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1. Introduction

(1) What does “singular fiber” refer to?

Let f : M → N be a differentiable map (= C∞ map) between C∞ manifolds. For a
singular value y ∈ N of f , the singular fiber over y means the map germ

(1.1) f : (M,f−1(y)) → (N, y)
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Figure 1. Two singular fibers corresponding to the same multi-germ

along the set f−1(y). Note that f−1(y) has positive dimension in general if dimM >
dimN .

(2) What is the advantage of considering such objects?

Let Sy be the set of singular points lying in f−1(y). In singularity theory, we often
consider the multi-germ

(1.2) f : (M,Sy) → (N, y)

along Sy, which is usually a finite set of points. However, this does not take into
consideration the information on how the singular points in Sy are connected to each
other in f−1(y). Note that the map germ (1.1) contains the information on the topology
of the subset f−1(y) of M , and also the information carried by the multi-germ (1.2).
So, when dimM > dimN , singular fibers generally carry more information than the
corresponding multi-germs.

For example, each of the two singular fibers as depicted in Fig. 1 has exactly one
singular point corresponding to the map germ

(x, y) 7→ x2 − y2

at the origin. In other words, they cannot be distinguished as multi-germs. However,
they are DIFFERENT as singular fibers, since the neighborhood of the first singular
fiber is orientable, while that of the second one is nonorientable. (It would be an
enjoyable exercise to show that the “regular” neighborhood of the second one is a once
punctured Möbius band.)

(3) What do singular fibers serve for?

A singular fiber is associated with a point in the TARGET. So, it reflects a certain
kind of geometric properties of a map into a fixed target manifold. In fact, we will see
that

(a) we can define a cochain complex which reflects the adjacencies of singular fibers,
and

(b) the cohomology classes of the cochain complex give rise to COBORDISM IN-
VARIANTS of singular maps.
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For a C∞ map f : M → N , let us denote by Σ(f) the subset of M consisting of
singular points of f of a given type Σ. Furthermore, let us denote by F(f) the set of
points in the target over which lies a singular fiber of a given type F. Then, in a certain
sense, we have the following:

• homology class in the source manifold represented by Σ(f)

→ homotopy invariant of f, [Horizontal object]

• homology class in the target manifold represented by F(f)

→ cobordism invariant of f. [Vertical object]

The first one leads to the theory of Thom polynomials. As to the second one, no
systematic theory has been established until now. However, in some situations, we will
see that the cobordism invariants obtained as above give complete cobordism invariants.

(4) Are there any applications?

Cobordism theory has, in general, a lot of geometric applications. For example,
we will see that the cobordism theory of singular maps can be used to prove the
TOPOLOGICAL INVARIANCE of the number of certain singularities of a generic

perturbation of a C∞ map germ.1

2. Classification

For singular fibers, we consider the following equivalence relations.

Definition 2.1. Let fi : Mi → Ni be C∞ maps, i = 0, 1. For yi ∈ Ni, we say
that the fibers over y0 and y1 are C∞ equivalent (or C0 equivalent) if for some open
neighborhoods Ui of yi in Ni, there exist diffeomorphisms (resp. homeomorphisms)
ϕ̃ : (f0)

−1(U0) → (f1)
−1(U1) and ϕ : U0 → U1 with ϕ(y0) = y1 which make the

following diagram commutative:

((f0)
−1(U0), (f0)

−1(y0))
eϕ

−−−−−→ ((f1)
−1(U1), (f1)

−1(y1))yf0

yf1

(U0, y0)
ϕ

−−−−−→ (U1, y1).

When y ∈ N is a regular value of a C∞ map f : M → N , we call f−1(y) a regular

fiber ; otherwise, a singular fiber.

For lower dimensions, we can effectively classify the singular fibers as follows.2

Theorem 2.2. Let f : M → N be a proper C∞ stable map of an orientable 4-manifold

M into a 3-manifold N . Then, every singular fiber of f is C∞ equivalent to the disjoint

union of one of the fibers as in Fig. 2 and a finite number of copies of a fiber of the

trivial circle bundle.

In Fig. 2, κ denotes the codimension of the set of points in the target over which
lies a singular fiber of that type. Furthermore, the letters a and b correspond to a
cusp point, the letter c corresponds to a definite swallow-tail, and the letters d and e
correspond to an indefinite swallow-tail.

1The author was inspired by Ohsumi’s talk at Hakodate, October 2004, to use the cobordism theory
for proving the topological invariance of such numbers.

2In the following, a continuous map is said to be proper if the inverse image of a compact set is
always compact.
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κ = 1

κ = 2

κ = 3

I0 I1

II00 II01 II11

II2 II3 IIa

III000 III001 III011

III111 III02 III03

III12 III13 III4

III5 III6 III7

III8 III0a III1a

IIIb IIIc IIId

IIIe

Figure 2. List of singular fibers of proper C∞ stable maps of orientable
4-manifolds into 3-manifolds
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Remark 2.3. For proper C∞ stable maps of orientable 2-manifolds into 1-manifolds,
the list consists of those with κ = 1 in Fig. 2. For proper C∞ stable maps of orientable
3-manifolds into 2-manifolds, the list consists of those with κ ≤ 2 in Fig. 2.

Idea for the proof of Theorem 2.2.
(1) Classify the multi-germs (Singularity Theory).
(2) List up all the possibilities for the topological types of the singular fibers by con-
necting the local singular fibers by nonsingular arcs (Combinatorial Argument).
(3) Show that two singular fibers corresponding to the same topological type are C∞

equivalent by using (the relative version of) the Ehresmann fibration theorem.

As a direct consequence of the classification, we easily get the following.

Corollary 2.4. For n = 2, 3, 4, two fibers of proper C∞ stable maps of orientable n-

manifolds into (n−1)-manifolds are C∞ equivalent if and only if they are C0 equivalent.

Remark 2.5. Classification of singular fibers of proper C∞ stable maps of general (not
necessarily orientable) n-manifolds into (n − 1)-manifolds has been obtained for n =
2, 3, 4, 5. For details, see [9, 13, 17], for example.

3. Universal complex of singular fibers

In order to construct a universal complex of singular fibers, we have to prepare the
following two materials:

(1) a class of singular fibers τ , and
(2) an equivalence relation ̺ among the singular fibers in τ .

For (1), for technical reasons, we consider singular fibers of proper Thom maps.3

Furthermore, τ should be closed under the adjacency relation, i.e. if a singular fiber is
in τ , then any nearby singular fiber should also lie in τ .

For (2), we consider an equivalence relation which is weaker than the C0 equivalence:
i.e. each equivalence class with respect to ̺ is a union of C0 equivalence classes. This
implies that for an equivalence class F with respect to ̺ and a given proper Thom map
f : M → N , the set F(f) of points in the target N over which lies a singular fiber of
type F is a C0 submanifold of N of constant codimension, which we denote by κ(F).

Furthermore, ̺ should satisfy the following.

