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Abstract. This is a survey talk on recent developments in the global theory
of singularities of differentiable maps. We give several remarkable results con-
cerning differentiable structures of manifolds and singularities of differentiable
maps. A generalization of the theory of Morse functions to generic maps is
also discussed.

I would like to thank Professor Yukio Matsumoto for having introduced me, as
my supervisor, the wonderful world of Topology and Singularities. His encourage-
ment has always made me happy and given me a lot of energy to pursue my work.
It is therefore a great pleasure for me to talk at this conference celebrating his 60th
birthday.

1. Introduction

This is a survey talk on recent developments in the global theory of singularities
of differentiable maps.1 In this talk, all manifolds and maps are differentiable of
class C∞: i.e. we work in the smooth category.

The first problem that we consider is the following.

Problem 1.1. Given two smooth manifolds M and N , what is the minimal set of
singularities that appear for generic smooth maps M → N?

Here, a generic map refers to a C∞ stable map. Recall that C∞ stable maps are
characterized by the following property (for details, see [9, 1, 5]):

(1) any approximation of a C∞ stable map f coincides with f up to diffeomor-
phisms of the source and the target.

Furthermore, they satisfy the following:

(2) if the dimension pair (dim M, dim N) is in the nice range in the sense of
Mather [14] (for example, if dim N ≤ 5), then any map f : M → N can be
approximated by a C∞ stable map.

Let C∞(M, N) denote the space of all smooth maps of M into N endowed with the
Whitney C∞ topology. Furthermore, let S∞(M, N) be the subspace of C∞(M, N)
consisting of the C∞ stable maps. Then property (1) (or (2)) above implies that
S∞(M, N) is open (resp. dense) in C∞(M, N).

The author has been supported in part by Grant-in-Aid for Scientific Research (No. 16340018),
Japan Society for the Promotion of Science.

1For developments until around 1996, refer to the author’s survey [30].
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For a smooth map f : M → N , a point p ∈ M is a singular point of f if its
differential dfp : TpM → Tf(p)N has rank strictly smaller than min{dimM, dim N}.
Singularities of C∞ stable maps have been extensively studied. For example, there
are classification results by means of algebraic invariants (for example, see [4]). For
low dimensions, it is a routine work to obtain a list of singularities that appear for
C∞ stable maps (see [9]).

Remark 1.2. We warn the reader that a branched covering map is NOT generic in
most situations. Therefore, those nice maps which are studied in [11, Chap. 7] are
not generic in our sense.

The essential point of Problem 1.1 is the following. If we allow all the singularities
that can appear for C∞ stable maps, then by virtue of property (2) above, there
always exists a generic map M → N which has only the allowed singularities.
However, if we restrict the set of allowed singularities, then there may not exist
a generic map M → N having only the restricted set of singularities. In fact, we
will see later that such phenomena do occur and that they sometimes reflect the
differentiable structures of manifolds.

Let us start by considering Problem 1.1 in some specific situations.

Example 1.3. If M = N , then clearly we need no singularities. More generally, if
M is a covering space of N , then the same holds. Even more generally, if M is the
total space of a C∞ fiber bundle over N , or if M immerses into N , then we need
no singularities.

Example 1.4. Let M be a smooth closed manifold of dimension m and set N = R,
the real line. Then it is known that a smooth map (i.e. a smooth function) f :
M → R is generic if and only if the following two hold (see [9]).

(1) The critical points (= singular points) of f are all nondegenerate: i.e. f is
a Morse function.

(2) Distinct critical points have distinct values.

Note that nondegenerate critical points are classified by their indices 0, 1, . . . , m,
according to the Morse Lemma (for example, see [15]). If we allow all the indices,
then every manifold M admits such a smooth function as above. However, if we
restrict the allowed indices, then not all manifolds can admit an allowed function.
For example, if we prohibit critical points of index 1, then it is necessary that the
manifold M is simply connected for it to admit a generic function with allowed
singularities.2 In this case, Problem 1.1 can be interpreted as follows. What is

the minimal set of indices that appear for Morse functions on a given manifold?

