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Abstract. Given a certain curve in a homogeneous space G/H we
associate to it a curve in the Lie algebra g of G, in such a way that geo-
metric features of the original curve may be recovered by the associated
curve in g. Indeed we use it to establish some results on congruence.
Moreover we show that the associated curve yields an intrinsic way to
introduce a notion of a natural parameter for the original curve, i.e., a
G-invariant for curves to start with.

1. Introduction

According to Klein’s Erlangen Program, Geometry is the study of equiv-
alence of figures in a space M up to the action of some group of motions
of the space. Having in mind the use of tools coming from the Differ-
ential Calculus, Differential Geometry considers particular figures in that
study, for instance the ones that are images of differentiable embeddings
α : I → M , where I ⊂ R is an open interval. Given such a mapping one
can try to find the relevant geometric features of its image. However, many
such smooth mappings have the same image so that the task seems to be
not so easy. Concerning this, in Riemannian Geometry the notion of arc
length parametrization is so helpful; it is easy to argue why. One can just
say that when we are looking at the figure, it does not matter how fast we
travel on it. However, for general groups of motions that argument is not
applicable and presumably no physical one, either. As observed by Weyl [7],
“Cartan goes here to the opposite extreme by normalizing the parameters
in terms of the frames”; but as observed by Green [2] “he did not give a
precise proof that a moving frame exists in general”. Thus, speaking of a
natural parameter needs further investigations.

In Section 2 of the present paper we recall some basic constructions ap-
pearing in [5]. In Section 3 we characterize the curves that are good enough
to be dealt with by our methods. We also present, for these curves, an an-
swer to a linearized version of the problem of congruence (see Theorem 8).
In Section 4, we show that as far as we are interested in the images of the
mappings, there exists a sort of appropriate parameter to be considered. Fi-
nally, in Section 5 we explore two examples. With the first one we would like
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to show that our method reveals itself to be a mixture of Cartan’s method
and a sort of generalization of Frenet’s method. With the second example
we discuss geometric aspects behind the obstruction to the applicability of
the method.

2. Preliminaries

To begin with, let us consider Φ : G × G/H → G/H, the natural action
of the Lie group G on the quotient space G/H, where H ⊂ G is a closed
subgroup. For g ∈ G and x ∈ G/H we sometimes write Φ(g, x) = g · x.
Let g be the Lie algebra of G, Gx be the isotropy subgroup at x ∈ G/H
and gx its Lie algebra. Then every v ∈ g, v /∈ gx, determines in G/H the
exponential curve s 7→ exp(sv) · x, s ∈ R, which is an embedding in some
neighborhood of s = 0.

Now, given an embedding α : I → G/H of a real open interval I into
G/H, for each t ∈ I one may consider the contact between α and βv at
α(t) = βv(0), where βv is the exponential curve βv(s) = exp(sv) · α(t).

For the purpose of Geometry, as we are interested in the images, the nice
notion of contact between mappings is as follows. We say that, for k ∈ N, α
and βv are in contact of order k at α(t) = βv(0) if some reparameterizations
of them have the same k-jet there.

Let DeΦα(t) : g → Tα(t)(G/H) be the differential at the neutral element
e ∈ G of Φα(t) : G → G/H, g 7→ Φ(g, α(t)). Then it is easy to see that the
vector subspace Sα1 (t) ⊂ g given by

Sα1 (t) =
(
DeΦα(t)

)−1
(Rα′(t))

contains besides gα(t) precisely those elements v ∈ g such that βv and α are
in contact of order 1 at α(t).

For each t ∈ I let {N1(t), . . . ,Nr(t)} ⊂ g∗ be a linearly independent set
such that

Sα1 (t) = ∩ri=1 ker Ni(t).

It follows that r = dimG− dimSα1 (t), which does not depend on t.
From now on we suppose that g is endowed with an inner product, 〈·, ·〉,

and thus we often identify g∗ with g. We may further assume that each Ni,
i = 1, . . . , r, varies differentiably with respect to t; then we call {N1, . . . ,Nr}
a coframe along α (see [5]). In this case we consider the (k−1)-th derivative

N
(k−1)
i and define inductively Sαk (t) by the rule

(1) Sαk (t) = {v ∈ Sαk−1(t); v ∈ ∩ri=1 ker N
(k−1)
i (t)}.

Theorem 2.5 of [5] shows that v ∈ Sαk (t) if and only if either v ∈ gα(t) ∩
Sαk (t) or βv and α are in contact of order k at α(t) = βv(0). In particular,
Sαk (t) does not depend on the choice of a coframe.

3. On congruence

Being invariant by diffeomorphisms of G/H, the contact order is a too
strong invariant as far as we are interested only in the G-motions. However,
in some situations it may help us to choose a specific exponential curve at
each point of α and, since the exponential curves are completely determined
by the G-action, we may expect to get some insight. As we shall see, under
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the conditions in the following definition, such an appropriate choice is pos-
sible. Roughly speaking, the conditions will be fulfilled whenever the one
parameter subgroups are plenty enough and their orbits are distinguishable
enough among themselves. As far as we know, it has been always the case
that some non-degeneracy assumption for α is necessary (see the introduc-
tions in [2, 3]), and in this context, our approach may be revealing a role
played by one parameter subgroups of G.