(2-1) For any two proper Thom maps fi : Mi → Ni and any points yi ∈ Ni, i = 0, 1,
such that the fibers over yi lie in τ and are equivalent with respect to ̺, there
exist neighborhoods Ui of yi in Ni, i = 0, 1, and a homeomorphism ϕ : U0 → U1

such that ϕ(y0) = y1 and ϕ(U0 ∩F(f0)) = U1∩F(f1) for every equivalence class
F of fibers with respect to ̺.

The universal complex of singular fibers C∗(τ, ̺) is constructed as follows. For κ ∈ Z,
let Cκ(τ, ̺) be the Z2-vector space consisting of all formal linear combinations,

∑

κ(F)=κ

mFF (mF ∈ Z2),

which may possibly contain infinitely many terms, of the equivalence classes F of sin-
gular fibers in τ with κ(F) = κ.

For equivalence classes F and G with κ(G) = κ(F) + 1, we take a proper Thom map
f with G(f) 6= ∅. Then we take a top dimensional stratum Σ ⊂ G(f), and let BΣ be

3A Thom map has nice properties with respect to Whitney stratifications of the source and the
target manifolds. For a precise definition, see [2].
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a small disk which intersects Σ transversely exactly at its center and whose dimension
coincides with the codimension of Σ. Then BΣ ∩ F(f) consists of a finite number of
arcs which have BΣ ∩ Σ as a common end point. Let [F : G] ∈ Z2 denote the number
of such arcs modulo two, which clearly does not depend on the choice of BΣ,Σ or f by
the property (2-1) above. We call [F : G] ∈ Z2 an incidence coefficient.

Then the Z2-linear map δκ : Cκ(τ, ̺) → Cκ+1(τ, ̺) is defined by

δκ(F) =
∑

κ(G)=κ+1

[F : G]G,

for F with κ(F) = κ. Note that the map δκ is well-defined by virtue of the local
finiteness of Whitney stratifications. Furthermore, we can prove that

δκ+1 ◦ δκ = 0.

We call the resulting complex C∗(τ, ̺) = (Cκ(τ, ̺), δκ)κ the universal complex of singu-

lar fibers for τ with respect to the equivalence relation ̺, and we denote its cohomology
group of dimension κ by Hκ(τ, ̺).

Remark 3.1. The above constructed cochain complex is an analogy of the cochain
complexes for singularities constructed by Vassiliev et al in [6, 11, 18].

In the following, a proper Thom map f : M → N is called a τ -map if its fibers all
lie in τ .

Definition 3.2. Let

c =
∑

κ(F)=κ

nFF

be a κ-dimensional cochain of the complex C∗(τ, ̺), where nF ∈ Z2. For a τ -map
f : M → N , we define c(f) to be the closure of the set of points y ∈ N such that the
fiber over y belongs to some F with nF 6= 0. If c is a cocycle, then c(f) is a Z2-cycle of
closed support of codimension κ of the target manifold N . If in addition, M is closed
and κ > 0, then c(f) is a Z2-cycle in the usual sense.

Lemma 3.3. Suppose that c and c′ are κ-dimensional cocycles of the complex C∗(τ, ̺)
which are cohomologous. Then c(f) and c′(f) are homologous in N for every τ -map

f : M → N .

Proof. There exists a (κ − 1)-dimensional cochain d of the complex such that c − c′ =
δκ−1d. Then we see easily that c(f) − c′(f) = ∂d(f), where d(f) is defined similarly.
Hence the result follows. �

Definition 3.4. Let α be a κ-dimensional cohomology class of the complex C∗(τ, ̺).
For a τ -map f : M → N , we define α(f) ∈ Hc

p−κ(N ;Z2) to be the homology class
represented by the cycle c(f) of closed support, where c is a cocycle representing α and
p = dim N . By Lemma 3.3, this is well-defined. When M is closed and κ > 0, we can
also regard α(f) as an element of Hp−κ(N ;Z2).

Then we can define the map

ϕf : Hκ(τ, ̺) → Hκ(N ;Z2)

by ϕf (α) = α(f)∗, where α(f)∗ ∈ Hκ(N ;Z2) is the Poincaré dual to the homology class
α(f) ∈ Hc

p−κ(N ;Z2). This is clearly a homomorphism and we call it the homomorphism

induced by the τ -map f . When M is closed and κ > 0, we can also regard ϕf as a
homomorphism into the cohomology group Hκ

c (N ;Z2) of compact support.
6



Intuitively, the homomorphism induced by a τ -map gives the information on the
position of the set of points in the TARGET over which lies a prescribed type of
singular fiber.

4. Cobordism invariance

Definition 4.1. Let f : M → N be a proper Thom map. Then we call the map

f × idR : M × R → N × R

(or f × idI : M × I → N × I for any interval I in R) the suspension of f . Furthermore,
to the fiber of f over a point y ∈ N , we can associate the fiber of f × idR over y ×{0}.
We say that the latter fiber is obtained from the original fiber by suspension.

In the following, we assume that a class of singular fibers τ consists of certain singular
fibers of proper Thom maps of an n-dimensional manifold into a p-dimensional manifold
for a fixed dimension pair (n, p). In this case, we often write τ = τ(n, p).

Let us consider two classes of singular fibers τ(n, p) and τ(n+1, p+1) and their asso-
ciated equivalence relations ̺n,p and ̺n+1,p+1 respectively. In addition to the conditions
as in the previous section, let us impose the following conditions:

(1) the suspension of any element of τ(n, p) is an element of τ(n + 1, p + 1), and
(2) if two singular fibers are equivalent with respect to ̺n,p, then so are their sus-

pensions with respect to ̺n+1,p+1.

The suspension induces a natural map

s♯
κ : Cκ(τ(n + 1, p + 1), ̺n+1,p+1) → Cκ(τ(n, p), ̺n,p)

for each κ. More precisely, for an equivalence class F ∈ Cκ(τ(n + 1, p + 1), ̺n+1,p+1) of

fibers with respect to ̺n+1,p+1, we define s♯
κ(F) ∈ Cκ(τ(n, p), ̺n,p) to be the (possibly

infinite) sum of all those equivalence classes of fibers of codimension κ with respect

to ̺n,p whose suspensions are contained in F. Note that s♯
κ is a well-defined Z2-linear

map.

Remark 4.2. We warn the reader that the codimension may decrease by suspension.

Lemma 4.3. The system of Z2-linear maps {s♯
κ}κ defines a cochain map

C∗(τ(n + 1, p + 1), ̺n+1,p+1) → C∗(τ(n, p), ̺n,p).

In other words, we have δκ ◦ s♯
κ = s♯

κ+1 ◦ δκ for all κ.

Definition 4.4. Set τ = τ(n, p) ∪ τ(n + 1, p + 1). For a C∞ p-dimensional manifold
N , two τ(n, p)-maps f0 : M0 → N and f1 : M1 → N of closed manifolds M0 and M1

are said to be τ -cobordant if there exist a compact manifold W with boundary the
disjoint union of M0 and M1, and a τ(n + 1, p + 1)-map F : W → N × [0, 1] such that
F restricted to a collar neighborhood of Mi in W is identified with the suspension of
fi : Mi → N × {i}, i = 0, 1. We call F a τ -cobordism between f0 and f1.

