Survey on knots associated

 with
complex hypersurface singularities

Osamu Saeki
(Institute of Mathematics for Industry, Kyushu University)
September 15, 2011

§1. An Example

Example

§1. An Example §2. General Results §3. Algebraic Knots §4. Classification

$$
\begin{aligned}
& f\left(z_{1}, z_{2}\right)=z_{1}^{2}-z_{2}^{3} \\
& V=\left\{\left(z_{1}, z_{2}\right) \in \mathbf{C}^{2} \mid f\left(z_{1}, z_{2}\right)=0\right\} \quad \text { complex curve }
\end{aligned}
$$

Example

$$
\begin{aligned}
& f\left(z_{1}, z_{2}\right)=z_{1}^{2}-z_{2}^{3} \\
& V=\left\{\left(z_{1}, z_{2}\right) \in \mathbf{C}^{2} \mid f\left(z_{1}, z_{2}\right)=0\right\} \quad \text { complex curve } \\
& S_{\varepsilon}^{3}=\left\{\left.\left(z_{1}, z_{2}\right) \in \mathbf{C}^{2}| | z_{1}\right|^{2}+\left|z_{2}\right|^{2}=\varepsilon^{2}\right\}, 0<\varepsilon \ll 1 \\
& K=S_{\varepsilon}^{3} \cap V \subset S_{\varepsilon}^{3}
\end{aligned}
$$

Example

$$
\begin{aligned}
& f\left(z_{1}, z_{2}\right)=z_{1}^{2}-z_{2}^{3} \\
& V=\left\{\left(z_{1}, z_{2}\right) \in \mathbf{C}^{2} \mid f\left(z_{1}, z_{2}\right)=0\right\} \quad \text { complex curve } \\
& S_{\varepsilon}^{3}=\left\{\left.\left(z_{1}, z_{2}\right) \in \mathbf{C}^{2}| | z_{1}\right|^{2}+\left|z_{2}\right|^{2}=\varepsilon^{2}\right\}, 0<\varepsilon \ll 1 \\
& K=S_{\varepsilon}^{3} \cap V \subset S_{\varepsilon}^{3}
\end{aligned}
$$

K is a knot in S^{3} !

A knot

$\exists!r_{1}, r_{2}>0$ s.t. $r_{1}^{2}=r_{2}^{3}, \quad r_{1}^{2}+r_{2}^{2}=\varepsilon^{2}$

A knot

$\exists!r_{1}, r_{2}>0$ s.t. $r_{1}^{2}=r_{2}^{3}, \quad r_{1}^{2}+r_{2}^{2}=\varepsilon^{2}$

$$
\begin{aligned}
K & =\left\{\left(z_{1}, z_{2}\right) \in S_{\varepsilon}^{3} \mid z_{1}^{2}=z_{2}^{3}\right\} \\
& =\left\{\left(r_{1} e^{3 \pi i t}, r_{2} e^{2 \pi i t}\right) \in \mathbf{C}^{2} \mid t \in \mathbf{R}\right\} \subset S_{r_{1}}^{1} \times S_{r_{2}}^{1} \subset S_{\varepsilon}^{3}
\end{aligned}
$$

A knot

$\exists!r_{1}, r_{2}>0$ s.t. $r_{1}^{2}=r_{2}^{3}, \quad r_{1}^{2}+r_{2}^{2}=\varepsilon^{2}$

$$
\begin{aligned}
K & =\left\{\left(z_{1}, z_{2}\right) \in S_{\varepsilon}^{3} \mid z_{1}^{2}=z_{2}^{3}\right\} \\
& =\left\{\left(r_{1} e^{3 \pi i t}, r_{2} e^{2 \pi i t}\right) \in \mathbf{C}^{2} \mid t \in \mathbf{R}\right\} \subset S_{r_{1}}^{1} \times S_{r_{2}}^{1} \subset S_{\varepsilon}^{3}
\end{aligned}
$$

This is a trefoil knot!

A knot

$\exists!r_{1}, r_{2}>0$ s.t. $r_{1}^{2}=r_{2}^{3}, \quad r_{1}^{2}+r_{2}^{2}=\varepsilon^{2}$

$$
\begin{aligned}
K & =\left\{\left(z_{1}, z_{2}\right) \in S_{\varepsilon}^{3} \mid z_{1}^{2}=z_{2}^{3}\right\} \\
& =\left\{\left(r_{1} e^{3 \pi i t}, r_{2} e^{2 \pi i t}\right) \in \mathbf{C}^{2} \mid t \in \mathbf{R}\right\} \subset S_{r_{1}}^{1} \times S_{r_{2}}^{1} \subset S_{\varepsilon}^{3}
\end{aligned}
$$

This is a trefoil knot!