Definition 1. Let α : I → G/H be an embedding. Take Sα0 (t) as being
the Lie algebra g. Suppose that there exists a positive integer k such that
Sαk−1(t) has constant dimension, and, for all t ∈ I, Sαk (t) is one dimensional,
and Sαk (t) ∩ gα(t) = {0}. The smallest such k is called the preferred contact
order for α, hereafter denoted by κ.

Suppose that α has preferred contact order κ. Then, for each t there
exists a unique w(t) ∈ Sακ (t) such that

DeΦα(t)(w(t)) = α′(t).

In fact, (DeΦα(t))
−1(α′(t)) is a hyperplane of Sα1 (t) parallel to gα(t). We let

w(t) be the intersection of that hyperplane with Sακ (t). Under the hypothesis
on the dimension of Sακ (t), the uniqueness follows immediately from the
linearity of DeΦα(t). Thus wα : t 7→ w(t) is a map into g which we shall call
the linearized osculatrix of α.

Remark 2. In the case of a curve α in R2 under rigid motions, for each t the
orbit through α(t) by the exponential curve βwα(s) = exp(swα(t)) · α(t) is
precisely either the osculating circle of α at α(t) if the curvature of α does
not vanish there or its tangent line otherwise. This was what suggested us
the name for wα. In this case, α always satisfies the condition in Definition 1
with preferred contact order 2 (for details, see [4]).

Proposition 3. The linearized osculatrix of α is differentiable.

Proof. Let {N1, . . . ,Nr} be a coframe along α and let κ be the preferred
contact order for α. Once an inner product on g is fixed, we may identify
each Ni ∈ g∗ with a well defined element in g, as it is well known. In what
follows we shall use the same symbol Ni for that element. Then, it follows
from equation (1) that Sακ (t) is the orthogonal complement of the subspace
V (t) spanned by

(2) {N1(t), . . . ,Nr(t),N
′
1(t), . . . ,N′r(t), . . . ,N

(κ−1)
1 (t), . . . ,N(κ−1)

r (t)}.

Fix t0 ∈ I and choose a basis {n1(t0), . . . ,ndimG−1(t0)} for V (t0), from
the set of generators of V (t0) given in (2). By the continuity of the elements
of {n1(t), . . . ,ndimG−1(t)} we have that this set is a basis, for each t in some
neighborhood I0 of t0. Thus the product

u(t) = n1(t)× · · · × ndimG−1(t)

gives a generator for Sακ (t) on I0. Now it is clear that u is differentiable and
that we can write the linearized osculatrix wα in the form wα(t) = λ(t)u(t),
for some nowhere zero real-valued function λ. We shall show that λ is
differentiable, thus providing the differentiability of wα.
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By definition we have

DeΦα(t)(wα(t)) = DeΦα(t)(λ(t)u(t)) = α′(t)

and choosing an arbitrary Riemannian metric on G/H, p 7→ 〈〈·,·〉〉p, we can
write

(3) λ2(t)〈〈DeΦα(t)(u(t)), DeΦα(t)(u(t))〉〉α(t) = 〈〈α′(t), α′(t)〉〉α(t).

Since λ is nowhere zero it is sufficient to show that λ2 is differentiable, and
considering the differentiability of the Riemannian metric we only need to
show that t 7→ DeΦα(t)(u(t)) is differentiable.

Let Ψ : G × I → G/H be given by Ψ(g, t) = g · α(t), g ∈ G, t ∈ I. We
identify the tangent bundle

T (G× I) ≈ TG× TI ≈ (G× g)× (I × R)

and we consider the map Θ : I → (G×g)× (I×R), Θ(t) = ((e,u(t)), (t, 0)),
which is differentiable. Taking the differential DΨ : T (G× I)→ T (G/H) of
Ψ we obtain

(DΨ ◦Θ)(t) = D(e,t)Ψ(u(t), 0) = DeΦα(t)(u(t)),

which shows that t 7→ DeΦα(t)(u(t)) is differentiable. �

Whenever our early constructions work well, the following result is to be
expected.

Proposition 4. Suppose that α is itself an exponential curve, i.e., α(s) =
exp(sv) · p for some p ∈ G/H, v 6∈ gp, and has preferred contact order κ.
Then wα(s) = v, for every s.

Proof. Since Sακ (s) is one dimensional, it follows from [5, Corollary 2.7] that
Sακ (s) is generated by v. On the other hand it is clear that DeΦα(s)(v) =
α′(s), and the result follows from the definition of the linearized osculatrix.

�

Remark 5. Even if α is an exponential curve it may have no preferred contact
order. This means that there may exist linearly independent elements in the
Lie algebra giving rise to the same orbit (cf. Case 1 in Example 2).

