Lifting Special Generic Maps

Osamu Saeki
(Institute of Mathematics for Industry, Kyushu University)

Lifting Special Generic Maps

Osamu Saeki

(Institute of Mathematics for Industry, Kyushu University)

(九州大学,マス・フォア・インダストリ研究所)

Lifting Special Generic Maps

Osamu Saeki

(Institute of Mathematics for Industry, Kyushu University) (九州大学,マス・フォア・インダストリ研究所)

Joint work with Masamichi Takase (Seikei University)

May 31, 2011

§1. Lifting Singular Maps

 $\S 1$. Lifting Singular Maps $\S 2$. Lifting Special Generic Functions $\S 3$. Lifting Special Generic Maps into ${f R}^2$ $\S 4$. Further Results

This is a **singular** plane curve.

Desingularizing a singular curve

 $\S 1$. Lifting Singular Maps $\S 2$. Lifting Special Generic Functions $\S 3$. Lifting Special Generic Maps into ${f R}^2$ $\S 4$. Further Results

This is a **singular** plane curve.

But, this can be the projected image of a non-singular space curve.

 $\S 1$. Lifting Singular Maps $\S 2$. Lifting Special Generic Functions $\S 3$. Lifting Special Generic Maps into ${f R}^2$ $\S 4$. Further Results

 M^n : closed n-dim. C^{∞} manifold, $f:M^n\to \mathbf{R}^p$ a generic C^{∞} map $(n\geq p)$.

 $\S 1$. Lifting Singular Maps $\S 2$. Lifting Special Generic Functions $\S 3$. Lifting Special Generic Maps into ${f R}^2$ $\S 4$. Further Results

 M^n : closed n-dim. C^{∞} manifold, $f:M^n\to \mathbf{R}^p$ a generic C^{∞} map $(n\geq p)$. — always singular

 $\S1$. Lifting Singular Maps $\S2$. Lifting Special Generic Functions $\S3$. Lifting Special Generic Maps into ${f R}^2$ $\S4$. Further Results

 M^n : closed n-dim. C^{∞} manifold, $f: M^n \to \mathbf{R}^p$ a generic C^{∞} map $(n \ge p)$. — always singular For $m > n \ge p$, $\pi: \mathbf{R}^m \to \mathbf{R}^p$ will denote the standard projection.

 $\S 1$. Lifting Singular Maps $\S 2$. Lifting Special Generic Functions $\S 3$. Lifting Special Generic Maps into ${f R}^2$ $\S 4$. Further Results

 M^n : closed n-dim. C^{∞} manifold, $f: M^n \to \mathbf{R}^p$ a generic C^{∞} map $(n \ge p)$. — always singular For $m > n \ge p$, $\pi: \mathbf{R}^m \to \mathbf{R}^p$ will denote the standard projection.

Problem 1.1

 $\S 1$. Lifting Singular Maps $\S 2$. Lifting Special Generic Functions $\S 3$. Lifting Special Generic Maps into ${f R}^2$ $\S 4$. Further Results

 M^n : closed n-dim. C^{∞} manifold, $f: M^n \to \mathbf{R}^p$ a generic C^{∞} map $(n \ge p)$. \longleftarrow always singular For $m > n \ge p$, $\pi: \mathbf{R}^m \to \mathbf{R}^p$ will denote the standard projection.

Problem 1.1

 η : immersion or embedding

Surface case

§1. Lifting Singular Maps §2. Lifting Special Generic Functions §3. Lifting Special Generic Maps into \mathbb{R}^2 §4. Further Results

Theorem 1.2 (Haefliger, 1960) $f: M^2 \to \mathbb{R}^2$ $\exists \mathbf{immersion} \ \eta: M^2 \to \mathbf{R}^3 \ \textit{s.t.} \ f = \pi \circ \eta$ \iff For every singular set component $S \cong S^1$ of f:

if S has an annulus nbhd, S contains an even number of cusps, if S has a Möbius band nbhd, S contains an odd number of cusps.

Surface case

 $\S 1$. Lifting Singular Maps $\S 2$. Lifting Special Generic Functions $\S 3$. Lifting Special Generic Maps into ${f R}^2$ $\S 4$. Further Results

Theorem 1.2 (Haefliger, 1960) $f:M^2\to\mathbf{R}^2$

 $\exists \mathbf{immersion} \ \eta: M^2 \to \mathbf{R}^3 \ \textit{s.t.} \ f = \pi \circ \eta$

 \iff For every singular set component $S \ (\cong S^1)$ of f:

if S has an annulus nbhd, S contains an even number of cusps,

if S has a Möbius band nbhd, S contains an odd number of cusps.

