
SINGULAR FIBERS AND CHARACTERISTIC CLASSES

OSAMU SAEKI AND TAKAHIRO YAMAMOTO

Abstract. Let f : M → N be a proper generic map between smooth mani-
folds with dimN −dimM = −1. We explicitly calculate the cohomology class
dual to the closure of the set of points in N over which lies a specific singular
fiber in terms of characteristic classes of M and N .

1. Introduction

Let f : M → N be a smooth map between smooth manifolds. In this paper, for
a point y ∈ N , the fiber over y means the map germ

(1.1) f : (M, f−1(y)) → (N, y)

along the set f−1(y). When y ∈ N is a regular value of f , we call it a regular fiber ;
otherwise, a singular fiber. Note that f−1(y) has positive dimension in general if
the codimension � = dimN − dimM of f is negative.

Instead of considering the map germ (1.1) along the whole inverse image, we can
also consider the multi-germ

(1.2) f : (M,Sy) → (N, y)

along Sy = f−1(y) ∩ S(f), where S(f) is the set of singular points of f . Note that
if f is proper and generic, then Sy is a finite set of points. For a given (contact)
equivalence class α = (α1, α2, . . . , αr) of multi-germs, let α(f) be the closure of the
set of points x1 in M such that for some points x2, x3, . . . , xr in f−1(f(x1)) ⊂ M
with xi �= xj for 1 ≤ i < j ≤ r, the map germ f : (M, {x1, x2, . . . , xr}) →
(N, f(x1)) is in the equivalence class α. Furthermore, set α(f) = f(α(f)). Then,
according to Kazarian [3], for a certain family of equivalence classes α1, α2, . . . , αs,
the union ∪jαj(f) (or ∪jαj(f)) represents a Z2-homology class of closed support
and its Poincaré dual is expressed as a polynomial of the characteristic classes of
the forms wi(f∗TN − TM) and f∗f!wI(f∗TN − TM) (resp. f!wI(f∗TN − TM)),
where wi is the i-th Stiefel-Whitney class, wI = wi11 w

i2
2 · · ·wikk for a multi-index I =

(i1, i2, . . . , ik), and f! is the Gysin homomorphism in the cohomology. Furthermore,
the polynomial expressions are universal in the sense that they do not depend on
a particular proper generic map f . Note that the proof of this fact depends on the
existence of a universal space, whose cohomology ring plays the key role.

In this paper, we consider the corresponding cohomology classes determined by
the topological type of map germs of the form (1.1), instead of multi-germs as
in (1.2). Recall that in [10] the first author has developed a theory of singular
fibers of generic differentiable maps. In this paper, we first show that a similar
universal expression in terms of characteristic classes exists for singular fibers as
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well, following Kazarian’s argument. Furthermore, for some explicit singular fibers,
we calculate such universal expressions.

The paper is organized as follows. In §2 we consider several equivalence relations
for singular fibers. For the construction of a universal space for singular fibers, the
stable K-classification plays an important role. Since this equivalence relation for
singular fibers has not been introduced or studied so far, we give several explicit
definitions and clarify certain properties similar to the multi-germ case. In §3 we
show the existence of a universal expression in terms of the characteristic classes,
using Kazarian’s universal space [3, 4] (see also [9]). The result itself may be implicit
in Kazarian’s works.

In §4, we first recall the Euler characteristic formula for Morse functions on
surfaces in terms of singular fibers. Then, we generalize it to proper generic maps
f : M → N of codimension −1. More precisely, we show that the closure of the set
of points in N over which lies a fiber of “̃I2-type” represents a Z2-homology class
of closed support in N , and its Poincaré dual coincides with f!w2(f∗TN − TM) +
f!(w1(f∗TN − TM)2) (Theorem 4.2).