From now on we assume that to each curve we consider we can associate
its linearized osculatrix.

We also have the converse to Proposition 4. It will follow as a corollary
to the next lemma.

Let π : G → G/H be the canonical projection and Rg : G → G be the
right translation by g ∈ G. Take z a lifting of α to G and consider the
linearized osculatrix wα. It is well known ([6, p. 29]) that, for a fixed t0 ∈ I,
there exists a unique g : I → G such that g(t0) = z(t0) and DgRg−1(g′) =
wα. Under these conditions we have:

Lemma 6. The curve g is a lifting of α.

Proof. From DeΦα(t) = Dz(t)π ◦ DeRz(t) it follows that DeRz(wα) − z′ ∈
kerDzπ, where z = z(t). Since kerDzπ = DeLz(h), we obtain

(DeLz)
−1(z′ −DeRz(wα)) = DzLz−1(z′)−Ad(z−1)(wα) ∈ h,
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where h is the Lie algebra of H ⊂ G. Then, again by [6, p. 29] we get
h : I → H with h(t0) = e and DhLh−1(h′) = DzLz−1(z′) − Ad(z−1)(wα).
Now consider the curve x(t) = g(t)−1z(t), t ∈ I. We shall show that x = h.
Treating h as a curve in G, from [3, (1.3)] x = h if and only if DxLx−1(x′) =
DhLh−1(h′), since x(t0) = h(t0) = e. But this is exactly what we have: by
the Leibniz rule the derivative of gx = z is equal to

(4) DzLz−1(z′) = Ad(x−1) ◦DgLg−1(g′) +DxLx−1(x′),

and putting x−1 = z−1g in equation (4) we obtain

DxLx−1(x′) = DzLz−1(z′)−Ad(z−1) ◦DgRg−1(g′)

= DzLz−1(z′)−Ad(z−1)(wα)

= DhLh−1(h′).

As h is a curve in H, π(g) = π(gh) = π(z) = α. �

Corollary 7. Suppose that the linearized osculatrix of α is defined over an
interval I containing 0, and wα(s) = v, for every s ∈ I. Then α(s) =
exp(sv) · α(0) for every s ∈ I.

Proof. Let z be a lifting of α with π(z(0)) = α(0) ∈ G/H. By Lemma 6,
the curve in G satisfying DgRg−1(g′) = v and g(0) = z(0) is a lifting of α.
From the very definition of exp(sv) it follows that g(s) = exp(sv) · z(0) is
such a curve. �

Now we are ready to prove the following theorem which characterizes the
congruence between two curves.

Theorem 8. Let α, γ : I → G/H be curves with wα,wγ : I → g the
corresponding linearized osculatrices. If g0 ∈ G is fixed, then γ = g0 · α if
and only if wγ = Ad(g0)(wα) and γ(t0) = g0 · α(t0) for some t0 ∈ I.

Proof. First suppose γ = g0 · α and let κ be the preferred contact order
for α (also for γ by [5, Proposition 4.1]). Fix z a lifting of α to G. By
definition wα is the unique element w ∈ Sακ such that Dzπ ◦DeRz(w) = α′.
Since g0z is a lifting of γ to G, wγ is the unique element w ∈ Sγκ such that
Dg0zπ ◦DeRg0z(w) = γ′. Now we have that

Dg0zπ ◦DeRg0z ◦Ad(g0)(wα)

= Dg0zπ ◦Dg0Rz ◦DeRg0 ◦Ad(g0)(wα)

= Dg0zπ ◦Dg0Rz ◦DeRg0 ◦Dg0Rg−1
0
◦DeLg0(wα)

= Dg0zπ ◦Dg0Rz ◦DeLg0(wα)

= Dg0zπ ◦DzLg0 ◦DeRz(wα)

= Dg0zπ ◦DzLg0(z′)

and the last term coincides with γ′, since γ = π(g0z). By [5, Proposition 4.1]
Sγκ = Ad(g0)Sακ so that the uniqueness yields Ad(g0)(wα) = wγ .

Conversely, suppose that Ad(g0)(wα) = wγ and γ(t0) = g0 · α(t0). If we
take a lifting g of α to G satisfying DgRg−1(g′) = wα as in Lemma 6, then it
is easy to see that r = g0g satisfies DrRr−1(r′) = Ad(g0)(wα) = wγ . Since
γ(t0) = g0 · α(t0), we know that there exists a lifting of γ passing through
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g0g(t0) = r(t0), and then again by Lemma 6, r is such a lifting of γ. Thus
γ = π(r) = π(g0g) = g0 · α. �

4. On parameters

In this section we introduce a notion of natural parameters for curves in
G/H. Theorem 14 is the main result of this section. It tells us that if we
consider curves with such appropriate parameters, then the reparameteriza-
tions we need work out in the study of congruence are very restricted.

