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This is a singular plane curve.
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This is a singular plane curve.

But, this might be the projected image of a non-singular space curve.



Desingularization problem
§1. Desingularizing Singular Maps §2. Desingularizing Special Generic Functions §3. Desingularizing SGM’s into R

2 §4. Further Results

4 / 30

Mn: closed n-dim. C∞ manifold,
f : Mn → R

p a generic C∞ map (n ≥ p).
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Mn: closed n-dim. C∞ manifold,
f : Mn → R
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Mn: closed n-dim. C∞ manifold,
f : Mn → R

p a generic C∞ map (n ≥ p). ←− always singular
For m > n ≥ p, π : Rm → R

p will denote the standard projection.

Problem 1.1
R
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Mn f
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? ∃η
77
♦

♦
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♦

R
p

η: immersion or embedding

Yes, if m >> n.
In this talk, we consider the case m = n+ 1.
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Theorem 1.2 (Haefliger, 1960) f : M2 → R
2 generic

∃immersion η : M2 → R
3 s.t. f = π ◦ η

⇐⇒ For every singular set component S (∼= S1) of f :
if S has an annulus nbhd, S contains an even number of cusps,
if S has a Möbius band nbhd, S contains an odd number of cusps.
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Theorem 1.2 (Haefliger, 1960) f : M2 → R
2 generic

∃immersion η : M2 → R
3 s.t. f = π ◦ η

⇐⇒ For every singular set component S (∼= S1) of f :
if S has an annulus nbhd, S contains an even number of cusps,
if S has a Möbius band nbhd, S contains an odd number of cusps.

Theorem 1.3 (M. Yamamoto, 2007) f : M2 → R
2 generic

There always exists an embedding η : M2 → R
4 s.t. f = π ◦ η.

Theorem 1.4 (Burlet–Haab, 1985) f : M2 → R Morse
There always exists an immersion η : M2 → R

3 s.t. f = π ◦ η.
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Theorem 1.5 (Saito, 1961) Mn: orientable
f : Mn → R

n special generic map
There always exists an immersion η : Mn → R

n+1 s.t. f = π ◦ η.
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Theorem 1.5 (Saito, 1961) Mn: orientable
f : Mn → R

n special generic map
There always exists an immersion η : Mn → R

n+1 s.t. f = π ◦ η.

Theorem 1.6 (Blank–Curley, 1985)
f : Mn → R

n generic,
∃immersion η : Mn → R

n+1 s.t. f = π ◦ η
⇐⇒ rk df ≥ n−1, and [{cusps}]∗+w1(ν) = 0 in H1({folds};Z2),
where ν is the normal line bundle of {folds} in Mn.
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Today’s topic:
Desingularization of special generic maps.
(Lifting special generic maps to immersions and embeddings in
codimension 1.)
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Today’s topic:
Desingularization of special generic maps.
(Lifting special generic maps to immersions and embeddings in
codimension 1.)

Definition 1.7 A singularity of a C∞ map Mn → Np, n ≥ p, that has
the normal form

(x1, x2, . . . , xn) 7→ (x1, x2, . . . , xp−1, x
2
p + x2

p+1 + · · ·+ x2
n)

is called a definite fold singularity.
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Today’s topic:
Desingularization of special generic maps.
(Lifting special generic maps to immersions and embeddings in
codimension 1.)

Definition 1.7 A singularity of a C∞ map Mn → Np, n ≥ p, that has
the normal form

(x1, x2, . . . , xn) 7→ (x1, x2, . . . , xp−1, x
2
p + x2

p+1 + · · ·+ x2
n)

is called a definite fold singularity.

Definition 1.8 f : Mn → Np is a special generic map (SGM,
for short) if it has only definite fold singularities.
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Sn
R

R
p (n ≥ p)

Sa × Sb

R
a+b′ (b′ ≤ b)

Figure 1: Examples of special generic maps
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Theorem 2.1 (Reeb, Smale, Cerf et al)
Mn: closed connected n-dim. C∞ manifold
∃special generic function Mn → R

⇐⇒
(1) Mn ≈ Sn (homeomorphic) (n 6= 4)
(2) Mn ∼= Sn (diffeomorphic) (n = 4)
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f : Mn → R special generic function
There always exists an immersion η : Mn → R

n+1 s.t. f = π ◦ η.
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There always exists an immersion η : Mn → R

n+1 s.t. f = π ◦ η.