Theorem 1.3 (M. Yamamoto, 2007) $f:M^2 \to \mathbf{R}^2$

There always exists an embedding $\eta: M^2 \to \mathbf{R}^4$ s.t. $f = \pi \circ \eta$.

Surface case

§1. Lifting Singular Maps §2. Lifting Special Generic Functions §3. Lifting Special Generic Maps into \mathbb{R}^2 §4. Further Results

Theorem 1.2 (Haefliger, 1960) $f: M^2 \to \mathbb{R}^2$

 $\exists immersion \ \eta: M^2 \to \mathbf{R}^3 \ \textit{s.t.} \ f = \pi \circ \eta$

 \iff For every singular set component $S \cong S^1$ of f:

if S has an annulus nbhd, S contains an even number of cusps,

if S has a Möbius band nbhd, S contains an odd number of cusps.

Theorem 1.3 (M. Yamamoto, 2007) $f: M^2 \to \mathbb{R}^2$

There always exists an embedding $\eta: M^2 \to \mathbf{R}^4$ s.t. $f = \pi \circ \eta$.

Theorem 1.4 (Burlet–Haab, 1985) $f: M^2 \to \mathbb{R}$ Morse

There always exists an immersion $\eta: M^2 \to \mathbf{R}^3$ s.t. $f = \pi \circ \eta$.

Equi-dimensional case

 $\S 1$. Lifting Singular Maps $\S 2$. Lifting Special Generic Functions $\S 3$. Lifting Special Generic Maps into ${f R}^2$ $\S 4$. Further Results

Theorem 1.5 (Saito, 1961) M^n : orientable

 $f:M^n o \mathbf{R}^n$ special generic map

There always exists an immersion $\eta: M^n \to \mathbf{R}^{n+1}$ s.t. $f = \pi \circ \eta$.

Equi-dimensional case

 $\S 1$. Lifting Singular Maps $\S 2$. Lifting Special Generic Functions $\S 3$. Lifting Special Generic Maps into ${f R}^2$ $\S 4$. Further Results

Theorem 1.5 (Saito, 1961) M^n : orientable

 $f:M^n \to \mathbf{R}^n$ special generic map

There always exists an immersion $\eta: M^n \to \mathbf{R}^{n+1}$ s.t. $f = \pi \circ \eta$.

Theorem 1.6 (Blank–Curley, 1985)

 $f:M^n\to N^n$, $\pi:E\to N^n$ line bundle

 $\exists \mathbf{immersion} \ \eta: M^n \to E \ \textit{s.t.} \ f = \pi \circ \eta$

 \iff rk $df \ge n - 1$, and

 $[\{cusps\}]^* + w_1(\nu) + i^*f^*w_1(E) = 0 \text{ in } H^1(\{folds\}; \mathbf{Z}_2),$

where ν is the normal line bundle of $\{ \text{folds} \}$ in M^n and

 $i: \{ folds \} \rightarrow M^n \text{ is the inclusion.}$

Today's topic:

Desingularization of special generic maps.

(Lifting special generic maps to immersions and embeddings.)

Special generic maps

 $\S 1$. Lifting Singular Maps $\S 2$. Lifting Special Generic Functions $\S 3$. Lifting Special Generic Maps into ${f R}^2$ $\S 4$. Further Results

Today's topic:

Desingularization of special generic maps.

(Lifting special generic maps to immersions and embeddings.)

Definition 1.7 A singularity of a C^{∞} map $M^n \to N^p$, $n \ge p$, that has the normal form

$$(x_1, x_2, \dots, x_n) \mapsto (x_1, x_2, \dots, x_{p-1}, x_p^2 + x_{p+1}^2 + \dots + x_n^2)$$

is called a definite fold singularity.

Special generic maps

 $\S 1$. Lifting Singular Maps $\S 2$. Lifting Special Generic Functions $\S 3$. Lifting Special Generic Maps into ${f R}^2$ $\S 4$. Further Results

Today's topic:

Desingularization of special generic maps.

(Lifting special generic maps to immersions and embeddings.)