Second, we recall the signature formula for stable maps of closed oriented 4-
manifolds into R3 obtained in [11]. Then, we generalize it to proper generic oriented
maps f : M → N of codimension −1. Recall that a smooth map between smooth
manifolds of negative codimension is an oriented map if the regular parts of the
fibers are consistently oriented (see also [1]). In this situation, we show that three
times the Poincaré dual to the Z-homology class represented by the closure of the
“III8-locus” coincides with −f!p1(f∗TN − TM), where p1 is the first Pontrjagin
class (Theorem 4.6).

In §5, we pose a question concerning the cohomology class Poincaré dual to the
closure of the set of singular points contained in specific singular fibers.

Throughout the paper, manifolds and maps are differentiable of class C∞ unless
otherwise indicated. For a topological space X , idX denotes the identity map of X .

The authors would like to express their sincere gratitude to Toru Ohmoto and
Maxim Kazarian for sharing some essential ideas with us. Without their help, this
paper would never have been completed. The authors would also like to thank
András Szűcs for indicating Atiyah’s paper [1] to them. Finally, they would also
like to thank the referee for carefully reading an earlier version of the paper and
for many essential comments, which drastically improved the paper. In fact, many
of the ideas in this paper are due to him.

2. Equivalences for singular fibers

For singular fibers of smooth maps between smooth manifolds, let us consider
the following equivalence relations.

Definition 2.1. (1) Let fi : Mi → Ni be smooth maps between smooth manifolds,
i = 0, 1, with dimM0 = dimM1 and dimN0 = dimN1. For yi ∈ Ni, i = 0, 1, we
say that the fibers over y0 and y1 are K-equivalent1 if there exist diffeomorphism
germs s : (M0, V0) → (M1, V1) and H : (M0×N0, V0×{y0}) → (M1×N1, V1×{y1})
such that H(x, y0) = (s(x), y1) and the following diagram is commutative:

(M0, V0)
(idM0 ,f0)−−−−−→ (M0 ×N0, V0 × {y0}) π0−−−−−→ (M0, V0)⏐⏐�s

⏐⏐�H
⏐⏐�s

(M1, V1)
(idM1 ,f1)−−−−−→ (M1 ×N1, V1 × {y1}) π1−−−−−→ (M1, V1),

where Vi = (fi)−1(yi) and πi : Mi × Ni → Mi is the projection to the first factor,
i = 0, 1.

1This definition is originally due to Toru Ohmoto.
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(2) Let f : M → N be a smooth map between smooth manifolds. For y ∈ N , let
us consider a smooth map germ

F : (M × Rk, V × {0}) → (N × Rk, {y} × {0}),
k > 0, such that F (x, 0) = f(x), where V = f−1(y). The fiber of F over (y, 0) is
called an unfolding of the fiber of f over y.

(3) Let fi : Mi → Ni be smooth maps between smooth manifolds, i = 0, 1. We
assume dimN0 − dimM0 = dimN1 − dimM1. For yi ∈ Ni, we say that the fibers
over y0 and y1 are stably K-equivalent if they have K-equivalent unfoldings.

(4) Let fi : Mi → Ni be smooth maps between smooth manifolds, i = 0, 1,
with dimM0 = dimM1 and dimN0 = dimN1. For yi ∈ Ni, we say that the fibers
over y0 and y1 are C∞ equivalent if for some open neighborhoods Ui of yi in Ni,
there exist diffeomorphisms ϕ̃ : (f0)−1(U0) → (f1)−1(U1) and ϕ : U0 → U1 with
ϕ(y0) = y1 which make the following diagram commutative:

((f0)−1(U0), V0)
eϕ−−−−−→ ((f1)−1(U1), V1)⏐⏐�f0

⏐⏐�f1
(U0, y0)

ϕ−−−−−→ (U1, y1),

where Vi = (fi)−1(yi), i = 0, 1. When the fibers over y0 and y1 are C∞ equivalent,
we also say that the map germs f0 : (M0, V0) → (N0, y0) and f1 : (M1, V1) →
(N1, y1) are C∞ right-left equivalent. Note that then they are K-equivalent.

