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Definition 1.1 A singularity of a C∞ map Mn → Np, n ≥ p, that has
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p ± x2

p+1 ± · · · ± x2
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Definition 1.1 A singularity of a C∞ map Mn → Np, n ≥ p, that has
the normal form

(x1, x2, . . . , xn) �→ (x1, x2, . . . , xp−1,±x2
p ± x2

p+1 ± · · · ± x2
n)

is called a fold singularity.

It is a definite fold singularity if all the signs are the same.

Definition 1.2 (Burlet–de Rham, 1974; Calabi, 1966)
f : Mn → Np is a special generic map (SGM, for short) if it has
only definite fold singularities.
This is considered to be a class of maps with mildest singularities.

Example 1.3 A function f : Mn → R is a SGM iff it is a Morse
function with only critical points of index 0 or n.
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Sn R

Rp (n ≥ p)

Sa × Sb

Ra+b′ (b′ ≤ b)

Figure 1: Examples of special generic maps
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Definition 1.4 Mn: closed n-dimensional C∞ manifold

S(Mn) = {p ∈ Z | 1 ≤ p ≤ n, ∃f : Mn → Rp SGM}

This is a diffeomorphism invariant of Mn.

M0
∼= M1 (diffeomorphic) =⇒ S(M0) = S(M1)

Example 1.5

(1) S(Sn) = {1, 2, . . . , n}
(2) S(Sa × Sb) = {a+ 1, a+ 2, . . . , a+ b} (a ≤ b)
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Theorem 1.6 (Calabi, 1966; S., 1993)
Mn: closed n-dimensional C∞ manifold

S(Mn) = {1, 2, . . . , n} ⇐⇒ Mn ∼= Sn (diffeomorphic)

There exist lots of exotic spheres.
SGMs can detect the standard differentiable structure on a
sphere!

Example 1.7
Σ7 : Milnor’s exotic 7-sphere
{1, 2, 7} ⊂ S(Σ7) ⊂ {1, 2, 3, 7}

How to prove Theorem 1.6 ?
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(ii) x and x′ belong to the same connected component of f−1(y).
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Definition 1.8 f : M → N smooth map
For x, x′ ∈ M , define x ∼f x′ if
(i) f(x) = f(x′)(= y), and
(ii) x and x′ belong to the same connected component of f−1(y).

Wf = M/∼f quotient space
qf : M → Wf quotient map

∃!f̄ : Wf → N that makes the following diagram commutative:

M
f−−−−→ N

qf↘ ↗f̄

Wf

The above diagram is called the Stein factorization of f .
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f

Mn
Np

Wf

f̄qf

∂Wf

S(f) Sn−p

Figure 2: Stein factorization of a SGM
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If f is a special generic map, then Wf has the structure of a smooth
p-dimensional manifold possibly with boundary.

Theorem 1.9 (S., 1993)
f : Mn → Np proper special generic map with n− p = 1, 2, 3
s.t. S(f) �= ∅
=⇒
Mn is diffeomorphic to the boundary of a Dn−p+1-bundle over Wf .

Proof of Theorem 1.6:
1 ∈ S(Mn) =⇒ Mn is a homotopy sphere (Reeb).
n− 1 ∈ S(Mn) ⇒ ∃f : Mn → Rn−1 SGM ⇒ Wf is contractible
& Mn is the boundary of a D2-bundle over Wf ⇒ Mn ∼= Sn. �
Observation: Wf is the core (or spine) of a “good manifold” whose
boundary is the given manifold Mn.
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It is known that the differentiable structure on Rn, n �= 4, is unique.

However, for n = 4, it has been known that R4 admits more than one
differentiable structures (Freedman, Donaldson, Kirby, ∼1982).
In fact, there exist uncountably many exotic R4’s (Taubes, 1987).

Theorem 1.10 M 4 ≈ R4 (homeomorphic)
∃f : M 4 → Rp proper SGM for 1 ≤ ∃p ≤ 3
⇐⇒ M 4 ∼= R4 (diffeomorphic)
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We can also prove the following, using the “Stein factorization
techniques”.