This is a consequence of the Smale–Hirsch Theory.

Smale–Hirsch (1959).
{immersions Mk → R

ℓ} ≃ {fiberwise monomorphisms TMk → TRℓ}
(weakly homotopy equivalent)
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In the following, Mn will be closed and connected.

Theorem 2.2 n ≥ 1
f : Mn → R special generic function
There always exists an immersion η : Mn → R

n+1 s.t. f = π ◦ η.

This is a consequence of the Smale–Hirsch Theory.

Smale–Hirsch (1959).
{immersions Mk → R

ℓ} ≃ {fiberwise monomorphisms TMk → TRℓ}
(weakly homotopy equivalent)

Two immersions are regularly homotopic if they are in the same
connected component of the space {immersions Mk → R

ℓ}.



Kaiser’s theorem
§1. Desingularizing Singular Maps §2. Desingularizing Special Generic Functions §3. Desingularizing SGM’s into R

2 §4. Further Results

12 / 30

Desingularization of special generic functions (Theorem 2.2) is a
consequence of the following.
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Desingularization of special generic functions (Theorem 2.2) is a
consequence of the following.

Lemma 2.3 (Kaiser, 1988)
Let i : Sn−1 → R

n be the standard embedding.
For ∀diffeomorphism ϕ : Sn−1 → Sn−1 preserving the orientation,
the immersions i and i ◦ ϕ are regularly homotopic.
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Desingularization of special generic functions (Theorem 2.2) is a
consequence of the following.

Lemma 2.3 (Kaiser, 1988)
Let i : Sn−1 → R

n be the standard embedding.
For ∀diffeomorphism ϕ : Sn−1 → Sn−1 preserving the orientation,
the immersions i and i ◦ ϕ are regularly homotopic.

This is proved by using the Smale–Hirsch Theory.
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Mn

R

R
n

R
n+1

f

i

η

π

i ◦ ϕ

ϕ
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Theorem 2.4 n ≥ 2
f : Mn → R special generic function
∃embedding η : Mn → R

n+1 s.t. f = π ◦ η
⇐⇒ Mn ∼= Sn (diffeomorphic)
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Theorem 2.4 n ≥ 2
f : Mn → R special generic function
∃embedding η : Mn → R

n+1 s.t. f = π ◦ η
⇐⇒ Mn ∼= Sn (diffeomorphic)

This implies that there exist special generic functions that can be
desingularized by immersions, but not by embeddings.
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Theorem 2.4 n ≥ 2
f : Mn → R special generic function
∃embedding η : Mn → R

n+1 s.t. f = π ◦ η
⇐⇒ Mn ∼= Sn (diffeomorphic)

This implies that there exist special generic functions that can be
desingularized by immersions, but not by embeddings.

Proof of Theorem 2.4: For n 6= 5, ϕ is isotopic to the identity.
For n = 5, i ◦ ϕ is isotopic to i.
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Theorem 2.4 n ≥ 2
f : Mn → R special generic function
∃embedding η : Mn → R

n+1 s.t. f = π ◦ η
⇐⇒ Mn ∼= Sn (diffeomorphic)

This implies that there exist special generic functions that can be
desingularized by immersions, but not by embeddings.

Proof of Theorem 2.4: For n 6= 5, ϕ is isotopic to the identity.
For n = 5, i ◦ ϕ is isotopic to i.

Remark 2.5 When n = 1, the existence problem of an embedding lift
has recently been solved by M. Yamamoto.
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Theorem 3.1 (Burlet–de Rham, 1974;
Porto–Furuya, 1990; S, 1993)

Mn: closed connected orientable (n ≥ 2)
∃special generic map f : Mn → R

2

⇐⇒ Mn is diffeomorphic to

Σn♯
(
♯ri=1(Σ

n−1
i × S1)

)

for some homotopy spheres Σn and Σn−1
i

(for n ≤ 6, they are standard spheres).
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Theorem 3.2 Mn: orientable, n ≥ 2.
f : Mn → R

2 special generic map
There always exists an immersion η : Mn → R

n+1 s.t. f = π ◦ η.
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Theorem 3.2 Mn: orientable, n ≥ 2.
f : Mn → R

2 special generic map
There always exists an immersion η : Mn → R

n+1 s.t. f = π ◦ η.

