Desingularizing Special Generic Maps

Osamu Saeki
(Institute of Mathematics for Industry, Kyushu University)
Joint work with Masamichi Takase (Seikei University)

November 27, 2012

§1. Desingularizing Singular Maps

Desingularizing a singular curve

§1. Desingularizing Singular Maps §2. Desingularizing Special Generic Functions §3. Desingularizing SGM's into \mathbf{R}^{2} §4. Further Results

This is a singular plane curve.

Desingularizing a singular curve

§1. Desingularizing Singular Maps §2. Desingularizing Special Generic Functions §3. Desingularizing SGM's into \mathbf{R}^{2} §4. Further Results

This is a singular plane curve.

But, this might be the projected image of a non-singular space curve.

$\longleftarrow D$

Desingularization problem

§1. Desingularizing Singular Maps §2. Desingularizing Special Generic Functions §3. Desingularizing SGM's into \boldsymbol{R}^{2} §4. Further Results
M^{n} : closed n-dim. C^{∞} manifold, $f: M^{n} \rightarrow \mathbf{R}^{p}$ a generic $C^{\infty} \operatorname{map}(n \geq p)$.

Desingularization problem

§1. Desingularizing Singular Maps §2. Desingularizing Special Generic Functions §3. Desingularizing SGM's into \mathbf{R}^{2} §4. Further Results
M^{n} : closed n-dim. C^{∞} manifold, $f: M^{n} \rightarrow \mathbf{R}^{p}$ a generic C^{∞} map $(n \geq p) . \longleftarrow$ always singular

Desingularization problem

§1. Desingularizing Singular Maps §2. Desingularizing Special Generic Functions §3. Desingularizing SGM's into \mathbf{R}^{2} §4. Further Results
M^{n} : closed n-dim. C^{∞} manifold, $f: M^{n} \rightarrow \mathbf{R}^{p}$ a generic C^{∞} map $(n \geq p)$. \longleftarrow always singular For $m>n \geq p, \pi: \mathbf{R}^{m} \rightarrow \mathbf{R}^{p}$ will denote the standard projection.

Desingularization problem

§1. Desingularizing Singular Maps §2. Desingularizing Special Generic Functions §3. Desingularizing SGM's into \mathbf{R}^{2} §4. Further Results
M^{n} : closed n-dim. C^{∞} manifold, $f: M^{n} \rightarrow \mathbf{R}^{p}$ a generic C^{∞} map $(n \geq p)$. \longleftarrow always singular For $m>n \geq p, \pi: \mathbf{R}^{m} \rightarrow \mathbf{R}^{p}$ will denote the standard projection.

Problem 1.1

Desingularization problem

§1. Desingularizing Singular Maps §2. Desingularizing Special Generic Functions §3. Desingularizing SGM's into \mathbf{R}^{2} §4. Further Results
M^{n} : closed n-dim. C^{∞} manifold, $f: M^{n} \rightarrow \mathbf{R}^{p}$ a generic C^{∞} map $(n \geq p)$. \longleftarrow always singular For $m>n \geq p, \pi: \mathbf{R}^{m} \rightarrow \mathbf{R}^{p}$ will denote the standard projection.

Problem 1.1

η : immersion or embedding

Desingularization problem

§1. Desingularizing Singular Maps §2. Desingularizing Special Generic Functions §3. Desingularizing SGM's into \mathbf{R}^{2} §4. Further Results
M^{n} : closed n-dim. C^{∞} manifold, $f: M^{n} \rightarrow \mathbf{R}^{p}$ a generic C^{∞} map $(n \geq p)$. \longleftarrow always singular For $m>n \geq p, \pi: \mathbf{R}^{m} \rightarrow \mathbf{R}^{p}$ will denote the standard projection.

Problem 1.1

η : immersion or embedding
Yes, if $m \gg n$.

Desingularization problem

§1. Desingularizing Singular Maps §2. Desingularizing Special Generic Functions §3. Desingularizing SGM's into \mathbf{R}^{2} §4. Further Results
M^{n} : closed n-dim. C^{∞} manifold, $f: M^{n} \rightarrow \mathbf{R}^{p}$ a generic C^{∞} map $(n \geq p)$. \longleftarrow always singular For $m>n \geq p, \pi: \mathbf{R}^{m} \rightarrow \mathbf{R}^{p}$ will denote the standard projection.

Problem 1.1

η : immersion or embedding
Yes, if $m \gg n$.
In this talk, we consider the case $m=n+1$.

Surface case

§1. Desingularizing Singular Maps §2. Desingularizing Special Generic Functions §3. Desingularizing SGM's into \mathbf{R}^{2} §4. Further Results

Theorem 1.2 (Haefliger, 1960) $f: M^{2} \rightarrow \mathbf{R}^{2}$ generic Zimmersion $\eta: M^{2} \rightarrow \mathbf{R}^{3}$ s.t. $f=\pi \circ \eta$
\Longleftrightarrow For every singular set component $S\left(\cong S^{1}\right)$ of f : if S has an annulus nbhd, S contains an even number of cusps, if S has a Möbius band nbhd, S contains an odd number of cusps.