Theorem 1.11 (Sakuma–S., 1999)
Let M 4 be the underlying smooth manifold of a compact complex
analytic surface.
Then, ∃f : M 4 → R3 SGM
⇐⇒M 4 is a ruled surface or a Hopf surface diffeomorphic to S1×S3.



§2. Stable Maps

§1. Special Generic Maps §2. Stable Maps §3. Invariants of Manifolds



Stable maps
§1. Special Generic Maps §2. Stable Maps §3. Invariants of Manifolds

14 / 27

Let f : Mn → Nn−1 be a C∞ stable map of codimension −1.
In this case, regular fibers are disjoint unions of S1.
=⇒ Each of their component bounds D2.
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Let f : Mn → Nn−1 be a C∞ stable map of codimension −1.
In this case, regular fibers are disjoint unions of S1.
=⇒ Each of their component bounds D2.

It would be nice to have a “disk bundle” over the quotient space Wf

whose boundary coincides with Mn.
⇐= Observation from the study of SGMs

Obstructions to constructing such a “D2-bundle” over Wf are
concentrated around the singular fibers.
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Let M 2 be a closed oriented surface, and f : M 2 → R a Morse function.
In this case, singular fibers are classified as follows:

(1)

(2)

There are no obstructions to filling in the singular fiber neighborhoods.
(The leftmost surfaces in (1) and (2) bound D3.)

Corollary 2.1 Every closed oriented surface is null-cobordant.
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Let M 3 be a closed oriented 3-manifold, and f : M 3 → R2 a stable map.
The possible obstructions lie near the following singular fibers.

Costantino–Thurston, 2008:
There are no obstructions to filling in the neighborhoods of the
above singular fibers of f .

Using this idea, they show that every closed oriented 3-manifold
efficiently bounds a 4-manifold.

How about the 4-dimensional case?

There do exist obstructions!
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κ = 1

κ = 2

κ = 3
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Theorem 2.2 (S., 2010) There are no obstructions to filling in the
singular fiber neighborhoods, except for the III8-type below.
Furthermore, around each singular fiber of type III8, CP 2 appears.
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Theorem 2.2 (S., 2010) There are no obstructions to filling in the
singular fiber neighborhoods, except for the III8-type below.
Furthermore, around each singular fiber of type III8, CP 2 appears.

Corollary 2.3 (Rohlin, 1952) The oriented 4-dimensional
cobordism group is infinite cyclic generated by the class of CP 2.

Corollary 2.4 (T. Yamamoto–S., 2006)
For a stable map f : M 4 → R3, the signature of M 4 is equal to
the number of III8-type singular fibers counted with signs.
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Recall that for a stable map f : M 4 → R3, its set of singular points
S(f) is a smooth closed surface embedded in M 4.

Furthermore, f |S(f) : S(f) → R3 is an immersion (with cusps and
swallowtails).
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Recall that for a stable map f : M 4 → R3, its set of singular points
S(f) is a smooth closed surface embedded in M 4.

Furthermore, f |S(f) : S(f) → R3 is an immersion (with cusps and
swallowtails).

Corollary 2.5 Let f : M 4 → R3 be a stable map as above.
Then, f |S(f) has at least |σ(M 4)| triple points, where σ(M 4) stands
for the signature of M 4.

The complexity of a stable map reflects the topology of M 4.

We also have the following related results.
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Theorem 2.6 (Gromov, 2009) f : Mn → R2 stable map
=⇒ rankH∗(Mn) ≤ 2N2 +Ncusp + 2Ncomp,
where N2 is the number of double points of the plane curve
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number of components of S(f).



Complexity of stable maps, 2
§1. Special Generic Maps §2. Stable Maps §3. Invariants of Manifolds

20 / 27

Theorem 2.6 (Gromov, 2009) f : Mn → R2 stable map
=⇒ rankH∗(Mn) ≤ 2N2 +Ncusp + 2Ncomp,
where N2 is the number of double points of the plane curve
f |S(f) : S(f) → R2, Ncusp is the number of cusps, and Ncomp is the
number of components of S(f).

