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Abstrat. We use topology of on�guration spaes to give a haraterization

of Neuwirth{Stallings pairs (S

5

;K) with dimK = 2. As a onsequene, we

onstrut polynomial map germs (R

6

; 0)! (R

3

; 0) with an isolated singularity

at the origin suh that their Milnor �bers are not di�eomorphi to a disk,

thus putting an end to Milnor's non-triviality question. Furthermore, for a

polynomial map germ (R

2n

; 0)! (R

n

; 0) or (R

2n+1

; 0)! (R

n

; 0), n > 3, with

an isolated singularity at the origin, we study the onditions under whih the

assoiated Milnor �ber has the homotopy type of a bouquet of spheres. We

then onstrut, for every pair (n; p) with n=2 > p > 2, a new example of a

polynomial map germ (R

n

; 0) ! (R

p

; 0) with an isolated singularity at the

origin suh that its Milnor �ber has the homotopy type of a bouquet of a

positive number of spheres.

1. Introdution

In the book \Singular points of omplex hypersurfaes" [16℄, John Milnor stud-

ied the topology of omplex polynomial funtion germs in terms of the assoiated

loally trivial �ber bundles. He also showed the existene of suh strutures for real

polynomial map germs with an isolated singularity as follows.

Theorem 1.1 ([16, Theorem 11.2℄). Let f : (R

n

; 0) ! (R

p

; 0), n > p > 2, be

a polynomial map germ with an isolated singularity at the origin. Then, there

exists an "

0

> 0 suh that for all 0 < " 6 "

0

, the omplement of an open tubular

neighborhood of the link K = f

�1

(0) \ S

n�1

"

in S

n�1

"

is the total spae of a smooth

�ber bundle over the sphere S

p�1

, with eah �ber F

f

being a smooth ompat (n�p)-

dimensional manifold bounded by a opy of K, where S

n�1

"

denotes the sphere in

R

n

with radius " entered at the origin.

By using the onial struture of the singularity, Milnor proved that the di�eo-

morphism type of the link does not hange for all " > 0 small enough. Moreover,

sine the origin is an isolated singularity, we have that 0 2 R

p

is a regular value

of f jS

n�1

"

: S

n�1

"

! R

p

. Therefore, if the link K = f

�1

(0) \ S

n�1

"

is not empty,

then it is a smooth (n� p� 1)-dimensional submanifold of the sphere with trivial

normal bundle. It also implies that, for eah �xed " one an �nd a small enough Æ,

0 < Æ � ", and a losed disk D

p

Æ

entered at the origin in R

p

with radius Æ, suh
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that the restrition map f : f

�1

(D

p

Æ

)\S

n�1

"

! D

p

Æ

is a smooth trivial �ber bundle,

whih implies the triviality of the �bration

f : f

�1

(D

p

Æ

n f0g) \ S

n�1

"

! D

p

Æ

n f0g:

By omposing this with the radial projetion � : D

p

Æ

n f0g ! S

p�1

Æ

onto the bound-

ary sphere and saling to the unit sphere, one �nds that the bundle struture on a

neighborhood of the link K is given by

f

kfk

: f

�1

(D

p

Æ

n f0g) \ S

n�1

"

! S

p�1

:

Now, one an glue this �ber bundle with that given in Theorem 1.1 along the

ommon boundary f

�1

(S

p�1

Æ

) \ S

n�1

"

in a smooth way, so that we get a smooth

loally trivial �ber bundle

S

n�1

"

nK ! S

p�1

:

Remark 1.2. Following Milnor's proof of Theorem 1.1, one sees that, although

no preise information about the bundle projetion above was provided, in the

real settings in general one annot expet that it is given by f=kfk outside a

neighborhood of the link. See Milnor's example [16, p. 99℄ or the following example

adapted from Milnor's one. Consider f : (R

3

; 0)! (R

2

; 0) given by

f(x; y; z) = (x; x

2

+ yx

2

+ y

3

+ yz

2

):

It is easy to see that the singular point set is given by �(f) = f(0; 0; 0)g, and for

all " > 0 small enough, we have K = f(0; 0; "); (0; 0;�")g. However, f=kfk does

have singular points and therefore it is not a submersion.

De�nition 1.3 (Looijenga [15℄). Let K = K

n�p�1

be an oriented submanifold of

dimension n� p� 1 of the oriented sphere S

n�1

with trivial normal bundle, or let

K = ;. Suppose that for some trivialization  : N(K) ! K � D

p

of a tubular

neighborhood N(K) of K, the �ber bundle de�ned by the omposition

N(K) nK



! K � (D

p

n f0g)

�

! S

p�1

;

with the last projetion being given by �(x; y) = y=kyk, extends to a smooth �ber

bundle S

n�1

n K ! S

p�1

. Then, the pair (S

n�1

;K

n�p�1

) is alled a Neuwirth{

Stallings pair, or an NS-pair for short.

Aording to Theorem 1.1 and the previous disussion, for all " > 0 suÆiently

small, the pair (S

n�1

"

; f

�1

(0) \ S

n�1

"

) is an NS-pair. In this ase Looijenga alled

it the NS-pair assoiated to the singularity.

More reently, several generalizations of suh a struture have been obtained. For

instane, in [4℄ the authors onsidered a real analyti map germ f : (R

n

; 0)! (R

p

; 0)

with non-isolated singularities at the origin and introdued a ondition whih also

ensures that the pair (S

n�1

"

; f

�1

(0)\S

n�1

"

) is an NS-pair with the bundle projetion

given by f=kfk : S

n�1

"

nK ! S

p�1

, where the link K = f

�1

(0)\S

n�1

"

is a smooth

manifold. It was alled a higher open book struture of the sphere S

n�1

"

. In [1, 2℄

it was shown an extension of suh strutures for spheres of small and big enough

radii (at in�nity), but allowing singularity in the \binding" K. In this ase, it was

alled a singular open book struture of the sphere.

As pointed out by Milnor in [16, p. 100℄, the hypothesis of Theorem 1.1 is so

strong that examples are diÆult to �nd, and he posed the following question.
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Problem 1.4. For whih dimensions n > p > 2 do non-trivial examples exist ?

Milnor did not exatly speify what \trivial" means here: however, he proposed

to say that a real polynomial map germ f : (R

n

; 0) ! (R

p

; 0) is trivial if the �ber

F

f

of the bundle given in Theorem 1.1 is di�eomorphi to a losed disk D

n�p

. In

partiular, this implies that the �bers of the assoiated NS-pair are di�eomorphi

to the (n� p)-dimensional open disk.