Let ᾱ : I1 → G/H and γ̄ : I2 → G/H be embeddings. For g0 ∈ G,
γ̄(I2) = g0 · ᾱ(I1) if and only if there exist reparameterizations α = ᾱ ◦ ϕ1 :
I → G/H and γ = γ̄ ◦ ϕ2 : I → G/H such that γ = g0 · α.

Proposition 9. For k ≥ 2, if v : I → g is a curve such that v(t) ∈ Sαk (t)
for all t ∈ I, then v′(t) ∈ Sαk−1(t) for all t ∈ I.

Proof. The proof is by induction on k. Let {N1, . . . ,Nr} be a coframe along
α. Suppose k = 2. For each i = 1, . . . , r we have

Ni(v) = 0,(5)

N′i(v) = 0.(6)

Taking the derivative of (5) we get N′i(v) + Ni(v
′) = 0 and by (6) we

have Ni(v
′) = 0, for i = 1, . . . , r, which proves that v′ ∈ Sα1 . So the result

is true for k = 2.
Now, suppose that it is true for k = 2, . . . ,m and let v ∈ Sαm+1 so that

v ∈ Sαj , j = 1, . . . ,m. By hypothesis v′ ∈ Sαm−1 and we shall show that

N
(m−1)
i (v′) = 0, for i = 1, . . . , r. In fact, since v ∈ Sαm+1 ⊂ Sαm it follows

that N
(m−1)
i (v) = 0, for i = 1, . . . , r, and taking the derivative we obtain

N
(m)
i (v) + N

(m−1)
i (v′) = 0.

Finally v ∈ Sαm+1 implies that N
(m−1)
i (v′) = 0, for i = 1, . . . , r. �

Note that the above proposition holds true even if α does not have pre-
ferred contact order k.

Proposition 10. Let α : I → G/H be an embedding and wα : I → g its
linearized osculatrix. If γ = α ◦ ϕ : ϕ−1(I) → G/H is a reparameterization
of α, then γ has linearized osculatrix given by

wγ(s) = ϕ′(s)wα(ϕ(s))

for all s ∈ ϕ−1(I).

Note that by [5, Proposition 2.8] we have Sγk (s) = Sαk (ϕ(s)) for every k.
In particular, α and γ have the same preferred contact order.

Proof of Proposition 10. Let κ be the preferred contact order for α and γ.
We recall that wα is simply the intersection of Sακ with (DeΦα)−1(α′), where
Φα(t) : G→ G/H is given by Φα(t)(g) = g · α(t), for g ∈ G. Thus

wγ(s) =
(
(DeΦγ(s))

−1(γ′(s))
)
∩ Sγκ(s) =

(
(DeΦγ(s))

−1(γ′(s))
)
∩ Sακ (ϕ(s)),

and since ϕ′ does not vanish we see that

(DeΦγ(s))
−1(γ′(s)) = ϕ′(s)(DeΦα(ϕ(s)))

−1(α′(ϕ(s)))
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and the result follows. �

Lemma 11. Let wα be the linearized osculatrix of α : I → G/H with
preferred contact order κ ≥ 2. Then, for t0 ∈ I, there exist a neighborhood
I0 of t0 and a reparameterization γ = α ◦ ϕ such that

w′γ(s) ∈ Sγκ−1(s) ∩ gγ(s)

for s ∈ ϕ−1(I0).

Proof. Since wα(t) ∈ Sακ (t) for all t ∈ I, by Proposition 9 we have w′α(t) ∈
Sακ−1(t), for all t ∈ I. Thus we can write

(7) w′α(t) = λ(t)wα(t) + v(t),

with v(t) ∈ Sακ−1(t) ∩ gα(t) for all t ∈ I and some real-valued function
λ(t). We shall show that λ is differentiable. Since the dimension of the
subspace Sακ−1(t) ∩ gα(t) is constant for all t ∈ I by Definition 1, we can
choose a basis, say {v1(t), . . . ,vn(t)}, for it which varies smoothly. Then
{wα(t),v1(t), . . . ,vn(t)} is a basis of Sακ−1(t) varying smoothly. The differ-
entiability of λ(t) follows immediately, since it is one of the coefficients of
the expansion of w′α(t) in that basis.

Fix t0 ∈ I and consider the solution ψ of the differential equation ψ′′(t)−
λ(t)ψ′(t) = 0 with initial conditions ψ(t0) = 0 and ψ′(t0) = c 6= 0. Then ψ
is a diffeomorphism from a neighborhood I0 of t0 to some neighborhood of
0. Taking γ = α ◦ ψ−1 we obtain α = γ ◦ ψ and by Proposition 10 we have
for all t ∈ I0,

wα(t) = ψ′(t)wγ(ψ(t)),(8)

w′α(t) = (ψ′(t))2w′γ(ψ(t)) + ψ′′(t)wγ(ψ(t)).(9)

Making use of (7) we rewrite (9) as

λ(t)wα(t) + v(t) = (ψ′(t))2w′γ(ψ(t)) + ψ′′(t)wγ(ψ(t)).