Note that this problem was completely solved for simply connected manifolds of
dimensions greater than or equal to 6 by Smale [38].

In Example 1.4, we cannot exclude the index 0 nor m, since any Morse function
on a closed manifold attains its minimum and maximum and the corresponding
points are critical points of index 0 and m, respectively. In the extremal case where
we allow indices 0 and n only, we have the following theorem due to Reeb [23].

Theorem 1.5. If a smooth closed connected m-dimensional manifold M admits a

Morse function f : M → R having only critical points of indices 0 and m, then M

is necessarily homeomorphic to the m-dimensional sphere Sm.

In fact, the above theorem can be refined as follows.

2For dimensions m 6= 3, 4, this is also sufficient. For m = 3, it is sufficient if and only if the
Poincaré conjecture is affirmative. For m = 4, it is still an open problem whether it is sufficient
or not.
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Theorem 1.6. Let M be a smooth closed connected manifold of dimension m.

Then there exists a Morse function f : M → R having only critical points of

indices 0 and m if and only if the following holds.

(1) For m ≤ 6, M is diffeomorphic to the standard sphere Sm.

(2) For m ≥ 7, M is a homotopy m-sphere.

The above theorem follows from various deep results due to Smale [38], Cerf
[3], etc. Note that for m ≥ 5, homotopy m-spheres can be classified (see [12] or
[39]). Note also that a homotopy m-sphere with m ≥ 7 is always homeomorphic
to Sm, but may not be diffeomorphic to Sm. So the existence of a Morse function
with only critical points of extremal indices cannot detect the smooth structures
for dimensions m ≥ 7, in general.

Example 1.7. Let us consider an equi-dimensional case. Let M and N be smooth
closed manifolds of the same dimension m. Let us assume that there exists a
homotopy equivalence h : M → N . Then we can approximate h by a smooth
map and then by a C∞ stable map. It is known that in most cases, such an
approximation can be chosen so that it has only the fold singularities. A singular
point p ∈ M of a smooth map f : M → N is a fold singular point if there exist
local coordinates (x1, x2, . . . , xm) around p and (y1, y2, . . . , ym) around f(p) such
that f has the form

yi ◦ f =

{
xi, 1 ≤ i ≤ m − 1,

x2
m, i = m.

For example, every homotopy equivalence between homotopy m-spheres can be
approximated by a smooth map with only fold singularities [6].3 Of course, no
singularity is necessary if and only if the homotopy m-spheres are diffeomorphic.

2. Detecting differentiable structures of spheres

As we have seen in Theorems 1.5 and 1.6, the existence of Morse functions with
only critical points of extremal indices cannot detect the differentiable structures
on spheres. Instead of using functions (i.e. maps into R), let us consider maps into
R

n, n ≥ 1, with the following singularities.

Definition 2.1. Let f : M → N be a smooth map between smooth manifolds,
where m = dim M ≥ dim N = n. A singular point p ∈ M is a fold singular point if
there exist local coordinates (x1, x2, . . . , xm) around p and (y1, y2, . . . , yn) around
f(p) such that f has the form

yi ◦ f =

{
xi, 1 ≤ i ≤ n − 1,

±x2
n ± x2

n+1 ± · · · ± x2
m, i = n.

If all the signs appearing on the right hand side of yn ◦ f are the same, then we call
p a definite fold singular point, otherwise an indefinite fold singular point.

It is known that any smooth map f : M → N exhibits definite fold singular
points, provided that M is closed and N is open.

A smooth map f : M → N is a fold map if f has only fold singular points (see
[8, 27]). Furthermore, a fold map f is a special generic map if it has only definite
fold singular points (see [2, 22, 28]).