Remark 1.5. For a holomorphi funtion germ f : (C

n+1

; 0) ! (C ; 0) with an

isolated singularity at the origin, it follows from [16, Appendix B℄ that the �bers

of the assoiated Milnor �bration are di�eomorphi to a 2n-dimensional disk if and

only if 0 is a non-singular point of f ; in fat, the funtion germ f is trivial if and

only if the Milnor number �

f

= deg

0

(rf(z)) is equal to zero, where deg

0

(rf(z))

stands for the topologial degree of the map

"

rf

krfk

: S

2n+1

"

! S

2n+1

"

for all " > 0 small enough, and

rf =

�

�f

�z

1

;

�f

�z

2

; : : : ;

�f

�z

n+1

�

:

In [7℄ Churh and Lamotke used results of Looijenga [15℄ and answered the above

question in the following way.

Theorem 1.6. (a) For 0 6 n� p 6 2, non-trivial examples our preisely for the

dimensions (n; p) 2 f(2; 2); (4; 3); (4; 2)g.

(b) For n� p > 4, non-trivial examples our for all (n; p).

() For n� p = 3, non-trivial examples our for (5; 2) and (8; 5). Moreover, if the

3-dimensional Poinar�e Conjeture is false, then there are non-trivial examples for

all (n; p). If the Poinar�e Conjeture is true, then all examples are trivial exept

(5; 2), (8; 5) and possibly (6; 3).

Sine the Poinar�e Conjeture has been proved to be true, we have that for n�p =

3 the map f an be non-trivial only if (n; p) 2 f(6; 3); (8; 5); (5; 2)g. Therefore,

Problem 1.4 has been open uniquely for the dimension pair (6; 3).

In [19℄ the authors used an extension of Milnor-Khimshiashvili's formula proved

in [3℄ (see Theorem 5.3 of the present paper) for real isolated singularity map

germs to show a manageable haraterization of Churh-Lamotke's results when

the Milnor �ber is 3-dimensional, as follows.

Theorem 1.7. Let f : (R

n

; 0) ! (R

p

; 0), f(x) = (f

1

(x); f

2

(x); : : : ; f

p

(x)), be a

polynomial map germ with an isolated singularity at the origin, and suppose n�p =

3. Denote by deg

0

(rf

1

) the topologial degree of the mapping

"

rf

1

krf

1

k

: S

n�1

"

! S

n�1

"

;

where

rf

1

=

�

�f

1

�x

1

;

�f

1

�x

2

; : : : ;

�f

1

�x

n

�

:

(a) If the pair (n; p) = (6; 3), then the following three are equivalent.
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(i) f is trivial.

(ii) deg

0

(rf

1

) = 0.

(iii) The link K is onneted.

(b) If the pair (n; p) = (8; 5), then the following three are equivalent.

(i) f is trivial.

(ii) deg

0

(rf

1

) = 0.

(iii) The link K is not empty.

() If the pair (n; p) = (5; 2), then the following two are equivalent.

(i) f is trivial.

(ii) �

1

(F

f

) = 1, i.e. the Milnor �ber F

f

is simply onneted.

In this paper we aim to give a haraterization of NS-pairs (S

5

;K) with dimK =

2, and use it to prove the existene of non-trivial real polynomial map germs

(R

6

; 0) ! (R

3

; 0) with an isolated singularity at the origin, putting an end to

Problem 1.4 posed by Milnor. For this, we will use tools from on�guration spaes

and a onstrution by Funar in [10, Setion 2.7℄. More preisely, we �rst las-

sify �ber bundles E

5

! S

2

with �ber the 3-sphere with the interiors of a disjoint

union of 3-disks removed, suh that the boundary �brations are trivial. We will

show that the isomorphism lasses of suh bundles are in one-to-one orrespon-

dene with the seond homotopy group of a ertain on�guration spae, and that

its elements orrespond to a skew-symmetri integer matrix. Then, we show that a

given �ber bundle E

5

! S

2

is assoiated with an NS-pair (S

5

;K) if and only if the

skew-symmetri matrix is unimodular. As a onsequene, we see that the number

of boundary omponents of a �ber is always odd. Furthermore, this allows us to

onstrut a lot of non-trivial NS-pairs (S

5

;K), and then the Looijenga onstrution

[15℄ leads to non-trivial polynomial map germs with an isolated singularity.

Our seond aim in this paper is to introdue neessary and suÆient onditions

under whih the Milnor �ber in the pairs of dimensions (2n; n) and (2n + 1; n),

n > 3, is, up to homotopy, a bouquet (or a wedge) of spheres. As appliations, we

give examples of polynomial map germs (R

n

; 0)! (R

p

; 0), n=2 > p > 2, suh that

the assoiated Milnor �ber is a bouquet of a non-zero number of spheres.

Throughout the paper, the (o)homology groups are with integer oeÆients

unless otherwise spei�ed. The symbol \

�

=

" denotes a di�eomorphism between

smooth manifolds or an appropriate isomorphism between algebrai objets.

2. Classifiation of bundles

Let (S

5

;K

2

) be an NS-pair, where K

2

is a losed 2-dimensional manifold em-

bedded in the 5-dimensional sphere S

5

. We have the assoiated �bration � :

S

5

n IntN(K

2

) ! S

2

, where N(K

2

) denotes a losed tubular neighborhood of

K

2

in S

5

, and we denote by F its �ber, whih is a ompat 3-dimensional mani-

fold bounded by a opy of K

2

. Sine S

5

does not �ber over S

2

, we have K

2

6= ;.

Furthermore, we have the homotopy exat sequene

�

2

(S

5

n IntN(K

2

))! �

2

(S

2

)! �

1

(F )! �

1

(S

5

n IntN(K

2

)):
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Sine � is trivial on the boundary, it has a setion, so that the homomorphism

�

2

(S

5

n IntN(K

2

)) ! �

2

(S

2

) is surjetive. Furthermore, S

5

n IntN(K

2

) is sim-

ply onneted. Therefore, the ompat 3-dimensional manifold F is also simply

onneted.

Then, by a standard argument, we see that K

2

�

=

�F onsists of some opies

of S

2

and that F is homotopy equivalent to a 3-dimensional sphere with some

points removed. Then, by the solution to the Poinar�e Conjeture, we see that F

is di�eomorphi to S

3

(k+1)

for some non-negative integer k, where S

3

(k+1)

denotes

the 3-sphere with the interiors of k + 1 disjoint 3-balls removed. Therefore, � is a

smooth �ber bundle with �ber S

3

(k+1)

suh that it is trivial on the boundary. In

this setion, we lassify suh �ber bundles.

Let Di�(S

3

) be the topologial group of di�eomorphisms of S

3

. By the solu-

tion to the Smale Conjeture by Hather [12℄, we have that Di�(S

3

) is homotopy

equivalent to the orthogonal group O(4).