Surface case

§1. Desingularizing Singular Maps §2. Desingularizing Special Generic Functions §3. Desingularizing SGM's into \mathbf{R}^{2} §4. Further Results

Theorem 1.2 (Haefliger, 1960) $f: M^{2} \rightarrow \mathbf{R}^{2}$ generic Eimmersion $\eta: M^{2} \rightarrow \mathbf{R}^{3}$ s.t. $f=\pi \circ \eta$
\Longleftrightarrow For every singular set component $S\left(\cong S^{1}\right)$ of f : if S has an annulus nbhd, S contains an even number of cusps, if S has a Möbius band nbhd, S contains an odd number of cusps.

Theorem 1.3 (M. Yamamoto, 2007) $f: M^{2} \rightarrow \mathbf{R}^{2}$ generic There always exists an embedding $\eta: M^{2} \rightarrow \mathbf{R}^{4}$ s.t. $f=\pi \circ \eta$.

Surface case

Theorem 1.2 (Haefliger, 1960) $f: M^{2} \rightarrow \mathbf{R}^{2}$ generic Jimmersion $\eta: M^{2} \rightarrow \mathbf{R}^{3}$ s.t. $f=\pi \circ \eta$
\Longleftrightarrow For every singular set component $S\left(\cong S^{1}\right)$ of f :
if S has an annulus nbhd, S contains an even number of cusps, if S has a Möbius band nbhd, S contains an odd number of cusps.

Theorem 1.3 (M. Yamamoto, 2007) $f: M^{2} \rightarrow \mathbf{R}^{2}$ generic There always exists an embedding $\eta: M^{2} \rightarrow \mathbf{R}^{4}$ s.t. $f=\pi \circ \eta$.

Theorem 1.4 (Burlet-Haab, 1985) $f: M^{2} \rightarrow \mathbf{R}$ Morse There always exists an immersion $\eta: M^{2} \rightarrow \mathbf{R}^{3}$ s.t. $f=\pi \circ \eta$.

Equi-dimensional case

§1. Desingularizing Singular Maps §2. Desingularizing Special Generic Functions §3. Desingularizing SGM's into \mathbf{R}^{2} §4. Further Results

Theorem 1.5 (Saito, 1961) M^{n} : orientable $f: M^{n} \rightarrow \mathbf{R}^{n}$ special generic map
There always exists an immersion $\eta: M^{n} \rightarrow \mathbf{R}^{n+1}$ s.t. $f=\pi \circ \eta$.

Equi-dimensional case

§1. Desingularizing Singular Maps §2. Desingularizing Special Generic Functions §3. Desingularizing SGM's into \mathbf{R}^{2} §4. Further Results

Theorem 1.5 (Saito, 1961) M^{n} : orientable $f: M^{n} \rightarrow \mathbf{R}^{n}$ special generic map
There always exists an immersion $\eta: M^{n} \rightarrow \mathbf{R}^{n+1}$ s.t. $f=\pi \circ \eta$.

Theorem 1.6 (Blank-Curley, 1985)
$f: M^{n} \rightarrow \mathbf{R}^{n}$ generic,
\#immersion $\eta: M^{n} \rightarrow \mathbf{R}^{n+1}$ s.t. $f=\pi \circ \eta$
$\Longleftrightarrow \mathrm{rkdf} \geq n-1$, and $[\overline{\{\text { cusps }\}}]^{*}+w_{1}(\nu)=0$ in $H^{1}\left(\overline{\{\text { folds }\}} ; \mathbf{Z}_{2}\right)$, where ν is the normal line bundle of $\overline{\{f o l d s\}}$ in M^{n}.

Special generic maps

§1. Desingularizing Singular Maps §2. Desingularizing Special Generic Functions §3. Desingularizing SGM's into \mathbf{R}^{2} §4. Further Results

Today's topic:
Desingularization of special generic maps.
(Lifting special generic maps to immersions and embeddings in codimension 1.)

Special generic maps

§1. Desingularizing Singular Maps §2. Desingularizing Special Generic Functions §3. Desingularizing SGM's into \mathbf{R}^{2} §4. Further Results

Today's topic:
Desingularization of special generic maps.
(Lifting special generic maps to immersions and embeddings in codimension 1.)

Definition 1.7 A singularity of a C^{∞} map $M^{n} \rightarrow N^{p}, n \geq p$, that has the normal form

$$
\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mapsto\left(x_{1}, x_{2}, \ldots, x_{p-1}, x_{p}^{2}+x_{p+1}^{2}+\cdots+x_{n}^{2}\right)
$$

is called a definite fold singularity.

Special generic maps

§1. Desingularizing Singular Maps §2. Desingularizing Special Generic Functions §3. Desingularizing SGM's into $\mathbf{R}^{2} \S 4$. Further Results

Today's topic:
Desingularization of special generic maps.
(Lifting special generic maps to immersions and embeddings in codimension 1.)

Definition 1.7 A singularity of a C^{∞} map $M^{n} \rightarrow N^{p}, n \geq p$, that has the normal form

$$
\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mapsto\left(x_{1}, x_{2}, \ldots, x_{p-1}, x_{p}^{2}+x_{p+1}^{2}+\cdots+x_{n}^{2}\right)
$$

is called a definite fold singularity.

Definition $1.8 f: M^{n} \rightarrow N^{p}$ is a special generic map (SGM, for short) if it has only definite fold singularities.