Remark 3.3 The case n = 2 is a consequence of Haefliger’s result.
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Definition 3.4 f : Mn → R
p C∞ map (n > p)

For x, x′ ∈Mn, define x ∼f x′ if
(i) f(x) = f(x′)(= y), and
(ii) x and x′ belong to the same connected component of f−1(y).
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Definition 3.4 f : Mn → R
p C∞ map (n > p)

For x, x′ ∈Mn, define x ∼f x′ if
(i) f(x) = f(x′)(= y), and
(ii) x and x′ belong to the same connected component of f−1(y).

Wf = Mn/∼f quotient space, qf : Mn → Wf quotient map

∃!f̄ : Wf → R
p that makes the diagram commutative:

Mn f
−−−−→ R

p

qfց րf̄

Wf
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Definition 3.4 f : Mn → R
p C∞ map (n > p)

For x, x′ ∈Mn, define x ∼f x′ if
(i) f(x) = f(x′)(= y), and
(ii) x and x′ belong to the same connected component of f−1(y).

Wf = Mn/∼f quotient space, qf : Mn → Wf quotient map

∃!f̄ : Wf → R
p that makes the diagram commutative:

Mn f
−−−−→ R

p

qfց րf̄

Wf

The above diagram is called the Stein factorization of f .
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f

Mn

R
p

Wf

f̄qf

∂Wf

S(f) Sn−p

Figure 2: Stein factorization of a SGM
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Proposition 3.5 f : Mn → R
p special generic map (n > p).
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Proposition 3.5 f : Mn → R
p special generic map (n > p).

(1) The singular point set S(f) is a regular submanifold of Mn of
dimension p− 1,

(2) Wf has the structure of a smooth p-dim. manifold possibly with
boundary such that f̄ : Wf → R

p is an immersion.
(3) qf |S(f) : S(f)→ ∂Wf is a diffeomorphism.
(4) qf |Mn\S(f) : M

n \ S(f)→ IntWf is a smooth Sn−p-bundle.
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For a SGM f : M → R
2 (p = 2), in order to construct an immersion lift

η : Mn → R
n+1 of f , it is (almost) enough to construct a map

η̃ : Mn → Wf ×R
n−1

which is a lift of qf and is an immersion into R
n−1 on each Sn−2-fiber of

the fibration qf : Mn \ S(f)→ IntWf . Note that dimWf = 2.
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For a SGM f : M → R
2 (p = 2), in order to construct an immersion lift

η : Mn → R
n+1 of f , it is (almost) enough to construct a map

η̃ : Mn → Wf ×R
n−1

which is a lift of qf and is an immersion into R
n−1 on each Sn−2-fiber of

the fibration qf : Mn \ S(f)→ IntWf . Note that dimWf = 2.

Outside of a 2-disk D in IntWf , we can construct such a lift η̃ using lifts
of special generic functions.
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For a SGM f : M → R
2 (p = 2), in order to construct an immersion lift

η : Mn → R
n+1 of f , it is (almost) enough to construct a map

η̃ : Mn → Wf ×R
n−1

which is a lift of qf and is an immersion into R
n−1 on each Sn−2-fiber of

the fibration qf : Mn \ S(f)→ IntWf . Note that dimWf = 2.

Outside of a 2-disk D in IntWf , we can construct such a lift η̃ using lifts
of special generic functions.
By construction, over ∂D, we have a family of embeddings
ηt : S

n−2 → R
n−1, t ∈ ∂D.
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We need to extend this family of embeddings to a family of immersions
over the whole D.
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We need to extend this family of embeddings to a family of immersions
over the whole D.
This is possible if the following natural homomorphism is the zero map.

π1Emb(Sn−2,Rn−1)→ π1Imm(Sn−2,Rn−1)
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We need to extend this family of embeddings to a family of immersions
over the whole D.
This is possible if the following natural homomorphism is the zero map.

π1Emb(Sn−2,Rn−1)→ π1Imm(Sn−2,Rn−1)

By Lashof et al., we have the exact sequence, for n ≥ 6,

π1Emb(Sn−2,Rn−1)→ π1Imm(Sn−2,Rn−1)→ π1ImmTOP(Sn−2,Rn−1),

where ImmTOP(Sn−2,Rn−1) denotes the space of locally flat topological
immersions.
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We need to extend this family of embeddings to a family of immersions
over the whole D.
This is possible if the following natural homomorphism is the zero map.