Let us denote by B

3

the 3-dimensional losed ball and for a non-negative in-

teger k, we denote by [

k+1

B

3

the disjoint union of k + 1 opies of B

3

. We

sometimes regard [

k+1

B

3

to be \standardly" embedded in S

3

, and we denote

by j

k+1

: [

k+1

B

3

! S

3

the inlusion map.

We denote by Emb([

k+1

B

3

; S

3

) the spae of all smooth embeddings of [

k+1

B

3

into S

3

, not neessarily the standard one, and by Di�(S

3

;[

k+1

B

3

) the subspae

of Di�(S

3

) onsisting of those di�eomorphisms whih restrit to the inlusion map

j

k+1

on [

k+1

B

3

. Furthermore, we denote by Di�(S

3

(k+1)

; �S

3

(k+1)

) the topologial

group of di�eomorphisms of S

3

(k+1)

whih restrit to the identity on the boundary.

Note that S

3

(k+1)

= S

3

n [

k+1

IntB

3

.

The lemma below follows from [6, Proposition 1, p. 120℄.

Lemma 2.1. The anonial map Di�(S

3

;[

k+1

B

3

)! Di�(S

3

(k+1)

; �S

3

(k+1)

) indues

isomorphisms

�

i

(Di�(S

3

;[

k+1

B

3

))! �

i

(Di�(S

3

(k+1)

; �S

3

(k+1)

))

for all i.

Now onsider the natural map

' : Di�(S

3

)! Emb([

k+1

B

3

; S

3

)

that sends eah di�eomorphism of S

3

to its restrition to [

k+1

B

3

. The following

is a onsequene of the Cerf{Palais �bration theorem (see [6, Appendie℄, [17℄).

Lemma 2.2. The natural map ' as above is the projetion of a loally trivial �ber

bundle with �ber Di�(S

3

;[

k+1

B

3

).

Therefore, we have the homotopy exat sequene:

�

2

(Di�(S

3

); id)! �

2

(Emb([

k+1

B

3

; S

3

); j

k+1

)! �

1

(Di�(S

3

;[

k+1

B

3

); id)

! �

1

(Di�(S

3

); id)! �

1

(Emb([

k+1

B

3

; S

3

); j

k+1

)! � � � : (2.1)

Let F

k+1

(S

3

) be the on�guration spae of k + 1 points in S

3

. This spae an

be naturally identi�ed with Emb(f0; 1; : : : ; kg; S

3

).
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Lemma 2.3. The spae Emb([

k+1

B

3

; S

3

) is homotopy equivalent to F

k+1

(S

3

) �

O(3)

k+1

.

Proof. For a given embedding � : [

k+1

B

3

! S

3

, we assoiate the element of

F

k+1

(S

3

) whih sends the i-th point to the �-image of the enter of the i-th 3-ball.

Furthermore, by assoiating the normalized di�erential of � at eah enter, we get

an element of O(3)

k+1

. (Note that the tangent bundle TS

3

of S

3

is trivial, and we

�x its trivialization here.) Then, we an show that the map Emb([

k+1

B

3

; S

3

) !

F

k+1

(S

3

) � O(3)

k+1

thus obtained gives a homotopy equivalene. (For example,

see [6, Appendie, x5, Proposition 3℄.) �

Reall that Di�(S

3

) ' O(4). Furthermore, F

k+1

(S

3

) is 1-onneted (see [9℄, [10,

Proof of Proposition 2.30℄) and �

2

(O(3)) = 0. Thus, the exat sequene (2.1) turns

into

0 ! �

2

(F

k+1

(S

3

))! �

1

(Di�(S

3

;[

k+1

B

3

); id)! �

1

(O(4); id)

! �

1

(O(3)

k+1

; id)! � � � :

Note that �

1

(O(4); id)

�

=

Z

2

and �

1

(O(3)

k+1

; id)

�

=

(Z

2

)

k+1

. By hoosing the

standard embedding j

k+1

so that it is equivariant with respet to the natural SO(2)-

ations, we see that the homomorphism �

1

(O(4); id) ! �

1

(O(3)

k+1

; id) sends the

generator 1 2 Z

2

to (1; 1; : : : ; 1) 2 (Z

2

)

k+1

. In partiular, it is injetive. Thus, we

have that the boundary homomorphism

�

2

(F

k+1

(S

3

))! �

1

(Di�(S

3

;[

k+1

B

3

); id) (2.2)

is an isomorphism.

By [9℄ and [10, Proof of Proposition 2.30℄, we have the following important result.

Lemma 2.4. The homotopy group �

2

(F

k+1

(S

3

)) is isomorphi to Z

k(k�1)=2

.

Note that, for a smooth �ber bundle S

3

(k+1)

,! E

5

! S

2

with struture group

Di�(S

3

(k+1)

; �S

3

(k+1)

), its harateristi map is an element of

�

1

(Di�(S

3

(k+1)

; �S

3

(k+1)

); id);

whih is isomorphi to �

1

(Di�(S

3

;[

k+1

B

3

); id)

�

=

Z

k(k�1)=2

by Lemma 2.1, (2.2)

and Lemma 2.4.

In fat, given suh a smooth �ber bundle � : E

5

! S

2

, one an onsider S

2

=

D

2

1

[D

2

2

, where D

2

i

, i = 1; 2, denote the 2-dimensional losed disk. Sine eah D

2

i

is ontratible, the restrition � : �

�1

(D

2

i

)! D

2

i

is a trivial �ber bundle with �ber

S

3

(k+1)

, and we have �

�1

(D

2

i

)

�

=

S

3

(k+1)

�D

2

i

. Hene, we an reover the total spae

E

5

= (S

3

(k+1)

�D

2

1

) [

h

(S

3

(k+1)

�D

2

2

)

for some di�eomorphism h : S

3

(k+1)

� �D

2

2

! S

3

(k+1)

� �D

2

1

de�ned by h(x; t) =

(�(t)(x); t), where � : S

1

= �D

2

! Di�(S

3

(k+1)

; �S

3

(k+1)

) orresponds to the hara-

teristi map. Therefore, the struture of the �ber bundle is ompletely determined

by the homotopy lass [�℄ 2 �

1

(Di�(S

3

(k+1)

; �S

3

(k+1)

); id).
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3. Charaterization of NS-pairs

For a non-negative integer k, let

S

3

(k+1)

,! E

5

�

! S

2

(3.1)

be a smooth �ber bundle suh that its restrition to the boundary �S

3

(k+1)

,!

�E

5

! S

2

is a trivial bundle. In this setion, we haraterize suh �ber bundles

that arise from an NS-pair (S

5

;K) with K

�

=

[

k+1

S

2

.