Trefoil knot is a fibered knot.
$f /|f|: S_{\varepsilon}^{3} \backslash K \rightarrow S^{1} \subset \mathbf{C} \quad$ locally trivial fibration

§2. General Results

Complex hypersurface

$f=f\left(z_{1}, z_{2}, \ldots, z_{n+1}\right)$ complex polynomial with $f(\mathbf{0})=0$ s.t. $\mathbf{0}$ is an isolated critical point of f, i.e.,

$$
\frac{\partial f}{\partial z_{1}}(z)=\cdots=\frac{\partial f}{\partial z_{n+1}}(z)=0 \Longleftrightarrow z=\mathbf{0}
$$

in a neighborhood of 0 .

Complex hypersurface

$f=f\left(z_{1}, z_{2}, \ldots, z_{n+1}\right)$ complex polynomial with $f(\mathbf{0})=0$
s.t. $\mathbf{0}$ is an isolated critical point of f, i.e.,

$$
\frac{\partial f}{\partial z_{1}}(z)=\cdots=\frac{\partial f}{\partial z_{n+1}}(z)=0 \Longleftrightarrow z=\mathbf{0}
$$

in a neighborhood of 0 .
$V=f^{-1}(0) \subset \mathbf{C}^{n+1}$: complex hypersurface
$K_{f}=f^{-1}(0) \cap S_{\varepsilon}^{2 n+1} \subset S_{\varepsilon}^{2 n+1}$: algebraic knot associated with f,

$$
0<\varepsilon \ll 1
$$

Complex hypersurface

$f=f\left(z_{1}, z_{2}, \ldots, z_{n+1}\right)$ complex polynomial with $f(\mathbf{0})=0$
s.t. $\mathbf{0}$ is an isolated critical point of f, i.e.,

$$
\frac{\partial f}{\partial z_{1}}(z)=\cdots=\frac{\partial f}{\partial z_{n+1}}(z)=0 \Longleftrightarrow z=0
$$

in a neighborhood of $\mathbf{0}$.
$V=f^{-1}(0) \subset \mathbf{C}^{n+1}$: complex hypersurface
$K_{f}=f^{-1}(0) \cap S_{\varepsilon}^{2 n+1} \subset S_{\varepsilon}^{2 n+1}$: algebraic knot associated with f,

$$
0<\varepsilon \ll 1 .
$$

K_{f} is a $(2 n-1)$-dim. smooth closed manifold embedded in $S_{\varepsilon}^{2 n+1}$.

Complex hypersurface

$f=f\left(z_{1}, z_{2}, \ldots, z_{n+1}\right)$ complex polynomial with $f(\mathbf{0})=0$
s.t. $\mathbf{0}$ is an isolated critical point of f, i.e.,

$$
\frac{\partial f}{\partial z_{1}}(z)=\cdots=\frac{\partial f}{\partial z_{n+1}}(z)=0 \Longleftrightarrow z=0
$$

in a neighborhood of $\mathbf{0}$.
$V=f^{-1}(0) \subset \mathbf{C}^{n+1}$: complex hypersurface
$K_{f}=f^{-1}(0) \cap S_{\varepsilon}^{2 n+1} \subset S_{\varepsilon}^{2 n+1}$: algebraic knot associated with f,

$$
0<\varepsilon \ll 1
$$

K_{f} is a $(2 n-1)$-dim. smooth closed manifold embedded in $S_{\varepsilon}^{2 n+1}$.
In the following, we always assume that $\varepsilon>0$ is sufficiently small.

Cone structure theorem

§1. An Example §2. General Results §3. Algebraic Knots §4. Classification

Cone structure theorem

§1. An Example §2. General Results §3. Algebraic Knots §4. Classification

Theorem 2.1 (Milnor, 1968)
$\left(D_{\varepsilon}^{2 n+2}, f^{-1}(0) \cap D_{\varepsilon}^{2 n+2}\right) \approx \operatorname{Cone}\left(S_{\varepsilon}^{2 n+1}, K_{f}\right) \quad$ (homeo.)

Cone structure theorem

§1. An Example §2. General Results §3. Algebraic Knots §4. Classification

Theorem 2.1 (Milnor, 1968)
$\left(D_{\varepsilon}^{2 n+2}, f^{-1}(0) \cap D_{\varepsilon}^{2 n+2}\right) \approx \operatorname{Cone}\left(S_{\varepsilon}^{2 n+1}, K_{f}\right) \quad$ (homeo.)
Furthermore, $\left(S_{\varepsilon}^{2 n+1}, K_{f}\right)$, or the isotopy class of K_{f} in $S_{\varepsilon}^{2 n+1}$, does not depend on $0<\varepsilon \ll 1$.