Definition 1.7 A singularity of a C^{∞} map $M^n \to N^p$, $n \ge p$, that has the normal form

$$(x_1, x_2, \dots, x_n) \mapsto (x_1, x_2, \dots, x_{p-1}, x_p^2 + x_{p+1}^2 + \dots + x_n^2)$$

is called a **definite fold singularity**.

Definition 1.8 $f: M^n \to N^p$ is a special generic map (SGM, for short) if it has only definite fold singularities.

Examples

 $\S 1$. Lifting Singular Maps $\S 2$. Lifting Special Generic Functions $\S 3$. Lifting Special Generic Maps into ${f R}^2$ $\S 4$. Further Results

Figure 1: Examples of special generic maps

§2. Lifting Special Generic Functions

Special generic functions

§1. Lifting Singular Maps §2. Lifting Special Generic Functions §3. Lifting Special Generic Maps into ${f R}^2$ §4. Further Results

Theorem 2.1 (Reeb, Smale, Cerf et al)

 M^n : closed connected n-dim. C^{∞} manifold

 \exists special generic function $M^n \to \mathbf{R}$

 \iff

- (1) $M^n \approx S^n$ (homeomorphic) $(n \neq 4)$
- (2) $M^n \cong S^n$ (diffeomorphic) (n=4)

Special generic functions

 $\S 1$. Lifting Singular Maps $\S 2$. Lifting Special Generic Functions $\S 3$. Lifting Special Generic Maps into ${f R}^2$ $\S 4$. Further Results

Theorem 2.1 (Reeb, Smale, Cerf et al)

 M^n : closed connected n-dim. C^{∞} manifold \exists special generic function $M^n \to \mathbf{R}$

 \iff

- (1) $M^n \approx S^n$ (homeomorphic) $(n \neq 4)$
- (2) $M^n \cong S^n$ (diffeomorphic) (n=4)

Remark 2.2

Generalized Poincaré conjecture is still open in dimension 4 in the C^{∞} category.

Special generic functions

§1. Lifting Singular Maps §2. Lifting Special Generic Functions §3. Lifting Special Generic Maps into ${f R}^2$ §4. Further Results

Theorem 2.1 (Reeb, Smale, Cerf et al)

 M^n : closed connected n-dim. C^{∞} manifold \exists special generic function $M^n \to \mathbf{R}$

 \iff

- (1) $M^n \approx S^n$ (homeomorphic) $(n \neq 4)$
- (2) $M^n \cong S^n$ (diffeomorphic) (n=4)

Remark 2.2

Generalized Poincaré conjecture is still open in dimension 4 in the C^{∞} category.

In the following, M^n will be connected.

Lifting special generic functions

 $\S 1$. Lifting Singular Maps $\S 2$. Lifting Special Generic Functions $\S 3$. Lifting Special Generic Maps into ${f R}^2$ $\S 4$. Further Results

Theorem 2.3 $n \ge 1$

 $f:M^n\to \mathbf{R}$ special generic function

There always exists an immersion $\eta: M^n \to \mathbf{R}^{n+1}$ s.t. $f = \pi \circ \eta$.

Lifting special generic functions

 $\S 1$. Lifting Singular Maps $\S 2$. Lifting Special Generic Functions $\S 3$. Lifting Special Generic Maps into ${f R}^2$ $\S 4$. Further Results

Theorem 2.3 $n \ge 1$

 $f:M^n\to \mathbf{R}$ special generic function

There always exists an immersion $\eta: M^n \to \mathbf{R}^{n+1}$ s.t. $f = \pi \circ \eta$.

This is a consequence of the following.

Lifting special generic functions

§1. Lifting Singular Maps §2. Lifting Special Generic Functions §3. Lifting Special Generic Maps into ${f R}^2$ §4. Further Results

Theorem 2.3 n > 1

 $f: M^n \to \mathbf{R}$ special generic function

There always exists an immersion $\eta: M^n \to \mathbf{R}^{n+1}$ s.t. $f = \pi \circ \eta$.

This is a consequence of the following.

Lemma 2.4 (Kaiser, 1988)

Let $i: S^{n-1} \to \mathbf{R}^n$ be the standard embedding.

For \forall diffeomorphism $\varphi: S^{n-1} \to S^{n-1}$ that preserves the orientation, the immersions i and $i \circ \varphi$ are regularly homotopic.