When Mi are oriented and W can be taken to be oriented so that ∂W = (−M0)∐M1,
then we say that f0 and f1 are oriented τ -cobordant.

Remark 4.5. The notion of τ -maps and that of τ -cobordisms were essentially introduced
by Rimányi and Szűcs [12], although they considered only the case with n ≤ p. In their
case, Rimányi and Szűcs constructed a universal τ -map and this gives rise to a lot of τ -
cobordism invariants. Our aim in this section is to construct invariants of τ -cobordisms
even in the case with n > p.
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Proposition 4.6. Let fi : Mi → N , i = 0, 1, be τ(n, p)-maps, where we assume that

Mi are closed. If they are τ -cobordant, then for every κ we have

ϕf0
◦ s∗κ = ϕf1

◦ s∗κ : Hκ(τ(n + 1, p + 1), ̺n+1,p+1) → Hκ(N ;Z2),

where s∗κ : Hκ(τ(n + 1, p + 1), ̺n+1,p+1) → Hκ(τ(n, p), ̺n,p) is the homomorphism

induced by suspension. (In other words, we have ϕf0
|Im s∗κ = ϕf1

|Im s∗κ.)

Proof. Let F : W → N × [0, 1] be a τ -cobordism between f0 and f1. Let c be an
arbitrary κ-dimensional cocycle of the complex C∗(τ(n + 1, p + 1), ̺n+1,p+1) and set

c̄ = s♯
κ(c) ∈ Cκ(τ(n, p), ̺n,p). Then we see easily that ∂c(F ) = c̄(f1)×{1}− c̄(f0)×{0},

since c is a cocycle. Then the result follows immediately. �

Thus, every element of Hκ(τ(n + 1, p + 1), ̺n+1,p+1) gives rise to a τ -cobordism

invariant for τ(n, p)-maps. (Note that NOT all elements of Hκ(τ(n, p), ̺n,p) give a
τ -cobordism invariant.)

5. Several variants

5.1. Co-orientable singular fibers. Let τ and ̺ be as above. An equivalence class
F is co-orientable if for a given τ -map f : M → N and a point y ∈ F(f) in the target,
any local homeomorphism at y preserving the adjacent equivalence classes preserves
the orientation of the normal direction to the submanifold F(f) at y.

Then, taking into account the co-orientations, we can define the incidence coefficients
as integers, and the universal complex of co-orientable singular fibers, denoted by

CO∗(τ, ̺),

is defined over the integers.
Almost all the theory developed so far also hold for co-orientable singular fibers, by

replacing the coefficient Z2 by Z.

5.2. Chiral singular fibers.

Definition 5.1. Let F be a C0 equivalence class of a fiber of a proper Thom map of
an oriented manifold. We say that F is achiral if there exist homeomorphisms ϕ̃ and
ϕ which make the diagram

(f−1(U0), f
−1(y))

eϕ
−−−−→ (f−1(U1), f

−1(y))

f

y
yf

(U0, y)
ϕ

−−−−→ (U1, y)

commutative such that the homeomorphism ϕ̃ reverses the orientation and that the
homeomorphism

(5.1) ϕ|F(f)∩U0
: F(f) ∩ U0 → F(f) ∩ U1

preserves the local orientation of F(f) at y, where f is a proper Thom map such that
the fiber over y belongs to F, and Ui are open neighborhoods of y.

Note that if the codimension of F coincides with the dimension of the target of f ,
then the condition about the homeomorphism (5.1) is redundant. Note also that the
above definition does not depend on the choice of f or y.

Moreover, we say that F is chiral if it is not achiral.
We also call any fiber belonging to a chiral (resp. achiral) C0 equivalence class a

chiral fiber (resp. achiral fiber).
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For example, a regular fiber is achiral if and only if the fiber manifold admits an
orientation reversing homeomorphism. The disjoint union of an achiral fiber and an
achiral regular fiber is clearly achiral. The disjoint union of a chiral fiber and an achiral
regular fiber is always chiral.

For chiral singular fibers and appropriate equivalence relations, we can define the
associated universal complex of chiral singular fibers with coefficients in Z. For this
universal complex, an induced homomorphism into the cohomology of the target with
coefficients in Z is defined for oriented maps.4

5.3. Universal homology complex. In [6], Kazarian introduced the notion of a uni-
versal homology complex of singularities, which combines the universal cohomology
complex of co-orientable singularities and that of usual (not necessarily co-orientable)
singularities, and which is constructed by reversing the arrows. In this subsection, we
explain the same procedure in our situation of singular fibers.

Let τ and ̺ be as in the previous section. Let

C∗(τ, ̺)

be the chain complex defined as follows. For each κ, the κ-dimensional chain group,
denoted by Cκ(τ, ̺), is the direct sum, over all equivalence classes of codimension κ, of
the groups Z for co-orientable classes and the groups Z2 for non co-orientable classes.

Let F and G be two equivalence classes of singular fibers such that κ(F) = κ(G) + 1.
Then the incidence coefficient [G : F] is defined as before so that

[G : F] ∈ Z2, if G is not co-orientable,

[G : F] ∈ Z, if F and G are co-orientable, and

[G : F] = 0 ∈ Z, otherwise.

Then the boundary homomorphism ∂κ : Cκ(τ, ̺) → Cκ−1(τ, ̺) is defined by the formula

∂κ(F) =
∑

κ(G)=κ(F)−1

[G : F]G

for the generators F of Cκ(τ, ̺). Note that this is a well-defined homomorphism.5

It is easy to check that ∂κ−1 ◦ ∂κ = 0 as before.
As in [6], we can check that the universal cochain complex of singular fibers C∗(τ, ̺)

and the universal cochain complex of co-orientable singular fibers CO∗(τ, ̺) are isomor-
phic to

Hom(C∗(τ, ̺),Z2) and Hom(C∗(τ, ̺),Z)

respectively. In this sense, the universal homology complex C∗(τ, ̺) unifies the universal
complex of usual singular fibers with coefficients in Z2 and that of co-orientable ones
with coefficients in Z.

Note that each chain group Cκ(τ, ̺) is not free in general. Then by using a free
approximation6 of C∗(τ, ̺), we can define the hypercohomology

H
∗(C∗(τ, ̺);G)

4A smooth map f : M → N is oriented if the fibers of f restricted to the complement of the singular
point set is consistently oriented.

5Note that the similar definition for the coboundary homomorphism is NOT well-defined in general.
This is why we should work with the HOMOLOGY complex.

6For the definition of a free approximation, see [16, Chap. 5, Sec. 2] or [6].
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for any abelian group G. Then we can construct a homomorphism

ϕ̃f : H
∗(C∗(τ, ̺);G) → H∗(N ;G)

induced by a τ -map f : M → N and a homomorphism induced by suspension so that
the cobordism invariance similar to Proposition 4.6 holds also in this case.

