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This is a singular plane curve.

But, this can be the projected image of a non-singular space curve.
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Mn: closed n-dim. C∞ manifold,
f : Mn → Rp a generic C∞ map (n ≥ p).
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Mn: closed n-dim. C∞ manifold,
f : Mn → Rp a generic C∞ map (n ≥ p). ←− always singular
For m > n ≥ p, π : Rm → Rp will denote the standard projection.
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Mn: closed n-dim. C∞ manifold,
f : Mn → Rp a generic C∞ map (n ≥ p). ←− always singular
For m > n ≥ p, π : Rm → Rp will denote the standard projection.

Problem 1.1

Rm

π

��
Mn

f ��

? η
���������
Rp

η: immersion or embedding
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Theorem 1.2 (Haefliger, 1960) f : M 2 → R2

∃immersion η : M 2 → R3 s.t. f = π ◦ η
⇐⇒ For every singular set component S (∼= S1) of f :
if S has an annulus nbhd, S contains an even number of cusps,
if S has a Möbius band nbhd, S contains an odd number of cusps.
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Theorem 1.2 (Haefliger, 1960) f : M 2 → R2

∃immersion η : M 2 → R3 s.t. f = π ◦ η
⇐⇒ For every singular set component S (∼= S1) of f :
if S has an annulus nbhd, S contains an even number of cusps,
if S has a Möbius band nbhd, S contains an odd number of cusps.

Theorem 1.3 (M. Yamamoto, 2007) f : M 2 → R2

There always exists an embedding η : M 2 → R4 s.t. f = π ◦ η.

Theorem 1.4 (Burlet–Haab, 1985) f : M 2 → R Morse
There always exists an immersion η : M 2 → R3 s.t. f = π ◦ η.
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Theorem 1.5 (Saito, 1961) Mn: orientable
f : Mn → Rn special generic map
There always exists an immersion η : Mn → Rn+1 s.t. f = π ◦ η.
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Theorem 1.5 (Saito, 1961) Mn: orientable
f : Mn → Rn special generic map
There always exists an immersion η : Mn → Rn+1 s.t. f = π ◦ η.

Theorem 1.6 (Blank–Curley, 1985)
f : Mn → Nn, π : E → Nn line bundle
∃immersion η : Mn → E s.t. f = π ◦ η
⇐⇒ rk df ≥ n− 1, and
[{cusps}]∗ + w1(ν) + i∗f∗w1(E) = 0 in H1({folds};Z2),
where ν is the normal line bundle of {folds} in Mn and
i : {folds} →Mn is the inclusion.
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Today’s topic:
Desingularization of special generic maps.
(Lifting special generic maps to immersions and embeddings.)
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Today’s topic:
Desingularization of special generic maps.
(Lifting special generic maps to immersions and embeddings.)

Definition 1.7 A singularity of a C∞ map Mn → Np, n ≥ p, that has
the normal form

(x1, x2, . . . , xn) 
→ (x1, x2, . . . , xp−1, x
2
p + x2

p+1 + · · ·+ x2
n)

is called a definite fold singularity.
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Today’s topic:
Desingularization of special generic maps.
(Lifting special generic maps to immersions and embeddings.)

Definition 1.7 A singularity of a C∞ map Mn → Np, n ≥ p, that has
the normal form

(x1, x2, . . . , xn) 
→ (x1, x2, . . . , xp−1, x
2
p + x2

p+1 + · · ·+ x2
n)

is called a definite fold singularity.

Definition 1.8 f : Mn → Np is a special generic map (SGM,
for short) if it has only definite fold singularities.
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Sn R

Rp (n ≥ p)

Sa × Sb

Ra+b′ (b′ ≤ b)

Figure 1: Examples of special generic maps
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Theorem 2.1 (Reeb, Smale, Cerf et al)
Mn: closed connected n-dim. C∞ manifold
∃special generic function Mn → R
⇐⇒
(1) Mn ≈ Sn (homeomorphic) (n 
= 4)
(2) Mn ∼= Sn (diffeomorphic) (n = 4)
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Generalized Poincaré conjecture is still open in dimension 4
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Theorem 2.1 (Reeb, Smale, Cerf et al)
Mn: closed connected n-dim. C∞ manifold
∃special generic function Mn → R
⇐⇒
(1) Mn ≈ Sn (homeomorphic) (n 
= 4)
(2) Mn ∼= Sn (diffeomorphic) (n = 4)

Remark 2.2
Generalized Poincaré conjecture is still open in dimension 4

in the C∞ category.

In the following, Mn will be connected.
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Theorem 2.3 n ≥ 1
f : Mn → R special generic function
There always exists an immersion η : Mn → Rn+1 s.t. f = π ◦ η.
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Theorem 2.3 n ≥ 1
f : Mn → R special generic function
There always exists an immersion η : Mn → Rn+1 s.t. f = π ◦ η.

This is a consequence of the following.