From (8) it follows that

v(t) = (ψ′′(t)− λ(t)ψ′(t))wγ(ψ(t)) + (ψ′(t))2w′γ(ψ(t)),

and by the hypotheses on ψ we obtain

w′γ(ψ(t)) =
v(t)

(ψ′(t))2
∈ Sακ−1(t) ∩ gα(t) = Sγκ−1(ψ(t)) ∩ gγ(ψ(t)).

We complete the proof by taking ϕ = ψ−1. �

Definition 12. Let wα : I → g be the linearized osculatrix of the embedding
α : I → G/H. If w′α(t) ∈ gα(t) for all t ∈ I, then we shall say that α carries
a natural parameter.

We remark that i) in the above definition we are not supposing the pre-
ferred contact order for α greater than one; ii) Proposition 4 guarantees
that every exponential curve having a preferred contact order carries a nat-
ural parameter; iii) Theorem 8 shows that α carrying a natural parameter
is a G-invariant property; iv) applying our definition to the euclidean plane
geometry, we see that α carries a natural parameter if and only if ‖α′‖ is
constant (see [4, p. 72]).
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Proposition 13. If α : I → G/H carries a natural parameter and if γ =
α ◦ ϕ : ϕ−1(I) → G/H is a reparameterization of α, then γ also carries a
natural parameter if and only if ϕ(s) = as+ b, for some a, b ∈ R with a 6= 0.

Proof. Recalling that κ is the preferred contact order for α, we will split the
proof into two cases.

Case 1: κ ≥ 2. We know that wγ(s) = ϕ′(s)wα(ϕ(s)) by Proposition 10 and
then

(10) w′γ(s) = (ϕ′(s))2w′α(ϕ(s)) + ϕ′′(s)wα(ϕ(s)).

If γ has a natural parameter, then

w′γ(s) ∈ Sγκ−1(s) ∩ gγ(s) = Sακ−1(ϕ(s)) ∩ gα(ϕ(s)).

Since α has a natural parameter, we obtain

ϕ′′(s)wα(ϕ(s)) = w′γ(s)− (ϕ′(s))2w′α(ϕ(s)) ∈ Sακ−1(ϕ(s)) ∩ gα(ϕ(s)).

Consequently ϕ′′(s) must vanish for all s, since otherwise we would have
wα(ϕ(s0)) ∈ gα(ϕ(s0)) for some s0, which is impossible by the definition of
linearized osculatrix. So ϕ(s) = as+b with a 6= 0 (for it is a diffeomorphism).

Case 2: κ = 1. Observe that having preferred contact order equal to 1
is equivalent to dimSα1 (t) = 1 for all t ∈ I, and that then, by the very
definition of Sα1 (t) one has gα(t) = {0}. So if α carries a natural parameter,
then w′α(t) = 0 for all t ∈ I, that is, wα is constant. In view of (10) we
obtain w′γ(s) = ϕ′′(s)wα(ϕ(s)) and, as in Case 1, if γ also carries a natural
parameter, then we have ϕ′′(s) = 0 for all s.

The converse follows from Proposition 10 in both cases. �

Let ᾱ : Ī1 → G/H and γ̄ : Ī2 → G/H be embeddings with the same
preferred contact order κ ≥ 2. Suppose that there exist reparameterizations
α : I1 → G/H and γ : I2 → G/H of ᾱ and γ̄, respectively, both carrying
natural parameters (by Lemma 11 such reparameterizations do exist at least
locally). Given g0 ∈ G it is clear that γ̄(Ī2) = g0 · ᾱ(Ī1) if and only if
γ(I2) = g0 · α(I1), which leads to:

Theorem 14. For g0 ∈ G, the equality γ(I2) = g0 · α(I1) holds if and only
if there exists a bijection ϕ : I1 → I2 of the form ϕ(s) = as + b for some
a, b ∈ R such that γ ◦ ϕ = g0 · α.

Proof. Clearly the condition is sufficient. Now suppose that γ(I2) = g0 ·
α(I1) and then as observed at the beginning of Section 4, there exists a
diffeomorphism ϕ : I1 → I2 satisfying γ ◦ ϕ = g0 · α, that is, g0 · α is a
reparameterization of γ. Since α carries a natural parameter we know by
Theorem 8 that g0 ·α also carries a natural parameter. By hypotheses γ also
carries a natural parameter and then the result follows from Corollary 13.

�

Applying Theorems 8 and 14 and Proposition 10 we obtain:

Corollary 15. Let α : I1 → G/H and γ : I2 → G/H be embeddings
having natural parameters and let wα and wγ their linearized osculatrices,
respectively. Then for g0 ∈ G, we have γ(I2) = g0 ·α(I1) if and only if there
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exists a bijection ϕ : I1 → I2 of the form ϕ(s) = as+b for some a, b ∈ R such
that awγ(ϕ(s)) = Ad(g0)(wα(s)) for all s ∈ I1, and γ(ϕ(s0)) = g0 · α(s0)
for some s0 ∈ I1.