Milnor's fibration theorem

§1. An Example §2. General Results §3. Algebraic Knots §4. Classification

Theorem 2.2 (Milnor, 1968)
(1) $\varphi_{f}=f /|f|: S_{\varepsilon}^{2 n+1} \backslash K_{f} \rightarrow S^{1}$ is a locally trivial fibration.

Milnor's fibration theorem

§1. An Example §2. General Results §3. Algebraic Knots §4. Classification

Theorem 2.2 (Milnor, 1968)
(1) $\varphi_{f}=f /|f|: S_{\varepsilon}^{2 n+1} \backslash K_{f} \rightarrow S^{1}$ is a locally trivial fibration.
(2) K_{f} is $(n-2)$-connected, i.e., $\pi_{i}\left(K_{f}\right)=0 \forall i \leq n-2$.

Milnor's fibration theorem

Theorem 2.2 (Milnor, 1968)
(1) $\varphi_{f}=f /|f|: S_{\varepsilon}^{2 n+1} \backslash K_{f} \rightarrow S^{1}$ is a locally trivial fibration.
(2) K_{f} is $(n-2)$-connected, i.e., $\pi_{i}\left(K_{f}\right)=0 \forall i \leq n-2$.
(3) Fibers of φ_{f} are $(n-1)$-connected.

Milnor's fibration theorem

Theorem 2.2 (Milnor, 1968)
(1) $\varphi_{f}=f /|f|: S_{\varepsilon}^{2 n+1} \backslash K_{f} \rightarrow S^{1}$ is a locally trivial fibration.
(2) K_{f} is $(n-2)$-connected, i.e., $\pi_{i}\left(K_{f}\right)=0 \forall i \leq n-2$.
(3) Fibers of φ_{f} are $(n-1)$-connected.

Milnor's fibration theorem

Theorem 2.2 (Milnor, 1968)

(1) $\varphi_{f}=f /|f|: S_{\varepsilon}^{2 n+1} \backslash K_{f} \rightarrow S^{1}$ is a locally trivial fibration.
(2) K_{f} is $(n-2)$-connected, i.e., $\pi_{i}\left(K_{f}\right)=0 \forall i \leq n-2$.
(3) Fibers of φ_{f} are $(n-1)$-connected.

K_{f} is a fibered knot, but K_{f} may not be a sphere.

§3. Algebraic Knots

Algebraic knots

§1. An Example §2. General Results §3. Algebraic Knots §4. Classification
$K_{f} \subset S_{\varepsilon}^{2 n+1}$ is called the algebraic knot associated with f.

Algebraic knots

§1. An Example §2. General Results §3. Algebraic Knots §4. Classification
$K_{f} \subset S_{\varepsilon}^{2 n+1}$ is called the algebraic knot associated with f.
We put $F_{f}=\overline{\varphi_{f}^{-1}(1)}=\varphi_{f}^{-1}(1) \cup K_{f}$, which is called the Milnor fiber.

Algebraic knots

§1. An Example §2. General Results §3. Algebraic Knots §4. Classification
$K_{f} \subset S_{\varepsilon}^{2 n+1}$ is called the algebraic knot associated with f.
We put $F_{f}=\overline{\varphi_{f}^{-1}(1)}=\varphi_{f}^{-1}(1) \cup K_{f}$, which is called the Milnor fiber. $\partial F_{f}=K_{f}: F_{f}$ is a Seifert manifold for K_{f}.

Algebraic knots

$K_{f} \subset S_{\varepsilon}^{2 n+1}$ is called the algebraic knot associated with f.
We put $F_{f}=\overline{\varphi_{f}^{-1}(1)}=\varphi_{f}^{-1}(1) \cup K_{f}$, which is called the Milnor fiber.
$\partial F_{f}=K_{f}: F_{f}$ is a Seifert manifold for K_{f}.
$\operatorname{dim} K_{f}=2 n-1, \operatorname{dim} F_{f}=2 n$.

Algebraic knots

$K_{f} \subset S_{\varepsilon}^{2 n+1}$ is called the algebraic knot associated with f.
We put $F_{f}=\overline{\varphi_{f}^{-1}(1)}=\varphi_{f}^{-1}(1) \cup K_{f}$, which is called the Milnor fiber.
$\partial F_{f}=K_{f}: F_{f}$ is a Seifert manifold for K_{f}.
$\operatorname{dim} K_{f}=2 n-1, \operatorname{dim} F_{f}=2 n$.
Algebraic knots are odd dim. fibered knots that are "highly connected".