It is expected that we can obtain more information by using the hypercohomologies
than by using the usual cohomologies. In fact, in the singularity case, Kazarian found
an additional class, which he called a “hidden singularity class”. We do not know at
present if there is a “hidden singular fiber” in our case.

6. Example 1 – Cobordism group of Morse functions on surfaces

A real-valued C∞ function on a C∞ manifold is called a Morse function if its critical
points are all non-degenerate. We do not assume that the values at the critical points
are all distinct: distinct critical points may have the same value. If the critical values
are all distinct, then such a Morse function is said to be stable.

For a positive integer n, we denote by MSO(n) (or M(n)) the set of all Morse
functions on closed oriented (resp. possibly nonorientable) n-dimensional manifolds.
We adopt the convention that the function on the empty set ∅ is an element of MSO(n)
and of M(n) for all n.

In the following, a C∞ map is called a fold map if it has only fold singularities.7

Definition 6.1. Two Morse functions f0 : M0 → R and f1 : M1 → R in MSO(n)
are said to be oriented cobordant if there exist a compact oriented (n + 1)-dimensional
manifold X and a fold map F : X → R× [0, 1] such that the oriented boundary ∂X of
X is the disjoint union M0∐(−M1), and the map F restricted to a collar neighborhood
of Mi in X is identified with the suspension of fi : Mi → R×{i}, i = 0, 1. In this case,
we call F an oriented cobordism between f0 and f1.

If a Morse function in MSO(n) is oriented cobordant to the function on the empty
set, then we say that it is oriented null-cobordant.

It is easy to show that the above relation defines an equivalence relation on the
set MSO(n) for each n. Furthermore, we see easily that the set of all equivalence
classes forms an additive group under disjoint union: the neutral element is the class
corresponding to oriented null-cobordant Morse functions, and the inverse of a class
represented by a Morse function f : M → R is given by the class of −f : −M → R. We
denote by MSO(n) the group of all oriented cobordism classes of elements of MSO(n)
and call it the oriented cobordism group of Morse functions on manifolds of dimension

n, or the n-dimensional oriented cobordism group of Morse functions.
We can also define the unoriented versions of all the objects defined above by for-

getting the orientations and by using M(n) instead of MSO(n). For the terminologies,
we omit the term “oriented” (or use “unoriented” instead) for the corresponding un-
oriented versions. The unoriented cobordism group of Morse functions on manifolds of
dimension n is denoted by M(n) by omitting the superscript SO.

Remark 6.2. We see easily that two Morse functions on a manifold connected by a
one-parameter family of Morse functions are always cobordant. In particular, every
Morse function is (oriented) cobordant to a stable Morse function.

7A fold singularity corresponds to an iterated suspension of a nondegenerate critical point of a C∞

function.
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κ = 1

κ = 2

Ĩ0 Ĩ1 Ĩ2

ĨI
00

ĨI
01

ĨI
02

ĨI
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ĨI
12

ĨI
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ĨI
3

ĨI
4

ĨI
5

ĨI
6

ĨI
7

ĨI
a

Figure 3. List of singular fibers of proper C∞ stable maps of 3-
manifolds into surfaces

In order to describe the cobordism group of Morse functions on surfaces, let us
consider proper C∞ stable maps of 3-manifolds into surfaces. Then we have the list
of C∞ (or C0) equivalence classes of singular fibers of such maps as in Fig. 3: every
singular fiber of such a map is C∞ (or C0) equivalent to the disjoint union of one of the
fibers as in Fig. 3 and a finite number of copies of a fiber of the trivial circle bundle.

The equivalence class of fibers of codimension zero corresponds to the class of regular
fibers. We denote this codimension zero equivalence class by 0̃.

We note that the fiber ĨI
a

corresponds to a cusp singular point.

If the source 3-manifold is orientable, then the singular fibers of types Ĩ2, ĨI
02

, ĨI
12

,

ĨI
22

, ĨI
5
, ĨI

6
and ĨI

7
do not appear.

Note also that the list of C∞ (or C0) equivalence classes of singular fibers of proper
stable Morse functions on surfaces is nothing but those appearing in Fig. 3 with κ = 1.

Let ̺0
n,n−1(2) be the C0 equivalence relation modulo two circle components for fibers

of proper C∞ stable maps of n-dimensional manifolds into (n − 1)-dimensional man-

ifolds.8 For a C0 equivalence class F̃ of singular fibers, we denote by F̃o (or F̃e) the

equivalence class with respect to ̺0
n,n−1(2) containing a singular fiber of type F̃ whose

total number of components is odd (resp. even).
We easily get the following for n = 3.

Lemma 6.3. Those equivalence classes with respect to ̺0
3,2(2) which are co-orientable

are 0̃∗, Ĩ0
∗
, Ĩ1

∗
, ĨI

01

∗
and ĨI

a

∗
, where ∗ = o and e.

8Two fibers are equivalent with respect to ̺0

n,n−1(2) if one is C0 equivalent to the other after adding

an even number of regular circle components.
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Remark 6.4. If we consider ̺0
3,2(1) (C0 equivalence modulo regular components) instead

of ̺0
3,2(2), then no co-orientable equivalence class appears. That is why we have chosen

the C0 equivalence modulo two circle components.

Let us denote by τ0(n, p) (or τ0(n, p)ori) the set of all C0-equivalence classes of
fibers for proper C∞ stable fold maps of (orientable) n-dimensional manifolds into p-
dimensional manifolds. Let

(6.1) CO∗(τ0(n, n − 1), ̺0
n,n−1(2)) and CO∗(τ0(n, n − 1)ori, ̺0

n,n−1(2))

be the universal complexes of co-orientable singular fibers for the respective classes of
maps with respect to the C0 equivalence modulo two circle components. Note that
these complexes are defined over the integers Z.

Then by Lemma 6.3, we see that the following equivalence classes constitute a basis
of the κ-dimensional cochain group for the two cochain complexes in (6.1) with n = 3,
where ∗ = o and e:

0̃∗ (κ = 0), Ĩ0
∗
, Ĩ1

∗
(κ = 1), ĨI

01

∗
(κ = 2).

Note that ĨI
a

∗
do not appear, since fold maps have no cusps. Note also that for n = 2,

we have the same bases for κ ≤ 1.
Let us fix a co-orientation for each of the above equivalence classes. Then we see

that the coboundary homomorphism is given by the following formulae:

δ0(0̃o) = Ĩ0o + Ĩ0e + Ĩ1o + Ĩ1e ,

δ0(0̃e) = −Ĩ0o − Ĩ0e − Ĩ1o − Ĩ1e ,

δ1(̃I
0
o) = ĨI

01

o − ĨI
01

e ,

δ1(̃I
0
e) = ĨI

01

o − ĨI
01

e ,

δ1(̃I
1
o) = −ĨI

01

o + ĨI
01

e ,

δ1(̃I
1
e) = −ĨI

01

o + ĨI
01

e .

(6.2)

In the following, we denote by [c] the (co)homology class represented by a (co)cycle
c. Then, by a straightforward calculation, we get the following.

