

Osamu Saeki (Kyushu University)

One day workshop on hypersurface singularity and its link manifolds

January 23, 2014

Introduction

\$1. Special Generic Maps $\$ \$2. Stable Maps $\$ \$3. Invariants of Manifolds

This is basically a survey talk. We will work in the C^{∞} category.

Introduction

 $\S1.$ Special Generic Maps $~\S2.$ Stable Maps $~\S3.$ Invariants of Manifolds

This is basically a survey talk.

We will work in the C^{∞} category.

Contents.

§1. Special Generic Maps Differentiable structures on spheres, \mathbb{R}^4 , etc.

§2. Stable Maps

Cobordism of low dimensional manifolds, Singular fibers, Complexity of maps

§3. Invariants of Manifolds

Constructing invariants using stable maps, Problems

$\S1.$ Special Generic Maps

 $\S1.$ Special Generic Maps $~\S2.$ Stable Maps $~\S3.$ Invariants of Manifolds

Definition 1.1 A singularity of a C^{∞} map $M^n \to N^p$, $n \ge p$, that has the normal form

$$(x_1, x_2, \dots, x_n) \mapsto (x_1, x_2, \dots, x_{p-1}, \pm x_p^2 \pm x_{p+1}^2 \pm \dots \pm x_n^2)$$

is called a **fold singularity**.

 $\S1.$ Special Generic Maps $~\S2.$ Stable Maps $~\S3.$ Invariants of Manifolds

Definition 1.1 A singularity of a C^{∞} map $M^n \to N^p$, $n \ge p$, that has the normal form

$$(x_1, x_2, \dots, x_n) \mapsto (x_1, x_2, \dots, x_{p-1}, \pm x_p^2 \pm x_{p+1}^2 \pm \dots \pm x_n^2)$$

is called a **fold singularity**.

It is a **definite fold singularity** if all the signs are the same.

 $\S1.$ Special Generic Maps $~\S2.$ Stable Maps $~\S3.$ Invariants of Manifolds

Definition 1.1 A singularity of a C^{∞} map $M^n \to N^p$, $n \ge p$, that has the normal form

$$(x_1, x_2, \dots, x_n) \mapsto (x_1, x_2, \dots, x_{p-1}, \pm x_p^2 \pm x_{p+1}^2 \pm \dots \pm x_n^2)$$

is called a **fold singularity**.

It is a **definite fold singularity** if all the signs are the same.

Definition 1.2 (Burlet-de Rham, 1974; Calabi, 1966) $f: M^n \to N^p$ is a **special generic map** (**SGM**, for short) if it has **only definite fold singularities**.

This is considered to be a class of maps with mildest singularities.

 $\S1.$ Special Generic Maps $~\S2.$ Stable Maps $~\S3.$ Invariants of Manifolds

Definition 1.1 A singularity of a C^{∞} map $M^n \to N^p$, $n \ge p$, that has the normal form

 $(x_1, x_2, \dots, x_n) \mapsto (x_1, x_2, \dots, x_{p-1}, \pm x_p^2 \pm x_{p+1}^2 \pm \dots \pm x_n^2)$

is called a **fold singularity**.

It is a **definite fold singularity** if all the signs are the same.

Definition 1.2 (Burlet-de Rham, 1974; Calabi, 1966) $f: M^n \to N^p$ is a **special generic map** (**SGM**, for short) if it has **only definite fold singularities**.

This is considered to be a class of maps with mildest singularities.

Example 1.3 A function $f: M^n \to \mathbb{R}$ is a SGM iff it is a Morse function with only critical points of index 0 or n.

Examples of SGMs

§1. Special Generic Maps §2. Stable Maps §3. Invariants of Manifolds

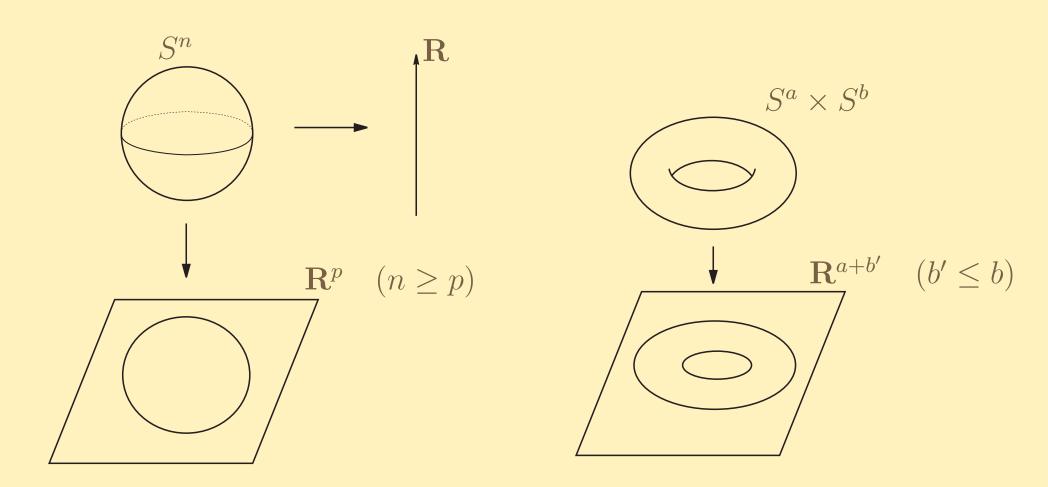


Figure 1: Examples of special generic maps

§1. Special Generic Maps §2. Stable Maps §3. Invariants of Manifolds

Definition 1.4 M^n : closed *n*-dimensional C^{∞} manifold

$$\mathcal{S}(M^n) = \{ p \in \mathbf{Z} \mid 1 \le p \le n, \exists f : M^n \to \mathbf{R}^p \; \mathsf{SGM} \}$$