Algebraic knots

$K_{f} \subset S_{\varepsilon}^{2 n+1}$ is called the algebraic knot associated with f.
We put $F_{f}=\overline{\varphi_{f}^{-1}(1)}=\varphi_{f}^{-1}(1) \cup K_{f}$, which is called the Milnor fiber.
$\partial F_{f}=K_{f}: F_{f}$ is a Seifert manifold for K_{f}.
$\operatorname{dim} K_{f}=2 n-1, \operatorname{dim} F_{f}=2 n$.
Algebraic knots are odd dim. fibered knots that are "highly connected". $\widetilde{H}_{i}\left(K_{f} ; \mathbf{Z}\right)=0$ for $i \neq n-1, n$.

Algebraic knots

$K_{f} \subset S_{\varepsilon}^{2 n+1}$ is called the algebraic knot associated with f.
We put $F_{f}=\overline{\varphi_{f}^{-1}(1)}=\varphi_{f}^{-1}(1) \cup K_{f}$, which is called the Milnor fiber.
$\partial F_{f}=K_{f}: F_{f}$ is a Seifert manifold for K_{f}.
$\operatorname{dim} K_{f}=2 n-1, \operatorname{dim} F_{f}=2 n$.
Algebraic knots are odd dim. fibered knots that are "highly connected". $\widetilde{H}_{i}\left(K_{f} ; \mathbf{Z}\right)=0$ for $i \neq n-1, n$.
$F_{f} \simeq \vee^{\mu} S^{n}$: homotopy equivalent to a bouquet of n-spheres.
The number μ is called the Milnor number.

Algebraic knots

$K_{f} \subset S_{\varepsilon}^{2 n+1}$ is called the algebraic knot associated with f.
We put $F_{f}=\overline{\varphi_{f}^{-1}(1)}=\varphi_{f}^{-1}(1) \cup K_{f}$, which is called the Milnor fiber.
$\partial F_{f}=K_{f}: F_{f}$ is a Seifert manifold for K_{f}.
$\operatorname{dim} K_{f}=2 n-1, \operatorname{dim} F_{f}=2 n$.
Algebraic knots are odd dim. fibered knots that are "highly connected". $\widetilde{H}_{i}\left(K_{f} ; \mathbf{Z}\right)=0$ for $i \neq n-1, n$.
$F_{f} \simeq \vee^{\mu} S^{n}$: homotopy equivalent to a bouquet of n-spheres.
The number μ is called the Milnor number.
$n=1$: fibered link in S^{3}
$n=2$: connected 3 -manifold in S^{5} with simply connected fibers
$n=3$: simply connected 5 -manifold in S^{7} with 2 -connected fibers

Two-variable case

Case of $n=1: \quad K_{f}$ is a classical link in S_{ε}^{3}.
Suppose f is irreducible at 0 . Then K_{f} is a knot.

Two-variable case

Case of $n=1: \quad K_{f}$ is a classical link in S_{ε}^{3}.
Suppose f is irreducible at 0 . Then K_{f} is a knot. $f\left(z_{1}, z_{2}\right)=0 \Leftarrow$ We can "solve" z_{2} as a function of z_{1} (polynomial with rational exponents), which is called a Puiseux expansion.

Two-variable case

Case of $n=1: \quad K_{f}$ is a classical link in S_{ε}^{3}.
Suppose f is irreducible at 0 . Then K_{f} is a knot.
$f\left(z_{1}, z_{2}\right)=0 \Leftarrow$ We can "solve" z_{2} as a function of z_{1} (polynomial with rational exponents), which is called a Puiseux expansion.

Proposition 3.1 K_{f} is a certain iterated torus knot, i.e., it is a cable of a cable of a ... of a torus knot.

Two-variable case

Case of $n=1: \quad K_{f}$ is a classical link in S_{ε}^{3}.
Suppose f is irreducible at 0 . Then K_{f} is a knot.
$f\left(z_{1}, z_{2}\right)=0 \Leftarrow$ We can "solve" z_{2} as a function of z_{1} (polynomial with rational exponents), which is called a Puiseux expansion.

Proposition 3.1 K_{f} is a certain iterated torus knot, i.e., it is a cable of a cable of a ... of a torus knot.

In particular, K_{f} is a prime knot.