Proof of Theorem 2.3

 $\S 1$. Lifting Singular Maps $\S 2$. Lifting Special Generic Functions $\S 3$. Lifting Special Generic Maps into ${f R}^2$ $\S 4$. Further Results

Characterization of immersion lifts

Theorem 2.5 $n \ge 2$, $f: M^n \to \mathbf{R}$ special generic function

 $\eta_0:M^n\to\mathbf{R}^{n+1}$ immersion

 $\exists immersion \ \eta: M^n \to \mathbf{R}^{n+1} \ regularly \ homotopic \ to \ \eta_0 \ s.t. \ f = \pi \circ \eta$

 \iff normal degree of η_0 is equal to

$$\begin{cases} \pm 1, & n \neq 3, 7 \\ \pm 1 \text{ or } 0, & n = 3, 7. \end{cases}$$

Embedding lift

 $\S 1$. Lifting Singular Maps $\S 2$. Lifting Special Generic Functions $\S 3$. Lifting Special Generic Maps into ${f R}^2$ $\S 4$. Further Results

Theorem 2.6 $n \ge 2$, $n \ne 5$

 $f:M^n\to \mathbf{R}$ special generic function

 \exists embedding $\eta: M^n \to \mathbf{R}^{n+1}$ s.t. $f = \pi \circ \eta$

 \iff

 $M^n \cong S^n$ (diffeomorphic)

§1. Lifting Singular Maps §2. Lifting Special Generic Functions §3. Lifting Special Generic Maps into ${f R}^2$ §4. Further Results

```
Theorem 2.6 n \ge 2, n \ne 5
```

 $f:M^n\to \mathbf{R}$ special generic function

 \exists embedding $\eta: M^n \to \mathbf{R}^{n+1}$ s.t. $f = \pi \circ \eta$

 \iff

 $M^n \cong S^n$ (diffeomorphic)

Problem 2.7 How about n = 1 or n = 5?

$\S 3.$ Lifting Special Generic Maps into ${\bf R}^2$

Manifolds with SGM's into ${f R}^2$

 $\S1$. Lifting Singular Maps $\S2$. Lifting Special Generic Functions $\S3$. Lifting Special Generic Maps into ${f R}^2$ $\S4$. Further Results

Theorem 3.1 (Burlet-de Rham, 1974;

Porto-Furuya, 1990; S, 1993)

 M^n : closed connected orientable $(n \ge 2)$

 \exists special generic map $f: M^n \to \mathbf{R}^2$

 $\iff M^n$ is diffeomorphic to

$$\Sigma^n \sharp \left(\sharp_{i=1}^r (\Sigma_i^{n-1} \times S^1)\right)$$

for some homotopy spheres Σ^n and Σ_i^{n-1} (for $n \leq 6$, they are standard spheres).

Lifting SGM's into ${f R}^2$

 $\S1$. Lifting Singular Maps $\S2$. Lifting Special Generic Functions $\S3$. Lifting Special Generic Maps into ${f R}^2$ $\S4$. Further Results

Theorem 3.2 M^n : orientable, $2 \le n \le 7$ or n = 4m.

 $f:M^n o {f R}^2$ special generic map

There always exists an immersion $\eta: M^n \to \mathbf{R}^{n+1}$ s.t. $f = \pi \circ \eta$.

 $\S 1$. Lifting Singular Maps $\S 2$. Lifting Special Generic Functions $\S 3$. Lifting Special Generic Maps into ${f R}^2$ $\S 4$. Further Results

Theorem 3.2 M^n : orientable, $2 \le n \le 7$ or n = 4m.

 $f:M^n o {f R}^2$ special generic map

There always exists an immersion $\eta: M^n \to \mathbf{R}^{n+1}$ s.t. $f = \pi \circ \eta$.

Remark 3.3 The case n=2 is a consequence of Haefliger's result.

Lifting SGM's into ${f R}^2$

 $\S 1$. Lifting Singular Maps $\S 2$. Lifting Special Generic Functions $\S 3$. Lifting Special Generic Maps into ${f R}^2$ $\S 4$. Further Results

Theorem 3.2 M^n : orientable, $2 \le n \le 7$ or n = 4m.

 $f:M^n o {f R}^2$ special generic map

There always exists an immersion $\eta: M^n \to \mathbf{R}^{n+1}$ s.t. $f = \pi \circ \eta$.