Lemma 6.5. For the cohomology groups of the two cochain complexes in (6.1) with

n = 3, we have

H0 ∼= Z (generated by [0̃o + 0̃e]), and

H1 ∼= Z ⊕ Z (generated by α1 = −[̃I0o + Ĩ1e ] = [̃I0e + Ĩ1o], α2 = [−Ĩ0o + Ĩ0e ],

and α3 = [̃I1o − Ĩ1e ] with 2α1 = α2 + α3).

Furthermore, for n = 2, the same isomorphism holds for H0, and for H1, we have

H1 ∼= Z ⊕ Z ⊕ Z (generated by β1 = −[̃I0o + Ĩ1e ] = [̃I0e + Ĩ1o], β2 = [̃I0o],

and β3 = [̃I1o]).

Let

s∗κ : Hκ(CO∗(τ0(3, 2), ̺0
3,2(2))) → Hκ(CO∗(τ0(2, 1), ̺0

2,1(2)))

etc. be the homomorphism induced by suspension. Then for κ = 1, we have

s∗1α1 = β1, s∗1α2 = β1 − β2 − β3 and s∗1α3 = β1 + β2 + β3.
12



In particular, we see that s∗1 is injective and its image is isomorphic to Z ⊕ Z.
Then, by an easy argument we see that s∗1α1(f) = β1(f) ∈ H0(R;Z) always vanishes

for any stable Morse function f on a closed surface (see Remark 7.2). Furthermore, we
have the following.

Lemma 6.6. For a stable Morse function f as above, we have

s∗1α2(f) = −s∗1α3(f) = max (f) − min (f)

under the natural identification H0(R;Z) = Z, where max (f) (or min (f)) is the num-

ber of local maxima (resp. minima) of the Morse function f .

Then by [4], we get the following.

Theorem 6.7. The map

ΦSO : MSO(2) → Z

which sends the cobordism class of a stable Morse function f to s∗1α2(f) = max (f) −
min (f) ∈ Z is an isomorphism.

In the unoriented case, the corresponding map does not give an isomorphism. In
order to get an isomorphism, let us consider the universal complex of singular fibers

(6.3) C∗(τ0(n, n − 1), ̺0
n,n−1(2))

with coefficients in Z2. The coboundary homomorphisms satisfy the following.

δ0(0̃o) = Ĩ0o + Ĩ0e + Ĩ1o + Ĩ1e ,

δ0(0̃e) = Ĩ0o + Ĩ0e + Ĩ1o + Ĩ1e ,

δ1(̃I
0
o) = ĨI

01

o + ĨI
01

e ,

δ1(̃I
0
e) = ĨI

01

o + ĨI
01

e ,

δ1(̃I
1
o) = ĨI

01

o + ĨI
01

e ,

δ1(̃I
1
e) = ĨI

01

o + ĨI
01

e ,

δ1(̃I
2
o) = ĨI

02

o + ĨI
02

e + ĨI
12

o + ĨI
12

e + ĨI
6

o + ĨI
6

e ,

δ1(̃I
2
e) = ĨI

02

o + ĨI
02

e + ĨI
12

o + ĨI
12

e + ĨI
6

o + ĨI
6

e .

(6.4)

By a straightforward calculation, we get the following.

Lemma 6.8. For the cohomology groups of the cochain complex (6.3) with n = 3, we

have

H0 ∼= Z2 (generated by [0̃o + 0̃e]), and

H1 ∼= Z2 ⊕ Z2 ⊕ Z2 (generated by α̂1 = [̃I0o + Ĩ1e ] = [̃I0e + Ĩ1o],

α̂2 = [̃I0o + Ĩ0e ] = [̃I1o + Ĩ1e ] and α̂3 = [̃I2o + Ĩ2e ]).

Furthermore, for n = 2, the same isomorphism holds for H0, and for H1, we have

H1 ∼= Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2 (generated by β̂1 = [̃I0o + Ĩ1e ] = [̃I0e + Ĩ1o], β̂2 = [̃I0o],

β̂3 = [̃I1o], β̂4 = [̃I2o] and β̂5 = [̃I2e ]).

13



We can also describe the homomorphisms induced by suspension with respect to the
above generators.

Let f : M → R be a stable Morse function on a closed surface M . Then we see that
s∗1α̂1(f) ∈ H0(R;Z2) ∼= Z2 always vanishes as before. Furthermore, s∗1α̂2(f) coincides
with min (f) + max (f) modulo two. Finally, s∗1α̂3(f) gives the number (modulo 2) of

singular fibers of type Ĩ2 of f .
Then by [3, 5], we get the following.

Theorem 6.9. The map

Φ : M(2) → Z ⊕ Z2

which sends the cobordism class of a stable Morse function f to

(s∗1α2(f), s∗1α̂3(f)) = (max (f) − min (f), |̃I2(f)|) ∈ Z ⊕ Z2

is an isomorphism, where | ∗ | denotes the number of elements modulo two.

Note that as will be seen in §8, |̃I2(f)| ∈ Z2 coincides with the parity of the Euler
characteristic χ(M) of the source surface M .

As the above observations show, the cohomology classes of universal complexes of
singular fibers can give complete cobordism invariants for singular maps.

We note that by using the universal homology complex of singular fibers as intro-
duced in Subsection 5.3, we get the same isomorphisms as in Theorems 6.7 and 6.9.

7. Application to map germs

In this section, as an application of the theory of universal complexes of singular
fibers we give a new topological invariant for generic C∞ map germs (R3, 0) → (R2, 0).

First, let us consider the following situation. Let F : W → D2 be a C∞ map of
a compact 3-dimensional manifold W with nonempty boundary ∂W = M with the
following properties:

(1) F−1(∂D2) = M ,
(2) f = F |M : M → ∂D2 = S1 is a C∞ stable map,
(3) F |M×[0,1) = f × id[0,1), where we identify the small open collar neighborhood of

M (or ∂D2) in W (resp. in D2) with M × [0, 1) (resp. ∂D2 × [0, 1)),
(4) F |Int W : IntW → Int D2 is a proper C∞ stable map.

Note that F may have cusp singular points. Thus, in general, F has singular fibers as
depicted in Fig. 3.

In §6, we have seen that the fibers 0̃∗, Ĩ0
∗
, Ĩ1

∗
and ĨI

01

∗
are co-orientable. If cusp

singular points are allowed, then ĨI
a

∗
is also co-orientable. We give co-orientations to

ĨI
a

∗
as depicted in Fig. 4.

In the following, we orient D2 and S1 = ∂D2 consistently so that S1 gets the coun-
terclockwise orientation. Then we have the following.

