Desingularizing Special Generic Maps

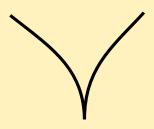
Osamu Saeki
(Institute of Mathematics for Industry, Kyushu University)

Joint work with Masamichi Takase (Seikei University)

November 27, 2012

§1. Desingularizing Singular Maps

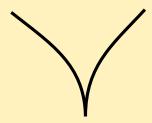
This is a **singular** plane curve.



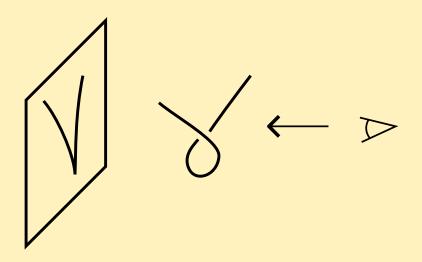
Desingularizing a singular curve

 $\S 1$. Desingularizing Singular Maps $\S 2$. Desingularizing Special Generic Functions $\S 3$. Desingularizing SGM's into ${f R}^2$ $\S 4$. Further Results

This is a **singular** plane curve.



But, this might be the projected image of a non-singular space curve.



 $\S 1$. Desingularizing Singular Maps $\S 2$. Desingularizing Special Generic Functions $\S 3$. Desingularizing SGM's into ${f R}^2$ $\S 4$. Further Results

 M^n : closed n-dim. C^{∞} manifold, $f: M^n \to \mathbf{R}^p$ a generic C^{∞} map $(n \ge p)$.

 $\S 1$. Desingularizing Singular Maps $\S 2$. Desingularizing Special Generic Functions $\S 3$. Desingularizing SGM's into ${f R}^2$ $\S 4$. Further Results

 M^n : closed n-dim. C^{∞} manifold, $f:M^n\to \mathbf{R}^p$ a generic C^{∞} map $(n\geq p)$. — always singular

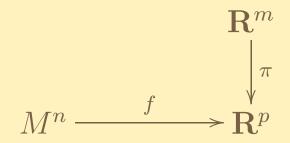
§1. Desingularizing Singular Maps §2. Desingularizing Special Generic Functions §3. Desingularizing SGM's into \mathbb{R}^2 §4. Further Results

 M^n : closed n-dim. C^{∞} manifold, $f: M^n \to \mathbf{R}^p$ a generic C^∞ map $(n \ge p)$. — always singular For $m > n \ge p$, $\pi : \mathbf{R}^m \to \mathbf{R}^p$ will denote the **standard projection**.

 $\S 1$. Desingularizing Singular Maps $\S 2$. Desingularizing Special Generic Functions $\S 3$. Desingularizing SGM's into ${f R}^2$ $\S 4$. Further Results

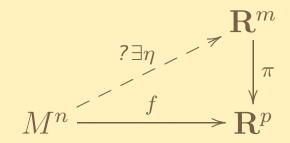
 M^n : closed n-dim. C^{∞} manifold, $f: M^n \to \mathbf{R}^p$ a generic C^{∞} map $(n \ge p)$. — always singular For $m > n \ge p$, $\pi: \mathbf{R}^m \to \mathbf{R}^p$ will denote the standard projection.

Problem 1.1



 M^n : closed n-dim. C^{∞} manifold, $f: M^n \to \mathbf{R}^p$ a generic C^{∞} map $(n \ge p)$. \longleftarrow always singular For $m > n \ge p$, $\pi: \mathbf{R}^m \to \mathbf{R}^p$ will denote the standard projection.

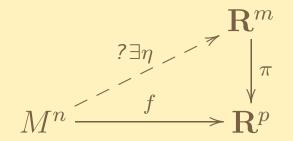
Problem 1.1



 η : immersion or embedding

 M^n : closed n-dim. C^{∞} manifold, $f: M^n \to \mathbf{R}^p$ a generic C^{∞} map $(n \ge p)$. \longleftarrow always singular For $m > n \ge p$, $\pi: \mathbf{R}^m \to \mathbf{R}^p$ will denote the standard projection.

Problem 1.1



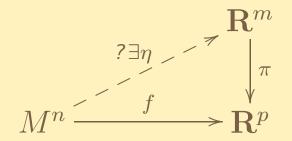
 η : immersion or embedding

Yes, if m >> n.

 $\S 1$. Desingularizing Singular Maps $\S 2$. Desingularizing Special Generic Functions $\S 3$. Desingularizing SGM's into ${f R}^2$ $\S 4$. Further Results

 M^n : closed n-dim. C^{∞} manifold, $f: M^n \to \mathbf{R}^p$ a generic C^{∞} map $(n \ge p)$. \longleftarrow always singular For $m > n \ge p$, $\pi: \mathbf{R}^m \to \mathbf{R}^p$ will denote the standard projection.

Problem 1.1



η : immersion or embedding

Yes, if m>>n. In this talk, we consider the case m=n+1.

Theorem 1.2 (Haefliger, 1960) $f: M^2 \to \mathbb{R}^2$ generic $\exists \text{immersion } \eta: M^2 \to \mathbb{R}^3$ s.t. $f = \pi \circ \eta$ \iff For every singular set component $S \ (\cong S^1)$ of f: if S has an annulus nbhd, S contains an even number of cusps, if S has a Möbius band nbhd, S contains an odd number of cusps.

Surface case

 $\S 1$. Desingularizing Singular Maps $\S 2$. Desingularizing Special Generic Functions $\S 3$. Desingularizing SGM's into ${f R}^2$ $\S 4$. Further Results

Theorem 1.2 (Haefliger, 1960) $f: M^2 \to \mathbb{R}^2$ generic $\exists \mathbf{immersion} \ \eta: M^2 \to \mathbb{R}^3 \ s.t. \ f = \pi \circ \eta$ \iff For every singular set component $S \ (\cong S^1)$ of f: if S has an annulus nbhd, S contains an even number of cusps, if S has a Möbius band nbhd, S contains an odd number of cusps.

Theorem 1.3 (M. Yamamoto, 2007) $f: M^2 \to \mathbb{R}^2$ generic There always exists an embedding $\eta: M^2 \to \mathbb{R}^4$ s.t. $f = \pi \circ \eta$.

