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Abstract. We show that any finite graph without loops can be realized as
the Reeb graph of a smooth function on a closed manifold with finitely many
critical values, but possibly with positive dimensional critical point set. We
also show that such a function can be chosen as the height function on a surface
immersed in 3-space, provided that the graph has no isolated vertices.

1. Introduction

Let f : M → R be a smooth function on a smooth manifold. The topological
space obtained from M by contracting each connected component of the level sets
to a point is often a graph and is called the Reeb graph of f . (Historically, it was
first defined by Reeb [10]. This is sometimes called the Kronrod-Reeb graph of f as
well. See [11], for example.) This object is very important in studying the shape of
a surface both in Differential Topology and in Computer Graphics (see [4]–[9] and
[2, 3], for example).

In [11] Sharko studied the Reeb graphs of smooth functions on closed manifolds
of dimension ≥ 2 with only finitely many critical points, and gave several charac-
terizations of those finite graphs which can be the Reeb graph of such a function.
It was pointed out that not every finite graph without loops or isolated vertices can
be so realized.

In this paper, we consider smooth functions with finitely many critical values,
but possibly with positive dimensional critical point set, and show that an arbitrary
finite graph without loops can be realized as the Reeb graph of such a smooth
function on a closed surface. We also show that such a function can be chosen
as the height function on a closed surface immersed in 3-space, provided that the
graph has no isolated vertices.

The paper is organized as follows. In §2, we state and prove the realization
theorem of a given Reeb graph by a smooth function on a closed surface. In §3, we
prove that such a function can in fact be chosen as the height function associated
with an immersion of a closed surface into R3. We also show that if the graph is a
tree, then it can be realized as the height function of an embedded 2-sphere in R3.

Throughout the paper, manifolds and maps between them are differentiable of
class C∞ unless otherwise specified.

Date: May 19, 2010.
2000 Mathematics Subject Classification. Primary 58K05; Secondary 57R45, 57R42.
Key words and phrases. Reeb graph, smooth function, height function, immersion, embedding.
Corresponding Author: Osamu Saeki.
The second author has been partially supported by Grant-in-Aid for Scientific Research

(No. 19340018), Japan Society for the Promotion of Science.

1



2 YASUTAKA MASUMOTO AND OSAMU SAEKI

The authors would like to express their sincere gratitude to Fumiya Morishita
for stimulating discussions. They would also like to thank the referee for his/her
useful comments.

2. Realization by a smooth function

Let M be a compact manifold and f : M → R a smooth function. Throughout
the paper, we assume dim M ≥ 2. For points p1, p2 ∈ M , we define p1 ∼ p2 if
f(p1) = f(p2)(= a) and they are in the same connected component of f−1(a).
This clearly defines an equivalence relation on M . The quotient space M/∼ is
denoted by R(f) and is called the Reeb graph of f . The quotient map is denoted
by qf : M → R(f). It is easy to see that there is a unique continuous function
f̄ : R(f) → R which makes the following diagram commutative:

M
f−−−−−→ R

qf
↘ ↗f̄

R(f).

It is known that if a smooth function f : M → R on a closed manifold has only
finitely many critical points, then its Reeb graph R(f) is a finite graph without
loops or isolated vertices (see, for example, [11]). Moreover, each vertex corresponds
to the image by qf of a critical point of f . Furthermore, Sharko [11] showed that
a finite graph without loops or isolated vertices can be realized by a Reeb graph
of a smooth function on a closed manifold with finitely many critical points if and
only if it admits a good orientation. Here, a good orientation of a graph G is an
orientation of the edges of G such that at each vertex v of degree ≥ 2, there are at
least one edge incident to v which flows out of v, and also at least one edge incident
to v which flows into v, and that G contains no oriented cycle. In fact, Sharko
gave an explicit example of a finite graph without loops or isolated vertices that
can never be realized as the Reeb graph of a smooth function on a closed manifold
with finitely many critical points.

Our first result of this paper is the following.

Theorem 2.1. Let G be a finite graph without loops. Then, there exists a smooth
function f : M → R on a closed surface M with finitely many critical values such
that its Reeb graph R(f) is homeomorphic to G.

Proof. If G contains an isolated vertex, then such a point can be realized as the
Reeb graph of any constant function on a closed connected surface. Therefore, we
may assume that G contains no isolated vertices.

Let f1 : G → R be a continuous map which is an embedding on each edge.
Such a function can easily be constructed by first considering any injective map
V (G) → R and then by extending it to the edges so that it is “linear” on each
edge, where V (G) denotes the set of vertices of G. Then, we orient each edge of G
so that f1 is increasing with respect to the orientation.