§1. Special Generic Maps §2. Stable Maps §3. Invariants of Manifolds

Definition 1.4 M^n : closed *n*-dimensional C^{∞} manifold

 $\mathcal{S}(M^n) = \{ p \in \mathbf{Z} \mid 1 \le p \le n, \exists f : M^n \to \mathbf{R}^p \; \mathsf{SGM} \}$

This is a diffeomorphism invariant of M^n .

$$M_0 \cong M_1$$
 (diffeomorphic) $\Longrightarrow \mathcal{S}(M_0) = \mathcal{S}(M_1)$

 $\S1.$ Special Generic Maps $~\S2.$ Stable Maps $~\S3.$ Invariants of Manifolds

Definition 1.4 M^n : closed *n*-dimensional C^{∞} manifold

 $\mathcal{S}(M^n) = \{ p \in \mathbf{Z} \mid 1 \le p \le n, \exists f : M^n \to \mathbf{R}^p \; \mathsf{SGM} \}$

This is a diffeomorphism invariant of M^n .

 $M_0 \cong M_1$ (diffeomorphic) $\Longrightarrow \mathcal{S}(M_0) = \mathcal{S}(M_1)$

Example 1.5

(1) $S(S^n) = \{1, 2, \dots, n\}$

 $\S1.$ Special Generic Maps $~\S2.$ Stable Maps $~\S3.$ Invariants of Manifolds

Definition 1.4 M^n : closed *n*-dimensional C^{∞} manifold

 $\mathcal{S}(M^n) = \{ p \in \mathbf{Z} \mid 1 \le p \le n, \exists f : M^n \to \mathbf{R}^p \; \mathsf{SGM} \}$

This is a diffeomorphism invariant of M^n .

 $M_0 \cong M_1$ (diffeomorphic) $\Longrightarrow \mathcal{S}(M_0) = \mathcal{S}(M_1)$

Example 1.5

(1)
$$\mathcal{S}(S^n) = \{1, 2, \dots, n\}$$

(2) $\mathcal{S}(S^a \times S^b) = \{a+1, a+2, \dots, a+b\}$ $(a \le b)$

 $\S1.$ Special Generic Maps $\$ $\S2.$ Stable Maps $\$ $\S3.$ Invariants of Manifolds

Theorem 1.6 (Calabi, 1966; S., 1993) M^n : closed *n*-dimensional C^{∞} manifold

 $\mathcal{S}(M^n) = \{1, 2, \dots, n\} \iff M^n \cong S^n$ (diffeomorphic)

 $\S1.$ Special Generic Maps $~\S2.$ Stable Maps $~\S3.$ Invariants of Manifolds

Theorem 1.6 (Calabi, 1966; S., 1993) M^n : closed *n*-dimensional C^{∞} manifold

 $\mathcal{S}(M^n) = \{1, 2, \dots, n\} \iff M^n \cong S^n$ (diffeomorphic)

There exist lots of **exotic spheres**.

SGMs can detect the standard differentiable structure on a sphere!

 $\S1.$ Special Generic Maps $~\S2.$ Stable Maps $~\S3.$ Invariants of Manifolds

Theorem 1.6 (Calabi, 1966; S., 1993) M^n : closed *n*-dimensional C^{∞} manifold

 $\mathcal{S}(M^n) = \{1, 2, \dots, n\} \iff M^n \cong S^n$ (diffeomorphic)

There exist lots of **exotic spheres**.

SGMs can detect the standard differentiable structure on a sphere!

Example 1.7 Σ^7 : Milnor's exotic 7-sphere $\{1, 2, 7\} \subset S(\Sigma^7) \subset \{1, 2, 3, 7\}$

 $\S1.$ Special Generic Maps $~\S2.$ Stable Maps $~\S3.$ Invariants of Manifolds

Theorem 1.6 (Calabi, 1966; S., 1993) M^n : closed *n*-dimensional C^{∞} manifold

 $\mathcal{S}(M^n) = \{1, 2, \dots, n\} \iff M^n \cong S^n$ (diffeomorphic)

There exist lots of **exotic spheres**.

SGMs can detect the standard differentiable structure on a sphere!

Example 1.7 Σ^7 : Milnor's exotic 7-sphere $\{1, 2, 7\} \subset S(\Sigma^7) \subset \{1, 2, 3, 7\}$

How to prove Theorem 1.6?

 $\S1.$ Special Generic Maps $~\S2.$ Stable Maps $~\S3.$ Invariants of Manifolds

Definition 1.8 $f: M \to N$ smooth map For $x, x' \in M$, define $x \sim_f x'$ if (i) f(x) = f(x')(=y), and (ii) x and x' belong to the same **connected component** of $f^{-1}(y)$.