Examples

§1. Desingularizing Singular Maps §2. Desingularizing Special Generic Functions §3. Desingularizing SGM's into \mathbf{R}^{2} §4. Further Results

Figure 1: Examples of special generic maps

§2. Desingularizing Special Generic Functions

Special generic functions

Theorem 2.1 (Reeb, Smale, Cerf et al) M^{n} : closed connected n-dim. C^{∞} manifold \exists special generic function $M^{n} \rightarrow \mathbf{R}$

\Longleftrightarrow

(1) $M^{n} \approx S^{n}$ (homeomorphic) $\quad(n \neq 4)$
(2) $M^{n} \cong S^{n}$ (diffeomorphic) $\quad(n=4)$

Special generic functions

Theorem 2.1 (Reeb, Smale, Cerf et al) M^{n} : closed connected n-dim. C^{∞} manifold \exists special generic function $M^{n} \rightarrow \mathbf{R}$
\qquad
(1) $M^{n} \approx S^{n}$ (homeomorphic) $\quad(n \neq 4)$
(2) $M^{n} \cong S^{n}$ (diffeomorphic) $\quad(n=4)$

Desingularizing sp. gen. functions

§1. Desingularizing Singular Maps §2. Desingularizing Special Generic Functions §3. Desingularizing SGM's into \mathbf{R}^{2} §4. Further Results

In the following, M^{n} will be closed and connected.

Desingularizing sp. gen. functions

§1. Desingularizing Singular Maps §2. Desingularizing Special Generic Functions §3. Desingularizing SGM's into \mathbf{R}^{2} §4. Further Results

In the following, M^{n} will be closed and connected.
Theorem $2.2 \quad n \geq 1$
$f: M^{n} \rightarrow \mathbf{R}$ special generic function
There always exists an immersion $\eta: M^{n} \rightarrow \mathbf{R}^{n+1}$ s.t. $f=\pi \circ \eta$.

Desingularizing sp. gen. functions

§1. Desingularizing Singular Maps §2. Desingularizing Special Generic Functions §3. Desingularizing SGM's into \mathbf{R}^{2} §4. Further Results

In the following, M^{n} will be closed and connected.
Theorem $2.2 \quad n \geq 1$
$f: M^{n} \rightarrow \mathbf{R}$ special generic function
There always exists an immersion $\eta: M^{n} \rightarrow \mathbf{R}^{n+1}$ s.t. $f=\pi \circ \eta$.

Two immersions are regularly homotopic if they are in the same connected component of the space $\left\{\right.$ immersions $\left.M^{k} \rightarrow \mathbf{R}^{\ell}\right\}$.

Desingularizing sp. gen. functions

§1. Desingularizing Singular Maps §2. Desingularizing Special Generic Functions §3. Desingularizing SGM's into \mathbf{R}^{2} §4. Further Results

In the following, M^{n} will be closed and connected.
Theorem $2.2 n \geq 1$
$f: M^{n} \rightarrow \mathbf{R}$ special generic function
There always exists an immersion $\eta: M^{n} \rightarrow \mathbf{R}^{n+1}$ s.t. $f=\pi \circ \eta$.

Two immersions are regularly homotopic if they are in the same connected component of the space $\left\{\right.$ immersions $\left.M^{k} \rightarrow \mathbf{R}^{\ell}\right\}$.

Lemma 2.3 (Kaiser, 1988)
Let $i: S^{n-1} \rightarrow \mathbf{R}^{n}$ be the standard embedding.
For \forall diffeomorphism $\varphi: S^{n-1} \rightarrow S^{n-1}$ preserving the orientation, the immersions i and $i \circ \varphi$ are regularly homotopic.

Proof of Theorem 2.2

§1. Desingularizing Singular Maps §2. Desingularizing Special Generic Functions §3. Desingularizing SGM's into \mathbf{R}^{2} §4. Further Results

$\rightarrow R$

Embedding lift

§1. Desingularizing Singular Maps §2. Desingularizing Special Generic Functions §3. Desingularizing SGM's into \mathbf{R}^{2} §4. Further Results

Theorem $2.4 \quad n \geq 2$
$f: M^{n} \rightarrow \mathbf{R}$ special generic function
\exists embedding $\eta: M^{n} \rightarrow \mathbf{R}^{n+1}$ s.t. $f=\pi \circ \eta$
$\Longleftrightarrow M^{n} \cong S^{n} \quad$ (diffeomorphic)

Embedding lift

§1. Desingularizing Singular Maps §2. Desingularizing Special Generic Functions §3. Desingularizing SGM's into \mathbf{R}^{2} §4. Further Results

Theorem $2.4 \quad n \geq 2$
$f: M^{n} \rightarrow \mathbf{R}$ special generic function
\exists embedding $\eta: M^{n} \rightarrow \mathbf{R}^{n+1}$ s.t. $f=\pi \circ \eta$
$\Longleftrightarrow M^{n} \cong S^{n} \quad$ (diffeomorphic)

This implies that there exist special generic functions that can be desingularized by immersions, but not by embeddings.

Embedding lift

Theorem $2.4 \quad n \geq 2$

$f: M^{n} \rightarrow \mathbf{R}$ special generic function
\exists embedding $\eta: M^{n} \rightarrow \mathbf{R}^{n+1}$ s.t. $f=\pi \circ \eta$
$\Longleftrightarrow M^{n} \cong S^{n} \quad$ (diffeomorphic)

This implies that there exist special generic functions that can be desingularized by immersions, but not by embeddings.

Proof of Theorem 2.4: For $n \neq 5, \varphi$ is isotopic to the identity. For $n=5, i \circ \varphi$ is isotopic to i.