Theorem 1.2 (Haefliger, 1960) $f: M^2 \to \mathbb{R}^2$ generic $\exists \mathbf{immersion} \ \eta: M^2 \to \mathbb{R}^3 \ s.t. \ f = \pi \circ \eta$ \iff For every singular set component $S \ (\cong S^1)$ of f: if S has an annulus nbhd, S contains an even number of cusps, if S has a Möbius band nbhd, S contains an odd number of cusps.

Theorem 1.3 (M. Yamamoto, 2007) $f: M^2 \to \mathbf{R}^2$ generic There always exists an embedding $\eta: M^2 \to \mathbf{R}^4$ s.t. $f = \pi \circ \eta$.

Theorem 1.4 (Burlet–Haab, 1985) $f: M^2 \to \mathbf{R}$ Morse There always exists an immersion $\eta: M^2 \to \mathbf{R}^3$ s.t. $f = \pi \circ \eta$.

Theorem 1.5 (Saito, 1961) M^n : orientable

 $f:M^n \to \mathbf{R}^n$ special generic map

There always exists an immersion $\eta: M^n \to \mathbf{R}^{n+1}$ s.t. $f = \pi \circ \eta$.

Theorem 1.5 (Saito, 1961) M^n : orientable

 $f:M^n \to \mathbf{R}^n$ special generic map

There always exists an immersion $\eta: M^n \to \mathbf{R}^{n+1}$ s.t. $f = \pi \circ \eta$.

Theorem 1.6 (Blank-Curley, 1985)

 $f: M^n \to \mathbf{R}^n$ generic,

 $\exists \mathbf{immersion} \ \eta : M^n \to \mathbf{R}^{n+1} \ \textit{s.t.} \ f = \pi \circ \eta$

 $\iff \operatorname{rk} df \geq n-1$, and $[\overline{\{\operatorname{cusps}\}}]^* + \underline{w_1(\nu)} = 0$ in $H^1(\overline{\{\operatorname{folds}\}}; \mathbf{Z}_2)$,

where ν is the normal line bundle of $\{\text{folds}\}\ \text{in }M^n$.

Special generic maps

 $\S 1$. Desingularizing Singular Maps $\S 2$. Desingularizing Special Generic Functions $\S 3$. Desingularizing SGM's into ${f R}^2$ $\S 4$. Further Results

Today's topic:

Desingularization of special generic maps.

(Lifting special generic maps to **immersions** and **embeddings** in codimension 1.)

Special generic maps

 $\S 1$. Desingularizing Singular Maps $\S 2$. Desingularizing Special Generic Functions $\S 3$. Desingularizing SGM's into ${f R}^2$ $\S 4$. Further Results

Today's topic:

Desingularization of special generic maps.

(Lifting special generic maps to **immersions** and **embeddings** in codimension 1.)

Definition 1.7 A singularity of a C^{∞} map $M^n \to N^p$, $n \ge p$, that has the normal form

$$(x_1, x_2, \dots, x_n) \mapsto (x_1, x_2, \dots, x_{p-1}, x_p^2 + x_{p+1}^2 + \dots + x_n^2)$$

is called a definite fold singularity.

Special generic maps

 $\S1$. Desingularizing Singular Maps $\S2$. Desingularizing Special Generic Functions $\S3$. Desingularizing SGM's into ${f R}^2$ $\S4$. Further Results

Today's topic:

Desingularization of special generic maps.

(Lifting special generic maps to **immersions** and **embeddings** in codimension 1.)

Definition 1.7 A singularity of a C^{∞} map $M^n \to N^p$, $n \ge p$, that has the normal form

$$(x_1, x_2, \dots, x_n) \mapsto (x_1, x_2, \dots, x_{p-1}, x_p^2 + x_{p+1}^2 + \dots + x_n^2)$$

is called a definite fold singularity.

Definition 1.8 $f: M^n \to N^p$ is a special generic map (SGM, for short) if it has only definite fold singularities.

Examples

 $\S 1$. Desingularizing Singular Maps $\S 2$. Desingularizing Special Generic Functions $\S 3$. Desingularizing SGM's into ${f R}^2$ $\S 4$. Further Results

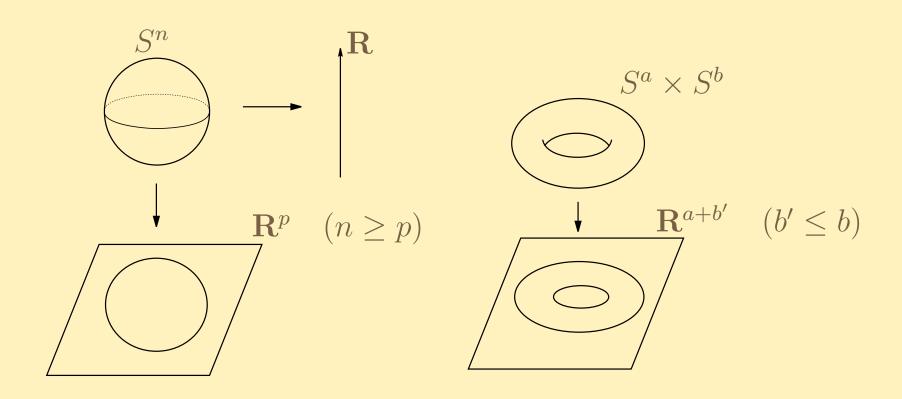


Figure 1: Examples of special generic maps

§2. Desingularizing Special Generic Functions

Special generic functions

 \S 1. Desingularizing Singular Maps \S 2. Desingularizing Special Generic Functions \S 3. Desingularizing SGM's into ${f R}^2$ \S 4. Further Results

Theorem 2.1 (Reeb, Smale, Cerf et al)

 M^n : closed connected n-dim. C^{∞} manifold

 \exists special generic function $M^n \to \mathbf{R}$

- (1) $M^n \approx S^n$ (homeomorphic) $(n \neq 4)$
- (2) $M^n \cong S^n$ (diffeomorphic) (n=4)

Special generic functions

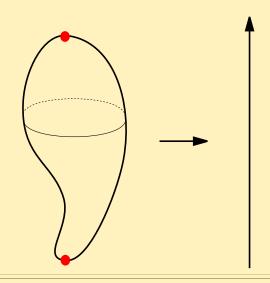
 \S 1. Desingularizing Singular Maps \S 2. Desingularizing Special Generic Functions \S 3. Desingularizing SGM's into ${f R}^2$ \S 4. Further Results

Theorem 2.1 (Reeb, Smale, Cerf et al)

 M^n : closed connected n-dim. C^{∞} manifold

 \exists special generic function $M^n \to \mathbf{R}$

- (1) $M^n \approx S^n$ (homeomorphic) $(n \neq 4)$
- (2) $M^n \cong S^n$ (diffeomorphic) (n=4)



 $\S 1$. Desingularizing Singular Maps $\S 2$. Desingularizing Special Generic Functions $\S 3$. Desingularizing SGM's into ${f R}^2$ $\S 4$. Further Results

In the following, M^n will be closed and connected.