In the following, we denote by deg(v) the degree of a vertex v of G. For each
vertex v ∈ V (G), its neighborhood satisfies one of the following.

(a) There are at least one edge incident to v which flows out of v, and also at
least one edge incident to v which flows into v, and deg(v) ≥ 3.

(b) There are exactly one edge incident to v which flows out of v, and also
exactly one edge incident to v which flows into v; in particular, deg(v) = 2.
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(c) All the edges incident to v flow out of v, or all of them flow into v, and
deg(v) ≥ 2.

(d) The degree satisfies deg(v) = 1.
In each of the above four cases, we will construct a smooth function gv : Nv → R

on a compact surface with boundary as follows.

Case (a). Let � (or m) denote the number of edges incident to v flowing out of
v (resp. flowing into v). By assumption, we have � ≥ 1, m ≥ 1 and � + m ≥ 3.

Let Nv be the 2-sphere with �+m open disks removed. Note that Nv is a compact
surface which is obtained by attaching �+m−1 bands to a 2-disk. On this surface,
we construct a smooth function gv : Nv → R that satisfies the following properties.

(a1) The function gv has a unique critical point p in Int Nv and gv(p) = f1(v).
(a2) The function gv attains its maximum on � circle components of ∂Nv, and

attains its minimum on the other m circle components of ∂Nv.
(a3) The inverse image g−1

v (a) is homeomorphic to the bouquet of � + m − 1
copies of S1, where a = f1(v).

(a4) There exist some local coordinates (x, y) around p such that the function
gv can be written as

gv(x, y) = Re
(
(x +

√−1y)�+m−1
)

+ a. (2.1)

(a5) The Reeb graph R(gv) of gv is homeomorphic to a small closed neighbor-
hood of v in G.

Such a smooth function gv : Nv → R can be constructed as follows. First, we
define gv by (2.1) on a small disk D centered at the origin. We choose ε > 0
sufficiently small so that the maximum of gv on ∂D is strictly greater than a + ε,
and the minimum of gv on ∂D is strictly smaller than a− ε. Then, g−1

v (a) consists
of 2(� + m − 1) radial segments of the disk D. Furthermore, the region

Δ = {(x, y) ∈ D : |gv(x, y) − a| ≤ ε}
intersects with ∂D in 2(� + m − 1) arcs.

Then, we attach � + m − 1 copies of a band to Δ along these arcs as in Fig. 1.
Let Nv be the resulting compact surface. On the center arc of each band, the value
of gv is constantly equal to a, and along each arc transverse to the center arc, gv

is monotone, its derivative never vanishes, its minimum is equal to a − ε, and its
maximum is equal to a + ε. In Fig. 1, g−1

v (a + ε) is depicted by thick curves, while
g−1

v (a − ε) is depicted by thin curves. Note that g−1
v (a + ε) consists of � circles,

while g−1
v (a − ε) consists of m circles.

In the following, we take ε > 0 even smaller so that

2ε < min{|f1(v) − f1(v′)| : v′ ∈ V (G), v′ 
= v}.
Lemma 2.2. The Reeb graph R(gv) of gv is homeomorphic to a small closed neigh-
borhood of v in G.

Proof. Let Gv be the connected component of f−1
1 ([a− ε, a + ε]) containing v. Let

us define a continuous map ρv : R(gv) → Gv as follows.
There are � segments incident to v in Gv whose values of f1 lie in [a, a + ε].

We choose any bijective correspondence between such segments and the � circle
components of ∂Nv on which gv takes its maximum. For each t ∈ (a, a + ε], g−1

v (t)
consists of � circle components. Let C be one of such components, which is an
equivalence class and is identified with an element of R(gv). Then, we define ρv(C)
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Figure 1. Constructing the function gv : Nv → [a − ε, a + ε] for Case (a)

to be the point y ∈ Gv such that f1(y) = t and the segment to which y belongs
corresponds to the boundary component of ∂Nv that is in the same component of
g−1

v ((a, a + ε]) as C. Then, we see easily that ρv is continuous and is bijective.
Since R(gv) is compact and Gv is Hausdorff, we see that ρv is a homeomorphism.

This completes the proof of Lemma 2.2. �

Therefore, we have constructed a desired smooth function gv : Nv → R satisfying
(a1)–(a5) above.

Case (b). Let Nv be the annulus. We construct a smooth function gv : Nv → R
which satisfies conditions similar to (a1) and (a2) above, together with the following
conditions.

