_1, z_2, \dots, z_{n+1}) = z_1^{a_1} + z_2^{a_2} + \dots + z_{n+1}^{a_{n+1}},$$

which is called a **Brieskorn–Pham type polynomial**. The integers $a_1, a_2, \ldots, a_{n+1}$ are called the **exponents**. Seifert forms for algebraic knots associated with Brieskorn–Pham type polynomials are known.

 $\S1.$ An Example $~\S2.$ General Results $~\S3.$ Algebraic Knots $~\S4.$ Classification

For $a_1, a_2, ..., a_{n+1} \ge 2$, set

$$f(z_1, z_2, \dots, z_{n+1}) = z_1^{a_1} + z_2^{a_2} + \dots + z_{n+1}^{a_{n+1}},$$

which is called a Brieskorn–Pham type polynomial.

The integers $a_1, a_2, \ldots, a_{n+1}$ are called the **exponents**.

Seifert forms for algebraic knots associated with Brieskorn–Pham type polynomials are known.

In fact, we have the following.

Theorem 4.5 (Yoshinaga–Suzuki, 1978) For two Brieskorn–Pham type polynomials f and g, the following three are equivanent. (1) K_f and K_g are isotopic. (2) f and g have the same set of exponents. (3) $\Delta_f(t) = \Delta_g(t)$.

 $\S1.$ An Example $\S2.$ General Results $\S3.$ Algebraic Knots $\S4.$ Classification

However, in general, it is extremely difficult to calculate the Seifert form of a given algebraic knot.

 $\S1.$ An Example $\S2.$ General Results $\S3.$ Algebraic Knots $\S4.$ Classification

However, in general, it is extremely difficult to calculate the Seifert form of a given algebraic knot. The following is still an important open problem.

Problem 4.6 For a given f, compute the Seifert form of the associated algebraic knot K_f .

 $\S1.$ An Example $~\S2.$ General Results $~\S3.$ Algebraic Knots $~\S4.$ Classification

- Complex polynomial $f(z_1, z_2, \ldots, z_{n+1})$ with an isolated critical point at 0 gives rise to a fibered knot $K_f \subset S^{2n+1}$, called the algebraic knot associated with f.
- For n = 1, K_f is an **iterated torus knot**, or a link whose components are iterated torus knots. They are easily classified.
- For $n \ge 3$, K_f is completely determined by its **Seifert form**, but its explicit calculation is unknown in general.
- For n = 2, the situation is difficult and it is much harder to understand algebraic 3-knots in S^5 .
- Exotic spheres arise around singularities associated with simple polynomials, called Brieskorn–Pham type polynomials. They are sources of interesting examples of high dimensional knots.

$\S1.$ An Example $\S2.$ General Results $\S3.$ Algebraic Knots $\S4.$ Classification

Thank you!