Lemma 2.4 (Kaiser, 1988)
Let i : Sn−1 → Rn be the standard embedding.
For ∀diffeomorphism ϕ : Sn−1 → Sn−1 that preserves the orientation,
the immersions i and i ◦ ϕ are regularly homotopic.
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Mn

R

Rn

f

i

η

π

i ◦ ϕ

ϕ
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Theorem 2.5 n ≥ 2, f : Mn → R special generic function
η0 : Mn → Rn+1 immersion
∃immersion η : Mn → Rn+1 regularly homotopic to η0 s.t. f = π◦η
⇐⇒ normal degree of η0 is equal to{

±1, n 
= 3, 7

±1 or 0, n = 3, 7.

S3 or S7
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Theorem 2.6 n ≥ 2, n 
= 5
f : Mn → R special generic function
∃embedding η : Mn → Rn+1 s.t. f = π ◦ η
⇐⇒
Mn ∼= Sn (diffeomorphic)
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Theorem 2.6 n ≥ 2, n 
= 5
f : Mn → R special generic function
∃embedding η : Mn → Rn+1 s.t. f = π ◦ η
⇐⇒
Mn ∼= Sn (diffeomorphic)

Problem 2.7 How about n = 1 or n = 5?



§3. Lifting Special Generic
Maps into R2
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Theorem 3.1 (Burlet–de Rham, 1974;
Porto–Furuya, 1990; S, 1993)

Mn: closed connected orientable (n ≥ 2)
∃special generic map f : Mn → R2

⇐⇒ Mn is diffeomorphic to

Σn�
(
�r
i=1(Σ

n−1
i × S1)

)
for some homotopy spheres Σn and Σn−1

i

(for n ≤ 6, they are standard spheres).
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Theorem 3.2 Mn: orientable, 2 ≤ n ≤ 7 or n = 4m.
f : Mn → R2 special generic map
There always exists an immersion η : Mn → Rn+1 s.t. f = π ◦ η.
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Theorem 3.2 Mn: orientable, 2 ≤ n ≤ 7 or n = 4m.
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There always exists an immersion η : Mn → Rn+1 s.t. f = π ◦ η.

Remark 3.3 The case n = 2 is a consequence of Haefliger’s result.
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Theorem 3.2 Mn: orientable, 2 ≤ n ≤ 7 or n = 4m.
f : Mn → R2 special generic map
There always exists an immersion η : Mn → Rn+1 s.t. f = π ◦ η.

Remark 3.3 The case n = 2 is a consequence of Haefliger’s result.
The case n = 3, 7 or 4m is a consequence of the fact that
πn−1(SO(n− 1))→ πn−1(SO(n)) is injective (Kervaire, 1960).
The case n = 5 is a consequence of Diff(S3) � O(4) (Hatcher, 1983).
The case n = 6 is a consequence of the fact that every homotopy
6-sphere is standard (Kervaire–Milnor, 1963).
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Suppose n ≥ 5.
Θn: the group of homotopy n-spheres
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Suppose n ≥ 5.
Θn: the group of homotopy n-spheres

f : Mn → R2 special generic map, n ≥ 5
=⇒ A “canonical” homotopy n-sphere Σ(f) ∈ Θn can be defined
in such a way that

Mn ∼= Σ(f)�
(
�r
i=1(Σ

n−1
i × S1)

)
(diffeomorphic)

for some homotopy (n− 1)-spheres Σn−1
i .
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Suppose n ≥ 5.
Θn: the group of homotopy n-spheres

f : Mn → R2 special generic map, n ≥ 5
=⇒ A “canonical” homotopy n-sphere Σ(f) ∈ Θn can be defined
in such a way that

Mn ∼= Σ(f)�
(
�r
i=1(Σ

n−1
i × S1)

)
(diffeomorphic)

for some homotopy (n− 1)-spheres Σn−1
i .

On the other hand, we have the homomorphism
SH : Θn → Z2 called the “Smale–Hirsch map” (Budney, 2004).
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Theorem 3.4 f : Mn → R2 special generic map, n ≥ 5
∃immersion η : Mn → Rn+1 s.t. f = π ◦ η
⇐⇒ SH(Σ(f)) = 0
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∃immersion η : Mn → Rn+1 s.t. f = π ◦ η
⇐⇒ SH(Σ(f)) = 0

Problem 3.5
(1) Can the map SH : Θn → Z2 be non-trivial?
That is, does there exist a SGM f : Mn → R2 that cannot be lifted to
an immersion into Rn+1 ?
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Theorem 3.4 f : Mn → R2 special generic map, n ≥ 5
∃immersion η : Mn → Rn+1 s.t. f = π ◦ η
⇐⇒ SH(Σ(f)) = 0

Problem 3.5
(1) Can the map SH : Θn → Z2 be non-trivial?
That is, does there exist a SGM f : Mn → R2 that cannot be lifted to
an immersion into Rn+1 ?
(2) Is Σ(f) determined only by the source manifold Mn ?
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Definition 4.1 f : Mn → Rp C∞ map (n > p)
For x, x′ ∈Mn, define x ∼f x′ if
(i) f(x) = f(x′)(= y), and
(ii) x and x′ belong to the same connected component of f−1(y).
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Definition 4.1 f : Mn → Rp C∞ map (n > p)
For x, x′ ∈Mn, define x ∼f x′ if
(i) f(x) = f(x′)(= y), and
(ii) x and x′ belong to the same connected component of f−1(y).