Lemma 7.1. For the algebraic numbers of singular fibers of F and f , we have

||̃I0o(f)|| = −||ĨI
01

o (F )|| + ||ĨI
01

e (F )|| − ||ĨI
a

e (F )||,

||̃I0e(f)|| = −||ĨI
01

o (F )|| + ||ĨI
01

e (F )|| + ||ĨI
a

o(F )||,

||̃I1o(f)|| = ||ĨI
01

o (F )|| − ||ĨI
01

e (F )|| − ||ĨI
a

o(F )||,

||̃I1e(f)|| = ||ĨI
01

o (F )|| − ||ĨI
01

e (F )|| + ||ĨI
a

e (F )||.
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ĨI
a

o ĨI
a

e

Ĩ0oĨ1oĨ0e Ĩ1e

Figure 4. Co-orientations for ĨI
a

o and ĨI
a

e

ĨI
a

Ĩ0 Ĩ1

Figure 5. Co-orientation for ĨI
a

Proof. Let us consider the closures of Ĩ0o(F ), Ĩ0e(F ), Ĩ1o(F ) and Ĩ1e(F ) as 1-dimensional
chains in D2 with coefficients in Z. Then by observing the adjacencies for the singular
fibers as we did to obtain the formulae for the coboundary homomorphism in (6.2), we
get the following equalities as 0-dimensional chains:

∂Ĩ0o(F ) = ĨI
01

o (F ) − ĨI
01

e (F ) + ĨI
a

e(F ) + Ĩ0o(f),

∂Ĩ0e(F ) = ĨI
01

o (F ) − ĨI
01

e (F ) − ĨI
a

o(F ) + Ĩ0e(f),

∂Ĩ1o(F ) = −ĨI
01

o (F ) + ĨI
01

e (F ) + ĨI
a

o(F ) + Ĩ1o(f),

∂Ĩ1e(F ) = −ĨI
01

o (F ) + ĨI
01

e (F ) − ĨI
a

e (F ) + Ĩ1e(f).

Since the algebraic number of points in the boundary of a 1-dimensional chain is always
equal to zero, we get the desired equalities. �

Remark 7.2. By the above lemma, we see easily that

||̃I0o(f)|| + ||̃I1e(f)|| = 0 and ||̃I0e(f)|| + ||̃I1o(f)|| = 0.

This gives an alternative proof of the fact that β1(f) = 0 for a C∞ stable map f of a
closed surface into S1, where β1 is the cohomology class described in Lemma 6.5 (see
also [13, Lemma 14.1]).

For ĨI
a
, we consider the co-orientation as depicted in Fig. 5. Since we have

||ĨI
a
(F )|| = ||ĨI

a

o(F )|| + ||ĨI
a

e (F )||,

we immediately get the following.

Proposition 7.3. The algebraic number of singular fibers of F containing cusps is

equal to

(7.1) −||̃I0o(f)|| + ||̃I0e(f)||.
15



Note that the integer given by (7.1) is a (fold) cobordism invariant as shown in §6.
Now, let g : (R3, 0) → (R2, 0) be a C∞ map germ which is generic in the sense

of Fukuda [1]. (In what follows, we will not distinguish the map germ g from its
representative when there is no confusion.) Suppose furthermore that the origin is

isolated in g−1(0), i.e. 0 6∈ g−1(0) r {0}. Then for ε > 0 sufficiently small, S̃2
ε = g−1(S1

ε )
is diffeomorphic to S2, and g is topologically equivalent to the cone of the C∞ stable
map

g∂ = g|g−1(S1
ε ) : S̃2

ε → S1
ε ,

where S1
ε is the circle in R2 with radius ε centered at the origin, and the cone of a map

h : X → Y refers to the map Ch : X × [0, 1)/X ×{0} → Y × [0, 1)/Y ×{0} defined by
Ch(x, t) = (h(x), t) (for details, see [1]).

Definition 7.4. Let g and g′ : (R3, 0) → (R2, 0) be C∞ map germs. We say that
they are topologically A-equivalent if there exist homeomorphism germs Φ : (R3, 0) →
(R3, 0) and ϕ : (R2, 0) → (R2, 0) such that g′ = ϕ ◦ g ◦ Φ−1. Furthermore, if the
homeomorphism germ ϕ can be chosen so that it preserves the orientation of R2, then
we say that g and g′ are topologically A+-equivalent.

Let g̃ be a stable perturbation of a representative of g. In the following, the algebraic

number of singular fibers of type ĨI
a

of g̃ appearing near the origin is simply called the
algebraic number of cusps of g̃. Then we have the following.

Theorem 7.5. Let g : (R3, 0) → (R2, 0) be a generic C∞ map germ such that 0 is

isolated in g−1(0). Then the algebraic number of cusps of a C∞ stable perturbation g̃
of a representative of g is an invariant of the topological A+-equivalence class of g, and

is equal to

(7.2) −||̃I0o(g∂)|| + ||̃I0e(g∂)||,

where ε > 0 is sufficiently small. In particular, the absolute value of the algebraic

number of cusps of g̃ is an invariant of the topological A-equivalence class of g.

Essential idea for the proof consists of the following two steps:

(1) to find a formula for the algebraic number of cusps of a stable perturbation g̃
in terms of the singular fibers of g∂ , and

(2) to show the cobordism invariance of the quantity obtained in (1).

Proof of Theorem 7.5. Let g′ : (R3, 0) → (R2, 0) be a C∞ map germ which is generic
in the sense of [1] and which is topologically A+-equivalent to g. Then we see that the
C∞ stable maps g∂ and g′∂ are cobordant in a sense similar to Definition 6.1. Then by
the results obtained in §6, we have

−||̃I0o(g∂)|| + ||̃I0e(g∂)|| = −||̃I0o(g
′

∂)|| + ||̃I0e(g
′

∂)||.

Therefore, the integer (7.2) is an invariant of the topological A+-equivalence class.
Furthermore, the integer (7.2) is equal to the algebraic number of cusps of a C∞

stable perturbation g̃ of a representative of g by Proposition 7.3.
It is easy to observe that if we reverse the orientation of R2, then the algebraic

number of cusps changes the sign. Thus the last assertion of the theorem follows. �

In order to generalize the above result to the case where the origin may not necessarily
be isolated in g−1(0), let us consider the following situation. Let F : W → D2 be a
C∞ map of a compact 3-dimensional manifold W with nonempty boundary ∂W with
the following properties:
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κ = 1

κ = 2

Ĩ0 Ĩ1 Ĩα

ĨI
01

ĨI
0α

ĨI
1α

ĨI
β

ĨI
γ

ĨI
a

Figure 6. List of co-orientable singular fibers for F

(1) ∂W = M ∪ P , where M is a compact surface with boundary, P is a finite
disjoint union of 2-dimensional disks, and M ∩ P = ∂M = ∂P ,

(2) F−1(∂D2) = M ,
(3) F |P : P → D2 is a submersion,
(4) f = F |M : M → ∂D2 = S1 is a C∞ stable map,
(5) F |M×[0,1) = f × id[0,1), where we identify the small open “collar neighborhood”

of M (or ∂D2) in W (resp. in D2) with M × [0, 1) (resp. ∂D2 × [0, 1)),
(6) F |W rM : W r M → IntD2 is a proper C∞ stable map.

In what follows, for simplicity we assume that W and M are orientable, which is
enough for our purpose.