§1. Desingularizing Singular Maps §2. Desingularizing Special Generic Functions §3. Desingularizing SGM's into \mathbb{R}^2 §4. Further Results

In the following, M^n will be closed and connected.

Theorem 2.2 $n \ge 1$

 $f:M^n \to \mathbf{R}$ special generic function

There always exists an immersion $\eta: M^n \to \mathbf{R}^{n+1}$ s.t. $f = \pi \circ \eta$.

 $\S 1$. Desingularizing Singular Maps $\S 2$. Desingularizing Special Generic Functions $\S 3$. Desingularizing SGM's into ${f R}^2$ $\S 4$. Further Results

In the following, M^n will be closed and connected.

Theorem 2.2 $n \ge 1$

 $f: M^n \to \mathbf{R}$ special generic function

There always exists an immersion $\eta: M^n \to \mathbf{R}^{n+1}$ s.t. $f = \pi \circ \eta$.

Two immersions are **regularly homotopic** if they are in the same connected component of the space {immersions $M^k \to \mathbf{R}^{\ell}$ }.

 $\S 1$. Desingularizing Singular Maps $\S 2$. Desingularizing Special Generic Functions $\S 3$. Desingularizing SGM's into ${f R}^2$ $\S 4$. Further Results

In the following, M^n will be closed and connected.

Theorem 2.2 $n \ge 1$

 $f: M^n \to \mathbf{R}$ special generic function

There always exists an immersion $\eta: M^n \to \mathbf{R}^{n+1}$ s.t. $f = \pi \circ \eta$.

Two immersions are **regularly homotopic** if they are in the same connected component of the space {immersions $M^k \to \mathbf{R}^{\ell}$ }.

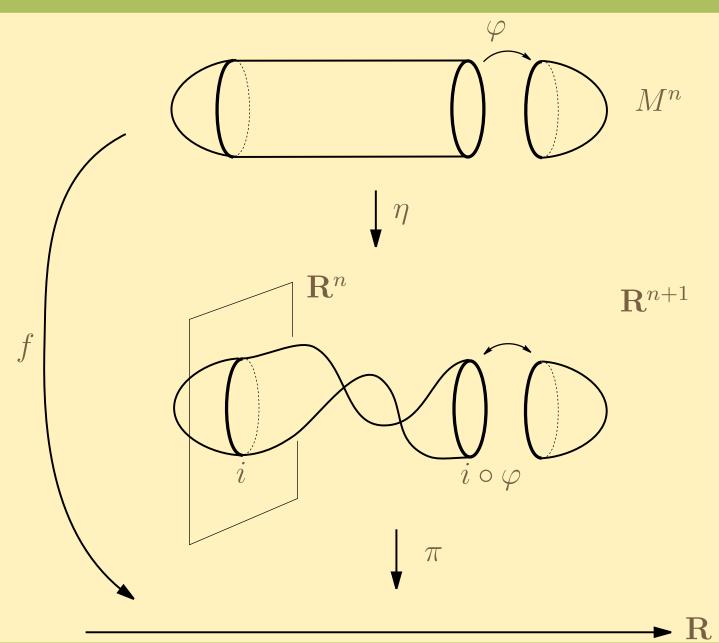
Lemma 2.3 (Kaiser, 1988)

Let $i: S^{n-1} \to \mathbf{R}^n$ be the standard embedding.

For \forall diffeomorphism $\varphi: S^{n-1} \to S^{n-1}$ preserving the orientation, the immersions i and $i \circ \varphi$ are **regularly homotopic**.

Proof of Theorem 2.2

 $\S 1$. Desingularizing Singular Maps $\S 2$. Desingularizing Special Generic Functions $\S 3$. Desingularizing SGM's into ${f R}^2$ $\S 4$. Further Results



Theorem 2.4 $n \ge 2$

 $f:M^n \to \mathbf{R}$ special generic function

 \exists embedding $\eta:M^n\to\mathbf{R}^{n+1}$ s.t. $f=\pi\circ\eta$

 $\iff M^n \cong S^n \quad (diffeomorphic)$

Embedding lift

 $\S 1$. Desingularizing Singular Maps $\S 2$. Desingularizing Special Generic Functions $\S 3$. Desingularizing SGM's into ${f R}^2$ $\S 4$. Further Results

Theorem 2.4 $n \ge 2$

 $f:M^n \to \mathbf{R}$ special generic function

 \exists embedding $\eta:M^n\to\mathbf{R}^{n+1}$ s.t. $f=\pi\circ\eta$

 $\iff M^n \cong S^n \quad (diffeomorphic)$

This implies that there exist special generic functions that can be desingularized by immersions, but not by embeddings.

Embedding lift

 \S 1. Desingularizing Singular Maps \S 2. Desingularizing Special Generic Functions \S 3. Desingularizing SGM's into ${f R}^2$ \S 4. Further Results

Theorem 2.4 $n \ge 2$

 $f:M^n \to \mathbf{R}$ special generic function

 \exists embedding $\eta:M^n\to\mathbf{R}^{n+1}$ s.t. $f=\pi\circ\eta$

 $\iff M^n \cong S^n \quad (diffeomorphic)$

This implies that there exist special generic functions that can be desingularized by immersions, but not by embeddings.

Proof of Theorem 2.4: For $n \neq 5$, φ is isotopic to the identity.