π1Emb(Sn−2,Rn−1)→ π1Imm(Sn−2,Rn−1)

By Lashof et al., we have the exact sequence, for n ≥ 6,

π1Emb(Sn−2,Rn−1)→ π1Imm(Sn−2,Rn−1)→ π1ImmTOP(Sn−2,Rn−1),

where ImmTOP(Sn−2,Rn−1) denotes the space of locally flat topological
immersions.
By Lees, Lashof, Burghelea, et al., the second map is injective.
⇒ DONE!
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We need to extend this family of embeddings to a family of immersions
over the whole D.
This is possible if the following natural homomorphism is the zero map.

π1Emb(Sn−2,Rn−1)→ π1Imm(Sn−2,Rn−1)

By Lashof et al., we have the exact sequence, for n ≥ 6,

π1Emb(Sn−2,Rn−1)→ π1Imm(Sn−2,Rn−1)→ π1ImmTOP(Sn−2,Rn−1),

where ImmTOP(Sn−2,Rn−1) denotes the space of locally flat topological
immersions.
By Lees, Lashof, Burghelea, et al., the second map is injective.
⇒ DONE!
For n = 3, 4, 5, we use some arguments on Diff(Sn−2).

�
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Theorem 3.6 Mn: non-orientable, n ≥ 2.
f : Mn → R

2 special generic map
∃immersion η : Mn → R

n+1 s.t. f = π ◦ η
⇐⇒
n = 2, 4 or 8, and the tubular neighborhood of S(f) in M is ori-
entable.
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Theorem 3.6 Mn: non-orientable, n ≥ 2.
f : Mn → R

2 special generic map
∃immersion η : Mn → R

n+1 s.t. f = π ◦ η
⇐⇒
n = 2, 4 or 8, and the tubular neighborhood of S(f) in M is ori-
entable.

Turning the sphere Sn−2 ⊂ R
n−1 inside out (sphere eversion) is

possible if and only if n = 2, 4, 8.
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Theorem 3.7 f : Mn → R
2 special generic map, n ≥ 3

∃embedding η : Mn → R
n+1 s.t. f = π ◦ η

⇐⇒ M ∼= Sn or ♯k(S1 × Sn−1) (diffeomorphic).

Proof of (⇐): The universal cover of ♯k(S1 × Sn−1) can be embedded in
Sn. (Use the Schottky group argument. The free group of rank k can
act on Sn as a Schottky group with totally disconnected limit set.)
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n+1 s.t. f = π ◦ η

⇐⇒ M ∼= Sn or ♯k(S1 × Sn−1) (diffeomorphic).

Proof of (⇐): The universal cover of ♯k(S1 × Sn−1) can be embedded in
Sn. (Use the Schottky group argument. The free group of rank k can
act on Sn as a Schottky group with totally disconnected limit set.)
Therefore, every homotopy (n− 1)-sphere embedded in ♯(S1 × Sn−1) is
standard.
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Theorem 3.7 f : Mn → R
2 special generic map, n ≥ 3

∃embedding η : Mn → R
n+1 s.t. f = π ◦ η

⇐⇒ M ∼= Sn or ♯k(S1 × Sn−1) (diffeomorphic).

Proof of (⇐): The universal cover of ♯k(S1 × Sn−1) can be embedded in
Sn. (Use the Schottky group argument. The free group of rank k can
act on Sn as a Schottky group with totally disconnected limit set.)
Therefore, every homotopy (n− 1)-sphere embedded in ♯(S1 × Sn−1) is
standard.
Then, one can construct an embedding lift using Theorem 2.4, with the
help of a result of Schultz about “inertia group” of manifolds.
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Theorem 3.7 f : Mn → R
2 special generic map, n ≥ 3

∃embedding η : Mn → R
n+1 s.t. f = π ◦ η

⇐⇒ M ∼= Sn or ♯k(S1 × Sn−1) (diffeomorphic).

Proof of (⇐): The universal cover of ♯k(S1 × Sn−1) can be embedded in
Sn. (Use the Schottky group argument. The free group of rank k can
act on Sn as a Schottky group with totally disconnected limit set.)
Therefore, every homotopy (n− 1)-sphere embedded in ♯(S1 × Sn−1) is
standard.
Then, one can construct an embedding lift using Theorem 2.4, with the
help of a result of Schultz about “inertia group” of manifolds.