(b3) The inverse image g−1
v (a) is a circle with a cusp (a = f1(v)).

(b4) There exist some coordinates (x, y) around p such that the function gv can
be written as

gv(x, y) = −x2 + y3 + a. (2.2)

(b5) The Reeb graph R(gv) of gv is homeomorphic to a small closed neighbor-
hood of v in G.
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Figure 2. Constructing the function gv : Nv → [a − ε, a + ε] for Case (b)

Such a function can be constructed by the same way as in Case (a). See Fig. 2
for details.

Case (c). Let Nv be the 2-sphere with n open disks removed, where n = deg(v).
For simplicity, we assume that all the edges incident to v flow out of v. (The other
case can be treated similarly.) We construct a smooth function gv : Nv → [a, a + ε]
which satisfies the following properties.

(c1) The function gv has a unique critical value a, which is the minimum.
(c2) The function attains its maximum on ∂Nv.
(c3) The inverse image g−1

v (a) is homeomorphic to the bouquet of n − 1 copies
of S1.

(c4) There exist some coordinates (x, y) around p such that the function gv can
be written as

gv(x, y) =
(
Re

(
(x +

√−1y)n−1
))2

+ a. (2.3)

(c5) The Reeb graph R(gv) of gv is homeomorphic to a small closed neighbor-
hood of v in G.

The construction of such a function is similar to Case (a). The essential difference
is that we define gv so that along each arc transverse to the center arc of a band, gv

behaves like the function t �→ t2 + a, t ∈ [−ε1/2, ε1/2]. Thus, the resulting function
has positive dimensional critical point set corresponding to the minimum a, and it
forms a bouquet of n − 1 circles. For details, see Fig. 3.

Case (d). Let Nv be a small 2-disk centered at the origin. Then, we define
gv : Nv → R by gv(x, y) = ±(x2 + y2) + f1(v), where we choose the sign “+”if the
edge incident to v flows out of v, and the sign “−” otherwise. Note that the Reeb
graph R(gv) is homeomorphic to a small closed neighborhood of v in G.

Let us now construct a desired smooth function f : M → R on a closed surface M
by gluing the above-constructed smooth functions gv : Nv → R. Let us take an edge
e of G, and we denote by v and v′ its end points. We may assume f1(v) < f1(v′).
Set a = f1(v), a± = f1(v) ± ε, a′ = f1(v′), and a′

± = f1(v′) ± ε. Note that
a− < a < a+ < a′

− < a′ < a′
+. Let gv : Nv → [a−, a+] and gv′ : Nv′ → [a′

−, a′
+]

be the smooth functions constructed above corresponding to the vertices v and v′,
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Figure 3. Constructing the function gv : Nv → [a, a + ε] for Case (c)

respectively. There is a unique boundary circle C (or C ′) of Nv (resp. Nv′) with
gv(C) = a+ (resp. gv′(C ′) = a′

−) which corresponds to the edge e.
Set Ne = S1 × [a+, a′

−] and let

ge : Ne → [a+, a′
−]

be the projection to the second factor. Let us glue Nv, Ne and Nv′ by identifying
S1 × {a+} with C and S1 × {a′

−} with C ′, where any identifications by diffeo-
morphisms are allowed. Then the functions gv, gv′ and ge extend over this glued
surface.

Let us perform the above mentioned gluing operation for each edge of G. Then
we get a smooth closed surface M and a smooth function f : M → R such that
f |Nv = gv for each vertex v of G and f |Ne = ge for each edge e of G.

Finally, by an argument similar to that in the proof of Lemma 2.2, we can show
that the Reeb graph R(f) of f is naturally homeomorphic to G so that the function
f1 : G → R can be identified with the function f̄ : R(f) → R. This completes the
proof of Theorem 2.1. �

Remark 2.3. In the above construction, the connected components of the inverse
image of critical values that contain critical points are in one-to-one correspondence
with the set of vertices of G. In this sense, the above proof implies that any finite
graph without loops can be realized as the Reeb graph of a smooth function on a
closed surface with finitely many critical values, not only as a topological space,
but also as a graph with its combinatorial structure.

Remark 2.4. If G is a finite oriented graph without an oriented cycle, then it is
well known that there exists a continuous function f1 : G → R that is increasing
on each oriented edge. Then, the above proof shows that we can realize G as the
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oriented Reeb graph of a smooth function with finitely many critical values on a
closed surface. Here, each edge of a Reeb graph is oriented so that the naturally
induced function is increasing with respect to the orientation.