Wf = Mn/∼f quotient space, qf : Mn → Wf quotient map

∃!f̄ : Wf → Rp that makes the diagram commutative:

Mn f−−−−→ N

qf
↘ ↗f̄

Wf
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Definition 4.1 f : Mn → Rp C∞ map (n > p)
For x, x′ ∈Mn, define x ∼f x′ if
(i) f(x) = f(x′)(= y), and
(ii) x and x′ belong to the same connected component of f−1(y).

Wf = Mn/∼f quotient space, qf : Mn → Wf quotient map

∃!f̄ : Wf → Rp that makes the diagram commutative:

Mn f−−−−→ N

qf
↘ ↗f̄

Wf

The above diagram is called the Stein factorization of f .
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f

Mn
Rp

Wf

f̄qf

∂Wf

S(f) Sn−p

Figure 2: Stein factorization of a SGM
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Proposition 4.2 f : Mn → Rp special generic map (n > p).

(1) The singular point set S(f) is a regular submanifold of Mn of
dimension p− 1,

(2) Wf has the structure of a smooth p-dim. manifold possibly with
boundary such that f̄ : Wf → Rp is an immersion.

(3) qf |S(f) : S(f)→ ∂Wf is a diffeomorphism.
(4) qf |Mn\S(f) : Mn \ S(f)→ Int Wf is a smooth Sn−p-bundle.
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Theorem 4.3 Mn: orientable, (n, p) = (5, 3), (6, 3), (6, 4) or (7, 4)
f : Mn → Rp special generic map
∃immersion η : Mn → Rn+1 s.t. f = π ◦ η
⇐⇒ Mn is spin, i.e. w2(M

n) = 0.
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Key to the proof:
The Stein factorization induces a smooth Sn−p-bundle

Mn \ S(f)→ Int Wf .
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Theorem 4.3 Mn: orientable, (n, p) = (5, 3), (6, 3), (6, 4) or (7, 4)
f : Mn → Rp special generic map
∃immersion η : Mn → Rn+1 s.t. f = π ◦ η
⇐⇒ Mn is spin, i.e. w2(M

n) = 0.

Key to the proof:
The Stein factorization induces a smooth Sn−p-bundle

Mn \ S(f)→ Int Wf .

If w2(M
n) = 0, then we can show that this is a trivial bundle.
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f : Mn → Rp special generic map (n > p)
Orient Rp. Then the quotient space Wf has the induced orientation.
Then ∂Wf

∼= S(f) also have the induced orientations.
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∃immersion η : Mn → Rn+1 s.t. f = π ◦ η
⇐⇒ [S(f)] = 0 in Hn−2(M

n;Z).
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f : Mn → Rp special generic map (n > p)
Orient Rp. Then the quotient space Wf has the induced orientation.
Then ∂Wf

∼= S(f) also have the induced orientations.

Theorem 4.4 Mn: orientable, f : Mn → Rn−1 special generic
∃immersion η : Mn → Rn+1 s.t. f = π ◦ η
⇐⇒ [S(f)] = 0 in Hn−2(M

n;Z).

Key to the proof:
The Stein factorization induces a smooth Sn−p-bundle

Mn \ S(f)→ Int Wf .

If [S(f)] = 0, then we can show that this is a trivial bundle.
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Theorem 4.5 Mn: orientable, f : Mn → Rp special generic map
(n, p) = (2, 1), (3, 2), (4, 3), (5, 3), (6, 3), (6, 4) or (7, 4)
=⇒ ∃regular homotopy of immersions ηt : Mn → Rn+1, t ∈ [0, 1],
with f = π ◦ η0 s.t. ft = π ◦ ηt is a special generic map, t ∈ [0, 1],
and η1 is an embedding.
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Theorem 4.5 Mn: orientable, f : Mn → Rp special generic map
(n, p) = (2, 1), (3, 2), (4, 3), (5, 3), (6, 3), (6, 4) or (7, 4)
=⇒ ∃regular homotopy of immersions ηt : Mn → Rn+1, t ∈ [0, 1],
with f = π ◦ η0 s.t. ft = π ◦ ηt is a special generic map, t ∈ [0, 1],
and η1 is an embedding.

Theorem 4.6 M 4: orientable, ∃f : M 4 → R3 special generic map
M 4 can be embedded into R5

⇐⇒ M 4 is spin, i.e. w2(M
4) = 0.



§1. Lifting Singular Maps §2. Lifting Special Generic Functions §3. Lifting Special Generic Maps into R2 §4. Further Results

27 / 27



§1. Lifting Singular Maps §2. Lifting Special Generic Functions §3. Lifting Special Generic Maps into R2 §4. Further Results

27 / 27

Thank you!
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