For n=5, $i\circ\varphi$ is isotopic to i.

Embedding lift

 $\S 1$. Desingularizing Singular Maps $\S 2$. Desingularizing Special Generic Functions $\S 3$. Desingularizing SGM's into ${f R}^2$ $\S 4$. Further Results

Theorem 2.4 $n \ge 2$

 $f:M^n \to \mathbf{R}$ special generic function

 \exists embedding $\eta: M^n \to \mathbf{R}^{n+1}$ s.t. $f = \pi \circ \eta$

 $\iff M^n \cong S^n \quad (diffeomorphic)$

This implies that there exist special generic functions that can be desingularized by immersions, but not by embeddings.

Proof of Theorem 2.4: For $n \neq 5$, φ is isotopic to the identity. For n = 5, $i \circ \varphi$ is isotopic to i.

Remark 2.5 When n=1, the existence problem of an embedding lift has recently been solved by Minoru Yamamoto.

\S 3. Desingularizing SGM's into \mathbf{R}^2

Theorem 3.1 (Burlet-de Rham, 1974;

Porto-Furuya, 1990; S, 1993)

 M^n : closed connected orientable $(n \ge 2)$

 \exists special generic map $f: M^n \to \mathbf{R}^2$

 $\iff M^n$ is diffeomorphic to

$$\Sigma^n \sharp \left(\sharp_{i=1}^r (\Sigma_i^{n-1} \times S^1)\right)$$

for some homotopy spheres Σ^n and Σ_i^{n-1} (for $n \leq 6$, they are standard spheres).

Desingularizing SGM's into ${f R}^2$

 $\S 1$. Desingularizing Singular Maps $\S 2$. Desingularizing Special Generic Functions $\S 3$. Desingularizing SGM's into ${f R}^2$ $\S 4$. Further Results

Theorem 3.2 M^n : orientable, $n \ge 2$.

 $f:M^n o {f R}^2$ special generic map

There always exists an immersion $\eta: M^n \to \mathbf{R}^{n+1}$ s.t. $f = \pi \circ \eta$.

Theorem 3.2 M^n : orientable, $n \ge 2$.

 $f:M^n o {f R}^2$ special generic map

There always exists an immersion $\eta: M^n \to \mathbf{R}^{n+1}$ s.t. $f = \pi \circ \eta$.

Remark 3.3 The case n=2 is a consequence of Haefliger's result.

 \S 1. Desingularizing Singular Maps \S 2. Desingularizing Special Generic Functions \S 3. Desingularizing SGM's into \mathbb{R}^2 \S 4. Further Results

Definition 3.4 $f: M^n \to \mathbf{R}^p$ C^{∞} map (n > p)

For $x, x' \in M^n$, define $x \sim_f x'$ if

- (i) f(x) = f(x') (= y), and
- (ii) x and x' belong to the same connected component of $f^{-1}(y)$.

Stein factorization

 $\S 1$. Desingularizing Singular Maps $\S 2$. Desingularizing Special Generic Functions $\S 3$. Desingularizing SGM's into ${f R}^2$ $\S 4$. Further Results

Definition 3.4 $f: M^n \to \mathbf{R}^p$ C^{∞} map (n > p)

For $x, x' \in M^n$, define $x \sim_f x'$ if

- (i) f(x) = f(x') (= y), and
- (ii) x and x' belong to the same connected component of $f^{-1}(y)$.

 $W_f = M^n/\sim_f$ quotient space, $q_f: M^n \to W_f$ quotient map

 $\exists ! \bar{f} : W_f \to \mathbf{R}^p$ that makes the diagram commutative:

$$M^n \xrightarrow{f} \mathbf{R}^p$$

$$q_f \searrow \nearrow_{\bar{f}}$$

$$W_f$$

Stein factorization

 $\S 1$. Desingularizing Singular Maps $\S 2$. Desingularizing Special Generic Functions $\S 3$. Desingularizing SGM's into ${f R}^2$ $\S 4$. Further Results

Definition 3.4 $f: M^n \to \mathbf{R}^p$ C^{∞} map (n > p)

For $x, x' \in M^n$, define $x \sim_f x'$ if

- (i) f(x) = f(x') (= y), and
- (ii) x and x' belong to the same connected component of $f^{-1}(y)$.

 $W_f = M^n/\sim_f$ quotient space, $q_f: M^n \to W_f$ quotient map

 $\exists ! \bar{f} : W_f \to \mathbf{R}^p$ that makes the diagram commutative:

$$M^n \xrightarrow{f} \mathbf{R}^p$$

$$q_f \searrow \nearrow_{\bar{f}}$$

$$W_f$$

The above diagram is called the **Stein factorization** of f.

 $\S 1$. Desingularizing Singular Maps $\S 2$. Desingularizing Special Generic Functions $\S 3$. Desingularizing SGM's into ${f R}^2$ $\S 4$. Further Results

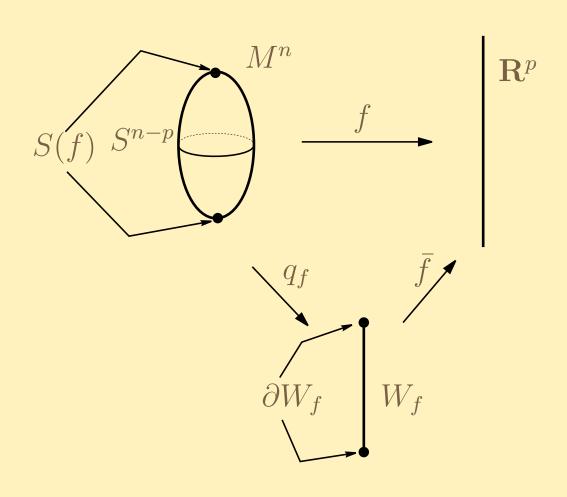


Figure 2: Stein factorization of a SGM

 \S 1. Desingularizing Singular Maps \S 2. Desingularizing Special Generic Functions \S 3. Desingularizing SGM's into \mathbf{R}^2 \S 4. Further Results

Proposition 3.5 $f: M^n \to \mathbb{R}^p$ special generic map (n > p).