5. Examples

Let H be a closed subgroup of GL(n,R) and G = HoRn be the semidirect
product with the multiplication given by

(A,a)(B,b) = (AB,Ab + a)

for A,B ∈ H and a,b ∈ Rn. Let g = h o Rn be its Lie algebra. It is well
known that each (X,v) ∈ g determines the one-parameter subgroup of G,

φ(s) = exp(s(X,v)) =

(
esX,

(∫ s

0
exXdx

)
v

)
,

where esX denotes the one-parameter subgroup of H determined by X ∈ h.

Example 1 (Plane curves under similarities). As an enlightening ex-
ample, let us consider the similarities as motions of the plane. This is simple
enough to exemplify our constructions and to show how Theorem 8 opens
up the possibility of getting invariants for curves other than their natural
parameters.

With the above notation now we take H = {λA;A ∈ SO(2), λ ∈ R, λ > 0}
which has Lie algebra

h =

{(
δ x
−x δ

)
; x, δ ∈ R

}
.

Thus for each X ∈ h, we have the decomposition

X =

(
δ x
−x δ

)
= δ

(
1 0
0 1

)
+

(
0 x
−x 0

)
,

so that esX can easily be calculated. Moreover, the orbit through p ∈ R2

determined by u = (X,v) is parameterized as

s 7→ βu(s) = φ(s) · p = esXp+

(∫ s

0
erXdr

)
v.

If u 6∈ gp, then the orbit is either a straight line, a circle, or a logarithmic
spiral.

To simplify the notation we identify u = (X,v)∈g with (δ, x, v1, v2) ∈ R4,

where v =

(
v1

v2

)
∈ R2.

Let I ⊂ R be an open interval and let α = (α1, α2) : I → R2 be an
embedding. Given t ∈ I we consider βu(s) = exp(su) · α(t), the orbit
through α(t) determined by u. We have by definition

(11) Sα1 (t) = {u ∈ g; β′u(0) = λα′(t), for some λ ∈ R}.

Since β′u(0) = Xα(t) + v, we obtain that (δ, x, v1, v2) ∈ Sα1 (t) if and only if
v1 = λα′1(t) − δα1(t) − xα2(t) and v2 = λα′2(t) − δα2(t) + xα1(t), for some
real number λ.
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Let 〈·,·〉 be the usual inner product on R4 = g and let u · v denote the
usual inner product on R2 for u,v ∈ R2. It is easy to verify that if

N = (α2α
′
1 − α1α

′
2,−α · α′,−α′2, α′1),

then {〈N,−〉} is a coframe along α. Now taking λ ≡ 1 in equation (11), the
map

w(t) = (δ, x, α′1(t)− δα1(t)− xα2(t), α′2(t)− δα2(t) + xα1(t))

is the linearized osculatrix of α with preferred contact order κ = 3 if and
only if the system of linear equations{

〈w(t),N′(t)〉 = 0,

〈w(t),N′′(t)〉 = 0,

has unique solution. In fact, this happens if and only if

µ :=
α′1α

′′
2 − α′′1α′2
α′ · α′

6= 0,

in which case the solution is

x = −µ, δ =
α′2α

′′′
1 − α′′′2 α′1
µα′ · α′

+ 3
α′ · α′′

α′ · α′
.

Remark 16. It is clear from dim g = 4 that the preferred contact order
cannot be less than 3. Also it cannot be greater than 3 as it follows from [5,
Theorem 3.2].

From now on we assume that µ 6= 0. Let us write

(12) wα = (0,−µ, α′1 + µα2, α
′
2 − µα1) + δ(1, 0,−α1,−α2).

It is easy to see that, for ḡ = (A,v) ∈ G and u = (X,w) ∈ g,

Ad(ḡ)(u) = (AXA−1, Aw −AXA−1v).

If γ = (γ1, γ2) : I → R2 is another embedding with preferred contact
order κ = 3, then we can write the linearized osculatrices as

wα = (0,−µα, α′1 + µαα2, α
′
2 − µαα1) + δα(1, 0,−α1,−α2),

wγ = (0,−µγ , γ′1 + µγγ2, γ
′
2 − µγγ1) + δγ(1, 0,−γ1,−γ2),

where

µα =
α′1α

′′
2 − α′′1α′2
α′ · α′

, δα =
α′2α

′′′
1 − α′′′2 α′1
µαα′ · α′

+ 3
α′ · α′′

α′ · α′
,

µγ =
γ′1γ
′′
2 − γ′′1γ′2
γ′ · γ′

, δγ =
γ′2γ
′′′
1 − γ′′′2 γ

′
1

µγγ′ · γ′
+ 3

γ′ · γ′′

γ′ · γ′
.