Two-variable case

Case of $n=1: \quad K_{f}$ is a classical link in S_{ε}^{3}.
Suppose f is irreducible at 0 . Then K_{f} is a knot.
$f\left(z_{1}, z_{2}\right)=0 \Leftarrow$ We can "solve" z_{2} as a function of z_{1} (polynomial with rational exponents), which is called a Puiseux expansion.

Proposition $3.1 K_{f}$ is a certain iterated torus knot, i.e., it is a cable of a cable of a ... of a torus knot.

In particular, K_{f} is a prime knot. However, in higher dimensions, this is no longer true.

Theorem 3.2 (Michel-Weber, 1982 ($n \geq 3$); S, 1987 ($n=2$)) There exist decomposable algebraic $(2 n-1)$-knots.

General two-variable case

Let us consider the general case where f may not be irreducible at 0 . According to Zariski's theory of resolution of curve singularities, we have

General two-variable case

Let us consider the general case where f may not be irreducible at 0 . According to Zariski's theory of resolution of curve singularities, we have

Proposition 3.3 The isotopy class of the link K_{f} is completely determined by the components and their linking numbers.

General two-variable case

Let us consider the general case where f may not be irreducible at 0 . According to Zariski's theory of resolution of curve singularities, we have

Proposition 3.3 The isotopy class of the link K_{f} is completely determined by the components and their linking numbers.

We also have the following
Theorem 3.4 (Yamamoto, 1984)
Two algebraic links are isotopic iff they have the same multi-variable Alexander polynomials.

Three-variable case

§1. An Example §2. General Results §3. Algebraic Knots §4. Classification

Case of $n=2: K_{f}$ is a 3-manifold.

Three-variable case

Case of $n=2: K_{f}$ is a 3-manifold.
Theorem 3.5 (Mumford)
K_{f} is simply connected iff $V=f^{-1}(0)$ is non-singular at 0 .

Three-variable case

Case of $n=2$: K_{f} is a 3-manifold.
Theorem 3.5 (Mumford)
K_{f} is simply connected iff $V=f^{-1}(0)$ is non-singular at 0 .

In fact, according to the theory of resolution of surface singularities, K_{f} is a so-called graph manifold; i.e., it is a union of circle bundles over surfaces attached along their torus boundaries.

Three-variable case

Case of $n=2$: K_{f} is a 3-manifold.
Theorem 3.5 (Mumford)
K_{f} is simply connected iff $V=f^{-1}(0)$ is non-singular at 0 .

In fact, according to the theory of resolution of surface singularities, K_{f} is a so-called graph manifold; i.e., it is a union of circle bundles over surfaces attached along their torus boundaries.
Mumford's result corresponds to the solution to the Poincaré Conjecture for algebraic 3-knots.

Three-variable case

Case of $n=2: K_{f}$ is a 3-manifold.
Theorem 3.5 (Mumford)
K_{f} is simply connected iff $V=f^{-1}(0)$ is non-singular at 0 .

In fact, according to the theory of resolution of surface singularities, K_{f} is a so-called graph manifold; i.e., it is a union of circle bundles over surfaces attached along their torus boundaries.
Mumford's result corresponds to the solution to the Poincaré Conjecture for algebraic 3-knots.

Furthermore, K_{f} is always irreducible as a 3 -manifold.
(But, as a 3 -knot, it can be decomposable.)

Exotic spheres

Milnor (1956) discovered exotic smooth structures on S^{7}.

Exotic spheres

Milnor (1956) discovered exotic smooth structures on S^{7}.
Kervaire-Milnor (1963)
For dimension $j \geq 5$, the smooth structures on the sphere S^{j} form an additive group Θ_{j} under connected sum.
Furthermore, Θ_{j} is a finite abelian group.

Exotic spheres

Milnor (1956) discovered exotic smooth structures on S^{7}.

Kervaire-Milnor (1963)

For dimension $j \geq 5$, the smooth structures on the sphere S^{j} form an additive group Θ_{j} under connected sum.
Furthermore, Θ_{j} is a finite abelian group.
We have an important subgroup $b P_{j+1}$, which consists of smooth structures that bound a compact parallelizable $(j+1)$-dim. manifold.

Exotic spheres

Milnor (1956) discovered exotic smooth structures on S^{7}.

Kervaire-Milnor (1963)

For dimension $j \geq 5$, the smooth structures on the sphere S^{j} form an additive group Θ_{j} under connected sum.
Furthermore, Θ_{j} is a finite abelian group.
We have an important subgroup $b P_{j+1}$, which consists of smooth structures that bound a compact parallelizable $(j+1)$-dim. manifold. For $k \geq 1$ and $m \geq 2$, set

$$
f=z_{1}^{2}+\cdots+z_{2 m-1}^{2}+z_{2 m}^{3}+z_{2 m+1}^{6 k-1}
$$

Exotic spheres

Milnor (1956) discovered exotic smooth structures on S^{7}.