Fundamental properties

 \S 1. Desingularizing Singular Maps \S 2. Desingularizing Special Generic Functions \S 3. Desingularizing SGM's into \mathbb{R}^2 \S 4. Further Results

Proposition 3.5 $f: M^n \to \mathbf{R}^p$ special generic map (n > p).

- (1) The singular point set S(f) is a regular submanifold of M^n of dimension p-1,
- (2) W_f has the structure of a smooth p-dim. manifold with boundary such that $\bar{f}:W_f\to \mathbf{R}^p$ is an immersion.
- (3) $q_f|_{S(f)}:S(f)\to \partial W_f$ is a diffeomorphism.
- (4) $q_f|_{M^n\setminus S(f)}:M^n\setminus S(f)\to \operatorname{Int} W_f$ is a smooth S^{n-p} -bundle.

Proof of Theorem 3.2

 \S 1. Desingularizing Singular Maps \S 2. Desingularizing Special Generic Functions \S 3. Desingularizing SGM's into \mathbb{R}^2 \S 4. Further Results

Let $f: M \to \mathbf{R}^2 \ (p=2)$ be a SGM.

We want to construct an immersion lift $\eta: M^n \to \mathbf{R}^{n+1}$ of f.

Proof of Theorem 3.2

 \S 1. Desingularizing Singular Maps \S 2. Desingularizing Special Generic Functions \S 3. Desingularizing SGM's into \mathbf{R}^2 \S 4. Further Results

Let $f: M \to \mathbf{R}^2 \ (p=2)$ be a SGM.

We want to construct an immersion lift $\eta: M^n \to \mathbf{R}^{n+1}$ of f.

Enough to construct an immersion

$$\widetilde{\eta}: M^n \hookrightarrow W_f \times \mathbf{R}^{n-1} \stackrel{\bar{f} \times \mathrm{id}}{\hookrightarrow} \mathbf{R}^2 \times \mathbf{R}^{n-1}$$

of the form $\widetilde{\eta} = (q_f, *)$.

Proof of Theorem 3.2

§1. Desingularizing Singular Maps §2. Desingularizing Special Generic Functions §3. Desingularizing SGM's into \mathbb{R}^2 §4. Further Results

Let $f: M \to \mathbf{R}^2 \ (p=2)$ be a SGM.

We want to construct an immersion lift $\eta: M^n \to \mathbf{R}^{n+1}$ of f.

Enough to construct an immersion

$$\widetilde{\eta}: M^n \hookrightarrow W_f \times \mathbf{R}^{n-1} \left(\stackrel{\overline{f} \times \mathrm{id}}{\hookrightarrow} \mathbf{R}^2 \times \mathbf{R}^{n-1} \right)$$

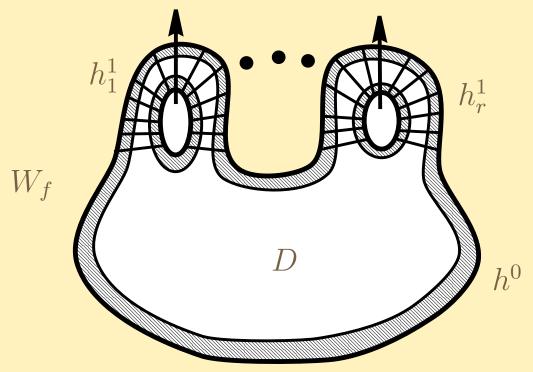
of the form $\widetilde{\eta} = (q_f, *)$.

Easy to construct $\widetilde{\eta}$ on a nbhd of S(f), i.e. over a nbhd of ∂W_f .

Constructing an immersion lift

 $\S 1$. Desingularizing Singular Maps $\S 2$. Desingularizing Special Generic Functions $\S 3$. Desingularizing SGM's into ${f R}^2$ $\S 4$. Further Results

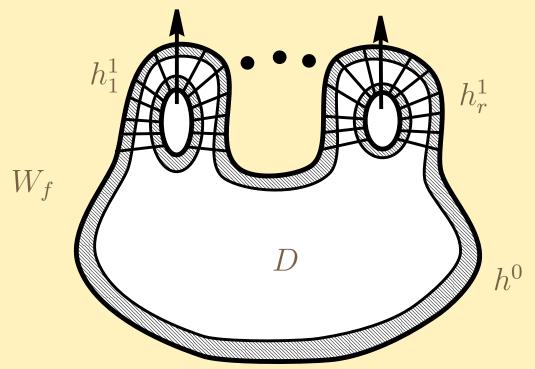
Let us consider a handlebody decomposition: $W_f = h^0 \cup (\cup_{j=1}^r h_j^1)$.



Constructing an immersion lift

 \S 1. Desingularizing Singular Maps \S 2. Desingularizing Special Generic Functions \S 3. Desingularizing SGM's into ${f R}^2$ \S 4. Further Results

Let us consider a handlebody decomposition: $W_f = h^0 \cup (\cup_{j=1}^r h_j^1)$.

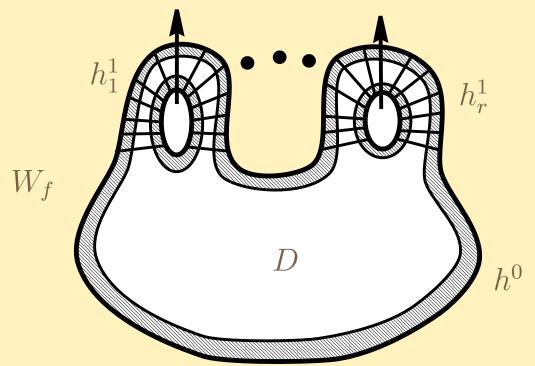


Extend $\widetilde{\eta}$ ever the 1-handles h_j^1 using lifts of special generic **functions**.

Constructing an immersion lift

 $\S 1$. Desingularizing Singular Maps $\S 2$. Desingularizing Special Generic Functions $\S 3$. Desingularizing SGM's into ${f R}^2$ $\S 4$. Further Results

Let us consider a handlebody decomposition: $W_f = h^0 \cup (\cup_{j=1}^r h_j^1)$.