 $\S1.$ Special Generic Maps $~\S2.$ Stable Maps $~\S3.$ Invariants of Manifolds

Definition 1.8 $f: M \to N$ smooth map For $x, x' \in M$, define $x \sim_f x'$ if (i) f(x) = f(x')(=y), and (ii) x and x' belong to the same **connected component** of $f^{-1}(y)$. $W_f = M/\sim_f$ **quotient space** $q_f: M \to W_f$ quotient map

 $\S1.$ Special Generic Maps $~\S2.$ Stable Maps $~\S3.$ Invariants of Manifolds

Definition 1.8 $f: M \to N$ smooth map For $x, x' \in M$, define $x \sim_f x'$ if (i) f(x) = f(x')(=y), and (ii) x and x' belong to the same **connected component** of $f^{-1}(y)$. $W_f = M/\sim_f$ **quotient space** $q_f: M \to W_f$ quotient map $\exists ! \overline{f} : W_f \to N$ that makes the following diagram commutative: $M \xrightarrow{f} N$

$$\begin{array}{ccc} q_f \searrow & & \nearrow_{\bar{f}} \\ & & W_f \end{array}$$

 $\S1.$ Special Generic Maps $~\S2.$ Stable Maps $~\S3.$ Invariants of Manifolds

Definition 1.8 $f: M \to N$ smooth map For $x, x' \in M$, define $x \sim_f x'$ if (i) f(x) = f(x')(=y), and (ii) x and x' belong to the same **connected component** of $f^{-1}(y)$. $W_f = M / \sim_f$ quotient space $q_f: M \to W_f$ quotient map $\exists ! \bar{f} : W_f \to N$ that makes the following diagram commutative: $M \xrightarrow{f} N$

The above diagram is called the **Stein factorization** of f.

Example

§1. Special Generic Maps §2. Stable Maps §3. Invariants of Manifolds

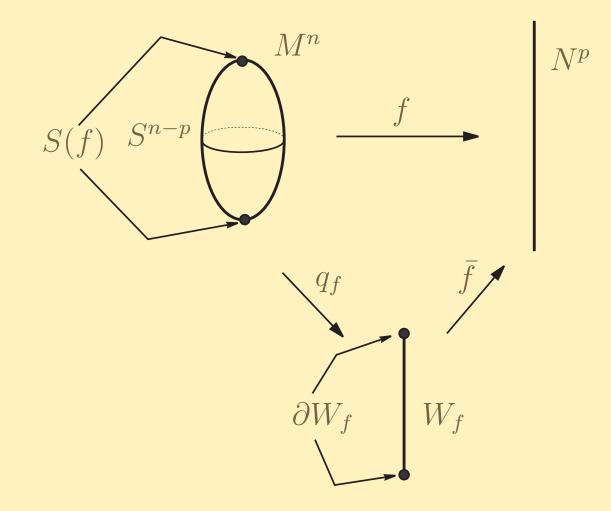


Figure 2: Stein factorization of a SGM

 $\S1.$ Special Generic Maps $~\S2.$ Stable Maps $~\S3.$ Invariants of Manifolds

If f is a special generic map, then W_f has the structure of a smooth p-dimensional manifold possibly with boundary.

 $\S1.$ Special Generic Maps $~\S2.$ Stable Maps $~\S3.$ Invariants of Manifolds

If f is a special generic map, then W_f has the structure of a smooth p-dimensional manifold possibly with boundary.

Theorem 1.9 (S., 1993) $f: M^n \to N^p$ proper special generic map with n - p = 1, 2, 3s.t. $S(f) \neq \emptyset$ \Longrightarrow M^n is diffeomorphic to the boundary of a D^{n-p+1} -bundle over W_f .

\$1. Special Generic Maps $\$ \$2. Stable Maps $\$ \$3. Invariants of Manifolds

If f is a special generic map, then W_f has the structure of a smooth p-dimensional manifold possibly with boundary.

Theorem 1.9 (S., 1993) $f: M^n \to N^p$ proper special generic map with n - p = 1, 2, 3 $s.t. S(f) \neq \emptyset$ \Longrightarrow M^n is diffeomorphic to the boundary of a D^{n-p+1} -bundle over W_f .

Proof of Theorem 1.6:

 $1 \in \mathcal{S}(M^n) \Longrightarrow M^n$ is a homotopy sphere (Reeb). $n-1 \in \mathcal{S}(M^n) \Rightarrow \exists f : M^n \to \mathbb{R}^{n-1} \quad \text{SGM} \Rightarrow W_f$ is contractible & M^n is the boundary of a D^2 -bundle over $W_f \Rightarrow M^n \cong S^n$.

\$1. Special Generic Maps $\$ \$2. Stable Maps $\$ \$3. Invariants of Manifolds

If f is a special generic map, then W_f has the structure of a smooth p-dimensional manifold possibly with boundary.

Theorem 1.9 (S., 1993) $f: M^n \to N^p$ proper special generic map with n - p = 1, 2, 3 $s.t. \ S(f) \neq \emptyset$ \Longrightarrow M^n is diffeomorphic to the boundary of a D^{n-p+1} -bundle over W_f .

Proof of Theorem 1.6:

 $1 \in \mathcal{S}(M^n) \Longrightarrow M^n$ is a homotopy sphere (Reeb). $n-1 \in \mathcal{S}(M^n) \Rightarrow \exists f : M^n \to \mathbb{R}^{n-1} \quad \text{SGM} \Rightarrow W_f$ is contractible & M^n is the boundary of a D^2 -bundle over $W_f \Rightarrow M^n \cong S^n$.

Observation: W_f is the core (or spine) of a "good manifold" whose boundary is the given manifold M^n .

A characterization of \mathbf{R}^4

 $\S1.$ Special Generic Maps $~\S2.$ Stable Maps $~\S3.$ Invariants of Manifolds

It is known that the differentiable structure on \mathbb{R}^n , $n \neq 4$, is **unique**.