Embedding lift

Theorem $2.4 \quad n \geq 2$

$f: M^{n} \rightarrow \mathbf{R}$ special generic function
\exists embedding $\eta: M^{n} \rightarrow \mathbf{R}^{n+1}$ s.t. $f=\pi \circ \eta$
$\Longleftrightarrow M^{n} \cong S^{n} \quad$ (diffeomorphic)

This implies that there exist special generic functions that can be desingularized by immersions, but not by embeddings.

Proof of Theorem 2.4: For $n \neq 5, \varphi$ is isotopic to the identity. For $n=5, i \circ \varphi$ is isotopic to i.

Remark 2.5 When $n=1$, the existence problem of an embedding lift has recently been solved by Minoru Yamamoto.

§3. Desingularizing SGM’s into \mathbf{R}^{2}

Manifolds with SGM's into R^{2}

Theorem 3.1 (Burlet-de Rham, 1974;
Porto-Furuya, 1990; S, 1993)
M^{n} : closed connected orientable $(n \geq 2)$ \exists special generic map $f: M^{n} \rightarrow \mathbf{R}^{2}$
$\Longleftrightarrow M^{n}$ is diffeomorphic to

$$
\sum^{n} \sharp\left(\sharp_{i=1}^{r}\left(\sum_{i}^{n-1} \times S^{1}\right)\right)
$$

for some homotopy spheres Σ^{n} and Σ_{i}^{n-1}
(for $n \leq 6$, they are standard spheres).

Desingularizing SGM's into R^{2}

§1. Desingularizing Singular Maps §2. Desingularizing Special Generic Functions §3. Desingularizing SGM's into $\mathbf{R}^{2} \S 4$. Further Results

Theorem $3.2 M^{n}$: orientable, $n \geq 2$.

$f: M^{n} \rightarrow \mathbf{R}^{2}$ special generic map
There always exists an immersion $\eta: M^{n} \rightarrow \mathbf{R}^{n+1}$ s.t. $f=\pi \circ \eta$.

Desingularizing SGM's into R^{2}

§1. Desingularizing Singular Maps §2. Desingularizing Special Generic Functions §3. Desingularizing SGM's into \mathbf{R}^{2} §4. Further Results

Theorem 3.2 M^{n} : orientable, $n \geq 2$.
$f: M^{n} \rightarrow \mathbf{R}^{2}$ special generic map
There always exists an immersion $\eta: M^{n} \rightarrow \mathbf{R}^{n+1}$ s.t. $f=\pi \circ \eta$.

Remark 3.3 The case $n=2$ is a consequence of Haefliger's result.

Stein factorization

Definition $3.4 f: M^{n} \rightarrow \mathbf{R}^{p} \quad C^{\infty}$ map $(n>p)$

For $x, x^{\prime} \in M^{n}$, define $x \sim_{f} x^{\prime}$ if
(i) $f(x)=f\left(x^{\prime}\right)(=y)$, and
(ii) $\quad x$ and x^{\prime} belong to the same connected component of $f^{-1}(y)$.

Stein factorization

Definition $3.4 f: M^{n} \rightarrow \mathbf{R}^{p} \quad C^{\infty} \operatorname{map}(n>p)$

For $x, x^{\prime} \in M^{n}$, define $x \sim_{f} x^{\prime}$ if
(i) $f(x)=f\left(x^{\prime}\right)(=y)$, and
(ii) $\quad x$ and x^{\prime} belong to the same connected component of $f^{-1}(y)$.
$W_{f}=M^{n} / \sim_{f}$ quotient space, $q_{f}: M^{n} \rightarrow W_{f}$ quotient map
$\exists!\bar{f}: W_{f} \rightarrow \mathbf{R}^{p}$ that makes the diagram commutative:

W_{f}

Stein factorization

Definition $3.4 f: M^{n} \rightarrow \mathbf{R}^{p} \quad C^{\infty} \operatorname{map}(n>p)$
For $x, x^{\prime} \in M^{n}$, define $x \sim_{f} x^{\prime}$ if
(i) $f(x)=f\left(x^{\prime}\right)(=y)$, and
(ii) $\quad x$ and x^{\prime} belong to the same connected component of $f^{-1}(y)$.
$W_{f}=M^{n} / \sim_{f}$ quotient space, $q_{f}: M^{n} \rightarrow W_{f}$ quotient map
$\exists!\bar{f}: W_{f} \rightarrow \mathbf{R}^{p}$ that makes the diagram commutative:

The above diagram is called the Stein factorization of f.

Example

Figure 2: Stein factorization of a SGM

Fundamental properties

§1. Desingularizing Singular Maps §2. Desingularizing Special Generic Functions §3. Desingularizing SGM's into \mathbf{R}^{2} §4. Further Results

Proposition $3.5 f: M^{n} \rightarrow \mathbf{R}^{p}$ special generic map $(n>p)$.

Fundamental properties

§1. Desingularizing Singular Maps §2. Desingularizing Special Generic Functions §3. Desingularizing SGM's into \mathbf{R}^{2} §4. Further Results

Proposition $3.5 f: M^{n} \rightarrow \mathbf{R}^{p}$ special generic map $(n>p)$.
(1) The singular point set $S(f)$ is a regular submanifold of M^{n} of dimension $p-1$,
(2) W_{f} has the structure of a smooth p-dim. manifold with boundary such that $\bar{f}: W_{f} \rightarrow \mathbf{R}^{p}$ is an immersion.
(3) $\left.q_{f}\right|_{S(f)}: S(f) \rightarrow \partial W_{f}$ is a diffeomorphism.
(4) $\left.q_{f}\right|_{M^{n} \backslash S(f)}: M^{n} \backslash S(f) \rightarrow \operatorname{Int} W_{f}$ is a smooth S^{n-p}-bundle.