Extend $\widetilde{\eta}$ ever the 1-handles h^1_j using lifts of special generic **functions**. Let D be the 2-disk over which $\widetilde{\eta}$ has not been defined. By construction, over ∂D , we have a family of **embeddings** $\eta_t: S^{n-2} \to \mathbf{R}^{n-1}, \ t \in \partial D$.

§1. Desingularizing Singular Maps §2. Desingularizing Special Generic Functions §3. Desingularizing SGM's into \mathbb{R}^2 §4. Further Results

We need to extend this <u>family of embeddings</u> to a <u>family of immersions</u> over the whole D.

 \S 1. Desingularizing Singular Maps \S 2. Desingularizing Special Generic Functions \S 3. Desingularizing SGM's into \mathbb{R}^2 \S 4. Further Results

We need to extend this <u>family of embeddings</u> to a <u>family of immersions</u> over the whole D.

This is possible if the following natural homomorphism is the zero map.

$$\pi_1 \operatorname{Emb}(S^{n-2}, \mathbf{R}^{n-1}) \to \pi_1 \operatorname{Imm}(S^{n-2}, \mathbf{R}^{n-1})$$

§1. Desingularizing Singular Maps §2. Desingularizing Special Generic Functions §3. Desingularizing SGM's into \mathbb{R}^2 §4. Further Results

We need to extend this family of embeddings to a family of immersions over the whole D.

This is possible if the following natural homomorphism is the zero map.

$$\pi_1 \operatorname{Emb}(S^{n-2}, \mathbf{R}^{n-1}) \to \pi_1 \operatorname{Imm}(S^{n-2}, \mathbf{R}^{n-1})$$

By Lashof et al., we have the exact sequence, for $n \ge 6$,

$$\pi_1 \operatorname{Emb}(S^{n-2}, \mathbf{R}^{n-1}) \to \pi_1 \operatorname{Imm}(S^{n-2}, \mathbf{R}^{n-1}) \to \pi_1 \operatorname{Imm}^{\operatorname{TOP}}(S^{n-2}, \mathbf{R}^{n-1}),$$

where $Imm^{TOP}(S^{n-2}, \mathbf{R}^{n-1})$ denotes the space of locally flat topological immersions.

 $\S 1$. Desingularizing Singular Maps $\S 2$. Desingularizing Special Generic Functions $\S 3$. Desingularizing SGM's into ${f R}^2$ $\S 4$. Further Results

We need to extend this family of embeddings to a family of immersions over the whole D.

This is possible if the following natural homomorphism is the zero map.

$$\pi_1 \operatorname{Emb}(S^{n-2}, \mathbf{R}^{n-1}) \to \pi_1 \operatorname{Imm}(S^{n-2}, \mathbf{R}^{n-1})$$

By Lashof et al., we have the exact sequence, for $n \ge 6$,

$$\pi_1 \operatorname{Emb}(S^{n-2}, \mathbf{R}^{n-1}) \to \pi_1 \operatorname{Imm}(S^{n-2}, \mathbf{R}^{n-1}) \to \pi_1 \operatorname{Imm}^{\operatorname{TOP}}(S^{n-2}, \mathbf{R}^{n-1}),$$

where $Imm^{TOP}(S^{n-2}, \mathbf{R}^{n-1})$ denotes the space of locally flat topological immersions.

By Lees, Lashof, Burghelea, et al., the second map is injective.

⇒ DONE!

 $\S 1$. Desingularizing Singular Maps $\S 2$. Desingularizing Special Generic Functions $\S 3$. Desingularizing SGM's into ${f R}^2$ $\S 4$. Further Results

We need to extend this <u>family of embeddings</u> to a <u>family of immersions</u> over the whole D.

This is possible if the following natural homomorphism is the zero map.

$$\pi_1 \operatorname{Emb}(S^{n-2}, \mathbf{R}^{n-1}) \to \pi_1 \operatorname{Imm}(S^{n-2}, \mathbf{R}^{n-1})$$

By Lashof et al., we have the exact sequence, for $n \ge 6$,

$$\pi_1 \operatorname{Emb}(S^{n-2}, \mathbf{R}^{n-1}) \to \pi_1 \operatorname{Imm}(S^{n-2}, \mathbf{R}^{n-1}) \to \pi_1 \operatorname{Imm}^{\operatorname{TOP}}(S^{n-2}, \mathbf{R}^{n-1}),$$

where $Imm^{TOP}(S^{n-2}, \mathbf{R}^{n-1})$ denotes the space of locally flat topological immersions.

By Lees, Lashof, Burghelea, et al., the second map is injective.

⇒ DONE!

For n = 3, 4, 5, we use some arguments on $Diff(S^{n-2})$.

Non-orientable case

 $\S 1$. Desingularizing Singular Maps $\S 2$. Desingularizing Special Generic Functions $\S 3$. Desingularizing SGM's into ${f R}^2$ $\S 4$. Further Results

Theorem 3.6 M^n : non-orientable, $n \ge 2$.

 $f:M^n o {f R}^2$ special generic map

 $\exists \mathbf{immersion} \ \eta: M^n \to \mathbf{R}^{n+1} \ \textit{s.t.} \ f = \pi \circ \eta$

 \iff

n=2,4 or 8, and the tubular neighborhood of S(f) in M is orientable.

Non-orientable case

 $\S1$. Desingularizing Singular Maps $\S2$. Desingularizing Special Generic Functions $\S3$. Desingularizing SGM's into ${f R}^2$ $\S4$. Further Results

Theorem 3.6 M^n : non-orientable, $n \ge 2$.

 $f:M^n o {f R}^2$ special generic map

 $\exists \mathbf{immersion} \ \eta: M^n \to \mathbf{R}^{n+1} \ \textit{s.t.} \ f = \pi \circ \eta$

 \iff

n=2,4 or 8, and the tubular neighborhood of S(f) in M is orientable.

Turning the sphere $S^{n-2} \subset \mathbf{R}^{n-1}$ inside out (**sphere eversion**) is possible if and only if n=2,4,8.