(5) Let f : M → N be a smooth map between smooth manifolds. The fiber over
y ∈ N of f is stable if for every unfolding

F : (M × Rk, V × {0}) → (N × Rk, {y} × {0})
of the fiber over y of f with V = f−1(y), there exist diffeomorphism germs

h : (M × Rk, V × {0}) → (M × Rk, V × {0}) and

H : (N × Rk, {y} × {0}) → (N × Rk, {y} × {0})
such that h(x, 0) = (x, 0), H(X, 0) = (X, 0) and the following diagram is commu-
tative:

(M × Rk, V × {0}) F−−−−→ (N × Rk, {y} × {0}) π2−−−−→ (Rk, 0)

h

⏐⏐� H

⏐⏐� id
Rk

⏐⏐�
(M × Rk, V × {0}) f×id

Rk−−−−−→ (N × Rk, {y} × {0}) π2−−−−→ (Rk, 0),

where π2 : N × Rk → Rk is the projection to the second factor.

Lemma 2.2. Let fi : Mi → Ni be proper smooth maps between smooth manifolds,
i = 0, 1, with dimM0 = dimM1 and dimN0 = dimN1. We suppose that the
fibers over y0 and y1 are stable. If they are stably K-equivalent, then they are C∞

equivalent.

Proof. Since the fibers over yi are stable and Vi = (fi)−1(yi) are compact, Vi
contain only finitely many singular points. Let Si denote the set of singular points
contained in Vi. Then, the multi-germs

(2.1) fi : (Mi, Si) → (Ni, yi)

are stable and are K-equivalent. Then by [7], they are C∞ right-left equivalent.
On the other hand, since fi have K-equivalent unfoldings, there exists a diffeo-

morphism V0 → V1 in the sense of [10, Definition 1.1]. We may assume that this
diffeomorphism is compatible with the source diffeomorphism which gives the C∞

right-left equivalence between the multi-germs (2.1). Then, by using the relative
version of Ehresmann’s fibration theorem (for example, see [10, Chap. 1]), we can
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construct a diffeomorphism between neighborhoods of Vi which gives a C∞ equiva-
lence between the fibers over yi (for this, imitate the argument in the proof of [10,
Theorem 3.5]). �

3. Thom polynomials for singular fibers

Let EO(n) → BO(n) be the universal real n-plane bundle over the classifying
space BO(n). We denote byMO(n) its Thom space. As Kazarian made an essential
observation [3, 4], for each (possibly negative) integer �, the iterated loop space
N� = ΩKMO(K + �), with K sufficiently large, serves as the classifying space
of multi-singularities of smooth maps of codimension �. Let us recall Kazarian’s
observation in the context of singular fibers.2

We may first replace BO(K + �) by a suitable Grassmannian manifold, which is
a smooth finite dimensional approximation. Furthermore, the elements of N� may
be assumed to be smooth in a neighborhood of the inverse image of the zero section
BO(K + �) ⊂ MO(K + �), as maps from SK to MO(K + �). We may further
assume, up to infinite codimension, that for each point of SK whose image lies in
BO(K+�), the map germ defined by the composition SK →MO(K+�) → RK+� is
K-finite at the point, where the second map is a projection to a fiber of EO(K+ �).
Note that to each element of N� is associated a well-defined stable K-equivalence
class of a fiber.

In the following, we fix a “G-classification” or a stratification of N� in the sense
of Kazarian [4] or Vassiliev [15], where G is an appropriate group acting on N�

or an equivalence relation on it. For example, when we consider the stable K-
equivalence, two elements of N� are equivalent if the associated fibers are stably
K-equivalent, and the connected components of the equivalence classes form the
strata. In general, we can also consider connected components of certain unions of
stable K-equivalence classes as strata.

Now, there exists a space M� and a map f� : M� → N� such that every proper
smooth map f : M → N of codimension � is induced from f�: i.e. there are maps
Ψf and Φf which make the following diagram commutative:

M
Ψf−−−−→ M�

f

⏐⏐�
⏐⏐�f�

N
Φf−−−−→ N�.