We start by gluing the trivial bundle [

k

(B

3

� S

2

) ! S

2

along the k boundary

omponents to get the B

3

-�bration

e� : Y = E

5

[ ([

k

(B

3

� S

2

))! S

2

: (3.2)

This �bration is trivial, sine the struture group Di�(B

3

; �B

3

) is ontratible by

Hather's solution to the Smale Conjeture [12℄, where Di�(B

3

; �B

3

) denotes the

spae of those di�eomorphisms of B

3

whih �x �B

3

pointwise. Therefore, the total

spae Y of the �bration (3.2) is di�eomorphi to B

3

�S

2

. Then, by gluing B

3

0

�S

2

to Y = B

3

� S

2

by the map �B

3

0

� S

2

! �B

3

� S

2

given by (x; y) 7! (y; x),

we get the sphere S

5

, where B

3

0

is a opy of the losed 3-dimensional ball. Set

S

2

0

= x

0

� S

2

, where x

0

is the enter of B

3

0

, and we write N(S

2

0

) = B

3

0

� S

2

, whih

is identi�ed with the losed tubular neighborhood of S

2

0

in S

5

.

To �x the notation we write [

k+1

B

3

= [

k

i=0

B

3

i

, and denote by x

i

the enter of

B

3

i

, where we onsider [

k

B

3

= [

k

i=1

B

3

i

. We also write S

2

i

= x

i

�S

2

, i = 1; 2; : : : ; k.

Note that the 2-spheres S

2

i

, i = 0; 1; : : : ; k, are all embedded in S

5

in a standard

way. Furthermore, eah of S

2

i

, i = 1; 2; : : : ; k, has linking number �1 with S

2

0

. In

the following disussions, we orient S

2

i

, i = 0; 1; 2; : : : ; k, in suh a way that the

linking number of S

2

i

with S

2

0

is equal to +1, i = 1; 2; : : : ; k.

For y 2 S

2

, we have [

k

i=1

(B

3

i

� y) � e�

�1

(y)

�

=

B

3

. Therefore, to eah y 2 S

2

we

an naturally assoiate an element of the k-point on�guration spae F

k

(IntB

3

)

�

=

F

k

(R

3

). This de�nes a lassifying map  : S

2

! F

k

(R

3

).

Then, we have the following.

Lemma 3.1. The isomorphism lasses of the �brations as in (3.1) are in one-to-

one orrespondene with �

2

(F

k

(R

3

))

�

=

Z

k(k�1)=2

. The orrespondene is given by

assoiating the homotopy lass of the lassifying map .

Reall that aording to [10, Lemma 2.31℄, a �ber bundle (3.1) orresponds to

the element (lk(S

2

i

; S

2

j

))

16i<j6k

2 Z

k(k�1)=2

in the above orrespondene, where lk

denotes the linking number in S

5

, and we �x orientations of S

2

i

, i = 1; 2; : : : ; k, and

S

5

.

Proof of Lemma 3.1. As has been seen in Setion 2, the isomorphism lasses of

the bundles in question are in one-to-one orrespondene with �

2

(F

k+1

(S

3

))

�

=

�

1

(Di�(S

3

;[

k+1

B

3

); id). On the other hand, it is known that �

2

(F

k

(R

3

)) is natu-

rally isomorphi to �

2

(F

k+1

(S

3

)) (see [9, p. 38℄).

Reall the loally trivial �ber bundle

Di�(S

3

;[

k+1

B

3

)

�

�! Di�(S

3

)

'

�! Emb([

k+1

B

3

; S

3

)



8 R. ARA

�

UJO DOS SANTOS, M.A.B. HOHLENWERGER, O. SAEKI AND T.O. SOUZA

of Lemma 2.2, where � is the natural inlusion map. For the homotopy lass [�℄ 2

�

1

(Di�(S

3

(k+1)

; �S

3

(k+1)

))

�

=

�

1

(Di�(S

3

;[

k+1

B

3

)) of the harateristi map, its �

�

-

image vanishes in �

1

(Di�(S

3

)), so that there exists a ontinuous map e� : D

2

!

Di�(S

3

) whih extends � Æ � : S

1

! Di�(S

3

). Then, the homotopy lass of ' Æ e� :

D

2

! Emb([

k+1

B

3

; S

3

) in �

2

(Emb([

k+1

B

3

; S

3

))

�

=

�

2

(F

k+1

(S

3

))

�

=

�

2

(F

k

(R

3

))

is the lass orresponding to [�℄ by the isomorphism (2.2). By onstrution, this

oinides with the homotopy lass of the lassifying map . This ompletes the

proof. �

Now, we have the following natural question.

Problem 3.2. Whih elements of �

2

(F

k

(R

3

))

�

=

Z

k(k�1)=2

orrespond to an NS-pair?

We answer this question in our main result in this setion, as follows.

Theorem 3.3. The �ber bundle S

3

(k+1)

,! E

5

�

! S

2

as in (3.1) arises from an

NS-pair if and only if det

�

lk(S

2

i

; S

2

j

)

�

16i;j6k

= �1, where lk(S

2

i

; S

2

i

) = 0 for all

1 6 i 6 k by onvention.

Note that

�

lk(S

2

i

; S

2

j

)

�

16i;j6k

is a k � k skew-symmetri integer matrix.

The rest of this setion is devoted to the proof of the above theorem.

For a �ber bundle (3.1), let F be its �ber. We �x the trivialization of the

boundary �bration, and we write �E

5

= [

k

i=0

(K

i

� S

2

), where K

i

�

=

S

2

are the

boundary omponents of F

�

=

S

3

(k+1)

and are oriented in suh a way that the

yle represented by K

0

is homologous to the sum of the yles represented by

K

i

, i = 1; 2; : : : ; k. Let X

5

= E

5

[ ([

k

i=0

(K

i

� B

3

)) be the losed 5-dimensional

manifold obtained by gluing E

5

and [

k

i=0

(K

i

�B

3

) along their boundaries in suh

a way that the natural projetion

[

k

i=0

(K

i

� (B

3

n f0g))! S

2

extends to a smooth �bration X

5

nK ! S

2

, where K = [

k

i=0

(K

i

�f0g). Note that

in this notation, K

i

is identi�ed with �B

3

i

, i = 1; 2; : : : ; k, and K

0

is identi�ed with

� � S

2

� �B

3

0

� S

2

. We warn the reader that the way that K

i

� B

3

are attahed

to E

5

is very di�erent from that for the onstrution of Y � S

5

in (3.2).

The theorem is a onsequene of Lemmas 3.4 and 3.5 below.

Lemma 3.4. The �ber bundle � (3.1) arises from an NS-pair if and only if X

5

is

homotopy equivalent to S

5

.

The above lemma is a onsequene of the well-known fat that every homotopy

5-sphere is standard [18℄.