Then we can get a list of the C0 equivalence classes of singular fibers that appear
for F as above, which is similar to Fig. 3. For these fibers, let us consider the following
equivalence relation: two fibers are equivalent if one is C0 equivalent to the other after
adding even numbers of regular components to both of the fibers. Note that in contrast
to the case where ∂M = ∅, regular fibers consist of circles and intervals. However, when
we count the number of regular components, we do not distinguish them.

Then we easily get the following.

Lemma 7.6. Those equivalence classes of singular fibers which are co-orientable are

F̃∗, where ∗ = o or e, and F̃ are as depicted in Fig. 6.

We denote by 0̃∗ the equivalence classes corresponding to regular fibers. Note that
they are also co-orientable. Then for the coboundary homomorphism, we get the fol-
lowing:

δ1(̃I
0
o) = ĨI

01

o − ĨI
01

e − ĨI
a

e − ĨI
0α

o + ĨI
0α

e − ĨI
γ

e ,

δ1(̃I
0
e) = ĨI

01

o − ĨI
01

e + ĨI
a

o − ĨI
0α

o + ĨI
0α

e + ĨI
γ

o ,

δ1(̃I
1
o) = −ĨI

01

o + ĨI
01

e − ĨI
a

o − ĨI
1α

o + ĨI
1α

e − ĨI
β

e ,

δ1(̃I
1
e) = −ĨI

01

o + ĨI
01

e + ĨI
a

e − ĨI
1α

o + ĨI
1α

e + ĨI
β

o ,

δ1(̃I
α
o ) = ĨI

0α

o − ĨI
0α

e + ĨI
1α

o − ĨI
1α

e + ĨI
β

e − ĨI
γ

o ,

δ1(̃I
α
e ) = ĨI

0α

o − ĨI
0α

e + ĨI
1α

o − ĨI
1α

e − ĨI
β

o + ĨI
γ

e .
17



Then by the same argument as before, we see that

(7.3) ||̃Iαo (f)|| − ||̃Iαe (f)|| + ||̃I1o(f)|| − ||̃I1e(f)|| and − ||̃I0o(f)|| + ||̃I0e(f)||

are cobordism invariants of f in an appropriate sense. Furthermore, we see that the
algebraic number of cusps of F given by

||ĨI
a

o(F )|| + ||ĨI
a

e (F )|| + ||ĨI
γ

o(F )|| + ||ĨI
γ

e (F )||

is equal to both of the integers (7.3).
Now, let g : (R3, 0) → (R2, 0) be a C∞ map germ which is generic in the sense of

[1]. Then for any sufficiently small positive real numbers ε and δ, the upper bound of
δ depending on g and the upper bound of ε depending on δ and g, we have

(1) D3
δ ∩ g−1(S1

ε ) is a C∞ manifold, in general with boundary,
(2) g∂ = g|D3

δ
∩g−1(S1

ε ) : D3
δ ∩ g−1(S1

ε ) → S1
ε is C∞ stable, and

(3) g|∂D3

δ
∩g−1(D2

ε) : ∂D3
δ ∩ g−1(D2

ε) → D2
ε is a submersion,

where D3
δ (or D2

ε) denotes the 3-dimensional ball in R3 (resp. 2-dimensional disk in R2)
with radius δ (resp. ε) centered at the origin. Then by applying the above observations
to the map

g|D3

δ
∩g−1(D2

ε) : D3
δ ∩ g−1(D2

ε) → D2,

we get the following.

Theorem 7.7. Let g : (R3, 0) → (R2, 0) be a generic C∞ map germ. Then the

algebraic number of cusps of a C∞ stable perturbation g̃ of a representative of g is an

invariant of the topological A+-equivalence class of g, and is equal to

−||̃I0o(g∂)|| + ||̃I0e(g∂)|| = ||̃Iαo (g∂)|| − ||̃Iαe (g∂)|| + ||̃I1o(g∂)|| − ||̃I1e(g∂)||,

where 0 < ε << δ are sufficiently small. In particular, the absolute value of the algebraic

number of cusps of g̃ is an invariant of the topological A-equivalence class of g.

It would be an interesting problem to find a formula expressing the algebraic number
of cusps of a C∞ stable perturbation in algebraic terms.

8. Example 2 – Euler characteristic formula

Let f be a stable Morse function on a closed surface M . It is known that the
Euler characteristic χ(M) has the same parity as the number of critical points of f .

By the formulae

δ0(0̃o) = Ĩ0o + Ĩ0e + Ĩ1o + Ĩ1e and δ0(0̃e) = Ĩ0o + Ĩ0e + Ĩ1o + Ĩ1e

(see (6.4)), we see that the total number of singular fibers of types Ĩ0 and Ĩ1 is always
even. Thus we get the following.

Theorem 8.1. Let f : M → R be a stable Morse function on a closed surface M . Then

the Euler characteristic χ(M) of M has the same parity as the number of singular fibers

of type Ĩ2.

From the viewpoint of the theory of universal complex of singular fibers, the above
result can be interpreted as follows.

Let τ(2, 1) (or τ(3, 2)) be the set of singular fibers appearing for proper stable Morse
functions on surfaces (resp. for proper C∞ stable maps of 3-manifolds into surfaces).
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Furthermore, let ̺2,1(2) (or ̺3,2(2)) be the equivalence relation modulo two circle com-
ponents. Then for the universal complex C∗(τ(3, 2), ̺3,2), we have

δ0(0̃o) = Ĩ0o + Ĩ0e + Ĩ1o + Ĩ1e ,

δ0(0̃e) = Ĩ0o + Ĩ0e + Ĩ1o + Ĩ1e ,

δ1(̃I
0
o) = ĨI

01

o + ĨI
01

e + ĨI
a

e ,

δ1(̃I
0
e) = ĨI

01

o + ĨI
01

e + ĨI
a

o,

δ1(̃I
1
o) = ĨI

01

o + ĨI
01

e + ĨI
a

o,

δ1(̃I
1
e) = ĨI

01

o + ĨI
01

e + ĨI
a

e ,

δ1(̃I
2
o) = ĨI

02

o + ĨI
02

e + ĨI
12

o + ĨI
12

e + ĨI
6

o + ĨI
6

e ,

δ1(̃I
2
e) = ĨI

02

o + ĨI
02

e + ĨI
12

o + ĨI
12

e + ĨI
6

o + ĨI
6

e .

(Compare this with (6.4).)
By a straightforward calculation, we see that H1(τ(3, 2), ̺3,2) ∼= Z2 ⊕ Z2, which is

generated by

α̂′

1 = [̃I0o + Ĩ1e ] = [̃I0e + Ĩ1o] and α̂′

2 = [̃I2o + Ĩ2e ].

After the suspension, α̂′

1 gives a trivial cobordism invariant, while α̂′

2 gives the cobor-

dism invariant which counts the number of singular fibers of type Ĩ2 modulo 2. In other

words, this shows the cobordism invariance of the parity of the number of Ĩ2-type
singular fibers.