Furthermore, the fiber of f over a point y ∈ N is stably K-equivalent to that
corresponding to Φf (y). The map Φf is called the classifying map of f . Moreover,
for a given manifold N , two maps fi : Mi → N , with Mi being closed, i = 0, 1,
are cobordant if and only if the corresponding maps Φfi : N → N� are homotopic.
(See also Stong [12].)

We say that a proper smooth map f : M → N is generic if its classifying map
Φf : N → N� is transverse to the strata of N�. Note that the set of generic
maps is residual in the space C∞

pr (M,N) of proper smooth maps3 by virtue of the
parametrized multi-transversality theorem.

All these arguments are valid also for oriented maps if we work with MSO(K+�)
instead of MO(K + �).

2The authors are indebted to Toru Ohmoto [8] and Maxim Kazarian for many of the arguments
in this section.

3A subset of a topological space is said to be residual if it is the intersection of a countable
family of open and dense subsets. Since C∞

pr (M, N) is an open set of the Baire space C∞(M, N),

its residual subset is always dense.

4



In the following, for a multi-index I = (i1, i2, . . . , ik), we put wI = wi11 w
i2
2 · · ·wikk

and pI = pi11 p
i2
2 · · · pikk , where wi and pj are the Stiefel-Whitney and the Pontrjagin

classes, respectively. Let f : M → N be a smooth map between smooth manifolds
of codimension �. Let wi(f) = wi(f∗TN − TM) be the i-th Stiefel-Whitney class
of the formal difference bundle, and swI (f) = f!wI(f) ∈ H∗(N ;Z2) the Landweber-
Novikov class associated with the Stiefel-Whitney classes, where f! : H∗(M ;Z2) →
H∗+�(N ;Z2) is the Gysin homomorphism induced by f . Furthermore, when f
is an oriented map, we similarly set spI(f) = f!pI(f) ∈ H∗(N ;Z), which is the
Landweber-Novikov class associated with the Pontrjagin classes, where pI(f) is the
monomial of the Pontrjagin classes pj(f) = pj(f∗TN − TM).

Now suppose that a proper smooth map f : M → N is generic so that N has
a stratification induced from that of N�. Let ϕ : N ′ → N be a smooth map of a
smooth manifold N ′ which is transverse to all the strata of N . Then, it induces
the commutative diagram

M ′ ψ−−−−→ M

f ′
⏐⏐�

⏐⏐�f
N ′ ϕ−−−−→ N,

where M ′ = {(x, y) ∈ N ′ ×M : ϕ(x) = f(y)}, and f ′ and ψ are the projections
to the first and the second factors of N ′ ×M , respectively, restricted to M ′. Note
that M ′ is a smooth manifold and f ′ is a proper smooth map which is generic. In
this case, we say that f ′ is the pull back of f by ϕ. Note that the classifying map
Φf ′ coincides with the composition Φf ◦ ϕ.

Recall that the Landweber-Novikov classes are functorial with respect to the pull
back operation: i.e. swI (f ′) = ϕ∗swI (f) holds. Furthermore, if f is an oriented map,
then so is f ′ and spI(f

′) = ϕ∗spI(f) holds.

Definition 3.1. A characteristic class v of generic smooth maps means the fol-
lowing. For each generic smooth map f : M → N , a cohomology class v(f) ∈
H∗(N ;Z2) is defined, and it satisfies the following naturality condition: if f ′ is the
pull back of f by ϕ, then v(f ′) = ϕ∗(v(f)) holds.

A characteristic class for generic oriented smooth maps can similarly be defined
for coefficients in Z or in Q.

Remark 3.2. Suppose that f : M → N is a proper generic (oriented) map of
codimension � ≤ 0 and N is connected. Then, the (−�)-dimensional (oriented)
cobordism class of a regular fiber of f is well-defined. Furthermore, if a map is
a pull back of another map, then the (oriented) cobordism classes of their regular
fibers coincide.