Remark 3.3 The case n=2 is a consequence of Haefliger's result. The case n=3,7 or 4m is a consequence of the fact that $\pi_{n-1}(SO(n-1)) \to \pi_{n-1}(SO(n))$ is injective (Kervaire, 1960).

Lifting SGM's into ${f R}^2$

Theorem 3.2 M^n : orientable, $2 \le n \le 7$ or n = 4m.

 $f:M^n o {f R}^2$ special generic map

There always exists an immersion $\eta: M^n \to \mathbf{R}^{n+1}$ s.t. $f = \pi \circ \eta$.

Remark 3.3 The case n=2 is a consequence of Haefliger's result.

The case n=3,7 or 4m is a consequence of the fact that

 $\pi_{n-1}(SO(n-1)) \to \pi_{n-1}(SO(n))$ is injective (Kervaire, 1960).

The case n=5 is a consequence of $\mathrm{Diff}(S^3)\simeq O(4)$ (Hatcher, 1983).

Lifting SGM's into ${f R}^2$

 $\S 1$. Lifting Singular Maps $\S 2$. Lifting Special Generic Functions $\S 3$. Lifting Special Generic Maps into ${f R}^2$ $\S 4$. Further Results

Theorem 3.2 M^n : orientable, $2 \le n \le 7$ or n = 4m.

 $f:M^n o {f R}^2$ special generic map

There always exists an immersion $\eta: M^n \to \mathbf{R}^{n+1}$ s.t. $f = \pi \circ \eta$.

Remark 3.3 The case n=2 is a consequence of Haefliger's result. The case n=3,7 or 4m is a consequence of the fact that $\pi_{n-1}(SO(n-1)) \to \pi_{n-1}(SO(n))$ is injective (Kervaire, 1960). The case n=5 is a consequence of the fact that every homotopy.

The case n=6 is a consequence of the fact that every homotopy 6-sphere is standard (Kervaire–Milnor, 1963).

An invariant of SGM

 $\S 1$. Lifting Singular Maps $\S 2$. Lifting Special Generic Functions $\S 3$. Lifting Special Generic Maps into ${f R}^2$ $\S 4$. Further Results

Suppose $n \geq 5$.

 Θ_n : the group of homotopy n-spheres

An invariant of SGM

§1. Lifting Singular Maps §2. Lifting Special Generic Functions §3. Lifting Special Generic Maps into \mathbb{R}^2 §4. Further Results

Suppose $n \geq 5$.

 Θ_n : the group of homotopy n-spheres

 $f:M^n\to {\bf R}^2$ special generic map, $n\geq 5$

 \Longrightarrow A "canonical" homotopy $n\text{-sphere }\Sigma(f)\in\Theta_n$ can be defined in such a way that

$$M^n \cong \Sigma(f) \sharp \left(\sharp_{i=1}^r (\Sigma_i^{n-1} \times S^1)\right)$$
 (diffeomorphic)

for some homotopy (n-1)-spheres Σ_i^{n-1} .

An invariant of SGM

 $\S1$. Lifting Singular Maps $\S2$. Lifting Special Generic Functions $\S3$. Lifting Special Generic Maps into ${f R}^2$ $\S4$. Further Results

Suppose $n \geq 5$.

 Θ_n : the group of homotopy n-spheres

 $f: M^n \to \mathbf{R}^2$ special generic map, $n \geq 5$

 \Longrightarrow A "canonical" homotopy $n\text{-sphere }\Sigma(f)\in\Theta_n$ can be defined in such a way that

$$M^n \cong \Sigma(f) \sharp \left(\sharp_{i=1}^r (\Sigma_i^{n-1} \times S^1)\right)$$
 (diffeomorphic)

for some homotopy (n-1)-spheres Σ_i^{n-1} .

On the other hand, we have the homomorphism

 $SH : \Theta_n \to \mathbb{Z}_2$ called the "**Smale–Hirsch map**" (Budney, 2004).