Proof of Theorem 3.2

§1. Desingularizing Singular Maps §2. Desingularizing Special Generic Functions §3. Desingularizing SGM's into \mathbf{R}^{2} §4. Further Results

Let $f: M \rightarrow \mathbf{R}^{2}(p=2)$ be a SGM.
We want to construct an immersion lift $\eta: M^{n} \rightarrow \mathbf{R}^{n+1}$ of f.

Proof of Theorem 3.2

Let $f: M \rightarrow \mathbf{R}^{2}(p=2)$ be a SGM.
We want to construct an immersion lift $\eta: M^{n} \rightarrow \mathbf{R}^{n+1}$ of f.
Enough to construct an immersion

$$
\tilde{\eta}: M^{n} \nrightarrow W_{f} \times \mathbf{R}^{n-1}\left(\stackrel{\substack{f \times \text { id }}}{\rightarrow} \mathbf{R}^{2} \times \mathbf{R}^{n-1}\right)
$$

of the form $\widetilde{\eta}=\left(q_{f}, *\right)$.

Proof of Theorem 3.2

Let $f: M \rightarrow \mathbf{R}^{2}(p=2)$ be a SGM.
We want to construct an immersion lift $\eta: M^{n} \rightarrow \mathbf{R}^{n+1}$ of f.
Enough to construct an immersion

$$
\tilde{\eta}: M^{n} \leftrightarrow W_{f} \times \mathbf{R}^{n-1}\left(\stackrel{\substack{f \times i d}}{\rightarrow} \mathbf{R}^{2} \times \mathbf{R}^{n-1}\right)
$$

of the form $\widetilde{\eta}=\left(q_{f}, *\right)$.
Easy to construct $\widetilde{\eta}$ on a nbhd of $S(f)$, i.e. over a nbhd of ∂W_{f}.

Constructing an immersion lift

§1. Desingularizing Singular Maps §2. Desingularizing Special Generic Functions §3. Desingularizing SGM's into \mathbf{R}^{2} §4. Further Results

Let us consider a handlebody decomposition: $W_{f}=h^{0} \cup\left(\cup_{j=1}^{r} h_{j}^{1}\right)$.

Constructing an immersion lift

§1. Desingularizing Singular Maps §2. Desingularizing Special Generic Functions §3. Desingularizing SGM's into \mathbf{R}^{2} §4. Further Results

Let us consider a handlebody decomposition: $W_{f}=h^{0} \cup\left(\cup_{j=1}^{r} h_{j}^{1}\right)$.

Extend $\widetilde{\eta}$ ever the 1-handles h_{j}^{1} using lifts of special generic functions.

Constructing an immersion lift

§1. Desingularizing Singular Maps §2. Desingularizing Special Generic Functions §3. Desingularizing SGM's into \mathbf{R}^{2} §4. Further Results

Let us consider a handlebody decomposition: $W_{f}=h^{0} \cup\left(\cup_{j=1}^{r} h_{j}^{1}\right)$.

Extend $\widetilde{\eta}$ ever the 1-handles h_{j}^{1} using lifts of special generic functions.
Let D be the 2-disk over which $\widetilde{\eta}$ has not been defined.
By construction, over ∂D, we have a family of embeddings
$\eta_{t}: S^{n-2} \rightarrow \mathbf{R}^{n-1}, t \in \partial D$.

Proof of Theorem 3.2 (continued)

§1. Desingularizing Singular Maps §2. Desingularizing Special Generic Functions §3. Desingularizing SGM's into \mathbf{R}^{2} §4. Further Results

We need to extend this family of embeddings to a family of immersions over the whole D.

Proof of Theorem 3.2 (continued)

We need to extend this family of embeddings to a family of immersions over the whole D.
This is possible if the following natural homomorphism is the zero map.

$$
\pi_{1} \operatorname{Emb}\left(S^{n-2}, \mathbf{R}^{n-1}\right) \rightarrow \pi_{1} \operatorname{Imm}\left(S^{n-2}, \mathbf{R}^{n-1}\right)
$$

Proof of Theorem 3.2 (continued)

We need to extend this family of embeddings to a family of immersions over the whole D.
This is possible if the following natural homomorphism is the zero map.

$$
\pi_{1} \operatorname{Emb}\left(S^{n-2}, \mathbf{R}^{n-1}\right) \rightarrow \pi_{1} \operatorname{Imm}\left(S^{n-2}, \mathbf{R}^{n-1}\right)
$$

By Lashof et al., we have the exact sequence, for $n \geq 6$, $\pi_{1} \operatorname{Emb}\left(S^{n-2}, \mathbf{R}^{n-1}\right) \rightarrow \pi_{1} \operatorname{Imm}\left(S^{n-2}, \mathbf{R}^{n-1}\right) \rightarrow \pi_{1} \operatorname{Imm}{ }^{\mathrm{TOP}}\left(S^{n-2}, \mathbf{R}^{n-1}\right)$, where $\mathrm{Imm}^{\text {TOP }}\left(S^{n-2}, \mathbf{R}^{n-1}\right)$ denotes the space of locally flat topological immersions.