Theorem 2.7 (Costantino–Thurston, Gromov)
f : M 3 → R2 stable =⇒ ||M 3||Δ ≤ 10Nsf ≤ 10N2,
where ||M 3||Δ is the simplicial volume, Nsf is the number of singular
fibers as below, and N2 is the number of double points of f |S(f).



Complexity of stable maps, 2
§1. Special Generic Maps §2. Stable Maps §3. Invariants of Manifolds

20 / 27

Theorem 2.6 (Gromov, 2009) f : Mn → R2 stable map
=⇒ rankH∗(Mn) ≤ 2N2 +Ncusp + 2Ncomp,
where N2 is the number of double points of the plane curve
f |S(f) : S(f) → R2, Ncusp is the number of cusps, and Ncomp is the
number of components of S(f).

Theorem 2.7 (Costantino–Thurston, Gromov)
f : M 3 → R2 stable =⇒ ||M 3||Δ ≤ 10Nsf ≤ 10N2,
where ||M 3||Δ is the simplicial volume, Nsf is the number of singular
fibers as below, and N2 is the number of double points of f |S(f).

Note: ||M 3||Δ ≤ minimal number of 3-simplices of any triangulation,
||M 3||Δ = 0 for graph manifolds M 3
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M 3: closed oriented connected 3-manifold
∃f : M 3 → R Morse function

Such a Morse function is not unique, but every pair of such functions
can be connected by a “generic path” in the space of smooth functions.
=⇒ Kirby Calculus
=⇒ Lots and lots of topological invariants have been constructed and
are still under investigation.

How about using stable maps M 3 → R2 ?
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3-manifolds, just after Witten’s celebrated proposal to use (yet
mathematically un-justified) path-integral in order to define invariants of
3-manifolds (associated to each Lie algebra).
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Reshetikhin–Turaev (1990) defined a quantum invariant for
3-manifolds, just after Witten’s celebrated proposal to use (yet
mathematically un-justified) path-integral in order to define invariants of
3-manifolds (associated to each Lie algebra).

This can, in fact, be interpreted as an invariant derived from
stable maps M 3 → R2.
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M 3: closed connected orientable 3-manifold
f : M 3 → R2 stable map
=⇒ Wf is a (certain) 2-dimensional polyhedron.

Define W(M 3) = {Wf | f : M 3 → R2 stable}/homeo.

Theorem 3.1 (Motta–Porto–S., 1995)
For any finite set M 3

1 ,M
3
2 , . . . ,M

3
k of 3-manifolds, we have

k⋂

i=1

W(M 3
i ) �= ∅,

but ⋂

M3

W(M 3) = ∅.
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Problem: W(M 3
0 ) = W(M 3

1 ) =⇒ M 3
0
∼= M 3

1 ?

Theorem 3.2 (Burlet–de Rham, 1974)
Yes, if M 3

0 = S3 or �k(S1 × S2).

The answer to the above problem would be “YES”, if for each
3-manifold M 3, we can construct a stable map f : M 3 → R2 such that
the regular fibers form a “trivial framed link” in M 3.
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Problem. How about constructing invariants for higher dimensional
manifolds?

A possibility for dimension 4
Broken Lefschetz fibrations (Auroux–Donaldson–Katzarkov, 2005)
= certain smooth maps f : M 4 → Σ2, with Σ2 a closed oriented surface.

Such a map is allowed to have unstable singularities (Lefschetz critical
points), but can basically be treated in the category of stable maps (with
a bit more effort).

To such a map are associated near-symplectic structures.
=⇒ Gauge theoretic invariants can be defined...

Two such maps are connected by a generic path.
⇐= “Moves” can be described (Porto–Furuya, 1986; Baykur–S., 2012)
Still under investigation!
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Thank you!
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