Kervaire-Milnor (1963)

For dimension $j \geq 5$, the smooth structures on the sphere S^{j} form an additive group Θ_{j} under connected sum.
Furthermore, Θ_{j} is a finite abelian group.
We have an important subgroup $b P_{j+1}$, which consists of smooth structures that bound a compact parallelizable $(j+1)$-dim. manifold. For $k \geq 1$ and $m \geq 2$, set

$$
f=z_{1}^{2}+\cdots+z_{2 m-1}^{2}+z_{2 m}^{3}+z_{2 m+1}^{6 k-1}
$$

Theorem 3.6 (Brieskorn-Hirzebruch, 1966)
The $(4 m-1)$-dimensional manifold K_{f} is homeomorphic to a sphere.
Furthermore, they exhaust all the differentiable structures in $b P_{4 m}$.

Topological sphere

In general, $\varphi_{f}: S_{\varepsilon}^{2 n+1} \backslash K_{f} \rightarrow S^{1}$ is a smooth fibration with fiber $\operatorname{Int} F_{f}$.

Topological sphere

In general, $\varphi_{f}: S_{\varepsilon}^{2 n+1} \backslash K_{f} \rightarrow S^{1}$ is a smooth fibration with fiber $\operatorname{Int} F_{f}$. Let $h: \operatorname{Int} F_{f} \xrightarrow{\cong} \operatorname{Int} F_{f}$ be the geometric monodromy. We denote by $\Delta_{f}(t)$ the characteristic polynomial of

$$
h_{*}: H_{n}\left(\operatorname{Int} F_{f} ; \mathbf{Z}\right) \rightarrow H_{n}\left(\operatorname{Int} F_{f} ; \mathbf{Z}\right) .
$$

Topological sphere

In general, $\varphi_{f}: S_{\varepsilon}^{2 n+1} \backslash K_{f} \rightarrow S^{1}$ is a smooth fibration with fiber $\operatorname{Int} F_{f}$. Let $h: \operatorname{Int} F_{f} \xrightarrow{\cong} \operatorname{Int} F_{f}$ be the geometric monodromy.
We denote by $\Delta_{f}(t)$ the characteristic polynomial of

$$
h_{*}: H_{n}\left(\operatorname{Int} F_{f} ; \mathbf{Z}\right) \rightarrow H_{n}\left(\operatorname{Int} F_{f} ; \mathbf{Z}\right) .
$$

It is known that $\Delta_{f}(t)$ coincides with the Alexander polynomial of K_{f}.

Topological sphere

In general, $\varphi_{f}: S_{\varepsilon}^{2 n+1} \backslash K_{f} \rightarrow S^{1}$ is a smooth fibration with fiber $\operatorname{Int} F_{f}$. Let $h: \operatorname{Int} F_{f} \xrightarrow{\cong} \operatorname{Int} F_{f}$ be the geometric monodromy. We denote by $\Delta_{f}(t)$ the characteristic polynomial of

$$
h_{*}: H_{n}\left(\operatorname{Int} F_{f} ; \mathbf{Z}\right) \rightarrow H_{n}\left(\operatorname{Int} F_{f} ; \mathbf{Z}\right) .
$$

It is known that $\Delta_{f}(t)$ coincides with the Alexander polynomial of K_{f}.
Theorem 3.7 (Milnor, 1968) For $n \neq 2, K_{f}$ is homeomorphic to $S^{2 n-1}$ if and only of $\Delta_{f}(1)= \pm 1$.

Topological sphere

In general, $\varphi_{f}: S_{\varepsilon}^{2 n+1} \backslash K_{f} \rightarrow S^{1}$ is a smooth fibration with fiber $\operatorname{Int} F_{f}$. Let $h: \operatorname{Int} F_{f} \xrightarrow{\cong} \operatorname{Int} F_{f}$ be the geometric monodromy. We denote by $\Delta_{f}(t)$ the characteristic polynomial of

$$
h_{*}: H_{n}\left(\operatorname{Int} F_{f} ; \mathbf{Z}\right) \rightarrow H_{n}\left(\operatorname{Int} F_{f} ; \mathbf{Z}\right) .
$$

It is known that $\Delta_{f}(t)$ coincides with the Alexander polynomial of K_{f}.
Theorem 3.7 (Milnor, 1968) For $n \neq 2, K_{f}$ is homeomorphic to $S^{2 n-1}$ if and only of $\Delta_{f}(1)= \pm 1$.