Proof of Theorem 3.2 (continued)

We need to extend this family of embeddings to a family of immersions over the whole D.
This is possible if the following natural homomorphism is the zero map.

$$
\pi_{1} \operatorname{Emb}\left(S^{n-2}, \mathbf{R}^{n-1}\right) \rightarrow \pi_{1} \operatorname{Imm}\left(S^{n-2}, \mathbf{R}^{n-1}\right)
$$

By Lashof et al., we have the exact sequence, for $n \geq 6$, $\pi_{1} \operatorname{Emb}\left(S^{n-2}, \mathbf{R}^{n-1}\right) \rightarrow \pi_{1} \operatorname{Imm}\left(S^{n-2}, \mathbf{R}^{n-1}\right) \rightarrow \pi_{1} \operatorname{Imm}{ }^{\mathrm{TOP}}\left(S^{n-2}, \mathbf{R}^{n-1}\right)$, where $\mathrm{Imm}^{\text {TOP }}\left(S^{n-2}, \mathbf{R}^{n-1}\right)$ denotes the space of locally flat topological immersions.
By Lees, Lashof, Burghelea, et al., the second map is injective. \Rightarrow DONE!

Proof of Theorem 3.2 (continued)

We need to extend this family of embeddings to a family of immersions over the whole D.
This is possible if the following natural homomorphism is the zero map.

$$
\pi_{1} \operatorname{Emb}\left(S^{n-2}, \mathbf{R}^{n-1}\right) \rightarrow \pi_{1} \operatorname{Imm}\left(S^{n-2}, \mathbf{R}^{n-1}\right)
$$

By Lashof et al., we have the exact sequence, for $n \geq 6$, $\pi_{1} \operatorname{Emb}\left(S^{n-2}, \mathbf{R}^{n-1}\right) \rightarrow \pi_{1} \operatorname{Imm}\left(S^{n-2}, \mathbf{R}^{n-1}\right) \rightarrow \pi_{1} \operatorname{Imm}{ }^{\mathrm{TOP}}\left(S^{n-2}, \mathbf{R}^{n-1}\right)$, where $\operatorname{Imm}{ }^{\text {TOP }}\left(S^{n-2}, \mathbf{R}^{n-1}\right)$ denotes the space of locally flat topological immersions.
By Lees, Lashof, Burghelea, et al., the second map is injective.
\Rightarrow DONE!
For $n=3,4,5$, we use some arguments on $\operatorname{Diff}\left(S^{n-2}\right)$.

Non-orientable case

§1. Desingularizing Singular Maps §2. Desingularizing Special Generic Functions §3. Desingularizing SGM's into $\mathbf{R}^{2} \S 4$. Further Results

Theorem 3.6 M^{n} : non-orientable, $n \geq 2$.
$f: M^{n} \rightarrow \mathbf{R}^{2}$ special generic map
\exists immersion $\eta: M^{n} \rightarrow \mathbf{R}^{n+1}$ s.t. $f=\pi \circ \eta$
$n=2,4$ or 8 , and the tubular neighborhood of $S(f)$ in M is orientable.

Non-orientable case

Theorem 3.6 M^{n} : non-orientable, $n \geq 2$.
$f: M^{n} \rightarrow \mathbf{R}^{2}$ special generic map
\exists immersion $\eta: M^{n} \rightarrow \mathbf{R}^{n+1}$ s.t. $f=\pi \circ \eta$
$n=2,4$ or 8 , and the tubular neighborhood of $S(f)$ in M is orientable.

Turning the sphere $S^{n-2} \subset \mathbf{R}^{n-1}$ inside out (sphere eversion) is possible if and only if $n=2,4,8$.

Embedding lift

§1. Desingularizing Singular Maps §2. Desingularizing Special Generic Functions §3. Desingularizing SGM's into \mathbf{R}^{2} §4. Further Results

Theorem $3.7 f: M^{n} \rightarrow \mathbf{R}^{2}$ special generic map, $n \geq 3$ \exists embedding $\eta: M^{n} \rightarrow \mathbf{R}^{n+1}$ s.t. $f=\pi \circ \eta$ $\Longleftrightarrow M \cong S^{n}$ or $\sharp^{k}\left(S^{1} \times S^{n-1}\right)$ (diffeomorphic).

Proof of (\Leftarrow) : The universal cover of $\sharp^{k}\left(S^{1} \times S^{n-1}\right)$ embeds in S^{n}. (Use the Schottky group argument. The free group of rank k can act on S^{n} as a Schottky group with totally disconnected limit set.)

Embedding lift

§1. Desingularizing Singular Maps §2. Desingularizing Special Generic Functions §3. Desingularizing SGM's into \mathbf{R}^{2} §4. Further Results

Theorem $3.7 f: M^{n} \rightarrow \mathbf{R}^{2}$ special generic map, $n \geq 3$ \exists embedding $\eta: M^{n} \rightarrow \mathbf{R}^{n+1}$ s.t. $f=\pi \circ \eta$ $\Longleftrightarrow M \cong S^{n}$ or $\sharp^{k}\left(S^{1} \times S^{n-1}\right)$ (diffeomorphic).

Proof of (\Leftarrow) : The universal cover of $\sharp^{k}\left(S^{1} \times S^{n-1}\right)$ embeds in S^{n}. (Use the Schottky group argument. The free group of rank k can act on S^{n} as a Schottky group with totally disconnected limit set.)
Therefore, every homotopy $(n-1)$-sphere embedded in $\sharp^{k}\left(S^{1} \times S^{n-1}\right)$ is standard.