A characterization of \mathbf{R}^4

\$1. Special Generic Maps $\$ \$2. Stable Maps $\$ \$3. Invariants of Manifolds

It is known that the differentiable structure on \mathbb{R}^n , $n \neq 4$, is **unique**.

However, for n = 4, it has been known that \mathbf{R}^4 admits more than one differentiable structures (Freedman, Donaldson, Kirby, ~1982). In fact, there exist uncountably many **exotic** \mathbf{R}^4 's (Taubes, 1987).

A characterization of \mathbf{R}^4

\$1. Special Generic Maps $\$ \$2. Stable Maps $\$ \$3. Invariants of Manifolds

It is known that the differentiable structure on \mathbb{R}^n , $n \neq 4$, is **unique**.

However, for n = 4, it has been known that \mathbb{R}^4 admits more than one differentiable structures (Freedman, Donaldson, Kirby, ~1982). In fact, there exist uncountably many **exotic** \mathbb{R}^4 's (Taubes, 1987).

Theorem 1.10 $M^4 \approx \mathbf{R}^4$ (homeomorphic) $\exists f: M^4 \to \mathbf{R}^p$ proper SGM for $1 \leq \exists p \leq 3$ $\iff M^4 \cong \mathbf{R}^4$ (diffeomorphic)

SGMs on complex surfaces

\$1. Special Generic Maps $\$ \$2. Stable Maps $\$ \$3. Invariants of Manifolds

We can also prove the following, using the "Stein factorization techniques".

Theorem 1.11 (Sakuma–S., 1999)

Let M^4 be the underlying smooth manifold of a compact complex analytic surface. Then, $\exists f: M^4 \to \mathbf{R}^3$ SGM $\iff M^4$ is a ruled surface or a Hopf surface diffeomorphic to $S^1 \times S^3$. §1. Special Generic Maps §2. Stable Maps §3. Invariants of Manifolds

\S **2. Stable Maps**

Stable maps

 $\S1.$ Special Generic Maps $~\S2.$ Stable Maps $~\S3.$ Invariants of Manifolds

Let $f: M^n \to N^{n-1}$ be a C^{∞} stable map of codimension -1. In this case, **regular fibers** are disjoint unions of S^1 . \Longrightarrow Each of their component bounds D^2 .

Stable maps

 $\S1.$ Special Generic Maps $~\S2.$ Stable Maps $~\S3.$ Invariants of Manifolds

Let $f: M^n \to N^{n-1}$ be a C^{∞} stable map of codimension -1. In this case, **regular fibers** are disjoint unions of S^1 . \implies Each of their component bounds D^2 .

It would be nice to have a "disk bundle" over the quotient space W_f whose boundary coincides with M^n .

 \Leftarrow Observation from the study of SGMs

Stable maps

 $\S1.$ Special Generic Maps $~\S2.$ Stable Maps $~\S3.$ Invariants of Manifolds

Let $f: M^n \to N^{n-1}$ be a C^{∞} stable map of codimension -1. In this case, **regular fibers** are disjoint unions of S^1 . \implies Each of their component bounds D^2 .

It would be nice to have a "disk bundle" over the quotient space W_f whose boundary coincides with M^n .

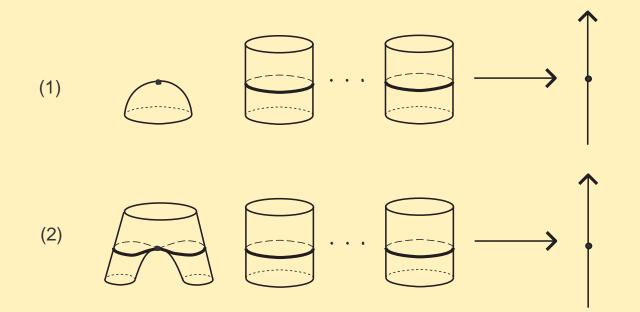
 \Leftarrow Observation from the study of SGMs

Obstructions to constructing such a " D^2 -bundle" over W_f are concentrated around the singular fibers.

Surface case

 $\S1.$ Special Generic Maps $~\S2.$ Stable Maps $~\S3.$ Invariants of Manifolds

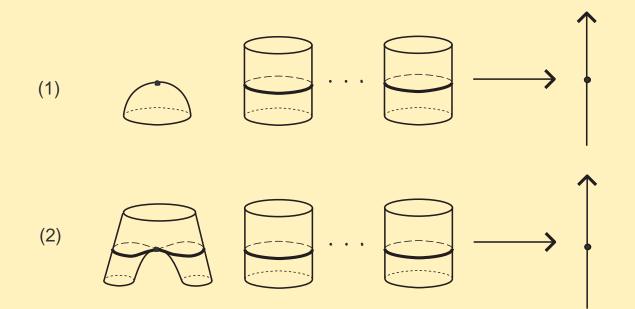
Let M^2 be a closed oriented surface, and $f: M^2 \to \mathbb{R}$ a Morse function. In this case, singular fibers are classified as follows:



Surface case

 $\S1.$ Special Generic Maps $~\S2.$ Stable Maps $~\S3.$ Invariants of Manifolds

Let M^2 be a closed oriented surface, and $f: M^2 \to \mathbb{R}$ a Morse function. In this case, singular fibers are classified as follows:

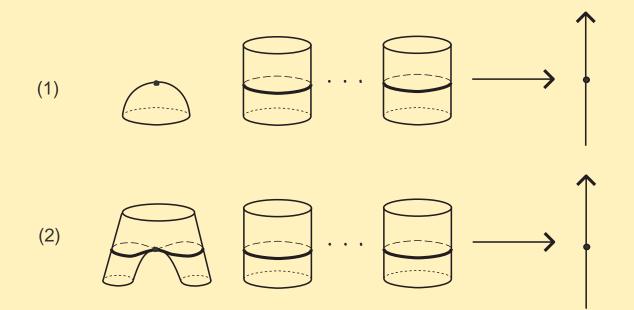


There are **no obstructions** to filling in the singular fiber neighborhoods. (The leftmost surfaces in (1) and (2) bound D^3 .)