Let N2 denotes the unoriented cobordism group of 2-dimensional manifolds. Let us
define the map

Φ : N2 → Z2

by associating to each cobordism class of a closed 2-manifold M to the parity of the

number of singular fibers of Ĩ2-type of an arbitrary stable Morse function on M . By
the above argument, this is a well-defined homomorphism.

Furthermore, let
Φ′ : N2 → Z2

be the map which sends a cobordism class of a closed 2-manifold M to the parity of
the Euler characteristic χ(M). It is known that this defines an isomorphism of groups.

Now, it is easy to construct a stable Morse function on RP 2 which has exactly three

critical points and which has two singular fibers of Ĩ0-type and a singular fiber of Ĩ2-
type. Therefore, the homomorphism Φ and Φ′ coincides on the generator of N2

∼= Z2.
Hence, we have Φ = Φ′. In other words, we have the following.

Proposition 8.2. Let f : M → R be a stable Morse function on a closed surface M .

Then we have

ϕf (s∗1α̂
′

2) = f!w2(M) ∈ H1
c (R;Z2) = Z2,

where w2(M) ∈ H2(M ;Z2) is the second Stiefel-Whitney class of M , f! : H2(M ;Z2) =
H2

c (M ;Z2) → H1
c (R;Z2) is the Gysin homomorphism induced by f , and H∗

c denotes

the cohomology of compact support.

Corollary 8.3. Let f : M → N be a proper C∞ map of an n-dimensional manifold

into an (n − 1)-dimensional manifold which is Thom-Boardman generic. Then the

Poincaré dual to the Z2-homology class represented by the closure of Ĩ2(f) coincides

with f!w2(M).
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9. Example 3 – Signature formula

Let us consider the singular fibers of proper C∞ stable maps of oriented 5-manifolds
into 4-manifolds. For κ with 3 ≤ κ ≤ 4, let Cκ be the free Z-module generated by
the C0 equivalence classes modulo regular circle components of chiral singular fibers
of codimension κ. Note that rankC3 = 3 and rankC4 = 14 according to [15, Propo-
sition 6.1]. Since there exist no chiral singular fibers of codimension κ 6= 3, 4, we put
Cκ = 0 for κ 6= 3, 4.

We call the resulting cochain complex (Cκ, δκ)κ the universal complex of chiral sin-

gular fibers for proper C∞ stable maps of oriented 5-manifolds into 4-manifolds. Note
that its unique cohomology group that makes sense is its third cohomology group,
and is nothing but the kernel of the coboundary homomorphism δ3. Then we get the
following.

Proposition 9.1. The 3-dimensional cohomology group of the universal complex of

chiral singular fibers for proper C∞ stable maps of oriented 5-manifolds into 4-manifolds

is an infinite cyclic group generated by the C0 equivalence class modulo regular circle

components of III8-type fibers as depicted in Fig. 2.

According to the above proposition, the 3-dimensional cohomology class represented
by the cocycle III8 gives an oriented cobordism invariant of the source closed oriented
4-manifold. Then by an argument similar to that in the previous section, we can prove
the following [15].

Theorem 9.2. Let M be a closed oriented 4-manifold and N a 3-manifold. Then, for

any C∞ stable map f : M → N , the algebraic number of III8-type fibers of f coincides

with the signature of M .

In other words, the corresponding cohomology class of the universal complex gives a
complete invariant of the oriented bordism class of a C∞ stable map of a closed oriented
4-manifold into R3.

We also see that the fiber which satisfies the property as in Theorem 9.2 should
necessarily be the fiber of type III8.

As in Corollary 8.3, we can prove the following.

Corollary 9.3. Let f : M → N be a proper C∞ map of an n-dimensional manifold into

an (n − 1)-dimensional manifold which is Thom-Boardman generic. Furthermore, we

assume that f is an oriented map. Then three times the Poincaré dual to the homology

class represented by the closure of III8(f) coincides with f!p1(M) modulo torsion, where

p1(M) ∈ H4(M ;Z) denotes the first Pontrjagin class of M .

Note that the homology class represented by the closure of III8(f) lies in the (n−4)-th
homology group of N of closed support with twisted coefficients.

Corollaries 8.3 and 9.3 suggest the following.

Conjecture 9.4. (1) For any cohomology class α of the universal complex C∗(τ(n +
1, p + 1), ̺n+1,p+1) of singular fibers, there exists a universal polynomial Pα in wi

such that for any proper τ -map f : M → N of an n-dimensional manifold into a

p-dimensional manifold, ϕf (s∗α) coincides with f!Pα(wi(M)).
(2) For any cohomology class α of the universal complex of chiral singular fibers for

proper oriented τ -maps of (n+1)-dimensional manifolds into n-dimensional manifolds,

there exists a universal polynomial Pα in pi such that for any proper oriented τ -map

f : M → N of an n-dimensional manifold into a p-dimensional manifold, ϕf (s∗α)
coincides with f!Pα(pi(M)).
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R

Figure 7. A III8-type fiber of a Morse function on a surface

Note that the cohomology classes of the forms f!Pα(wi(M)) or f!Pα(pi(M)) are easily
seen to be bordism invariants for maps f into a fixed target manifold N .

10. Application to surface bundles

In order to consider characteristic classes of surface bundles,9 let us first consider the
class Γ of Morse functions h : S → R with the following properties, where S is a closed
connected and orientable surface.

(1) Exactly three of the critical points of h have the same value c, and the values
of the other critical points are different from each other and are not equal to c.

(2) The singular fiber of h over c is a III8-type fiber (possibly with several regular
circle components), where a singular fiber of type III8 refers to a singular fiber
as depicted in Fig. 7.

Let S be as above and π : E → B a C∞ fiber bundle with fiber S. For a generic
function f : E → R and a point y ∈ B, let us put fy = f |π−1(y) : π−1(y) ∼= S → R.
Then, let us denote by Γ(f) the set of points y in B such that fy belongs to Γ. Note
that this does not depend on a particular diffeomorphism π−1(y) ∼= S. Note also that
if f is generic enough, then Γ(f) is a codimension two submanifold of B.

By using the chirality of the singular fiber of type III8, we can give a co-orientation
to Γ(f), provided that the surface bundle π : E → B is oriented. Furthermore, by
using the theory of universal complex of singular fibers, we can show that the closure
Γ(f) defines a codimension two cycle of closed support in twisted coefficients in B. Let

us denote by [Γ(f)]∗ ∈ H2(B;Z) the Poincaré dual to this homology class.

Theorem 10.1. The cohomology class [Γ(f)]∗ ∈ H2(B;Z) coincides with the first

Miller-Morita-Mumford characteristic class of the surface bundle π : E → B modulo

torsion.

9I hope that the details of this section will be presented by Takahiro Yamamoto.
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For the Miller-Morita-Mumford characteristic classes of surface bundles, the reader
is referred to [10], for example.

Note that the above theorem is an analogy of the results obtained by Kazarian [7, 8]
about the Euler classes of oriented circle bundles.
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