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Abstra
t. We use topology of 
on�guration spa
es to give a 
hara
terization

of Neuwirth{Stallings pairs (S

5

;K) with dimK = 2. As a 
onsequen
e, we


onstru
t polynomial map germs (R

6

; 0)! (R

3

; 0) with an isolated singularity

at the origin su
h that their Milnor �bers are not di�eomorphi
 to a disk,

thus putting an end to Milnor's non-triviality question. Furthermore, for a

polynomial map germ (R

2n

; 0)! (R

n

; 0) or (R

2n+1

; 0)! (R

n

; 0), n > 3, with

an isolated singularity at the origin, we study the 
onditions under whi
h the

asso
iated Milnor �ber has the homotopy type of a bouquet of spheres. We

then 
onstru
t, for every pair (n; p) with n=2 > p > 2, a new example of a

polynomial map germ (R

n

; 0) ! (R

p

; 0) with an isolated singularity at the

origin su
h that its Milnor �ber has the homotopy type of a bouquet of a

positive number of spheres.

1. Introdu
tion

In the book \Singular points of 
omplex hypersurfa
es" [16℄, John Milnor stud-

ied the topology of 
omplex polynomial fun
tion germs in terms of the asso
iated

lo
ally trivial �ber bundles. He also showed the existen
e of su
h stru
tures for real

polynomial map germs with an isolated singularity as follows.

Theorem 1.1 ([16, Theorem 11.2℄). Let f : (R

n

; 0) ! (R

p

; 0), n > p > 2, be

a polynomial map germ with an isolated singularity at the origin. Then, there

exists an "

0

> 0 su
h that for all 0 < " 6 "

0

, the 
omplement of an open tubular

neighborhood of the link K = f

�1

(0) \ S

n�1

"

in S

n�1

"

is the total spa
e of a smooth

�ber bundle over the sphere S

p�1

, with ea
h �ber F

f

being a smooth 
ompa
t (n�p)-

dimensional manifold bounded by a 
opy of K, where S

n�1

"

denotes the sphere in

R

n

with radius " 
entered at the origin.

By using the 
oni
al stru
ture of the singularity, Milnor proved that the di�eo-

morphism type of the link does not 
hange for all " > 0 small enough. Moreover,

sin
e the origin is an isolated singularity, we have that 0 2 R

p

is a regular value

of f jS

n�1

"

: S

n�1

"

! R

p

. Therefore, if the link K = f

�1

(0) \ S

n�1

"

is not empty,

then it is a smooth (n� p� 1)-dimensional submanifold of the sphere with trivial

normal bundle. It also implies that, for ea
h �xed " one 
an �nd a small enough Æ,

0 < Æ � ", and a 
losed disk D

p

Æ


entered at the origin in R

p

with radius Æ, su
h
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that the restri
tion map f : f

�1

(D

p

Æ

)\S

n�1

"

! D

p

Æ

is a smooth trivial �ber bundle,

whi
h implies the triviality of the �bration

f : f

�1

(D

p

Æ

n f0g) \ S

n�1

"

! D

p

Æ

n f0g:

By 
omposing this with the radial proje
tion � : D

p

Æ

n f0g ! S

p�1

Æ

onto the bound-

ary sphere and s
aling to the unit sphere, one �nds that the bundle stru
ture on a

neighborhood of the link K is given by

f

kfk

: f

�1

(D

p

Æ

n f0g) \ S

n�1

"

! S

p�1

:

Now, one 
an glue this �ber bundle with that given in Theorem 1.1 along the


ommon boundary f

�1

(S

p�1

Æ

) \ S

n�1

"

in a smooth way, so that we get a smooth

lo
ally trivial �ber bundle

S

n�1

"

nK ! S

p�1

:

Remark 1.2. Following Milnor's proof of Theorem 1.1, one sees that, although

no pre
ise information about the bundle proje
tion above was provided, in the

real settings in general one 
annot expe
t that it is given by f=kfk outside a

neighborhood of the link. See Milnor's example [16, p. 99℄ or the following example

adapted from Milnor's one. Consider f : (R

3

; 0)! (R

2

; 0) given by

f(x; y; z) = (x; x

2

+ yx

2

+ y

3

+ yz

2

):

It is easy to see that the singular point set is given by �(f) = f(0; 0; 0)g, and for

all " > 0 small enough, we have K = f(0; 0; "); (0; 0;�")g. However, f=kfk does

have singular points and therefore it is not a submersion.

De�nition 1.3 (Looijenga [15℄). Let K = K

n�p�1

be an oriented submanifold of

dimension n� p� 1 of the oriented sphere S

n�1

with trivial normal bundle, or let

K = ;. Suppose that for some trivialization 
 : N(K) ! K � D

p

of a tubular

neighborhood N(K) of K, the �ber bundle de�ned by the 
omposition

N(K) nK




! K � (D

p

n f0g)

�

! S

p�1

;

with the last proje
tion being given by �(x; y) = y=kyk, extends to a smooth �ber

bundle S

n�1

n K ! S

p�1

. Then, the pair (S

n�1

;K

n�p�1

) is 
alled a Neuwirth{

Stallings pair, or an NS-pair for short.

A

ording to Theorem 1.1 and the previous dis
ussion, for all " > 0 suÆ
iently

small, the pair (S

n�1

"

; f

�1

(0) \ S

n�1

"

) is an NS-pair. In this 
ase Looijenga 
alled

it the NS-pair asso
iated to the singularity.