Remark 2.5. In the above proof, the resulting surface M may not be orientable.
The orientability depends on the gluing maps between the circle components cor-
responding to an edge contained in a cycle of G. However, if G is a tree, then
the surface M constructed above is orientable: in fact, it is diffeomorphic to the
2-sphere.

Remark 2.6. In Theorem 2.1, we have constructed a smooth function f : M → R
on a closed 2-dimensional manifold that realizes the given graph as its Reeb graph.
For each integer n ≥ 3, let us consider the composition

f̃ : Sn−2 × M
π−−−−−→M

f−−−−−→R,

where π is the projection to the second factor. Then, we see that f̃ is a smooth
function with finitely many critical values, and that R(f̃) can naturally be identified
with R(f), since for each a ∈ R, we have f̃−1(a) = Sn−2 × f−1(a). Therefore, in
Theorem 2.1, any finite graph without loops can be realized as the Reeb graph of
a smooth function with finitely many critical values on a smooth closed manifold
of any given dimension n ≥ 2.

Remark 2.7. When a finite graph G contains a loop, we can show that it is realized
as the Reeb graph of a smooth map f : M → S1 of a closed surface into the circle
with finitely many critical values. The proof is similar to that of Theorem 2.1. When
G is a finite oriented graph which may contain oriented cycles, we can realize it as
the oriented Reeb graph of a smooth map into the circle as above (see Remark 2.4).

3. Realization by a height function

In this section, we show that any finite graph without loops or isolated vertices
can be realized as the Reeb graph of a height function associated with an immersion
of a closed surface into R3.

Let ι : M → R3 be an immersion of a closed surface M into the 3-space. Let
Z : R3 → R be the projection defined by Z(x, y, z) = z. Then, the smooth function
h on M defined by the composition h = Z ◦ ι : M → R is called a height function
associated with the immersion ι.

Recall that there exist smooth functions on surfaces that can never be realized
as a height function (for example, see [1, 9]).

Our second result of this paper is the following refinement of Theorem 2.1.

Theorem 3.1. Let G be a finite graph without loops or isolated vertices. Then,
there exists an immersion ι : M → R3 of a closed surface M into R3 such that the
Reeb graph R(h) of the height function h = Z ◦ ι associated with ι is homeomorphic
to G.

Proof. We proceed as in the proof of Theorem 2.1. We use the same notations.
Let us first consider Case (a) and construct an embedding ιv : Nv → R2 × [a −

ε, a+ε] as follows. First, we regard Nv to be embedded in the plane R2 as in Fig. 1.
Then, let ιv be the graph of gv: i.e., ιv(q) = (q, gv(q)) for q ∈ Nv ⊂ R2. Then, its
associated height function hv = Z ◦ ιv clearly coincides with gv.
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For the other cases, we construct the embedding ιv : Nv → R3 by exactly the
same way.

Let us now glue the embeddings. For each edge e of G, we consider the cylinder
Ne = S1 × [a+, a′

−]. Since ιv|C : C → R2 × {a+} and ιv′ |C ′ : C ′ → R2 × {a′
−} are

embeddings, they are isotopic with respect to an appropriate identification between
C and C ′. Using these identifications together with the isotopy, we can construct
an embedding of Nv ∪ Ne ∪ Nv′ into R2 × [a−, a′

+].
We can perform this operation for each edge of G consistently so as to obtain an

immersion ι : M → R3 of a closed surface M . Note that the resulting map ι may
not be an embedding any more, since the images of ι|Ne for various edges e may
intersect with each other.

Finally, we see that the Reeb graph R(Z ◦ ι) is homeomorphic to G as in the
proof of Theorem 2.1. In fact, if we choose the identification diffeomorphisms
appropriately in the proof of Theorem 2.1, the height function Z ◦ ι coincides with
the smooth function f constructed in the proof of Theorem 2.1.

This completes the proof of Theorem 3.1. �

Note that the above construction is based on the method developed in [1].

Remark 3.2. When a finite graph G has a loop (but does not have any isolated
vertices), we can still construct an immersion ι : M → R2 × S1 of a closed surface
M such that the Reeb graph of π′ ◦ ι : M → S1 is homeomorphic to G, where
π′ : R2 × S1 → S1 is the projection to the second factor. The proof is similar to
that of Theorem 3.1. See also Remark 2.7.