Embedding lift

Theorem $3.7 f: M^{n} \rightarrow \mathbf{R}^{2}$ special generic map, $n \geq 3$ \exists embedding $\eta: M^{n} \rightarrow \mathbf{R}^{n+1}$ s.t. $f=\pi \circ \eta$
$\Longleftrightarrow M \cong S^{n}$ or $\sharp^{k}\left(S^{1} \times S^{n-1}\right)$ (diffeomorphic).

Proof of (\Leftarrow) : The universal cover of $\sharp^{k}\left(S^{1} \times S^{n-1}\right)$ embeds in S^{n}. (Use the Schottky group argument. The free group of rank k can act on S^{n} as a Schottky group with totally disconnected limit set.)
Therefore, every homotopy $(n-1)$-sphere embedded in $\sharp^{k}\left(S^{1} \times S^{n-1}\right)$ is standard.
Then, one can construct an embedding lift using Theorem 2.4, with the help of a result of Schultz about "inertia group" of manifolds.

Embedding lift

Theorem $3.7 f: M^{n} \rightarrow \mathbf{R}^{2}$ special generic map, $n \geq 3$ \exists embedding $\eta: M^{n} \rightarrow \mathbf{R}^{n+1}$ s.t. $f=\pi \circ \eta$ $\Longleftrightarrow M \cong S^{n}$ or $\sharp^{k}\left(S^{1} \times S^{n-1}\right)$ (diffeomorphic).

Proof of (\Leftarrow) : The universal cover of $\sharp^{k}\left(S^{1} \times S^{n-1}\right)$ embeds in S^{n}. (Use the Schottky group argument. The free group of rank k can act on S^{n} as a Schottky group with totally disconnected limit set.)
Therefore, every homotopy ($n-1$)-sphere embedded in $\sharp^{k}\left(S^{1} \times S^{n-1}\right)$ is standard.
Then, one can construct an embedding lift using Theorem 2.4, with the help of a result of Schultz about "inertia group" of manifolds.
(\Rightarrow) : Standard argument.

§4. Further Results

Immersion lift

§1. Desingularizing Singular Maps §2. Desingularizing Special Generic Functions §3. Desingularizing SGM's into \mathbf{R}^{2} §4. Further Results

Theorem 4.1 M^{n} : orientable, $(n, p)=(5,3),(6,3),(6,4)$ or $(7,4)$ $f: M^{n} \rightarrow \mathbf{R}^{p}$ special generic map
\exists immersion $\eta: M^{n} \rightarrow \mathbf{R}^{n+1}$ s.t. $f=\pi \circ \eta$
$\Longleftrightarrow M^{n}$ is spin, i.e. $w_{2}\left(M^{n}\right)=0$.

Immersion lift

Theorem 4.1 M^{n} : orientable, $(n, p)=(5,3),(6,3),(6,4)$ or $(7,4)$ $f: M^{n} \rightarrow \mathbf{R}^{p}$ special generic map
\exists immersion $\eta: M^{n} \rightarrow \mathbf{R}^{n+1}$ s.t. $f=\pi \circ \eta$
$\Longleftrightarrow M^{n}$ is spin, i.e. $w_{2}\left(M^{n}\right)=0$.

Key to the proof:
The Stein factorization induces a smooth S^{n-p}-bundle

$$
M^{n} \backslash S(f) \rightarrow \operatorname{Int} W_{f}
$$

Immersion lift

Theorem 4.1 M^{n} : orientable, $(n, p)=(5,3),(6,3),(6,4)$ or $(7,4)$ $f: M^{n} \rightarrow \mathbf{R}^{p}$ special generic map
\exists immersion $\eta: M^{n} \rightarrow \mathbf{R}^{n+1}$ s.t. $f=\pi \circ \eta$
$\Longleftrightarrow M^{n}$ is spin, i.e. $w_{2}\left(M^{n}\right)=0$.

Key to the proof:
The Stein factorization induces a smooth S^{n-p}-bundle

$$
M^{n} \backslash S(f) \rightarrow \operatorname{Int} W_{f}
$$

If $w_{2}\left(M^{n}\right)=0$, then we can show that this is a trivial bundle.

Codimension -1 case

$f: M^{n} \rightarrow \mathbf{R}^{p}$ special generic map $(n>p)$
Orient \mathbf{R}^{p}. Then the quotient space W_{f} has the induced orientation. Then $\partial W_{f} \cong S(f)$ also have the induced orientations.

Codimension -1 case

§1. Desingularizing Singular Maps §2. Desingularizing Special Generic Functions §3. Desingularizing SGM's into \mathbf{R}^{2} §4. Further Results
$f: M^{n} \rightarrow \mathbf{R}^{p}$ special generic map $(n>p)$
Orient \mathbf{R}^{p}. Then the quotient space W_{f} has the induced orientation. Then $\partial W_{f} \cong S(f)$ also have the induced orientations.

Theorem $4.2 M^{n}$: orientable, $f: M^{n} \rightarrow \mathbf{R}^{n-1}$ special generic Jimmersion $\eta: M^{n} \rightarrow \mathbf{R}^{n+1}$ s.t. $f=\pi \circ \eta$
$\Longleftrightarrow[S(f)]=0$ in $H_{n-2}\left(M^{n} ; \mathbf{Z}\right)$.