Surface case

 $\S1.$ Special Generic Maps $~\S2.$ Stable Maps $~\S3.$ Invariants of Manifolds

Let M^2 be a closed oriented surface, and $f: M^2 \to \mathbb{R}$ a Morse function. In this case, singular fibers are classified as follows:



There are **no obstructions** to filling in the singular fiber neighborhoods. (The leftmost surfaces in (1) and (2) bound D^3 .)

Corollary 2.1 Every closed oriented surface is null-cobordant.

3- and 4-dimensional cases

 $\S1.$ Special Generic Maps $~\S2.$ Stable Maps $~\S3.$ Invariants of Manifolds

Let M^3 be a closed oriented 3-manifold, and $f: M^3 \to \mathbf{R}^2$ a stable map.

 $\S1.$ Special Generic Maps $~\S2.$ Stable Maps $~\S3.$ Invariants of Manifolds

Let M^3 be a closed oriented 3-manifold, and $f: M^3 \to \mathbb{R}^2$ a stable map. The possible obstructions lie near the following singular fibers.

 $\S1.$ Special Generic Maps $~\S2.$ Stable Maps $~\S3.$ Invariants of Manifolds

Let M^3 be a closed oriented 3-manifold, and $f: M^3 \to \mathbb{R}^2$ a stable map. The possible obstructions lie near the following singular fibers.

Costantino–Thurston, 2008: There are **no obstructions** to filling in the neighborhoods of the above singular fibers of f.

 $\S1.$ Special Generic Maps $~\S2.$ Stable Maps $~\S3.$ Invariants of Manifolds

Let M^3 be a closed oriented 3-manifold, and $f: M^3 \to \mathbb{R}^2$ a stable map. The possible obstructions lie near the following singular fibers.

Costantino–Thurston, 2008: There are **no obstructions** to filling in the neighborhoods of the above singular fibers of f.

Using this idea, they show that every closed oriented 3-manifold **efficiently** bounds a 4-manifold.

 $\S1.$ Special Generic Maps $~\S2.$ Stable Maps $~\S3.$ Invariants of Manifolds

Let M^3 be a closed oriented 3-manifold, and $f: M^3 \to \mathbb{R}^2$ a stable map. The possible obstructions lie near the following singular fibers.

Costantino–Thurston, 2008: There are **no obstructions** to filling in the neighborhoods of the above singular fibers of f.

Using this idea, they show that every closed oriented 3-manifold **efficiently** bounds a 4-manifold.

How about the 4-dimensional case?

 $\S1.$ Special Generic Maps $~\S2.$ Stable Maps $~\S3.$ Invariants of Manifolds

Let M^3 be a closed oriented 3-manifold, and $f: M^3 \to \mathbb{R}^2$ a stable map. The possible obstructions lie near the following singular fibers.

Costantino–Thurston, 2008: There are **no obstructions** to filling in the neighborhoods of the above singular fibers of f.

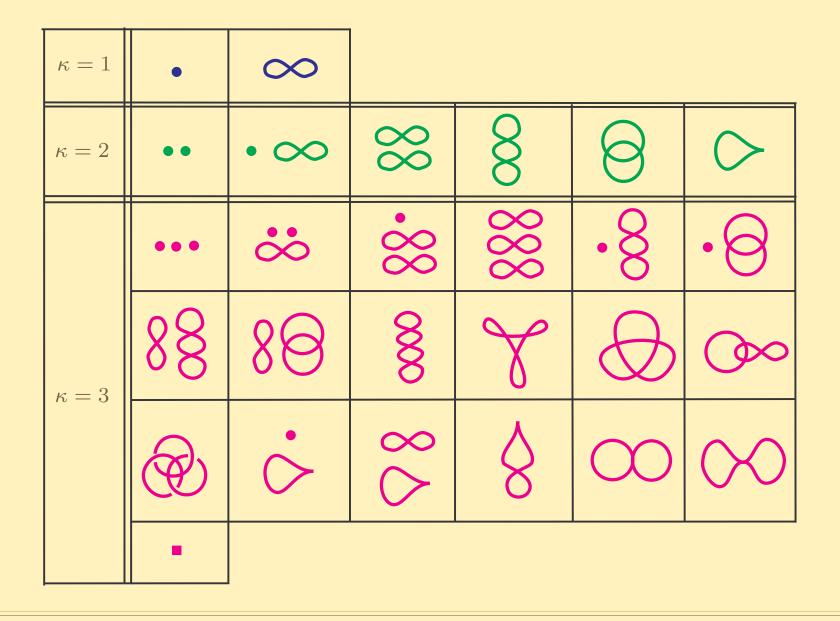
Using this idea, they show that every closed oriented 3-manifold **efficiently** bounds a 4-manifold.

How about the 4-dimensional case?