When $K_{f} \approx S^{2 n-1}$ (homeo.), the diffeomorphism type of K_{f} is determined by
(1) the signature of F_{f} if n is even, and
(2) $\Delta_{f}(-1)(\bmod 8)$ if n is odd.

§4. Classification

Seifert form

The Seifert form associated with f is the bilinear form

$$
\begin{gathered}
L_{f}: H_{n}\left(F_{f} ; \mathbf{Z}\right) \times H_{n}\left(F_{f} ; \mathbf{Z}\right) \rightarrow \mathbf{Z} \quad \text { define by } \\
L_{f}(\alpha, \beta)=\operatorname{lk}\left(a_{+}, b\right), \quad \text { where }
\end{gathered}
$$

Seifert form

The Seifert form associated with f is the bilinear form

$$
\begin{gathered}
L_{f}: H_{n}\left(F_{f} ; \mathbf{Z}\right) \times H_{n}\left(F_{f} ; \mathbf{Z}\right) \rightarrow \mathbf{Z} \quad \text { define by } \\
L_{f}(\alpha, \beta)=\operatorname{lk}\left(a_{+}, b\right), \quad \text { where }
\end{gathered}
$$

■ a and b are n-cycles representing $\alpha, \beta \in H_{n}\left(F_{f} ; \mathbf{Z}\right)$,
■ a_{+}is obtained by pushing a into the positive normal direction of $F_{f} \subset S_{\varepsilon}^{2 n+1}$,

- lk is the linking number in $S_{\varepsilon}^{2 n+1}$.

The Seifert form associated with f is the bilinear form

$$
\begin{gathered}
L_{f}: H_{n}\left(F_{f} ; \mathbf{Z}\right) \times H_{n}\left(F_{f} ; \mathbf{Z}\right) \rightarrow \mathbf{Z} \quad \text { define by } \\
L_{f}(\alpha, \beta)=\operatorname{lk}\left(a_{+}, b\right), \quad \text { where }
\end{gathered}
$$

■ a and b are n-cycles representing $\alpha, \beta \in H_{n}\left(F_{f} ; \mathbf{Z}\right)$,

- a_{+}is obtained by pushing a into the positive normal direction of $F_{f} \subset S_{\varepsilon}^{2 n+1}$,
■ lk is the linking number in $S_{\varepsilon}^{2 n+1}$.
Theorem 4.1 (Durfee, Kato, 1974) For $n \geq 3$, two algebraic knots K_{f} and K_{g} are isotopic \Longleftrightarrow the Seifert forms L_{f} and L_{g} are isomorphic.

Simple fibered knots

A $(2 n-1)$-dim. fibered knot K in $S^{2 n+1}$ is simple if
(1) K is $(n-2)$-connected, and (2) the fibers are $(n-1)$-connected.

Simple fibered knots

A $(2 n-1)$-dim. fibered knot K in $S^{2 n+1}$ is simple if
(1) K is $(n-2)$-connected, and (2) the fibers are $(n-1)$-connected.

In fact, we have the following.
Theorem 4.2 (Durfee, Kato, 1974) For $n \geq 3$, ($2 n-1$)-dim. simple fibered knots are in one-to-one correspondence with the isomorphism classes of integral unimodular bilinear forms.

Simple fibered knots

A $(2 n-1)$-dim. fibered knot K in $S^{2 n+1}$ is simple if
(1) K is $(n-2)$-connected, and (2) the fibers are $(n-1)$-connected.

In fact, we have the following.
Theorem 4.2 (Durfee, Kato, 1974) For $n \geq 3$, ($2 n-1$)-dim. simple fibered knots are in one-to-one correspondence with the isomorphism classes of integral unimodular bilinear forms.

For $n=1,2$, the above theorem does not hold.
Theorem $4.3(\mathbf{S}, \mathbf{1 9 9 9})$ For every $k \geq 2$, there exist simple fibered 3-knots $K_{1}, K_{2}, \ldots, K_{k}$ s.t.
(1) they are all diffeomorphic as abstract 3-manifolds,
(2) their Seifert forms are all isomorphic,
(3) K_{i} and K_{j} are not isotopic if $i \neq j$.

μ-constant deformation

§1. An Example §2. General Results §3. Algebraic Knots §4. Classification
$f_{t}\left(z_{1}, z_{2}, \ldots, z_{n+1}\right), t \in(-\delta, \delta)$.
A family of complex polynomials with isolated critical points at 0 .