Proposition 3.3. Every characteristic class of proper generic smooth maps with
a prescribed cobordism class of regular fibers is a polynomial of Landweber-Novikov
classes associated with the Stiefel-Whitney classes. Furthermore, every character-
istic class with rational coefficients of proper generic oriented smooth maps with a
prescribed oriented cobordism class of regular fibers is a polynomial of Landweber-
Novikov classes associated with the rational Pontrjagin classes.

Proof. We consider the case where the codimension � is nonpositive. The case
where � > 0 is similar.

First note that if � ≤ 0, then the classifying space ΩKMO(K + �) = N� may
have two or more connected components. They are homotopy equivalent to each
other, and each of them corresponds to a (−�)-dimensional cobordism class γ of
regular fibers.4 Let Nγ denote the corresponding component.

4The authors are indebted to Maxim Kazarian for this important observation.
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By the naturality property, every characteristic class is the pull back of a coho-
mology class in H∗(Nγ ;Z2). On the other hand, it is known that the cohomology
of each component of ΩKMO(K+ �) = N�, with K sufficiently large, is multiplica-
tively generated by the Landweber-Novikov classes (for example, see [3, 4, 13]). A
similar argument is valid also for oriented maps and the connected components of
ΩKMSO(K + �) with rational coefficients. �

Definition 3.4. Let τ be a set of fibers of codimension �. If for every fiber in τ , its
nearby fibers also belong to τ , then τ is called ascending (see [10, §8.6]). A proper
smooth map whose fibers all belong to τ is called a τ-map. Finally, τ is said to be
big if it is ascending, the set of τ -maps is always residual in the space of proper
smooth maps, and τ is closed under stable K-equivalence (see [10, Remark 13.6]).

Let τ be a big set of fibers for proper generic smooth maps of codimension � ≤ 0
as above. Let us consider the universal complex C∗(τ, 	) of singular fibers associated
with τ in the sense of [10], where 	 represents an appropriate equivalence relation
for fibers which is weaker than the stable K-equivalence.

In view of Remark 3.2, the cochain complex C∗(τ, 	) splits into the product∏
γ

C∗
γ(τ, 	),

where C∗
γ(τ, 	) is the subcomplex corresponding to those singular fibers whose

nearby regular fibers belong to the (−�)-dimensional cobordism class γ. (Precisely
speaking, for this splitting, the equivalence relation 	 should be able to distinguish
singular fibers corresponding to different cobordism classes of regular fibers.)

For a proper τ -map f : M → N of codimension � with associated cobordism class
γ of regular fibers, we have the homomorphism ϕf : H∗(C∗

γ(τ, 	)) → H∗(N ;Z2),
which assigns to each cohomology class α the Poincaré dual to the homology class
represented by the closure of the set of points in the target over which lies a fiber
appearing in a cycle representing α.

Then, by means of ϕf , each α defines a characteristic class for τ -maps, and hence
for proper generic smooth maps, since τ is big. Therefore, we have the following.

Theorem 3.5. Suppose that τ is a big set of fibers of codimension �. For any coho-
mology class α of the universal complex C∗

γ(τ, 	) of singular fibers whose associated
regular fibers belong to the cobordism class γ, there exists a universal polynomial
Pα(swI ) such that for every proper generic τ-map f : M → N of codimension �
with cobordism class γ of regular fibers, the cohomology class ϕf (α) coincides with
Pα(f!wI(f∗TN − TM)) in H∗(N ;Z2) (when M is closed, in H∗

c (N ;Z2)).

We call the polynomial Pα the Thom polynomial for α.
In order to discuss characteristic classes with coefficients in Z or in Q, let us

introduce the following definition.

Definition 3.6. A fiber of codimension � is said to be co-orientable if the normal
bundle of the corresponding strata in the classifying space N� has an orientation
consistent with the action of the group G or with the equivalence relation G. When
an orientation is fixed, we say that the fiber is co-oriented.