Remark 3.3. For each integer n ≥ 3, let us consider the immersion

ι̃ : Sn−2 × M
idSn−2 ×ι−−−−−−−−→Sn−2 × R3 = (Sn−2 × R) × R2

j×idR2−−−−−→Rn−1 × R2 = Rn+1,

where ι : M → R3 is the immersion given in Theorem 3.1, id∗ denotes the identity
map, and j : Sn−2 × R → Rn−1 is an embedding1. Then, we see that for the
projection prn+1 : Rn+1 → R to the last coordinate, the height function h̃ =
prn+1 ◦ ι̃ has finitely many critical values, and that R(h̃) is isomorphic to the given
graph G. Therefore, in Theorem 3.1, any finite graph without loops or isolated
vertices can be realized as the Reeb graph of a height function with finitely many
critical values on a smooth closed manifold of any given dimension n ≥ 2 immersed
in Rn+1. Compare this with Remark 2.6.

If G is a tree, then we have the following refinement.

Proposition 3.4. Let G be a finite tree which is not just a point. Then, there exists
an embedding η : S2 → R3 such that the Reeb graph R(Z◦η) of the associated height
function is homeomorphic to G.

Proof. We proceed by induction on the number of vertices of G. If G has exactly
two vertices, then G is an interval, and the standard embedding S2 ↪→ R3 gives
the desired height function. Note that this embedding can be regarded as being
constructed by the procedure described in the proof of Theorem 3.1. Note also that
this height function has only local minima and maxima as its critical points.

1The authors are indebted to the referee for this construction.
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Suppose that G contains three or more vertices. There exists a vertex v of G
of degree one, and let G′ denote the tree obtained by taking off v and the edge
incident to it from G. By our induction hypothesis, there exists an embedding
η′ : S2 → R3 such that the Reeb graph R(Z ◦ η′) is homeomorphic to G′ and that
the height function h′ = Z ◦ η′ has only local minima and maxima as its critical
points. Let h̄′ : R(h′) → R be the continuous function naturally induced from h′.
In the following, we will identify R(h′) with G′. We assume that the embedding η′

is constructed by the procedure described in the proof of Theorem 3.1, and will use
the same notation as in that proof, with the exception that we use η instead of ι.

Let v′ be the unique vertex adjacent to v in G. If v′ is a local minimum, then we
modify the embedding ιv′ : Nv′ → R3 as follows. If the degree of v′ in G′ is equal
to one, then h′ has a unique critical point in Nv′ , and we replace the embedding
ιv′ by an embedding obtained from a small center circle in the construction for
Case (c) in the proof of Theorem 3.1 (with n = 2), together with a 2-disk with
a local maximum attached to the inside circle parallel to the center circle. If the
degree of v′ in G′ is greater than or equal to two, then we increase the number of
circles in the bouquet of circles contained in (h′)−1(h̄′(v′)) by one. We may assume
that the new born circle is very small, and we attach a 2-disk along this new born
circle so that it has a local maximum at its center. If we choose the value of the
local maximum very close to h̄′(v′), then the resulting immersion η : S2 → R3

remains to be an embedding.
Note that the resulting embedding η can be regarded as being constructed by

the procedure described in the proof of Theorem 3.1.
If v′ is a local maximum, then we construct the embedding η similarly.
Then, it is easy to see that the Reeb graph of the height function associated with

the new embedding η is homeomorphic to G.
This completes the proof. �

Compare the above proposition with Remark 2.5.
We end this paper by posing some related problems. Let ι : M → R3 \{0} be an

immersion and let D : R3 \ {0} → (0,∞) be the function defined by D(x, y, z) =√
x2 + y2 + z2, which measures the distance from the origin. The composition

d = D◦ι : M → (0,∞) is called the distance function associated with the immersion
ι.

Problem 3.5. Let G be an arbitrary finite graph without loops or isolated vertices.
(1) Is there an embedding η : M → R3 of a closed orientable surface such that

the Reeb graph R(Z ◦η) of the associated height function is homeomorphic
to G ?

(2) Is there an embedding η : M → R3 \ {0} of a closed orientable surface
such that the Reeb graph R(D ◦ η) of the associated distance function is
homeomorphic to G ?

Note that if the answer to (1) is affirmative, then so is the answer to (2). We
expect that the class of graphs for which the answer to (2) is affirmative is somewhat
larger than that for (1), since R3 \ {0} is diffeomorphic to S2 × (0,∞) and S2 gives
more freedom than R2 to avoid self-intersections.

Remark 3.6. Let G be a finite graph. We can embed it in R3 in such a way
that the height function is nonsingular on each edge. Let us consider the closed
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orientable surface M obtained as the boundary of a small regular neighborhood of
the embedded graph. Then, one might think that the height function on M has G
as its Reeb graph; however, this is not correct. The Reeb graph does not coincide
with the original graph around the vertices. Therefore, the above problems make
sense.
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