Sine we see easily that X

5

is simply onneted, it suÆes to study the homol-

ogy group H

2

(X

5

). Now onsider the following piee of the Mayer-Vietoris exat

sequene:

H

2

([

k

i=0

(K

i

� �B

3

))

�

! H

2

(E

5

)�H

2

([

k

i=0

(K

i

�B

3

))! H

2

(X

5

)! 0;

where the homomorphism � = (i

1�

;�i

2�

) is indued by the inlusions i

1

: [

k

i=0

(K

i

�

�B

3

)! E

5

and i

2

: [

k

i=0

(K

i

� �B

3

)! [

k

i=0

(K

i

�B

3

).
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Figure 1. Situation in S

5

Figure 1 helps us to understand the images of the elements ofH

2

([

k

i=0

(K

i

��B

3

))

by the homomorphism �. Note that this depits the situation in S

5

and not in X

5

.

In order to desribe the homomorphism �, let us �x bases of the homology groups.

In the following, for a yle z, we denote by [z℄ the homology lass represented by

z. First, we have

H

2

([

k

i=0

(K

i

� �B

3

))

�

=

�

k

i=0

H

2

(K

i

� �B

3

)

and eah H

2

(K

i

� �B

3

)

�

=

Z� Z is generated by [K

i

� �℄ and [y

i

� �B

3

℄, where

y

i

2 K

i

, i = 0; 1; : : : ; k. Furthermore, we have

H

2

([

k

i=0

(K

i

�B

3

))

�

=

�

k

i=0

H

2

(K

i

�B

3

)

and eah H

2

(K

i

� B

3

)

�

=

Z is generated by Æ

i

= [K

i

� �℄, � 2 B

3

, i = 0; 1; : : : ; k.

On the other hand, we have

E

5

= S

5

n ([

k

i=0

IntN(S

2

i

));

where N(S

2

i

) = B

3

i

� S

2

is the losed tubular neighborhood of S

2

i

in S

5

, and

S

2

i

= x

i

� S

2

, i = 1; 2; : : : ; k, are so-alled \Hopf duals" to S

2

0

. Therefore, by

Alexander duality we have

H

2

(E

5

)

�

=

H

2

([

k

i=0

IntN(S

2

i

)):

Sine N(S

2

i

) = B

3

i

� S

2

, we an take the generators �

i

= [�B

3

i

� �℄ 2 H

2

(E

5

),

� 2 S

2

, and H

2

(E

5

) is freely generated by �

i

, i = 0; 1; : : : ; k. Here, we orient �

i

in suh a way that the linking number of �

i

with S

2

i

is equal to +1. Observe that

�

i

= i

1�

([K

i

� �℄) for i = 1; 2; : : : ; k, and Æ

i

= i

2�

([K

i

� �℄) for i = 0; 1; : : : ; k.

Therefore, the images of the generators by the homomorphism � an be written as
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follows.

�([K

0

� �℄) = �

1

+ �

2

+ � � �+ �

k

� Æ

0

;

�([K

i

� �℄) = �

i

� Æ

i

(1 6 i 6 k);

�([y

0

� �B

3

℄) = �

0

+ 0;

�([y

i

� �B

3

℄) =

X

06j6k;j 6=i

lk(S

2

i

; S

2

j

)�

j

+ 0 (1 6 i 6 k):

Therefore, with respet to the above bases, the homomorphism � is represented

by the following matrix:

R =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

0 0 � � � 0 1 1 � � � 1

1 1 � � � 0 0 a

11

� � � a

1k

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 0 � � � 1 0 a

k1

� � � a

kk

�1 0 � � � 0 0 0 � � � 0

0 �1 � � � 0 0 0 � � � 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 � � � �1 0 0 � � � 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

;

where a

ij

= lk(S

2

j

; S

2

i

), i 6= j, 1 6 i; j 6 k and a

ii

= 0. Observe that a

ij

= �a

ji

.

Lemma 3.5. The 5-dimensional manifold X

5

is homotopy equivalent to S

5

if and

only if detR = �1.

Proof. If X

5

is homotopy equivalent to S

5

, then its seond homology group must

vanish and therefore the homomorphism � must be an epimorphism, whih implies

that detR = �1.

Conversely, if � is an isomorphism, by the above Mayer-Vietoris exat sequene,

we have H

2

(X

5

) = 0. Then by Poinar�e duality, we see that X

5

has the homology

of S

5

. Then, a standard argument in algebrai topology shows that X

5

is homotopy

equivalent to S

5

.

This ompletes the proof of Lemma 3.5, and hene Theorem 3.3 has been proved.

�

Sine a skew-symmetri integer matrix has determinant �1 only if its size is

even, we have the following.

Corollary 3.6. If the �ber bundle S

3

(k+1)

,! E

5

! S

2

as in (3.1) arises from an

NS-pair, then k must be even.

Remark 3.7. In [15℄ Looijenga showed how to use the onneted sum of NS-pairs

to onstrut new ones. In fat, he proved that given an NS-pair (S

n

;K

n�p�1

) with

�ber F , there exists a polynomial map germ f : (R

n+1

; 0) ! (R

p+1

; 0) with an

isolated singularity at the origin suh that the assoiated NS-pair is isomorphi to

the onneted sum

(S

n

;K

n�p�1

)℄((�1)

n�1

S

n

; (�1)

n�p

K

n�p�1

)
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with �ber being di�eomorphi to the interior of F\(�1)

n�p

F , where \\" means the

onneted sum along the boundary. For further details the reader is referred to [15,

p. 421℄.

The following proposition follows from the remark above and the previous result.

Proposition 3.8. For every even integer k > 0, there exists an NS-pair (S

5

; L

k+1

)

with L

k+1

being di�eomorphi to the disjoint union of k+1 opies of S

2

, and there

exists a polynomial map germ f : (R

6

; 0) ! (R

3

; 0) with an isolated ritial point

at 0 suh that the assoiated NS-pair is isomorphi to (S

5

; L

k+1

℄(�L

k+1

)). In

partiular, L

k+1

℄(�L

k+1

) onsists of 2k + 1 onneted omponents.

Proof. First note that for eah positive even integer k, there exists a skew-symmetri

integer matrix of determinant �1. (For example, onsider the diret sum of the

matrix

�

0 1

�1 0

�

and its opies.) Then, by the above argument, there exists an NS-pair (S

5

; L

k+1

)

orresponding to that matrix. Now, one an just apply Looijenga's onstrution

explained above in Remark 3.7. �

Corollary 3.9. Given a real polynomial map germ as in Proposition 3.8 with k > 0,

the �ber of the assoiated Milnor �bration is not di�eomorphi to a disk.

This answers to Milnor's non-triviality question, Problem 1.4, for the dimension

pair (6; 3).

4. A generalization to higher dimensions

We an generalize the onstrution of Setion 3 in higher dimensions as follows,

in order to obtain new non-trivial examples of real polynomial map germs with an

isolated singularity.