Example 2.2. Let us consider the case where N = R. Then, a smooth map f :
M → R is a fold map if and only if it is a Morse function. Furthermore, it is a
special generic map if and only if its critical points have extremal indices. When
m = n, a fold map is automatically a special generic map.

3We warn the reader that such a map is NOT a branched covering in general, since the
restriction to the set of the fold singular points may not be an embedding.
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Example 2.3. (1) Let Sm be the unit sphere in R
m+1. For n = 1, 2, . . . , m, the

standard projection π : R
m+1 → R

n restricted to Sm, f = π|Sm : Sm → R
n, is

easily seen to be a special generic map.
(2) If f : M → R

n is a special generic map, and Q is a submanifold of R
n+k of

codimension n with trivial normal bundle, then the composition

Q × M
idQ×f

−−−−−→Q ×R
n ↪→ R

n+k

is a special generic map, where the last map is the composition of a trivialization of
the open tubular neighborhood of Q in R

n+k and the inclusion. Thus, for example,
Sp × Sq admits special generic maps into R

` with min{p, q} + 1 ≤ ` ≤ p + q. We
can show that it cannot admit any special generic maps into R

` with ` ≤ min{p, q}
(see [28, 29]).

In view of these examples, the following definition seems reasonable.

Definition 2.4. Let M be a smooth closed manifold of dimension m. We denote
by S(M) (or F(M)) the set of all integers n such that 1 ≤ n ≤ m and M admits a
special generic map (resp. fold map) into R

n. Note that we always have

S(M) ⊂ F(M) ⊂ {1, 2, . . . , dim M}

and that S(M) and F(M) are diffeomorphism invariants of M .

By Example 2.3, we have

S(Sm) = {1, 2, . . . , m}

and
S(Sp × Sq) = {min{p, q}+ 1, min{p, q}+ 2, . . . , p + q}.

In [28, 29], the author showed the following.

Theorem 2.5. A smooth closed connected manifold M of dimension m is diffeo-

morphic to Sm if and only if S(M) = {1, 2, . . . , m}.

In other words, the standard m-sphere can be characterized as a smooth manifold
for which the definite fold singularity is the minimal set of singularities for generic
maps into the Euclidean spaces of dimensions ≤ m. For example, if Σ7 is a 7-
dimensional exotic sphere [16], then we have {1, 2, 7} ⊂ S(Σ7) ⊂ {1, 2, 3, 7} (see
[28]).

As the above theorem suggests, special generic maps are closely related to dif-
ferentiable structures on spheres. Let us introduce the following definition.

Definition 2.6. Two special generic maps f : M → R
n and g : N → R

n of
m-dimensional closed manifolds are said to be cobordant if there exist a compact
(m + 1)-dimensional manifold V with ∂V = M q N and a smooth map F : V →
R

n × [0, 1] with only definite fold singularities such that

F |M×[0,ε) = f × id[0,ε) : M × [0, ε) → R
n × [0, ε), and

F |N×(1−ε,1] = g × id(1−ε,1] : N × (1 − ε, 1] → R
n × (1 − ε, 1]

for some sufficiently small ε > 0, where we identify the collar neighborhoods of M

and N in V with M×[0, ε) and N×(1−ε, 1] respectively. It is easy to show that this
is an equivalence relation and that the set of cobordism classes of all special generic
maps of closed (but not necessarily connected) m-dimensional manifolds into R

n

forms an abelian group under disjoint union. This is called the cobordism group of

special generic maps and is denoted by Γ(m, n). We can also define the oriented
version of this group: we just restrict ourselves to special generic maps of oriented

closed manifolds and the manifold V should be oriented so that ∂V = M q (−N) in
the above definition. Then the corresponding group is called the oriented cobordism

group of special generic maps and is denoted by Γ̃(m, n).
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In [31], the author showed the following.