Suppose α and γ are congruent, that is, γ = g0 ·α for some g0 = (A,v). By
Theorem 8, wγ = Ad(g0)(wα) or, equivalently,(

δγ −µγ
µγ δγ

)
= A

(
δα −µα
µα δα

)
A−1

and(
γ′1 + µγγ2 − δγγ1

γ′2 − µγγ1 − δγγ2

)
= A

(
α′1 + µαα2 − δαα1

α′2 − µαα1 − δαα2

)
−A

(
δα −µα
µα δα

)
A−1v.
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Since H is an abelian group the first of these equalities gives us µα = µγ
and δα = δγ : in other words, we obtain two congruence invariants.

Next we will look for the natural parameter. We want w′α ∈ Sα2 ∩ gα. We
claim that (1, 0,−α1,−α2) generates Sα2 ∩gα. Since g = (E,α) ∈ G satisfies
g · 0 = α, where E is the identity matrix, we have gα = Ad(g)g0 = Ad(g)h.
As the elements of h are of the form (X,0), we conclude that the elements
of gα are of the form

u =

((
ε x
−x ε

)
,

(
−εα1 − xα2

−εα2 + xα1

))
,

for some x, ε ∈ R, or better, by the identification above, u = (ε, x,−εα1 −
xα2,−εα2+xα1). Such an element also belongs to Sα2 if and only if 〈u,N′〉 =
0, i.e. x = 0. So Sα2 ∩ gα is spanned by (1, 0,−α1,−α2) as claimed.

Now

w′α = (0,−µ′, α′′1 + µ′α2 + µα′2, α
′′
2 − µ′α1 − µα′1)

+ δ(0, 0,−α′1,−α′2) + δ′(1, 0,−α1,−α2)

and we see that if w′α ∈ Sα2 ∩ gα, then µ′ = 0. This is also a sufficient
condition, that is, if µ is constant, then

α′′1 + µα′2 − δα′1 = α′′2 − µα′1 − δα′2 = 0.

To see this, we first note that if µ = (α′1α
′′
2 − α′′1α′2)/α′ · α′ is constant, then

taking the derivative we obtain 2µα′ · α′′ = α′1α
′′′
2 − α′′′1 α′2 and then we get

δ = α′ · α′′/α′ · α′. Now it is easy to check that both equalities above hold.
Summarizing we have the following:

Proposition 17. Let α = (α1, α2) : I → R2 be an embedding with preferred
contact order κ = 3. Then α carries a natural parameter if and only if
µ = (α′1α

′′
2 − α′′1α′2)/α′ · α′ is a non-zero constant.

Even if α does not carry a natural parameter, making use of Lemma 11
it is possible to get a reparameterization, namely ᾱ = α ◦ ϕ, which does
carry. Following the proof of that lemma we know that if ψ is a solution of
ψ′′ − (µ′/µ)ψ′ = 0, then ϕ = ψ−1 does work. So it is enough to fix t0 ∈ I
and take

ψ(t) =

∫ t

t0

µ(r)dr.

As µ is G-invariant, we have obtained a G-invariant “arc element”. More
precisely, taking ψ(t) as above, we have µᾱ = (ᾱ′1ᾱ

′′
2 − ᾱ′′1ᾱ′2)/ᾱ′ · ᾱ′ ≡ 1.

Finally, we observe that if wα is the linearized osculatrix of α which carries
a natural parameter, then we can write w′α = δ′(1, 0,−α1,−α2). Thus, we
have

(13) w′α(t0) = 0⇐⇒ δ′(t0) = 0.

It is worth noting that if we carry out the above calculations in the euclidean
case, then we get a result similar to (13) with δ being the curvature function
(see [4]). So if in the present case we think of δ as a curvature function, then
we may think of (13) as an analogue of the relationship between critical
points of the curvature function and cuspidal points of the evolute of a curve
in euclidean geometry. This generalizes what we observed in Remark 2.
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Example 2 (Space curves under rigid motions). By Remark 5, one
may fear that the non-degeneracy conditions in Definition 1 can be, generally
speaking, too strong. In this example we investigate how the strongness
shows up. As a byproduct we show that Remark 5 is true by showing that
a straight line in R3 is not determined by a unique 1-dimensional subspace
of the Lie algebra.

Set H = SO(3) which has Lie algebra h consisting of the anti-symmetric
matrices of order 3. It is well known ([1, p. 198]) that the one-parameter
subgroups of H give rise to rotations around some straight line in R3. Thus
by choosing an appropriate coordinate system we can recognize the orbits:
given p ∈ R3 and u = (X,v) ∈ g = hoR3, the orbit of p by βu,

βu(s) = φ(s) · p = esXp+

(∫ s

0
erXdr

)
v,

is p itself if (X,v) ∈ gp, otherwise it is either a straight line, a circle or a
circular helix. Now for

A =

 0 x y
−x 0 z
−y −z 0

 ∈ h, v =

v1

v2

v3

 ∈ R3,

we identify the pair (A,v) ∈ g with (x, y, z, v1, v2, v3) ∈ R6.
Let α = (α1, α2, α3) : R → R3 be an embedding. Computations similar

to those in Example 1 allow us to conclude that the subspace Sα1 of g is
spanned by

n1 = (1, 0, 0,−α2, α1, 0), n2 = (0, 1, 0,−α3, 0, α1),

n3 = (0, 0, 1, 0,−α3, α2), n4 = (0, 0, 0, α′1, α
′
2, α
′
3).