Note that the above notion is closely related to the notion of a chiral singular
fiber introduced in [11].

For co-orientable fibers, we have the following.

Theorem 3.7. Suppose that τ is a big set of fibers of codimension �. For any
cohomology class α of the universal complex CO∗

γ(τ, 	) of co-orientable singular
fibers whose associated regular fibers belong to the oriented cobordism class γ, with
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coefficients in Q, there exists a universal polynomial Pα(spI) such that for every
proper generic oriented τ-map f : M → N of codimension � with oriented cobordism
class γ of regular fibers, the cohomology class ϕf (α) coincides with Pα(f!pI(f∗TN−
TM)) in H∗(N ;Q) (when M is closed, in H∗

c (N ;Q)).

We again call the polynomial Pα the Thom polynomial for α.

Remark 3.8. In a sense, Theorems 3.5 and 3.7 may be implicit in the works of
Kazarian [3, 4], although he does not mention them explicitly. Note also that the
polynomial corresponding to ∪jαj(f) mentioned in §1 coincides with the “sum” of
our polynomials over all singular fibers which have αj as their associated multi-germ
for some j. In other words, our polynomials are refinements of those considered by
Kazarian [3] for multi-germs.

Remark 3.9. We do not know if Theorem 3.5 or 3.7 holds if τ is not big.

Remark 3.10. The above observations show that if τ is big, then there exists a
homomorphism H∗(τ, ρ) → H∗(N�;Z2) (in the co-oriented case, a homomorphism
H∗(CO(τ, ρ)) → H∗(N�;Z)) which maps each cohomology class to its Thom poly-
nomial. As observed in [2, 4], we have a natural filtration of N� according to the
codimensions of the strata, and this leads to a spectral sequence converging to
H∗(N�;Z2) whose first term E∗,0

1 corresponds to the universal complex. Then, the
above homomorphism coincides with the composition

H∗(τ, ρ) ∼= E∗,0
2 → E∗,0

∞ → H∗(N�;Z2).

(The same observation holds in the co-orientable case as well.)
When τ is not big, we have a homomorphismH∗(τ, ρ) → H∗(Tτ ;Z2), where Tτ is

a subspace of N� corresponding to τ -maps. We do not know if this homomorphism
can be lifted to H∗(N�;Z2) in general.

The following proposition is useful in explicitly determining Thom polynomials.

Proposition 3.11. Let α be a κ-dimensional cohomology class of the universal
complex C∗

γ(τ, 	) of singular fibers, where we assume that τ is big. Suppose that
a polynomial P (swI ) satisfies that for every τ-map f ′ : M ′ → N ′ whose regular
fibers belong to the cobordism class γ with dimN ′ = κ and with M ′ and N ′ being
closed, the cohomology class ϕf ′(α) coincides with P (f ′

!wI((f
′)∗TN ′ − TM ′)) in

Hκ(N ′;Z2). Then, the Thom polynomial for α is given by the polynomial P .

Proof. Let f : M → N be a proper τ -map whose regular fibers belong to the
cobordism class γ with dimM = n and dimN = p. We may assume that f is
generic. In order to show that the Thom polynomial for α coincides with P , we
have only to show that

〈ϕf (α), ξ〉 = 〈P (f!wI(f∗TN − TM)), ξ〉 ∈ Z2

for all ξ ∈ Hκ(N ;Z2) by virtue of Poincaré duality.
By Thom’s result [13], there exists a closed κ-dimensional manifold N ′ and a

smooth map h : N ′ → N such that ξ = h∗[N ′], where [N ′] ∈ Hκ(N ′;Z2) is the
fundamental class of N ′. We may assume that h is transverse to the strata of N .
Let f ′ : M ′ → N ′ be the pull back of f with respect to h. Since f ′ is a generic
τ -map with dimN ′ = κ and with M ′ being closed, we see that 〈ϕf ′(α), [N ′]〉 =
〈P (f ′