Theorem 2.7. Suppose m ≥ 6. The group Γ̃(m, 1) is isomorphic to Θm, the

h-cobordism group of homotopy m-spheres. Furthermore, the group Γ(m, 1) is iso-

morphic to Θm ⊗ Z2.

Recently Sadykov [26] showed that Γ̃(m, 1) is in fact isomorphic to the mapping
class group π0(Diff+Sm−1) of Sm−1 for all m > 0.

3. 4-dimensional manifolds

Let us concentrate on 4-dimensional manifolds. In [28] the author showed the
following (for other related results, see [37, 34, 35]).

Theorem 3.1. Let M be a closed simply connected 4-manifold.

(1) The 4-manifold M admits a special generic map into R (i.e. 1 ∈ S(M)) if

and only if it is diffeomorphic to the standard 4-sphere S4.

(2) 2 ∈ S(M) if and only if M is diffeomorphic to the standard 4-sphere S4.

(3) 3 ∈ S(M) if and only if M is diffeomorphic to a connected sum of the form

Σ4]
(
]kS2 × S2

)
]
(
]`S2×̃S2

)
, k, ` ≥ 0,

where S2×̃S2 ∼= CP 2]CP 2 is the total space of the nontrivial S2-bundle

over S2, and Σ4 is a homotopy 4-sphere of the form ∂(∆3 × D2) for a

compact contractible 3-manifold ∆3.

(4) 4 ∈ S(M) if and only if M is stably parallelizable: i.e. if and only if the sec-

ond Stiefel-Whitney class w2(M) ∈ H2(M ;Z2) and the signature σ(M) ∈ Z

of M both vanish.

Using Theorem 3.1 (3), we obtain the following remarkable example.

Example 3.2. Let M be a simply connected spin4 4-manifold with vanishing signa-
ture. By Freedman [7] such a 4-manifold is homeomorphic to a connected sum M ′

of some copies of S2 × S2.
Suppose that the second betti number b2(M) of M is big. If we can show that

M is not diffeomorphic to a manifold of the form (S2 × S2)]N for any smooth
closed 4-manifold N , then M cannot admit a special generic map into R

3 in view
of Theorem 3.1 (3), while the connected sum M ′ of any copies of S2 × S2 admits
such a map. Such a 4-manifold M does exist. See [18, 19, 21].

In other words, we have M ≈ M ′, while

S(M) = {4} 6= {3, 4} = S(M ′),

where the symbol “≈” denotes a homeomorphism. This means that for generic
smooth maps of M ′ into R

3, the minimal set of singularities is the definite fold
singularities, while for maps of M into R

3, that is not enough, although M and M ′

are homeomorphic.

For fold maps, in contrast to special generic maps, we have the following (see
[13, 32, 25]).

Theorem 3.3. Let M be a closed connected oriented 4-manifold.

(1) Every such 4-manifold M admits a fold map into R, i.e. 1 ∈ F(M).
(2) 2 ∈ F(M) if and only if M has even Euler characteristic.

(3) 3 ∈ F(M) if and only if the intersection form of M is not isomorphic to

±(1) nor ±

(
1 0
0 1

)
.

4A manifold is spin if its second Stiefel-Whitney class vanishes.
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(4) 4 ∈ F(M) if and only if M is stably parallelizable.

Note that in the above theorem, all the conditions depend only on the homotopy
type of M . In other words, if M admits a fold map into R

n, then any 4-manifold
homotopy equivalent to M also admits a fold map into R

n.

4. A generalization of the Morse theory

In this section, we consider the following problem.

Problem 4.1. Given a generic map f : M → N , how can we get information on the
(differential) topology of M?

In the case where N = R, i.e. in the case of Morse functions, we know that we can
get a lot of information on the topology of M : betti numbers, Euler characteristic,
handlebody decomposition, etc. (for example, see [15, 39]).