Let us assume that, say, α′1 6= 0. Then one can check that

N1 = (α2α
′
2 + α1α

′
1, α3α

′
2,−α3α

′
1, α
′
2,−α′1, 0),

N2 = (α2α
′
3, α3α

′
3 + α1α

′
1, α2α

′
1, α
′
3, 0,−α′1)

give rise to a coframe {〈N1,−〉, 〈N2,−〉} along α.
Now we look for the subspaces Sαi at a point. Without loss of generality

for our purposes, we may assume that this point is the origin of R3 and that
the curve α is tangent to the first coordinate axis there. Then we take α in
the form α(t) = (t, f(t), g(t)) with f(0) = g(0) = f ′(0) = g′(0) = 0.

Under these conditions we obtain the following equivalences:

(x, y, z, v1, v2, v3) ∈ Sα1 (0)⇔ v2 = v3 = 0,

(x, y, z, v1, 0, 0) ∈ Sα2 (0)⇔

{
x = −f ′′(0)v1,

y = −g′′(0)v1,

(−f ′′(0)v1,−g′′(0)v1, z, v1, 0, 0) ∈ Sα3 (0)⇔

{
f ′′(0)z = −g′′′(0)v1,

g′′(0)z = f ′′′(0)v1.

We shall consider two cases, depending on the curvature K of α,

K =
‖α′ × α′′‖
‖α′‖3

=

√
(f ′g′′ − g′f ′′)2 + f ′′2 + g′′2(√

1 + f ′2 + g′2
)3 ,
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at the origin.

Case 1: f ′′(0) = g′′(0) = 0. This is equivalent to the vanishing of the cur-
vature of α at 0. In this case, there exists an orbit having contact of order
3 with α at the origin if and only if g′′′(0) = f ′′′(0) = 0. This happens
if and only if α has contact of order 3 with its tangent line there. Note
that in this case the straight line tangent to α is not determined by a
unique 1-dimensional subspace of the Lie algebra g, since dimSα3 (0) = 2,
dim(gα(0) ∩ Sα3 (0)) = 1, and no other kind of orbit has zero curvature. This
shows the truth of Remark 5.

Case 2: α has non-zero curvature at 0. In this case, there exists an orbit
having contact of order 3 with α at the origin if and only if f ′′′(0)f ′′(0) +
g′′′(0)g′′(0) = 0, which is equivalent to dimSα3 (0) = 1. As one can easily
check, these conditions are equivalent to K ′(0) = 0. Since this property
is G-invariant and is also invariant under reparameterizations of α, we see
that a necessary and sufficient condition for the existence of the linearized
osculatrix of α is the constancy of its curvature.

From Classical Differential Geometry we know that if the curvature of α is
not zero at some point, then its osculating circle as well as any helix having
this same circle as its osculating circle should be orbits having contact of
order 2 with α there. In addition, that circle is unique but there are many
such helices. We can see the latter statement by just computing the torsion
of the orbit determined by an element of Sα2 (0). Set

X =

 0 −f ′′(0)v1 −g′′(0)v1

f ′′(0)v1 0 z
g′′(0)v1 −z 0

 , v =

v1

0
0

 ,

where u = (X,v) is an arbitrary element of Sα2 (0). The orbit βu(s) =
exp(su) · α(0) satisfies

β′u(0) =

v1

0
0

 , β′′u(0) =

 0
f ′′(0)v1

g′′(0)v2

 , β′′′u (0) =

−(f ′′(0)2 + g′′(0)2)v1

zg′′(0)v1

−zf ′′(0)v1

 .

Now take v1 6= 0 so that βu is locally an embedding. Then it is easy to
compute the torsion of βu,

τ =
(β′u(0)× β′′u(0)) · β′′′u (0)

‖β′u(0)× β′′u(0)‖2
= − z

v1
.

It follows that two helices coincide if and only if the ratios corresponding to
z/v1 coincide (of course, when z = 0, a helix degenerates to a circle).

It is clear that if α has contact of order 3 with some orbit, then α has
the same curvature and torsion as the orbit. What the above computation
shows is that having contact of order 3 is a too strong condition, in the sense
that among all helices with contact of order 2 with α there is only one with
the same torsion as α, but it may not necessarily have contact of order 3
with α. So the natural question is how to choose the helix having contact
of order 2 with α and having the same torsion as α, without having pre-
viously mentioned about the torsion? Presumably it would be unavoidable
to consider contact of curves with planes, but also we believe that it would
be possible to enlarge the class of model curves in a reasonable way. This



14 T. DE MELO, V. M. DO NASCIMENTO, AND O. SAEKI

discussion suggests us the inclusion of curves with constant curvature but
we do not see how naturally they emerge from the group G.
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