Let n > 3 be an integer. For a non-negative integer k, let S

n

(k+1)

denote the

n-dimensional sphere S

n

with the interior of the disjoint union of k + 1 opies of

the n-dimensional disks removed. In this setion, we will onstrut a smooth �ber

bundle

S

n

(k+1)

,! E

2n�1

�

! S

n�1

suh that the restrition to the boundary

�S

n

(k+1)

,! �E

2n�1

�

! S

n�1

is a trivial bundle and that it arises from an NS-pair (S

2n�1

;K

n�1

).

Let A = (a

ij

) be a k � k integer matrix whih is (�1)

n

-symmetri suh that

the diagonal entries all vanish. Let S

0

�

=

S

n�1

be a trivially embedded oriented

(n � 1)-sphere in S

2n�1

. Then, there exist mutually disjoint smoothly embedded

oriented (n� 1)-spheres S

i

in S

2n�1

, i = 1; 2; : : : ; k, suh that

(1) S

i

do not interset S

0

,

(2) S

i

have linking number +1 with S

0

,

(3) the linking number lk(S

i

; S

j

) = a

ij

, i 6= j.
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Suh embeddings do exist (for example, see [11℄). Note that then

E

2n�1

= S

2n�1

n [

k

i=0

IntN(S

i

)

naturally �bers over S

n�1

in suh a way that the restrition to the boundary is triv-

ial. (More preisely, onsider the assoiated sub-�bration of the trivial �ber bundle

S

2n�1

nIntN(S

0

)

�

=

B

n

�S

n�1

! S

n�1

.) Then, by the same onstrution as in Se-

tion 3, we obtain an objet (X

2n�1

;K

n�1

), where X

2n�1

is a (2n� 1)-dimensional

smooth losed manifold, X

2n�1

n IntN(K

n�1

) is di�eomorphi to E

2n�1

, and it

�bers over S

n�1

with �ber S

n

(k+1)

in suh a way that the projetion map is om-

patible with a trivialization of the losed tubular neighborhood N(K

n�1

). Then,

we have the following.

Lemma 4.1. The manifold X

2n�1

is a homotopy (2n � 1)-sphere if and only if

detA = �1.

Proof. We see easily that E

2n�1

, and hene X

2n�1

is (n � 2)-onneted. Thus,

X

2n�1

is a homotopy (2n� 1)-sphere if and only if H

n�1

(X

2n�1

) vanishes. Then,

an argument using a Mayer-Vietoris exat sequene as in the previous setion leads

to the desired result. �

Combining this with the Looijenga onstrution (Remark 3.7), we have the fol-

lowing.

Corollary 4.2. Let n > 3 be an integer. For every positive integer k with k � 1

(mod 4), there exists an NS-pair (S

2n�1

; L

k

) with L

k

being di�eomorphi to the

disjoint union of k opies of S

n�1

, and there exists a polynomial map germ f :

(R

2n

; 0)! (R

n

; 0) with an isolated singularity at 0 suh that the assoiated NS-pair

is isomorphi to (S

2n�1

; L

k

℄(�1)

n

L

k

). In partiular, L

k

℄(�1)

n

L

k

onsists of 2k�1

onneted omponents.

Note that the assoiated Milnor �ber is di�eomorphi to S

n

(2k�1)

and is homotopy

equivalent to the bouquet of 2k � 2 opies of the (n� 1)-sphere.

Proof of Corollary 4.2. Set ` = (k � 1)=2, whih is a nonnegative even integer.

There exists an `� ` (�1)

n

-symmetri integer matrix A with determinant �1. By

Haeiger [11℄, there exists an embedding of [

k

i=0

S

n�1

i

into S

2n�1

suh that eah

omponent is embedded trivially, that S

n�1

i

links with S

0

one for all i > 0, and

that the linking matrix for [

`

i=1

S

n�1

i

oinides with A, where eah S

n�1

i

is a opy

of S

n�1

and the linking number lk(S

n�1

i

; S

n�1

i

) = 0, i = 1; 2; : : : ; `, by onvention.

Then by the above onstrution, we get the homotopy sphere X

2n�1

in whih the

disjoint union of `+1 opies of the (n�1)-spheres is embedded. Then, the onneted

sum X

2n�1

℄(�X

2n�1

) is di�eomorphi to S

2n�1

by [13℄, sine n > 3. Therefore,

by the onneted sum onstrution, we get an NS-pair (S

2n�1

; L

k

), where L

k

is

di�eomorphi to the disjoint union of 2`+ 1 = k opies of S

n�1

.

Then, applying Looijenga's onstrution, we get the desired onlusion. �

5. Bouquet theorems for real isolated singularities

It is known that for a holomorphi funtion germ f : (C

n+1

; 0) ! (C ; 0) with

an isolated singularity at the origin, the Milnor �ber F

f

has the homotopy type of
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a bouquet (or a wedge) of n-dimensional spheres. For real polynomial map germs

with an isolated singularity, we annot expet, in general, suh a bouquet theorem,

whih an be seen as follows.

By Zeeman's twist spinning onstrution [20℄, one an onstrut an NS-pair

(S

4

;K

2

) suh that the fundamental group of the �ber is not a free group. Then

Looijenga's onstrution leads to a non-trivial polynomial map germ (R

5

; 0) !

(R

2

; 0) with an isolated singularity at the origin suh that the Milnor �ber does not

have a free fundamental group. Consequently, the Milnor �ber is not homotopy

equivalent to a bouquet of spheres.

Remark 5.1. In the following, in order to get examples in higher dimensions, we

use the spinning onstrution due to Artin [5℄. For ompleteness, let us reall the

onstrution. Let (S

m

;K

k

) be an NS-pair with K

k

6= ; and � : S

m

nK

k

! S

m�k�1

the assoiated �bration. We denote the �ber of the �bration S

m

n IntN(K

k

) !

S

m�k�1

by F

k+1

, where N(K

k

) is the losed tubular neighborhood of K

k

in S

m

.