In general, if we use generic maps instead of Morse functions, we can get informa-
tion on the characteristic classes (see, for example, [40, 10, 1]).5 The following has
been proved in [20] and [25] (see also [37]). Recall that three times the signature of
a closed oriented 4-manifold coincides with the first Pontrjagin number (see [17]).

Theorem 4.2. Let M be a closed oriented 4-manifold and N an orientable 3-
manifold. For any generic map f : M → N , we have

σ(M) = S(f) · S(f),

where σ(M) stands for the signature of M , S(f) ⊂ M denotes the (possibly nonori-

entable) surface of singular points of f , and S(f) · S(f) is the self-intersection

number of S(f) in M .

The above theorem is, in a sense, a horizontal signature formula. In order to
get a vertical signature formula, we need to look at the singular fibers of generic
maps.6 The most natural equivalence among singular fibers would be the following
[33].

Definition 4.3. Let fi : Mi → Ni be smooth maps and take points yi ∈ Ni,
i = 0, 1. We say that the fibers over y0 and y1 are C∞ equivalent if for some
open neighborhoods Ui of yi in Ni, there exist diffeomorphisms ϕ̃ : (f0)

−1(U0) →
(f1)

−1(U1) and ϕ : U0 → U1 with ϕ(y0) = y1 which make the following diagram
commutative:

((f0)
−1(U0), (f0)

−1(y0))
�

ϕ
−−−−→ ((f1)

−1(U1), (f1)
−1(y1))

f0

y
yf1

(U0, y0)
ϕ

−−−−→ (U1, y1).

When y ∈ N is a regular value of a smooth map f : M → N between smooth
manifolds, we call f−1(y) a regular fiber ; otherwise, a singular fiber.

In [33], the author classified the singular fibers of proper generic maps of ori-
entable 4-manifolds into 3-manifolds7 as follows.

5The theory of the so-called Thom polynomials offers a lot of information on this subject.
6The author was inspired by Yukio Matsumoto’s works and lectures on singular fibers of

certain singular fibrations of 4-manifolds over surfaces. Unfortunately, or fortunately, such singular
fibrations studied by Matsumoto are not generic in our sense. Any way, the author would like to
thank Prof. Matsumoto for his enthusiasm for singular objects and for his constant encouragement!

7For nonorientable 4-manifolds, a similar classification has been obtained by T. Yamamoto
[41, 42].
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PSfrag replacements

κ = 0

κ = 1

κ = 2

κ = 3

I0 I1

II0,0 II0,1 II1,1

II2 II3 IIa

III0,0,0 III0,0,1 III0,1,1

III1,1,1 III0,2 III0,3

III1,2 III1,3 III4

III5 III6 III7

III8 III0,a III1,a

IIIb IIIc IIId

IIIe

Figure 1. List of singular fibers of proper C∞ stable maps of
orientable 4-manifolds into 3-manifolds
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Theorem 4.4. Let f : M → N be a proper C∞ stable map of an orientable 4-
manifold M into a 3-manifold N . Then, every singular fiber of f is equivalent to

one of the fibers as in Fig. 1 up to disjoint union with regular fibers.

In [36], T. Yamamoto and the author observed that if the source 4-manifold M

is oriented, then one can define a sign (= ±1) for each singular fiber of type III8.
Furthermore, we obtained the following vertical signature formula.

Theorem 4.5. Let M be a closed oriented 4-manifold and N a 3-manifold. Then

for any C∞ stable map f : M → N , the sum of the signs over all singular fibers of

f of III8-type coincides with the signature σ(M) of M .

It should be a very interesting problem to construct and to study diffeomorphism
invariants derived from singular fibers of generic maps. One of the major advantages
of using generic maps is that any manifold admits a generic map: i.e. we do not
need to restrict the study to certain classes of 4-manifolds.

Furthermore, as has been observed in Theorem 2.7, study of cobordisms of sin-
gular maps may serve to find some diffeomorphism invariants. For this subject, see
[24] and [33].
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