 $\S 1$. Desingularizing Singular Maps $\S 2$. Desingularizing Special Generic Functions $\S 3$. Desingularizing SGM's into ${f R}^2$ $\S 4$. Further Results

Theorem 3.7 $f: M^n \to \mathbf{R}^2$ special generic map, $n \geq 3$ $\exists \mathbf{embedding} \ \eta: M^n \to \mathbf{R}^{n+1} \ s.t. \ f = \pi \circ \eta$ $\iff M \cong S^n \ or \ \sharp^k(S^1 \times S^{n-1}) \ (diffeomorphic).$

Proof of (\Leftarrow) : The universal cover of $\sharp^k(S^1 \times S^{n-1})$ embeds in S^n . (Use the Schottky group argument. The free group of rank k can act on S^n as a Schottky group with totally disconnected limit set.)

 \S 1. Desingularizing Singular Maps \S 2. Desingularizing Special Generic Functions \S 3. Desingularizing SGM's into ${f R}^2$ \S 4. Further Results

Theorem 3.7 $f: M^n \to \mathbf{R}^2$ special generic map, $n \geq 3$ $\exists \mathbf{embedding} \ \eta: M^n \to \mathbf{R}^{n+1} \ s.t. \ f = \pi \circ \eta$ $\iff M \cong S^n \ or \ \sharp^k(S^1 \times S^{n-1}) \ (diffeomorphic).$

Proof of (\Leftarrow) : The universal cover of $\sharp^k(S^1\times S^{n-1})$ embeds in S^n . (Use the Schottky group argument. The free group of rank k can act on S^n as a Schottky group with totally disconnected limit set.) Therefore, every homotopy (n-1)-sphere embedded in $\sharp^k(S^1\times S^{n-1})$ is standard.

 $\S1$. Desingularizing Singular Maps $\S2$. Desingularizing Special Generic Functions $\S3$. Desingularizing SGM's into ${f R}^2$ $\S4$. Further Results

Theorem 3.7 $f: M^n \to \mathbf{R}^2$ special generic map, $n \geq 3$ $\exists \mathbf{embedding} \ \eta: M^n \to \mathbf{R}^{n+1} \ s.t. \ f = \pi \circ \eta$ $\iff M \cong S^n \ or \ \sharp^k(S^1 \times S^{n-1}) \ (diffeomorphic).$

Proof of (\Leftarrow) : The universal cover of $\sharp^k(S^1\times S^{n-1})$ embeds in S^n . (Use the Schottky group argument. The free group of rank k can act on S^n as a Schottky group with totally disconnected limit set.) Therefore, every homotopy (n-1)-sphere embedded in $\sharp^k(S^1\times S^{n-1})$ is standard.

Then, one can construct an embedding lift using Theorem 2.4, with the help of a result of Schultz about "inertia group" of manifolds.

 $\S 1$. Desingularizing Singular Maps $\S 2$. Desingularizing Special Generic Functions $\S 3$. Desingularizing SGM's into ${f R}^2$ $\S 4$. Further Results

Theorem 3.7 $f: M^n \to \mathbf{R}^2$ special generic map, $n \geq 3$ $\exists \mathbf{embedding} \ \eta: M^n \to \mathbf{R}^{n+1} \ s.t. \ f = \pi \circ \eta$ $\iff M \cong S^n \ or \ \sharp^k(S^1 \times S^{n-1}) \ (diffeomorphic).$

Proof of (\Leftarrow) : The universal cover of $\sharp^k(S^1 \times S^{n-1})$ embeds in S^n . (Use the Schottky group argument. The free group of rank k can act on S^n as a Schottky group with totally disconnected limit set.) Therefore, every homotopy (n-1)-sphere embedded in $\sharp^k(S^1 \times S^{n-1})$ is standard.

Then, one can construct an embedding lift using Theorem 2.4, with the help of a result of Schultz about "inertia group" of manifolds.

 (\Rightarrow) : Standard argument.

§4. Further Results

Immersion lift

 $\S 1$. Desingularizing Singular Maps $\S 2$. Desingularizing Special Generic Functions $\S 3$. Desingularizing SGM's into ${f R}^2$ $\S 4$. Further Results

Theorem 4.1 M^n : orientable, (n,p)=(5,3),(6,3),(6,4) or (7,4) $f:M^n\to \mathbf{R}^p$ special generic map $\exists \mathbf{immersion} \ \eta:M^n\to \mathbf{R}^{n+1} \ s.t. \ f=\pi\circ\eta \ \Longleftrightarrow M^n \ is \ spin, \ i.e. \ w_2(M^n)=0.$

Immersion lift

 $\S 1$. Desingularizing Singular Maps $\S 2$. Desingularizing Special Generic Functions $\S 3$. Desingularizing SGM's into ${f R}^2$ $\S 4$. Further Results

Theorem 4.1 M^n : orientable, (n,p)=(5,3),(6,3),(6,4) or (7,4) $f:M^n\to \mathbf{R}^p$ special generic map

 $\exists \mathbf{immersion} \ \eta: M^n \to \mathbf{R}^{n+1} \ \textit{s.t.} \ f = \pi \circ \eta$ $\iff M^n \ \textit{is spin, i.e.} \ w_2(M^n) = 0.$

Key to the proof:

The Stein factorization induces a smooth S^{n-p} -bundle

$$M^n \setminus S(f) \to \operatorname{Int} W_f$$
.

Immersion lift

 $\S 1$. Desingularizing Singular Maps $\S 2$. Desingularizing Special Generic Functions $\S 3$. Desingularizing SGM's into ${f R}^2$ $\S 4$. Further Results

Theorem 4.1 M^n : orientable, (n,p)=(5,3),(6,3),(6,4) or (7,4) $f:M^n\to \mathbf{R}^p$ special generic map $\exists \mathbf{immersion} \ \eta:M^n\to \mathbf{R}^{n+1} \ s.t. \ f=\pi\circ\eta$

Key to the proof:

The Stein factorization induces a smooth S^{n-p} -bundle

 $\iff M^n$ is spin, i.e. $w_2(M^n) = 0$.

$$M^n \setminus S(f) \to \operatorname{Int} W_f$$
.

If $w_2(M^n) = 0$, then we can show that this is a trivial bundle.