μ-constant deformation

§1. An Example §2. General Results §3. Algebraic Knots §4. Classification
$f_{t}\left(z_{1}, z_{2}, \ldots, z_{n+1}\right), t \in(-\delta, \delta)$.
A family of complex polynomials with isolated critical points at 0 .
We say that f_{t} defines a μ-constant deformation if the Milnor number $\mu\left(f_{t}\right)$ is constant for t.

μ-constant deformation

$f_{t}\left(z_{1}, z_{2}, \ldots, z_{n+1}\right), t \in(-\delta, \delta)$.
A family of complex polynomials with isolated critical points at 0 .
We say that f_{t} defines a μ-constant deformation if the Milnor number $\mu\left(f_{t}\right)$ is constant for t.

Theorem 4.4 (Lê-Ramanujam, 1976)
For $n \neq 2, \mu$-constant deformation is topologically constant, i.e., $K_{f_{t}}$ are all isotopic.

For $n=2$, this is still an open problem.
(Mainly due to the failure of the h-cobordism theorem in low dimensions.)

Brieskorn-Pham type polynomial

§1. An Example §2. General Results §3. Algebraic Knots §4. Classification

For $a_{1}, a_{2}, \ldots, a_{n+1} \geq 2$, set

$$
f\left(z_{1}, z_{2}, \ldots, z_{n+1}\right)=z_{1}^{a_{1}}+z_{2}^{a_{2}}+\cdots+z_{n+1}^{a_{n+1}}
$$

which is called a Brieskorn-Pham type polynomial.

Brieskorn-Pham type polynomial

§1. An Example §2. General Results §3. Algebraic Knots §4. Classification

For $a_{1}, a_{2}, \ldots, a_{n+1} \geq 2$, set

$$
f\left(z_{1}, z_{2}, \ldots, z_{n+1}\right)=z_{1}^{a_{1}}+z_{2}^{a_{2}}+\cdots+z_{n+1}^{a_{n+1}}
$$

which is called a Brieskorn-Pham type polynomial. The integers $a_{1}, a_{2}, \ldots, a_{n+1}$ are called the exponents.

Brieskorn-Pham type polynomial

For $a_{1}, a_{2}, \ldots, a_{n+1} \geq 2$, set

$$
f\left(z_{1}, z_{2}, \ldots, z_{n+1}\right)=z_{1}^{a_{1}}+z_{2}^{a_{2}}+\cdots+z_{n+1}^{a_{n+1}}
$$

which is called a Brieskorn-Pham type polynomial. The integers $a_{1}, a_{2}, \ldots, a_{n+1}$ are called the exponents. Seifert forms for algebraic knots associated with Brieskorn-Pham type polynomials are known.

Brieskorn-Pham type polynomial

For $a_{1}, a_{2}, \ldots, a_{n+1} \geq 2$, set

$$
f\left(z_{1}, z_{2}, \ldots, z_{n+1}\right)=z_{1}^{a_{1}}+z_{2}^{a_{2}}+\cdots+z_{n+1}^{a_{n+1}}
$$

which is called a Brieskorn-Pham type polynomial.
The integers $a_{1}, a_{2}, \ldots, a_{n+1}$ are called the exponents.
Seifert forms for algebraic knots associated with Brieskorn-Pham type polynomials are known.
In fact, we have the following.
Theorem 4.5 (Yoshinaga-Suzuki, 1978)
For two Brieskorn-Pham type polynomials f and g, the following three are equivanent.
(1) K_{f} and K_{g} are isotopic.
(2) f and g have the same set of exponents.
(3) $\Delta_{f}(t)=\Delta_{g}(t)$.

Open problem

However, in general, it is extremely difficult to calculate the Seifert form of a given algebraic knot.

Open problem

However, in general, it is extremely difficult to calculate the Seifert form of a given algebraic knot.
The following is still an important open problem.
Problem 4.6 For a given f, compute the Seifert form of the associated algebraic knot K_{f}.

■ Complex polynomial $f\left(z_{1}, z_{2}, \ldots, z_{n+1}\right)$ with an isolated critical point at 0 gives rise to a fibered knot $K_{f} \subset S^{2 n+1}$, called the algebraic knot associated with f.

■ For $n=1, K_{f}$ is an iterated torus knot, or a link whose components are iterated torus knots. They are easily classified.

■ For $n \geq 3, K_{f}$ is completely determined by its Seifert form, but its explicit calculation is unknown in general.

■ For $n=2$, the situation is difficult and it is much harder to understand algebraic 3-knots in S^{5}.

■ Exotic spheres arise around singularities associated with simple polynomials, called Brieskorn-Pham type polynomials.
They are sources of interesting examples of high dimensional knots.

Thank you!