We take a point q 2 K

k

and a smallm-disk neighborhoodD in S

m

suh that (D;D\

K

k

) is di�eomorphi to the standard disk pair (D

m

; D

k

) and that � restrited to

D n (D\K

k

) is equivalent to the standard �bration D

m

nD

k

! S

m�k�1

. Then, we

onsider the quotient spae of (S

m

n IntD;K

k

n (IntD\K

k

))�S

1

, where for eah

x 2 �D, the points of the form (x; t) are identi�ed to a point for all t. This kind

of a onstrution is alled the spinning. The resulting pair gives (S

m+1

;

e

K

k+1

),

where

e

K

k+1

is a smoothly embedded submanifold of S

m+1

of dimension k+1. By

onstrution, there exists a �bration e� : S

m+1

n

e

K

k+1

! S

m�k�1

whih restrits

to � on (S

m

n (IntD [K

k

))�ftg for eah t 2 S

1

. It is straightforward to see that

(S

m+1

;

e

K

k+1

) is an NS-pair. We all it the spun of the NS-pair (S

m

;K

k

). Note

that the �ber

e

F

k+2

of the �bration S

m+1

nIntN(

e

K

k+1

)! S

m�k�1

is di�eomorphi

to the (k + 2)-dimensional manifold obtained from F

k+1

� S

1

by identifying, for

eah x 2 �

k

, the points of the form (x; t) to a point for all t, where �

k

is a k-

dimensional disk embedded in �F

k+1

(near q). Note that the fundamental groups

of S

m

nK

k

and S

m+1

n

e

K

k+1

are isomorphi, and that F

k+1

and

e

F

k+2

also have

isomorphi fundamental groups.

Let (S

4

;K

2

) be an NS-pair suh that the �ber has non-free fundamental group.

Then, applying one the spinning onstrution explained above to (S

4

;K

2

), one gets

a non-trivial example in dimension (6; 2) suh that the Milnor �ber is not homotopy

equivalent to a bouquet of spheres. Performing suh proedures indutively one an

onstrut examples in all pairs of dimensions (n; 2), n > 5, suh that the Milnor

�ber is not homotopy equivalent to a bouquet of spheres.

In this setion we give suÆient onditions to guarantee that the real Milnor

�ber is homotopy equivalent to a bouquet of spheres of the same dimension, or of

di�erent dimensions.

Throughout this setion we onsider f : (R

n

; 0)! (R

p

; 0), n > p > 2, a polyno-

mial map germ with an isolated singularity at the origin and the Milnor �bration

(the \Milnor tube"),

f : f

�1

(S

p�1

Æ

) \D

n

"

! S

p�1

Æ

;

where 0 < Æ � "� 1. We denote by F

f

its �ber and by �

j

= rankH

j

(F

f

) its j-th

Betti number.
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Consider � : (R

p

; 0) ! (R

p�1

; 0), p > 3, the germ of the anonial projetion.

Clearly, the omposition map germ G = � Æ f : (R

n

; 0) ! (R

p�1

; 0) also has an

isolated singularity at the origin and thus we have two �brations:

f : f

�1

(S

p�1

Æ

) \D

n

"

! S

p�1

Æ

;

and

G : G

�1

(S

p�2

Æ

) \D

n

"

! S

p�2

Æ

:

In [8℄ it was shown the relationship between the Milnor �bers F

f

and F

G

. It

is worth pointing out that the results in [8℄ hold in a more general setting whih

inludes the ase of non-isolated singularities. Nevertheless, in the speial ase of an

isolated singularity, it provides a positive answer to a onjeture stated by Milnor

in [16, p. 100℄ as follows:

Theorem 5.2 ([8℄). Let f : (R

n

; 0) ! (R

p

; 0), n > p > 2, be a polynomial map

germ with an isolated singularity at the origin and set G = � Æ f : (R

n

; 0) !

(R

p�1

; 0). Then, the Milnor �ber F

G

of G is homeomorphi to F

f

� [0; 1℄, where

for p = 2 the Milnor �ber of G is, by de�nition, the intersetion of a suÆiently

small losed ball entered at the origin and the inverse image of a regular value

suÆiently lose to the origin. In partiular, the Milnor �bers F

f

and F

G

have the

same homotopy type.

In [16, Chapter 11℄, Milnor provided information onerning the topology of the

�ber F

f

. It was proved in Lemma 11.4 that if n < 2(p�1), then the Milnor �ber is

neessarily ontratible. It also follows from the �rst paragraph of the proof that for

n > p > 2 in general, if the link is not empty, then the �ber F

f

is (p�2)-onneted,

i.e., �

i

(F

f

) = 0, i = 0; 1; : : : ; p� 2.

In [3℄ the authors proved formulae relating the Euler harateristi of the Milnor

�ber and the topologial degree of the gradient mapping of the oordinate fun-

tions, whih extends Milnor's formula for omplex funtion germs with an isolated

singularity (see [16, p. 64℄) and Khimshiashvili's formula [14℄ for isolated singularity

real analyti funtion germs, as follows.

Theorem 5.3 ([3℄). Let f : (R

n

; 0) ! (R

p

; 0), n > p > 2, be a polynomial map

germ with an isolated singularity at the origin, and onsider

f(x) = (f

1

(x); f

2

(x); : : : ; f

p

(x));

an arbitrary representative of the germ. Denote by deg

0

(rf

i

(x)), for i = 1; 2; : : : ; p,

the topologial degree of the map "

rf

i

krf

i

k

: S

n�1

"

! S

n�1

"

, for " > 0 small enough.

(i) If n is even, then �(F

f

) = 1� deg

0

rf

1

. Moreover, we have

deg

0

rf

1

= deg

0

rf

2

= � � � = deg

0

rf

p

:

(ii) If n is odd, then �(F

f

) = 1. Moreover, we have deg

0

rf

i

= 0 for i =

1; 2; : : : ; p.

In partiular, from item (ii) above it follows that if the soure spae is odd-

dimensional, then the �ber an never be homotopy equivalent to a bouquet of a

positive number of spheres of the same dimension.

In the following subsetions, we onsider the dimension pairs (2n; n) and (2n+

1; n), and study onditions for a Milnor �ber to have the homotopy type of a
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bouquet of spheres. We also study the dimension pairs (2n; p) and (2n+1; p) with

2 6 p 6 n using the omposition with a projetion.

5.1. The ase of (R

2n

; 0) ! (R

n

; 0). Consider f : (R

2n

; 0) ! (R

n

; 0), n > 2, a

polynomial map germ with an isolated singularity at the origin. Note that S

2n�1

does not smoothly �ber over S

n�1

. Hene, in this ase F

f

is an n-dimensional

ompat orientable manifold with non-empty boundary and �

i

(F

f

) = 0 for i =

0; 1; : : : ; n � 2. Sine �F

f

6= ;, we have H

n

(F

f

) = 0. Moreover, sine F

f

is

orientable, the homology H

n�1

(F

f

) is torsion free. Then, by Theorem 5.3, item (i),

we have �

n�1

= (�1)

n

deg

0

(rf

1

).

Furthermore, in the speial ase n = 2, the �bers are ompat onneted surfaes

with non-empty boundary, so that they have the homotopy type of a bouquet of 1-

dimensional spheres (irles). Furthermore, for n = 3, we have seen in Setion 2 that

the �bers are di�eomorphi to S

3

(k+1)

for some non-negative integer k, and hene

they are homotopy equivalent to a bouquet of 2-spheres. Therefore, we may assume

that n > 4. Note that if deg

0

(rf

1

) = 0, then the Milnor �ber is ontratible.