There do exist obstructions!

Singular fibers for dimension 4

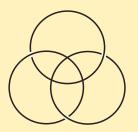
 $\S1.$ Special Generic Maps $\$ $\S2.$ Stable Maps $\$ $\S3.$ Invariants of Manifolds



Obstructions

 $\S1.$ Special Generic Maps $~\S2.$ Stable Maps $~\S3.$ Invariants of Manifolds

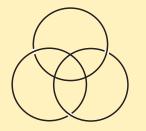
Theorem 2.2 (S., 2010) There are <u>no obstructions</u> to filling in the singular fiber neighborhoods, **except for the** III^8 -**type below**. Furthermore, around each singular fiber of type III^8 , CP^2 appears.



Obstructions

 $\S1.$ Special Generic Maps $~\S2.$ Stable Maps $~\S3.$ Invariants of Manifolds

Theorem 2.2 (S., 2010) There are <u>no obstructions</u> to filling in the singular fiber neighborhoods, **except for the** III^8 -**type below**. Furthermore, around each singular fiber of type III^8 , CP^2 appears.

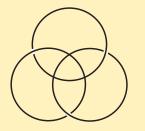


Corollary 2.3 (Rohlin, 1952) The oriented 4-dimensional cobordism group is infinite cyclic generated by the class of $\mathbb{C}P^2$.

Obstructions

 $\S1.$ Special Generic Maps $~\S2.$ Stable Maps $~\S3.$ Invariants of Manifolds

Theorem 2.2 (S., 2010) There are <u>no obstructions</u> to filling in the singular fiber neighborhoods, **except for the** III^8 -**type below**. Furthermore, around each singular fiber of type III^8 , CP^2 appears.



Corollary 2.3 (Rohlin, 1952) The oriented 4-dimensional cobordism group is infinite cyclic generated by the class of $\mathbb{C}P^2$.

Corollary 2.4 (T. Yamamoto–S., 2006) For a stable map $f : M^4 \to \mathbb{R}^3$, the **signature** of M^4 is equal to the number of III⁸-type singular fibers counted with signs.

 $\S1.$ Special Generic Maps $~\S2.$ Stable Maps $~\S3.$ Invariants of Manifolds

Recall that for a stable map $f: M^4 \to \mathbb{R}^3$, its set of singular points S(f) is a smooth closed surface embedded in M^4 .

Furthermore, $f|_{S(f)} : S(f) \to \mathbb{R}^3$ is an immersion (with cusps and swallowtails).

 $\S1.$ Special Generic Maps $~\S2.$ Stable Maps $~\S3.$ Invariants of Manifolds

Recall that for a stable map $f: M^4 \to \mathbb{R}^3$, its set of singular points S(f) is a smooth closed surface embedded in M^4 .

Furthermore, $f|_{S(f)} : S(f) \to \mathbb{R}^3$ is an immersion (with cusps and swallowtails).

Corollary 2.5 Let $f: M^4 \to \mathbb{R}^3$ be a stable map as above. Then, $f|_{S(f)}$ has at least $|\sigma(M^4)|$ triple points, where $\sigma(M^4)$ stands for the signature of M^4 .

 $\S1.$ Special Generic Maps $~\S2.$ Stable Maps $~\S3.$ Invariants of Manifolds

Recall that for a stable map $f: M^4 \to \mathbb{R}^3$, its set of singular points S(f) is a smooth closed surface embedded in M^4 .

Furthermore, $f|_{S(f)} : S(f) \to \mathbb{R}^3$ is an immersion (with cusps and swallowtails).

Corollary 2.5 Let $f: M^4 \to \mathbb{R}^3$ be a stable map as above. Then, $f|_{S(f)}$ has at least $|\sigma(M^4)|$ triple points, where $\sigma(M^4)$ stands for the signature of M^4 .

The complexity of a stable map reflects the topology of M^4 .

 $\S1.$ Special Generic Maps $~\S2.$ Stable Maps $~\S3.$ Invariants of Manifolds

Recall that for a stable map $f: M^4 \to \mathbb{R}^3$, its set of singular points S(f) is a smooth closed surface embedded in M^4 .

Furthermore, $f|_{S(f)} : S(f) \to \mathbb{R}^3$ is an immersion (with cusps and swallowtails).

Corollary 2.5 Let $f: M^4 \to \mathbb{R}^3$ be a stable map as above. Then, $f|_{S(f)}$ has at least $|\sigma(M^4)|$ triple points, where $\sigma(M^4)$ stands for the signature of M^4 .

The complexity of a stable map reflects the topology of M^4 .

We also have the following related results.

 $\S1.$ Special Generic Maps $~\S2.$ Stable Maps $~\S3.$ Invariants of Manifolds

Theorem 2.6 (Gromov, 2009) $f: M^n \to \mathbb{R}^2$ stable map $\implies \operatorname{rank} H_*(M^n) \leq 2N_2 + N_{\operatorname{cusp}} + 2N_{\operatorname{comp}},$ where N_2 is the number of double points of the plane curve $f|_{S(f)}: S(f) \to \mathbb{R}^2, N_{\operatorname{cusp}}$ is the number of cusps, and N_{comp} is the number of components of S(f).