Codimension -1 case

§1. Desingularizing Singular Maps §2. Desingularizing Special Generic Functions §3. Desingularizing SGM's into \mathbf{R}^{2} §4. Further Results
$f: M^{n} \rightarrow \mathbf{R}^{p}$ special generic map $(n>p)$
Orient \mathbf{R}^{p}. Then the quotient space W_{f} has the induced orientation.
Then $\partial W_{f} \cong S(f)$ also have the induced orientations.

Theorem 4.2 M^{n} : orientable, $f: M^{n} \rightarrow \mathbf{R}^{n-1}$ special generic Jimmersion $\eta: M^{n} \rightarrow \mathbf{R}^{n+1}$ s.t. $f=\pi \circ \eta$
$\Longleftrightarrow[S(f)]=0$ in $H_{n-2}\left(M^{n} ; \mathbf{Z}\right)$.

Key to the proof:
The Stein factorization induces a smooth S^{1}-bundle

$$
M^{n} \backslash S(f) \rightarrow \operatorname{Int} W_{f}
$$

Codimension -1 case

$f: M^{n} \rightarrow \mathbf{R}^{p}$ special generic map $(n>p)$
Orient \mathbf{R}^{p}. Then the quotient space W_{f} has the induced orientation. Then $\partial W_{f} \cong S(f)$ also have the induced orientations.

Theorem 4.2 M^{n} : orientable, $f: M^{n} \rightarrow \mathbf{R}^{n-1}$ special generic \exists immersion $\eta: M^{n} \rightarrow \mathbf{R}^{n+1}$ s.t. $f=\pi \circ \eta$
$\Longleftrightarrow[S(f)]=0$ in $H_{n-2}\left(M^{n} ; \mathbf{Z}\right)$.

Key to the proof:
The Stein factorization induces a smooth S^{1}-bundle

$$
M^{n} \backslash S(f) \rightarrow \operatorname{Int} W_{f}
$$

If $[S(f)]=0$, then we can show that this is a trivial bundle.

Summary

§1. Desingularizing Singular Maps §2. Desingularizing Special Generic Functions §3. Desingularizing SGM's into \mathbf{R}^{2} §4. Further Results

- Special generic function $M^{n} \rightarrow \mathbf{R}$ can always be desingularized by an immersion $M^{n} \rightarrow \mathbf{R}^{n+1}$.
It can be desingularized by an embedding iff $M^{n} \cong S^{n}$ (diffeo.).
- Special generic map $f: M^{n} \rightarrow \mathbf{R}^{2}$ can always be desingularized by an immersion $M^{n} \rightarrow \mathbf{R}^{n+1}$ if M^{n} is orientable.
It can be desingularized by an embedding iff $M^{n} \cong S^{n}$ or $\sharp^{k}\left(S^{1} \times S^{n-1}\right)$ (diffeomorphic).
When M^{n} is non-orientable, f can be desingularized by an immersion iff $n=2,4,8$ and $S(f)$ has an orientable nbhd.
- Special generic map $f: M^{n} \rightarrow \mathbf{R}^{3}$ with M^{n} orientable can be desingularized by an immersion $M^{n} \rightarrow \mathbf{R}^{n+1}$ iff M^{n} is spin for $n=5$ and 6 .
■ Special generic map $f: M^{n} \rightarrow \mathbf{R}^{n-1}$ with M^{n} orientable can be desingularized by an immersion $M^{n} \rightarrow \mathbf{R}^{n+1}$ iff $[S(f)]=0$ in $H_{n-2}\left(M^{n} ; \mathbf{Z}\right)$.
§1. Desingularizing Singular Maps §2. Desingularizing Special Generic Functions §3. Desingularizing SGM's into $\mathbf{R}^{2} \S 4$. Further Results

Muito obrigado!

Embedding results

Theorem $4.3 M^{n}$: orientable, $f: M^{n} \rightarrow \mathbf{R}^{p}$ special generic map $(n, p)=(2,1),(3,2),(4,3),(5,3),(6,3),(6,4)$ or $(7,4)$ $\Longrightarrow \exists$ regular homotopy of immersions $\eta_{t}: M^{n} \rightarrow \mathbf{R}^{n+1}, t \in[0,1]$, with $f=\pi \circ \eta_{0}$ s.t. $f_{t}=\pi \circ \eta_{t}$ is a special generic map, $t \in[0,1]$, and η_{1} is an embedding.

Embedding results

Theorem $4.3 M^{n}$: orientable, $f: M^{n} \rightarrow \mathbf{R}^{p}$ special generic map $(n, p)=(2,1),(3,2),(4,3),(5,3),(6,3),(6,4)$ or $(7,4)$ $\Longrightarrow \exists$ regular homotopy of immersions $\eta_{t}: M^{n} \rightarrow \mathbf{R}^{n+1}, t \in[0,1]$, with $f=\pi \circ \eta_{0}$ s.t. $f_{t}=\pi \circ \eta_{t}$ is a special generic map, $t \in[0,1]$, and η_{1} is an embedding.

Theorem 4.4 M^{4} : orientable, $\exists f: M^{4} \rightarrow \mathbf{R}^{3}$ special generic map M^{4} can be embedded into \mathbf{R}^{5}
$\Longleftrightarrow M^{4}$ is spin, i.e. $w_{2}\left(M^{4}\right)=0$.