Codimension -1 case

 $\S 1$. Desingularizing Singular Maps $\S 2$. Desingularizing Special Generic Functions $\S 3$. Desingularizing SGM's into ${f R}^2$ $\S 4$. Further Results

 $f:M^n\to \mathbf{R}^p$ special generic map (n>p)Orient \mathbf{R}^p . Then the quotient space W_f has the induced orientation. Then $\partial W_f\cong S(f)$ also have the induced orientations.

П

Codimension -1 case

 $\S 1$. Desingularizing Singular Maps $\S 2$. Desingularizing Special Generic Functions $\S 3$. Desingularizing SGM's into ${f R}^2$ $\S 4$. Further Results

 $f:M^n\to {\bf R}^p$ special generic map (n>p)Orient ${\bf R}^p$. Then the quotient space W_f has the induced orientation. Then $\partial W_f\cong S(f)$ also have the induced orientations.

Theorem 4.2 M^n : orientable, $f: M^n \to \mathbf{R}^{n-1}$ special generic $\exists \mathbf{immersion} \ \eta: M^n \to \mathbf{R}^{n+1} \ s.t. \ f = \pi \circ \eta$ $\iff [S(f)] = 0 \ in \ H_{n-2}(M^n; \mathbf{Z}).$

Codimension -1 case

§1. Desingularizing Singular Maps §2. Desingularizing Special Generic Functions §3. Desingularizing SGM's into \mathbb{R}^2 §4. Further Results

 $f:M^n\to {\bf R}^p$ special generic map (n>p)Orient ${\bf R}^p$. Then the quotient space W_f has the induced orientation. Then $\partial W_f\cong S(f)$ also have the induced orientations.

Theorem 4.2 M^n : orientable, $f: M^n \to \mathbf{R}^{n-1}$ special generic $\exists \mathbf{immersion} \ \eta: M^n \to \mathbf{R}^{n+1} \ s.t. \ f = \pi \circ \eta$ $\iff [S(f)] = 0 \ in \ H_{n-2}(M^n; \mathbf{Z}).$

Key to the proof:

The Stein factorization induces a smooth S^1 -bundle

$$M^n \setminus S(f) \to \operatorname{Int} W_f$$
.

Codimension -1 case

 $\S 1$. Desingularizing Singular Maps $\S 2$. Desingularizing Special Generic Functions $\S 3$. Desingularizing SGM's into ${f R}^2$ $\S 4$. Further Results

 $f: M^n \to \mathbf{R}^p$ special generic map (n > p)

Orient \mathbb{R}^p . Then the quotient space W_f has the induced orientation.

Then $\partial W_f \cong S(f)$ also have the induced orientations.

Theorem 4.2 M^n : orientable, $f: M^n \to \mathbf{R}^{n-1}$ special generic $\exists \mathbf{immersion} \ \eta: M^n \to \mathbf{R}^{n+1} \ s.t. \ f = \pi \circ \eta$ $\iff [S(f)] = 0 \ in \ H_{n-2}(M^n; \mathbf{Z}).$

Key to the proof:

The Stein factorization induces a smooth S^1 -bundle

$$M^n \setminus S(f) \to \operatorname{Int} W_f$$
.

If [S(f)] = 0, then we can show that this is a trivial bundle.

Summary

 $\S 1$. Desingularizing Singular Maps $\S 2$. Desingularizing Special Generic Functions $\S 3$. Desingularizing SGM's into ${f R}^2$ $\S 4$. Further Results

- Special generic function $M^n \to \mathbf{R}$ can always be desingularized by an **immersion** $M^n \to \mathbf{R}^{n+1}$.
 - It can be desingularized by an **embedding** iff $M^n \cong S^n$ (diffeo.).
- Special generic map $f: M^n \to \mathbf{R}^2$ can always be desingularized by an **immersion** $M^n \to \mathbf{R}^{n+1}$ if M^n is orientable.
 - It can be desingularized by an **embedding** iff $M^n \cong S^n$ or $\sharp^k(S^1 \times S^{n-1})$ (diffeomorphic).
 - When M^n is non-orientable, f can be desingularized by an immersion iff n=2,4,8 and S(f) has an orientable nbhd.
- Special generic map $f: M^n \to \mathbf{R}^3$ with M^n orientable can be desingularized by an **immersion** $M^n \to \mathbf{R}^{n+1}$ iff M^n is spin for n=5 and 6.
- Special generic map $f: M^n \to \mathbf{R}^{n-1}$ with M^n orientable can be desingularized by an immersion $M^n \to \mathbf{R}^{n+1}$ iff [S(f)] = 0 in $H_{n-2}(M^n; \mathbf{Z})$.

Muito obrigado!

 \S 1. Desingularizing Singular Maps \S 2. Desingularizing Special Generic Functions \S 3. Desingularizing SGM's into ${f R}^2$ \S 4. Further Results

Theorem 4.3 M^n : orientable, $f: M^n \to \mathbf{R}^p$ special generic map (n,p)=(2,1),(3,2),(4,3),(5,3),(6,3),(6,4) or (7,4) $\Longrightarrow \exists regular \ homotopy \ of \ immersions \ \eta_t: M^n \to \mathbf{R}^{n+1}, \ t \in [0,1],$ with $f=\pi\circ\eta_0$ s.t. $f_t=\pi\circ\eta_t$ is a special generic map, $t\in[0,1]$, and η_1 is an embedding.

Embedding results

 $\S 1$. Desingularizing Singular Maps $\S 2$. Desingularizing Special Generic Functions $\S 3$. Desingularizing SGM's into ${f R}^2$ $\S 4$. Further Results

Theorem 4.3 M^n : orientable, $f: M^n \to \mathbf{R}^p$ special generic map (n,p)=(2,1),(3,2),(4,3),(5,3),(6,3),(6,4) or (7,4) $\Longrightarrow \exists regular \ homotopy \ of \ immersions \ \eta_t: M^n \to \mathbf{R}^{n+1}, \ t \in [0,1],$ with $f=\pi\circ\eta_0$ s.t. $f_t=\pi\circ\eta_t$ is a special generic map, $t\in[0,1]$, and η_1 is an embedding.

Theorem 4.4 M^4 : orientable, $\exists f: M^4 \to \mathbf{R}^3$ special generic map M^4 can be embedded into \mathbf{R}^5 $\iff M^4$ is spin, i.e. $w_2(M^4) = 0$.