 $\S1.$ Special Generic Maps $~\S2.$ Stable Maps $~\S3.$ Invariants of Manifolds

Theorem 2.6 (Gromov, 2009) $f: M^n \to \mathbb{R}^2$ stable map $\implies \operatorname{rank} H_*(M^n) \leq 2N_2 + N_{\operatorname{cusp}} + 2N_{\operatorname{comp}},$ where N_2 is the number of double points of the plane curve $f|_{S(f)}: S(f) \to \mathbb{R}^2, N_{\operatorname{cusp}}$ is the number of cusps, and N_{comp} is the number of components of S(f).

Theorem 2.7 (Costantino–Thurston, Gromov) $f: M^3 \to \mathbb{R}^2$ stable $\Longrightarrow ||M^3||_{\Delta} \le 10N_{sf} \le 10N_2$, where $||M^3||_{\Delta}$ is the simplicial volume, N_{sf} is the number of singular fibers as below, and N_2 is the number of double points of $f|_{S(f)}$.

 $\S1.$ Special Generic Maps $~\S2.$ Stable Maps $~\S3.$ Invariants of Manifolds

Theorem 2.6 (Gromov, 2009) $f: M^n \to \mathbb{R}^2$ stable map $\implies \operatorname{rank} H_*(M^n) \leq 2N_2 + N_{\operatorname{cusp}} + 2N_{\operatorname{comp}},$ where N_2 is the number of double points of the plane curve $f|_{S(f)}: S(f) \to \mathbb{R}^2, N_{\operatorname{cusp}}$ is the number of cusps, and N_{comp} is the number of components of S(f).

Theorem 2.7 (Costantino–Thurston, Gromov) $f: M^3 \to \mathbb{R}^2$ stable $\Longrightarrow ||M^3||_{\Delta} \le 10N_{sf} \le 10N_2$, where $||M^3||_{\Delta}$ is the simplicial volume, N_{sf} is the number of singular fibers as below, and N_2 is the number of double points of $f|_{S(f)}$.

Note: $||M^3||_{\Delta} \leq \text{minimal number of 3-simplices of any triangulation,}$ $||M^3||_{\Delta} = 0$ for graph manifolds M^3

$\S{\textbf{3}}$. Invariants of Manifolds

\$1. Special Generic Maps $\$ \$2. Stable Maps $\$ \$3. Invariants of Manifolds

 M^3 : closed oriented connected 3-manifold $\exists f: M^3 \to \mathbf{R}$ Morse function

 $\S1.$ Special Generic Maps $~\S2.$ Stable Maps $~\S3.$ Invariants of Manifolds

M^3 : closed oriented connected 3-manifold $\exists f: M^3 \to \mathbf{R}$ Morse function

Such a Morse function is **not unique**, but every pair of such functions can be connected by a "generic path" in the space of smooth functions.

 $\S1.$ Special Generic Maps $~\S2.$ Stable Maps $~\S3.$ Invariants of Manifolds

M^3 : closed oriented connected 3-manifold $\exists f: M^3 \to \mathbf{R}$ Morse function

Such a Morse function is **not unique**, but every pair of such functions can be connected by a "generic path" in the space of smooth functions. \implies Kirby Calculus

 $\S1.$ Special Generic Maps $~\S2.$ Stable Maps $~\S3.$ Invariants of Manifolds

M^3 : closed oriented connected 3-manifold $\exists f: M^3 \to \mathbf{R}$ Morse function

Such a Morse function is **not unique**, but every pair of such functions can be connected by a "generic path" in the space of smooth functions. \implies Kirby Calculus

 \implies Lots and lots of **topological invariants** have been constructed and are still under investigation.

 $\S1.$ Special Generic Maps $~\S2.$ Stable Maps $~\S3.$ Invariants of Manifolds

M^3 : closed oriented connected 3-manifold $\exists f: M^3 \to \mathbf{R}$ Morse function

Such a Morse function is **not unique**, but every pair of such functions can be connected by a "generic path" in the space of smooth functions. \implies Kirby Calculus

 \implies Lots and lots of **topological invariants** have been constructed and are still under investigation.

How about using stable maps $M^3 \rightarrow \mathbf{R}^2$?

Reshetikhin–Turaev invariant

 $\S1.$ Special Generic Maps $~\S2.$ Stable Maps $~\S3.$ Invariants of Manifolds

Reshetikhin–Turaev (1990) defined a quantum invariant for 3-manifolds, just after Witten's celebrated proposal to use (yet mathematically un-justified) path-integral in order to define invariants of 3-manifolds (associated to each Lie algebra).

Reshetikhin–Turaev invariant

 $\S1.$ Special Generic Maps $\$ $\S2.$ Stable Maps $\$ $\S3.$ Invariants of Manifolds

Reshetikhin–Turaev (1990) defined a quantum invariant for 3-manifolds, just after Witten's celebrated proposal to use (yet mathematically un-justified) path-integral in order to define invariants of 3-manifolds (associated to each Lie algebra).

This can, in fact, be interpreted as an invariant derived from stable maps $M^3 \to \mathbf{R}^2$.

\$1. Special Generic Maps $\$ \$2. Stable Maps $\$ \$3. Invariants of Manifolds

 M^3 : closed connected orientable 3-manifold $f:M^3\to {\bf R}^2$ stable map

 $\S1.$ Special Generic Maps $~\S2.$ Stable Maps $~\S3.$ Invariants of Manifolds

 M^3 : closed connected orientable 3-manifold $f: M^3 \to \mathbf{R}^2$ stable map $\Longrightarrow W_f$ is a (certain) 2-dimensional polyhedron.