It follows from the Hurewiz theorem that the Hurewiz homomorphism

�

n�1

: �

n�1

(F

f

)! H

n�1

(F

f

)

�

=

Z

�

n�1

is an isomorphism. Then, for eah generator 

i

2 H

n�1

(F

f

)

�

=

Z

�

n�1

there exists

a ontinuous map '

i

: S

n�1

! F

f

, i = 1; 2; : : : ; �

n�1

, suh that 

i

= �

n�1

(['

i

℄) =

('

i

)

�

([S

n�1

℄), where [S

n�1

℄ 2 H

n�1

(S

n�1

)

�

=

Z is the fundamental lass (given by

the natural orientation of S

n�1

). Therefore, we have the ontinuous map

' :

�

n�1

_

S

n�1

! F

f

obtained by the wedge of the maps '

i

: S

n�1

! F

f

, for i = 1; 2; : : : ; �

n�1

, whih is

a homotopy equivalene by the Whitehead theorem.

Thus we have proved the following:

Proposition 5.4. Let f : (R

2n

; 0) ! (R

n

; 0) be a polynomial map germ with an

isolated singularity at the origin, n > 2. Given f(x) = (f

1

(x); f

2

(x); : : : ; f

n

(x)), a

representative of the germ f , we have the following.

(i) �

n�1

= (�1)

n

deg

0

(rf

1

).

(ii) The Milnor �ber F

f

has the homotopy type of a bouquet of (n�1)-dimensional

spheres

�

n�1

_

S

n�1

;

where it means a point when �

n�1

= 0.

For n > 4, it follows from Theorem 1.6, item (), that in all pairs of dimensions

(2n; n) there exist non-trivial examples. However, these non-trivial examples due

to Churh{Lamotke [7℄ have ontratible Milnor �bers (with non-simply onneted

links). On the other hand, aording to our onstrution in Setion 4 together with

Theorem 5.2, we get the following.

Corollary 5.5. For eah pair of dimensions (2n; p), 2 6 p 6 n, there exists a real

isolated singularity polynomial map germ (R

2n

; 0) ! (R

p

; 0) suh that the Milnor
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�ber is, up to homotopy, a bouquet of (n� 1)-dimensional spheres with the number

of spheres equal to jdeg

0

(rf

1

)j > 0, where f(x) = (f

1

(x); f

2

(x); : : : ; f

p

(x)).

5.2. The ase of (R

2n+1

; 0) ! (R

n

; 0). Consider now f : (R

2n+1

; 0) ! (R

n

; 0),

n > 3, a polynomial map germ with an isolated singularity at the origin. In this

ase, the Milnor �ber F

f

is an (n + 1)-dimensional ompat orientable manifold

with non-empty boundary and is (n� 2)-onneted. Then, H

n+1

(F

f

) = 0, H

n

(F

f

)

is torsion free and, by Theorem 5.3, �

n

= �

n�1

. Suppose that H

n�1

(F

f

) is torsion

free. Then, we have H

n�1

(F

f

)

�

=

Z

�

n�1 �

=

H

n

(F

f

). By Hurewiz theorem, the

Hurewiz homomorphisms

�

n�1

: �

n�1

(F

f

)! H

n�1

(F

f

)

�

=

Z

�

n�1

and

�

n

: �

n

(F

f

)! H

n

(F

f

)

�

=

Z

�

n�1

are surjetive. Then, by an argument similar to that used in the ase (2n; n), we

an onstrut a homotopy equivalene

' :

0

�

�

n�1

_

S

n�1

1

A

_

 

�

n

_

S

n

!

! F

f

:

Thus, we have proved the following result.

Proposition 5.6. Let f : (R

2n+1

; 0)! (R

n

; 0), n > 3, be a real isolated singularity

polynomial map germ. Then, the (n� 1)-th homology H

n�1

(F

f

) of the Milnor �ber

is torsion free if and only if F

f

has the homotopy type of a bouquet of spheres of

the form

0

�

�

n�1

_

S

n�1

1

A

_

0

�

�

n�1

_

S

n

1

A

=

�

n�1

_

(S

n�1

_ S

n

);

where it means a point when �

n�1

= 0.

Aording to our onstrution in Setion 4 together with Theorem 5.2 again, we

get the following.

Corollary 5.7. For eah pair of dimensions (2n + 1; p), 2 6 p 6 n, there exists

a real isolated singularity polynomial map germ (R

2n+1

; 0)! (R

p

; 0) suh that the

Milnor �ber is, up to homotopy, a bouquet of ` opies of the n-dimensional sphere

and ` opies of the (n� 1)-dimensional sphere with ` > 0.

Proof. For n > 3, this is a onsequene of Proposition 5.6. For n = 2, we start with

a non-trivial �bered knot (S

3

;K). Then, its spun (S

4

;

e

K) is a non-trivial �bered

2-knot, and its �ber is obtained by spinning a positive genus surfae with boundary.

Therefore, the �ber of (S

4

;

e

K) has the homotopy type of a bouquet of a positive

number of irles and 2-spheres. This ompletes the proof. �

5.3. Appliation to k-stairs maps. Given a polynomial map germ f : (R

n

; 0)!

(R

q

; 0), n > q > 1, with an isolated singularity at the origin, we say that a map

germ F : (R

n

; 0) ! (R

p

; 0), 1 6 q 6 p, is a (p � q)-stairs map for f if there exist

germs of polynomial funtions g

j

: (R

n

; 0) ! (R; 0), q + 1 6 j 6 p, suh that

F (x) = (f(x); g

q+1

(x); g

q+2

(x); : : : ; g

p

(x)) has an isolated singularity at the origin.

If p = q, then by de�nition, we have F (x) = f(x) and f is its own 0-stairs map.
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Corollary 5.8. Let f : (R

n

; 0)! (R

p

; 0), n=2 > p > 2, be a polynomial map germ

with an isolated singularity at the origin. Then we have the following.

(i) If n is even and f admits a (n=2� p)-stairs map, then the Milnor �ber is

homotopy equivalent to a bouquet of (n=2� 1)-dimensional spheres.

(ii) Suppose n is odd and H

k

(F

f

) is torsion free for k = (n � 1)=2� 1, where

F

f

denotes the Milnor �ber. If f admits a ((n� 1)=2� p)-stairs map, then

the Milnor �ber is homotopy equivalent to a bouquet of k- and (k + 1)-

dimensional spheres, where the numbers of spheres are the same.

Proof. Just apply Propositions 5.4, 5.6, and Theorem 5.2. �

We do not know whether or not the bouquet struture in the �ber haraterizes

the existene of suh k-stairs maps for k > 1.
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