Theorem 3.4 $f: M^n \to \mathbf{R}^2$ special generic map, $n \geq 5$ $\exists \mathbf{immersion} \ \eta: M^n \to \mathbf{R}^{n+1} \ s.t. \ f = \pi \circ \eta$ $\iff \mathrm{SH}(\Sigma(f)) = 0$

 $\S 1$. Lifting Singular Maps $\S 2$. Lifting Special Generic Functions $\S 3$. Lifting Special Generic Maps into ${f R}^2$ $\S 4$. Further Results

Theorem 3.4 $f: M^n \to \mathbf{R}^2$ special generic map, $n \geq 5$

 $\exists \mathbf{immersion} \ \eta: M^n \to \mathbf{R}^{n+1} \ \textit{s.t.} \ f = \pi \circ \eta$

$$\iff \operatorname{SH}(\Sigma(f)) = 0$$

Problem 3.5

(1) Can the map $SH : \Theta_n \to \mathbb{Z}_2$ be non-trivial?

 $\S1$. Lifting Singular Maps $\S2$. Lifting Special Generic Functions $\S3$. Lifting Special Generic Maps into ${f R}^2$ $\S4$. Further Results

Theorem 3.4 $f: M^n \to \mathbf{R}^2$ special generic map, $n \geq 5$ $\exists \mathbf{immersion} \ \eta: M^n \to \mathbf{R}^{n+1} \ \text{s.t.} \ f = \pi \circ \eta$

$$\iff \operatorname{SH}(\Sigma(f)) = 0$$

Problem 3.5

(1) Can the map $SH : \Theta_n \to \mathbb{Z}_2$ be non-trivial? That is, does there exist a SGM $f : M^n \to \mathbb{R}^2$ that cannot be lifted to an immersion into \mathbb{R}^{n+1} ?

 $\S 1$. Lifting Singular Maps $\S 2$. Lifting Special Generic Functions $\S 3$. Lifting Special Generic Maps into ${f R}^2$ $\S 4$. Further Results

Theorem 3.4 $f: M^n \to \mathbf{R}^2$ special generic map, $n \geq 5$

 $\exists \mathbf{immersion} \ \eta: M^n \to \mathbf{R}^{n+1} \ \textit{s.t.} \ f = \pi \circ \eta$

$$\iff \operatorname{SH}(\Sigma(f)) = 0$$

Problem 3.5

(1) Can the map $SH : \Theta_n \to \mathbb{Z}_2$ be non-trivial? That is, does there exist a SGM $f : M^n \to \mathbb{R}^2$ that cannot be lifted to an immersion into \mathbb{R}^{n+1} ?

(2) Is $\Sigma(f)$ determined only by the source manifold M^n ?

§4. Further Results

Stein factorization

§1. Lifting Singular Maps §2. Lifting Special Generic Functions §3. Lifting Special Generic Maps into \mathbb{R}^2 §4. Further Results

Definition 4.1 $f: M^n \to \mathbf{R}^p$ C^{∞} map (n > p)

For $x, x' \in M^n$, define $x \sim_f x'$ if

- (i) f(x) = f(x') (= y), and
- (ii) x and x' belong to the same connected component of $f^{-1}(y)$.

Stein factorization

 $\S 1$. Lifting Singular Maps $\S 2$. Lifting Special Generic Functions $\S 3$. Lifting Special Generic Maps into ${f R}^2$ $\S 4$. Further Results

Definition 4.1 $f: M^n \to \mathbf{R}^p$ C^{∞} map (n > p)

For $x, x' \in M^n$, define $x \sim_f x'$ if

- (i) f(x) = f(x') (= y), and
- (ii) x and x' belong to the same connected component of $f^{-1}(y)$.

 $W_f = M^n/\sim_f$ quotient space, $q_f: M^n \to W_f$ quotient map

 $\exists ! \bar{f} : W_f \to \mathbf{R}^p$ that makes the diagram commutative:

$$\begin{array}{ccc}
M^n & \xrightarrow{f} & N \\
\downarrow & & \nearrow_{\bar{f}} \\
W_f & & \end{array}$$

Stein factorization

 $\S 1$. Lifting Singular Maps $\S 2$. Lifting Special Generic Functions $\S 3$. Lifting Special Generic Maps into ${f R}^2$ $\S 4$. Further Results

Definition 4.1 $f: M^n \to \mathbf{R}^p$ C^{∞} map (n > p)

For $x, x' \in M^n$, define $x \sim_f x'$ if

- (i) f(x) = f(x') (= y), and
- (ii) x and x' belong to the same connected component of $f^{-1}(y)$.