 $\S1.$ Special Generic Maps $~\S2.$ Stable Maps $~\S3.$ Invariants of Manifolds

 M^3 : closed connected orientable 3-manifold $f: M^3 \to \mathbb{R}^2$ stable map $\Longrightarrow W_f$ is a (certain) 2-dimensional polyhedron.

Define $\mathcal{W}(M^3) = \{W_f \mid f : M^3 \to \mathbb{R}^2 \text{ stable}\}/\text{homeo.}$

 $\S1.$ Special Generic Maps $~\S2.$ Stable Maps $~\S3.$ Invariants of Manifolds

 M^3 : closed connected orientable 3-manifold $f: M^3 \to \mathbb{R}^2$ stable map $\Longrightarrow W_f$ is a (certain) 2-dimensional polyhedron.

Define $\mathcal{W}(M^3) = \{W_f \mid f : M^3 \to \mathbb{R}^2 \text{ stable}\}/\text{homeo.}$

Theorem 3.1 (Motta–Porto–S., 1995) For any finite set $M_1^3, M_2^3, \ldots, M_k^3$ of 3-manifolds, we have

 $\bigcap_{i=1}^{k} \mathcal{W}(M_i^3) \neq \emptyset,$

but

$$\bigcap_{M^3} \mathcal{W}(M^3) = \emptyset.$$

A problem

 $\S1.$ Special Generic Maps $\$ $\S2.$ Stable Maps $\$ $\S3.$ Invariants of Manifolds

Problem: $\mathcal{W}(M_0^3) = \mathcal{W}(M_1^3) \Longrightarrow M_0^3 \cong M_1^3$?

A problem

 $\S1.$ Special Generic Maps $\$ $\S2.$ Stable Maps $\$ $\S3.$ Invariants of Manifolds

Problem:
$$\mathcal{W}(M_0^3) = \mathcal{W}(M_1^3) \Longrightarrow M_0^3 \cong M_1^3$$
?

Theorem 3.2 (Burlet–de Rham, 1974) Yes, if $M_0^3 = S^3$ or $\sharp^k(S^1 \times S^2)$.

A problem

 $\S1.$ Special Generic Maps $~\S2.$ Stable Maps $~\S3.$ Invariants of Manifolds

Problem: $\mathcal{W}(M_0^3) = \mathcal{W}(M_1^3) \Longrightarrow M_0^3 \cong M_1^3$?

Theorem 3.2 (Burlet-de Rham, 1974) Yes, if $M_0^3 = S^3$ or $\sharp^k(S^1 \times S^2)$.

The answer to the above problem would be "YES", if for each 3-manifold M^3 , we can construct a stable map $f: M^3 \to \mathbb{R}^2$ such that the regular fibers form a "trivial framed link" in M^3 .

Broken Lefschetz fibrations

 $\S1.$ Special Generic Maps $\$ $\S2.$ Stable Maps $\$ $\S3.$ Invariants of Manifolds

Problem. How about constructing invariants for **higher dimensional** manifolds?

Broken Lefschetz fibrations

 $\S1.$ Special Generic Maps $\$ $\S2.$ Stable Maps $\$ $\S3.$ Invariants of Manifolds

Problem. How about constructing invariants for **higher dimensional** manifolds?

A possibility for dimension 4 Broken Lefschetz fibrations (Auroux–Donaldson–Katzarkov, 2005) = certain smooth maps $f: M^4 \to \Sigma^2$, with Σ^2 a closed oriented surface.

Problem. How about constructing invariants for **higher dimensional** manifolds?

A possibility for dimension 4 **Broken Lefschetz fibrations** (Auroux–Donaldson–Katzarkov, 2005) = certain smooth maps $f: M^4 \to \Sigma^2$, with Σ^2 a closed oriented surface.

Such a map is allowed to have unstable singularities (Lefschetz critical points), but can basically be treated in the category of stable maps (with a bit more effort).

Problem. How about constructing invariants for **higher dimensional** manifolds?

A possibility for dimension 4

Broken Lefschetz fibrations (Auroux–Donaldson–Katzarkov, 2005) = certain smooth maps $f: M^4 \to \Sigma^2$, with Σ^2 a closed oriented surface.

Such a map is allowed to have unstable singularities (Lefschetz critical points), but can basically be treated in the category of stable maps (with a bit more effort).

To such a map are associated **near-symplectic structures**. \implies Gauge theoretic invariants can be defined...

Problem. How about constructing invariants for **higher dimensional** manifolds?

A possibility for dimension 4

Broken Lefschetz fibrations (Auroux–Donaldson–Katzarkov, 2005) = certain smooth maps $f: M^4 \to \Sigma^2$, with Σ^2 a closed oriented surface.

Such a map is allowed to have unstable singularities (Lefschetz critical points), but can basically be treated in the category of stable maps (with a bit more effort).

To such a map are associated **near-symplectic structures**.

 \implies Gauge theoretic invariants can be defined...

Two such maps are connected by a generic path.

← "Moves" can be described (Porto–Furuya, 1986; Baykur–S., 2012)

Problem. How about constructing invariants for **higher dimensional** manifolds?

A possibility for dimension 4

Broken Lefschetz fibrations (Auroux–Donaldson–Katzarkov, 2005) = certain smooth maps $f: M^4 \to \Sigma^2$, with Σ^2 a closed oriented surface.

Such a map is allowed to have unstable singularities (Lefschetz critical points), but can basically be treated in the category of stable maps (with a bit more effort).

To such a map are associated **near-symplectic structures**. \implies Gauge theoretic invariants can be defined...

Thank you!