!wI((f
′)∗TN ′ − TM ′)), [N ′]〉 holds by our assumption. Therefore, we have

〈ϕf (α), ξ〉 = 〈ϕf (α), h∗[N ′]〉 = 〈h∗(ϕf (α)), [N ′]〉 = 〈ϕf ′(α), [N ′]〉
= 〈P (f ′

!wI((f
′)∗TN ′ − TM ′)), [N ′]〉 = 〈h∗P (f!wI(f∗TN − TM)), [N ′]〉

= 〈P (f!wI(f∗TN − TM)), h∗[N ′]〉 = 〈P (f!wI(f∗TN − TM)), ξ〉,
which completes the proof. �
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Note that the above proposition holds also for co-oriented singular fibers, if we
work with rational coefficients.

4. Explicit calculations

For stable maps between low dimensional manifolds of codimension −1, singular
fibers have been classified up to C∞ equivalence (see [10, 16] and [5, 6]). In the
following, we will use the notation of [10]. Note that the 1-dimensional (oriented)
cobordism group of manifolds is trivial, so that we do not have to worry about the
cobordism classes of regular fibers.

Definition 4.1. Let fi : (Mi, (fi)−1(yi)) → (Ni, yi) be proper smooth map germs
along fibers with n = dimMi and p = dimNi, i = 0, 1, with n ≥ p. We may
assume that Ni is the open disk IntDp and yi is its center 0, i = 0, 1. We say
that the two fibers are C∞ equivalent modulo regular fibers if there exist (n − p)-
dimensional smooth closed manifolds Ti, i = 0, 1, such that the unions fi ∪ πi :
(Mi ∪ (Ti × IntDp), (fi)−1(yi) ∪ (Ti × {0})) → (Ni, yi) of fi and the map germ
πi : (Ti × IntDp, Ti × {0}) → (IntDp, 0) defined by the projection to the second
factor, i = 0, 1, are C∞ equivalent to each other.

In the following, I0, Ĩ2, etc., which were originally introduced in [10], will de-
note the corresponding equivalence class of singular fibers with respect to the C∞

equivalence modulo regular fibers. Furthermore, for a given map f , Ĩ2(f) etc. will
denote the set of points in the target over which lies a singular fiber of the relevant
type.

Let f : M → N be a C∞ stable map of a closed surface M into a 1-dimensional
manifold N . In [10, Corollary 2.4], we have seen that if N = R, then the Euler
characteristic χ(M) of M has the same parity as the number of singular fibers of
f of type Ĩ2. By a similar argument, we can show that the same congruence holds
for C∞ stable maps into any 1-dimensional manifold N . Recall that the parity
of χ(M) is given by 〈f!w2(f) + f!(w1(f)2), [N ]〉, where f!w2(f) + f!(w1(f)2) is an
element of the 1st Z2-cohomology group of N of compact support, and [N ] is the
Z2-fundamental class of N of closed support. Combining these observations with
Proposition 3.11, we get the following.

Theorem 4.2. Let f : M → N be a proper generic smooth map of codimension
−1. Then, the closure of Ĩ2(f) forms a Z2-cycle of closed support in N , and
the Poincaré dual to its Z2-homology class coincides with f!w2(f) + f!(w1(f)2) in
H1(N ;Z2) (when M is closed, in H1

c (N ;Z2)).