 $W_f = M^n/\sim_f$ quotient space, $q_f: M^n \to W_f$ quotient map

 $\exists ! \bar{f} : W_f \to \mathbf{R}^p$ that makes the diagram commutative:

$$M^n \xrightarrow{f} N$$

$$q_f \searrow \nearrow_{\bar{f}}$$

$$W_f$$

The above diagram is called the **Stein factorization** of f.

Example

 $\S 1$. Lifting Singular Maps $\S 2$. Lifting Special Generic Functions $\S 3$. Lifting Special Generic Maps into ${f R}^2$ $\S 4$. Further Results

Figure 2: Stein factorization of a SGM

Fundamental properties

 $\S 1$. Lifting Singular Maps $\S 2$. Lifting Special Generic Functions $\S 3$. Lifting Special Generic Maps into ${f R}^2$ $\S 4$. Further Results

Proposition 4.2 $f: M^n \to \mathbf{R}^p$ special generic map (n > p).

Fundamental properties

§1. Lifting Singular Maps §2. Lifting Special Generic Functions §3. Lifting Special Generic Maps into ${f R}^2$ §4. Further Results

Proposition 4.2 $f: M^n \to \mathbf{R}^p$ special generic map (n > p).

- (1) The singular point set S(f) is a regular submanifold of M^n of dimension p-1,
- (2) W_f has the structure of a smooth p-dim. manifold possibly with boundary such that $\bar{f}:W_f\to \mathbf{R}^p$ is an immersion.
- (3) $q_f|_{S(f)}:S(f)\to \partial W_f$ is a diffeomorphism.
- (4) $q_f|_{M^n\setminus S(f)}: M^n\setminus S(f)\to \operatorname{Int} W_f$ is a smooth S^{n-p} -bundle.

Immersion lift

Theorem 4.3 M^n : orientable, (n,p)=(5,3),(6,3),(6,4) or (7,4) $f:M^n\to \mathbf{R}^p$ special generic map $\exists \mathbf{immersion}\ \eta:M^n\to \mathbf{R}^{n+1}\ s.t.\ f=\pi\circ\eta$ $\iff M^n$ is spin, i.e. $w_2(M^n)=0$.

Immersion lift

§1. Lifting Singular Maps §2. Lifting Special Generic Functions §3. Lifting Special Generic Maps into \mathbb{R}^2 §4. Further Results

Theorem 4.3 M^n : orientable, (n,p)=(5,3),(6,3),(6,4) or (7,4) $f:M^n\to \mathbf{R}^p$ special generic map $\exists \mathbf{immersion}\ \eta:M^n\to \mathbf{R}^{n+1}\ s.t.\ f=\pi\circ\eta$

Key to the proof:

The Stein factorization induces a smooth S^{n-p} -bundle

 $\iff M^n$ is spin, i.e. $w_2(M^n) = 0$.

$$M^n \setminus S(f) \to \operatorname{Int} W_f$$
.

Immersion lift

 $\S 1$. Lifting Singular Maps $\S 2$. Lifting Special Generic Functions $\S 3$. Lifting Special Generic Maps into ${f R}^2$ $\S 4$. Further Results

Theorem 4.3 M^n : orientable, (n, p) = (5, 3), (6, 3), (6, 4) or (7, 4) $f: M^n \to \mathbb{R}^p$ special generic map

 $\exists \mathbf{immersion} \ \eta: M^n \to \mathbf{R}^{n+1} \ \textit{s.t.} \ f = \pi \circ \eta$

 $\iff M^n$ is spin, i.e. $w_2(M^n) = 0$.

Key to the proof:

The Stein factorization induces a smooth S^{n-p} -bundle

$$M^n \setminus S(f) \to \operatorname{Int} W_f$$
.

If $w_2(M^n) = 0$, then we can show that this is a trivial bundle.

Codimension -1 case

 $\S 1$. Lifting Singular Maps $\S 2$. Lifting Special Generic Functions $\S 3$. Lifting Special Generic Maps into ${f R}^2$ $\S 4$. Further Results

 $f:M^n\to {\bf R}^p$ special generic map (n>p)Orient ${\bf R}^p$. Then the quotient space W_f has the induced orientation. Then $\partial W_f\cong S(f)$ also have the induced orientations.