(⇒): Standard argument.
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Theorem 4.1 Mn: orientable, (n, p) = (5, 3), (6, 3), (6, 4) or (7, 4)
f : Mn → R

p special generic map
∃immersion η : Mn → R

n+1 s.t. f = π ◦ η
⇐⇒ Mn is spin, i.e. w2(M

n) = 0.
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Theorem 4.1 Mn: orientable, (n, p) = (5, 3), (6, 3), (6, 4) or (7, 4)
f : Mn → R

p special generic map
∃immersion η : Mn → R

n+1 s.t. f = π ◦ η
⇐⇒ Mn is spin, i.e. w2(M

n) = 0.

Key to the proof:
The Stein factorization induces a smooth Sn−p-bundle

Mn \ S(f)→ IntWf .
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Theorem 4.1 Mn: orientable, (n, p) = (5, 3), (6, 3), (6, 4) or (7, 4)
f : Mn → R

p special generic map
∃immersion η : Mn → R

n+1 s.t. f = π ◦ η
⇐⇒ Mn is spin, i.e. w2(M

n) = 0.

Key to the proof:
The Stein factorization induces a smooth Sn−p-bundle

Mn \ S(f)→ IntWf .

If w2(M
n) = 0, then we can show that this is a trivial bundle.
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f : Mn → R
p special generic map (n > p)

Orient Rp. Then the quotient space Wf has the induced orientation.
Then ∂Wf

∼= S(f) also have the induced orientations.
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f : Mn → R
p special generic map (n > p)

Orient Rp. Then the quotient space Wf has the induced orientation.
Then ∂Wf

∼= S(f) also have the induced orientations.

Theorem 4.2 Mn: orientable, f : Mn → R
n−1 special generic

∃immersion η : Mn → R
n+1 s.t. f = π ◦ η

⇐⇒ [S(f)] = 0 in Hn−2(M
n;Z).
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The Stein factorization induces a smooth S1-bundle
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f : Mn → R
p special generic map (n > p)

Orient Rp. Then the quotient space Wf has the induced orientation.
Then ∂Wf

∼= S(f) also have the induced orientations.

Theorem 4.2 Mn: orientable, f : Mn → R
n−1 special generic

∃immersion η : Mn → R
n+1 s.t. f = π ◦ η

⇐⇒ [S(f)] = 0 in Hn−2(M
n;Z).

Key to the proof:
The Stein factorization induces a smooth S1-bundle

Mn \ S(f)→ IntWf .

If [S(f)] = 0, then we can show that this is a trivial bundle.
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■ Special generic function Mn → R can always be desingularized by
an immersion Mn → R

n+1.
It can be desingularized by an embedding iff Mn ∼= Sn (diffeo.).

■ Special generic map f : Mn → R
2 can always be desingularized by

an immersion Mn → R
n+1 if Mn is orientable.

It can be desingularized by an embedding iff Mn ∼= Sn or
♯k(S1 × Sn−1) (diffeomorphic).
When Mn is non-orientable, f can be desingularized by an
immersion iff n = 2, 4, 8 and S(f) has an orientable nbhd.

■ Special generic map f : Mn → R
3 with Mn orientable can be

desingularized by an immersion Mn → R
n+1 iff Mn is spin for n = 5

and 6.
■ Special generic map f : Mn → R

n−1 with Mn orientable can be
desingularized by an immersion Mn → R

n+1 iff [S(f)] = 0 in
Hn−2(M

n;Z).
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Thank you!
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Theorem 4.3 Mn: orientable, f : Mn → R
p special generic map

(n, p) = (2, 1), (3, 2), (4, 3), (5, 3), (6, 3), (6, 4) or (7, 4)
=⇒ ∃regular homotopy of immersions ηt : M

n → R
n+1, t ∈ [0, 1],

with f = π ◦ η0 s.t. ft = π ◦ ηt is a special generic map, t ∈ [0, 1],
and η1 is an embedding.
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Theorem 4.3 Mn: orientable, f : Mn → R
p special generic map

(n, p) = (2, 1), (3, 2), (4, 3), (5, 3), (6, 3), (6, 4) or (7, 4)
=⇒ ∃regular homotopy of immersions ηt : M

n → R
n+1, t ∈ [0, 1],

with f = π ◦ η0 s.t. ft = π ◦ ηt is a special generic map, t ∈ [0, 1],
and η1 is an embedding.

Theorem 4.4 M4: orientable, ∃f : M4 → R
3 special generic map

M4 can be embedded into R
5

⇐⇒ M4 is spin, i.e. w2(M
4) = 0.
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