Remark 4.3. We have another simpler proof as follows. It is known that the
Poincaré dual to the homology class represented by the singular point set of f
coincides with w2(f) + w1(f)2 (see [14]). Applying the Gysin homomorphism, we
see that f!(w2(f)+w1(f)2) coincides with the Poincaré dual to the homology class
represented by the closure of Ĩ0(f) ∪ Ĩ1(f) ∪ Ĩ2(f). Let us consider the closure of
the set of points in N � f(S(f)) over which lies an odd number of regular fiber
components. Then, as observed in [10], its boundary coincides with the closure of
Ĩ0(f) ∪ Ĩ1(f). Thus, the result follows.5

Let us now consider generic oriented maps of codimension −1. Let us first
consider singular fibers of proper C∞ stable maps of oriented 4-manifolds into 3-
manifolds. In [11], we have seen that the singular fiber of type III8 is co-oriented.
In fact, we can define a sign (= ±1) for each such singular fiber by using the
orientation of the source 4-manifold. For a C∞ stable map f of a closed oriented

5The authors are indebted to the referee for this simple proof.
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4-manifold into a 3-manifold, we call the sum of the signs over all singular fibers
of f of type III8 the algebraic number of III8-type fibers of f . Note also that each
point of III8(f) ⊂ N has its own sign, and then III8(f) can naturally be regarded
as a 0-dimensional Z-cycle of N . In [11], we have proved the following.

Theorem 4.4. Let M be a closed oriented 4-manifold and N a 3-manifold. Then,
for any C∞ stable map f : M → N , the algebraic number of III8-type fibers of
f coincides with the signature of M . In particular, if N is also oriented, then
three times the Poincaré dual to the 0-dimensional Z-homology class represented by
III8(f) coincides with f!p1(M) in H3

c (N ;Z).

Remark 4.5. By using the universal complex of co-orientable singular fibers (see
[11, §8]), we see that the fiber which satisfies the property as in Theorem 4.4 should
necessarily be the fiber of type III8.

Let f : M → N be a proper generic oriented map of codimension −1. Then, we
see that the set III8(f) is a codimension three regular submanifold of N . Further-
more, we can naturally orient its normal bundle in N by using the sign of a fiber in
the 4-dimensional case, since f is an oriented map. Therefore, the closure of III8(f)
represents a homology class of closed support in Hc

n−4(N ;ON ), where ON denotes
the orientation local system of N and dimN = n− 1. Note that then its Poincaré
dual lies in the usual cohomology group H3(N ;Z).

Theorem 4.6. Let f : M → N be a proper generic oriented smooth map of codi-
mension −1. Then, the closure of III8(f) forms a co-oriented cycle of closed sup-
port in N , and three times the Poincaré dual to its Z-homology class coincides with
−f!p1(f) in H3(N ;Z) (when M is closed, in H3

c (N ;Z)).

Proof. By the rational coefficient version of Proposition 3.11, we see that three
times the Poincaré dual to the homology class coincides with −f!p1(f) modulo
torsion.

On the other hand, since ΩK+1MSO(K), withK sufficiently large, is 2-connected
and its 3rd homotopy group is isomorphic to the 4-dimensional oriented cobordism
group Ω4

∼= Z, we see that H3(N−1;Z) = H3(ΩK+1MSO(K);Z) is isomorphic to
Z by the Hurewicz theorem. Furthermore, three times a generator coincides with
f!p1. Hence, the desired result follows. �

5. Related problem

Let us end this paper by posing a problem. For a generic map f : M → N
as in Theorem 4.2, let us denote by 1̃2(f) (⊂ M) the set of singular points in
the source which are contained in a fiber of type Ĩ2. In other words, 1̃2(f) =
f−1(̃I2(f)) ∩ S(f). Similarly, for a generic map f : M → N as in Theorem 4.6, we
set 38(f) = f−1(III8(f)) ∩ S(f).

Problem 5.1. Let f : M → N be a proper generic smooth map of codimension −1.
Then, does the closure of 1̃2(f) form a Z2-cycle of closed support in M? If yes,
then describe the Poincaré dual to its Z2-homology class in terms of characteristic
classes of M and N . Similarly, when f is oriented, does the closure of 38(f) form
a co-oriented cycle of closed support in M? If yes, then describe the Poincaré dual
to its homology class.

It is probable that we can construct a universal source complex of singular fibers
as in [10] corresponding to the above types of strata in the source manifolds, taking
into account the singular fibers in which the relevant points are contained.
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