Codimension -1 case

 $\S 1$. Lifting Singular Maps $\S 2$. Lifting Special Generic Functions $\S 3$. Lifting Special Generic Maps into ${f R}^2$ $\S 4$. Further Results

 $f:M^n\to {\bf R}^p$ special generic map (n>p)Orient ${\bf R}^p$. Then the quotient space W_f has the induced orientation. Then $\partial W_f\cong S(f)$ also have the induced orientations.

Theorem 4.4 M^n : orientable, $f: M^n \to \mathbf{R}^{n-1}$ special generic $\exists \mathbf{immersion} \ \eta: M^n \to \mathbf{R}^{n+1} \ s.t. \ f = \pi \circ \eta$ $\iff [S(f)] = 0 \ in \ H_{n-2}(M^n; \mathbf{Z}).$

§1. Lifting Singular Maps §2. Lifting Special Generic Functions §3. Lifting Special Generic Maps into \mathbb{R}^2 §4. Further Results

 $f: M^n \to \mathbf{R}^p$ special generic map (n > p)Orient \mathbb{R}^p . Then the quotient space W_f has the induced orientation. Then $\partial W_f \cong S(f)$ also have the induced orientations.

Theorem 4.4 M^n : orientable, $f: M^n \to \mathbb{R}^{n-1}$ special generic $\exists \mathbf{immersion} \ \eta : M^n \to \mathbf{R}^{n+1} \ \textit{s.t.} \ f = \pi \circ \eta$ \iff [S(f)] = 0 in $H_{n-2}(M^n; \mathbf{Z})$.

Key to the proof:

The Stein factorization induces a smooth S^{n-p} -bundle

$$M^n \setminus S(f) \to \operatorname{Int} W_f$$
.

Codimension -1 case

 $\S 1$. Lifting Singular Maps $\S 2$. Lifting Special Generic Functions $\S 3$. Lifting Special Generic Maps into ${f R}^2$ $\S 4$. Further Results

 $f: M^n \to \mathbf{R}^p$ special generic map (n > p)

Orient \mathbb{R}^p . Then the quotient space W_f has the induced orientation.

Then $\partial W_f \cong S(f)$ also have the induced orientations.

Theorem 4.4 M^n : orientable, $f: M^n \to \mathbf{R}^{n-1}$ special generic $\exists \mathbf{immersion} \ \eta: M^n \to \mathbf{R}^{n+1} \ s.t. \ f = \pi \circ \eta$ $\iff [S(f)] = 0 \ in \ H_{n-2}(M^n; \mathbf{Z}).$

Key to the proof:

The Stein factorization induces a smooth S^{n-p} -bundle

$$M^n \setminus S(f) \to \operatorname{Int} W_f$$
.

If [S(f)] = 0, then we can show that this is a trivial bundle.

Embedding results

§1. Lifting Singular Maps §2. Lifting Special Generic Functions §3. Lifting Special Generic Maps into \mathbb{R}^2 §4. Further Results

Theorem 4.5 M^n : orientable, $f: M^n \to \mathbf{R}^p$ special generic map (n,p)=(2,1),(3,2),(4,3),(5,3),(6,3),(6,4) or (7,4) $\Longrightarrow \exists regular \ homotopy \ of \ immersions \ \eta_t: M^n \to \mathbf{R}^{n+1}, \ t \in [0,1],$ with $f=\pi\circ\eta_0$ s.t. $f_t=\pi\circ\eta_t$ is a special generic map, $t\in[0,1]$, and η_1 is an embedding.

Embedding results

§1. Lifting Singular Maps §2. Lifting Special Generic Functions §3. Lifting Special Generic Maps into ${f R}^2$ §4. Further Results

Theorem 4.5 M^n : orientable, $f: M^n \to \mathbf{R}^p$ special generic map (n,p)=(2,1),(3,2),(4,3),(5,3),(6,3),(6,4) or (7,4) $\Longrightarrow \exists \textit{regular homotopy of immersions } \eta_t: M^n \to \mathbf{R}^{n+1}$, $t \in [0,1]$, with $f=\pi \circ \eta_0$ s.t. $f_t=\pi \circ \eta_t$ is a special generic map, $t \in [0,1]$, and η_1 is an embedding.

Theorem 4.6 M^4 : orientable, $\exists f: M^4 \to \mathbf{R}^3$ special generic map M^4 can be embedded into \mathbf{R}^5 $\iff M^4$ is spin, i.e. $w_2(M^4) = 0$.

Thank you!