More re
ently, several generalizations of su
h a stru
ture have been obtained. For

instan
e, in [4℄ the authors 
onsidered a real analyti
 map germ f : (R

n

; 0)! (R

p

; 0)

with non-isolated singularities at the origin and introdu
ed a 
ondition whi
h also

ensures that the pair (S

n�1

"

; f

�1

(0)\S

n�1

"

) is an NS-pair with the bundle proje
tion

given by f=kfk : S

n�1

"

nK ! S

p�1

, where the link K = f

�1

(0)\S

n�1

"

is a smooth

manifold. It was 
alled a higher open book stru
ture of the sphere S

n�1

"

. In [1, 2℄

it was shown an extension of su
h stru
tures for spheres of small and big enough

radii (at in�nity), but allowing singularity in the \binding" K. In this 
ase, it was


alled a singular open book stru
ture of the sphere.

As pointed out by Milnor in [16, p. 100℄, the hypothesis of Theorem 1.1 is so

strong that examples are diÆ
ult to �nd, and he posed the following question.
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Problem 1.4. For whi
h dimensions n > p > 2 do non-trivial examples exist ?

Milnor did not exa
tly spe
ify what \trivial" means here: however, he proposed

to say that a real polynomial map germ f : (R

n

; 0) ! (R

p

; 0) is trivial if the �ber

F

f

of the bundle given in Theorem 1.1 is di�eomorphi
 to a 
losed disk D

n�p

. In

parti
ular, this implies that the �bers of the asso
iated NS-pair are di�eomorphi


to the (n� p)-dimensional open disk.

Remark 1.5. For a holomorphi
 fun
tion germ f : (C

n+1

; 0) ! (C ; 0) with an

isolated singularity at the origin, it follows from [16, Appendix B℄ that the �bers

of the asso
iated Milnor �bration are di�eomorphi
 to a 2n-dimensional disk if and

only if 0 is a non-singular point of f ; in fa
t, the fun
tion germ f is trivial if and

only if the Milnor number �

f

= deg

0

(rf(z)) is equal to zero, where deg

0

(rf(z))

stands for the topologi
al degree of the map

"

rf

krfk

: S

2n+1

"

! S

2n+1

"

for all " > 0 small enough, and

rf =

�

�f

�z

1

;

�f

�z

2

; : : : ;

�f

�z

n+1

�

:

In [7℄ Chur
h and Lamotke used results of Looijenga [15℄ and answered the above

question in the following way.

Theorem 1.6. (a) For 0 6 n� p 6 2, non-trivial examples o

ur pre
isely for the

dimensions (n; p) 2 f(2; 2); (4; 3); (4; 2)g.

(b) For n� p > 4, non-trivial examples o

ur for all (n; p).

(
) For n� p = 3, non-trivial examples o

ur for (5; 2) and (8; 5). Moreover, if the

3-dimensional Poin
ar�e Conje
ture is false, then there are non-trivial examples for

all (n; p). If the Poin
ar�e Conje
ture is true, then all examples are trivial ex
ept

(5; 2), (8; 5) and possibly (6; 3).

Sin
e the Poin
ar�e Conje
ture has been proved to be true, we have that for n�p =

3 the map f 
an be non-trivial only if (n; p) 2 f(6; 3); (8; 5); (5; 2)g. Therefore,

Problem 1.4 has been open uniquely for the dimension pair (6; 3).

In [19℄ the authors used an extension of Milnor-Khimshiashvili's formula proved

in [3℄ (see Theorem 5.3 of the present paper) for real isolated singularity map

germs to show a manageable 
hara
terization of Chur
h-Lamotke's results when

the Milnor �ber is 3-dimensional, as follows.

Theorem 1.7. Let f : (R

n

; 0) ! (R

p

; 0), f(x) = (f

1

(x); f

2

(x); : : : ; f

p

(x)), be a

polynomial map germ with an isolated singularity at the origin, and suppose n�p =

3. Denote by deg

0

(rf

1

) the topologi
al degree of the mapping

"

rf

1

krf

1

k

: S

n�1

"

! S

n�1

"

;

where

rf

1

=

�

�f

1

�x

1

;

�f

1

�x

2

; : : : ;

�f

1

�x

n

�

:

(a) If the pair (n; p) = (6; 3), then the following three are equivalent.
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(i) f is trivial.

(ii) deg

0

(rf

1

) = 0.

(iii) The link K is 
onne
ted.

(b) If the pair (n; p) = (8; 5), then the following three are equivalent.

(i) f is trivial.

(ii) deg

0

(rf

1

) = 0.

(iii) The link K is not empty.

(
) If the pair (n; p) = (5; 2), then the following two are equivalent.

(i) f is trivial.

(ii) �

1

(F

f

) = 1, i.e. the Milnor �ber F

f

is simply 
onne
ted.

In this paper we aim to give a 
hara
terization of NS-pairs (S

5

;K) with dimK =

2, and use it to prove the existen
e of non-trivial real polynomial map germs

(R

6

; 0) ! (R

3

; 0) with an isolated singularity at the origin, putting an end to

Problem 1.4 posed by Milnor. For this, we will use tools from 
on�guration spa
es

and a 
onstru
tion by Funar in [10, Se
tion 2.7℄. More pre
isely, we �rst 
las-

sify �ber bundles E

5

! S

2

with �ber the 3-sphere with the interiors of a disjoint

union of 3-disks removed, su
h that the boundary �brations are trivial. We will

show that the isomorphism 
lasses of su
h bundles are in one-to-one 
orrespon-

den
e with the se
ond homotopy group of a 
ertain 
on�guration spa
e, and that

its elements 
orrespond to a skew-symmetri
 integer matrix. Then, we show that a

given �ber bundle E

5

! S

2

is asso
iated with an NS-pair (S

5

;K) if and only if the

skew-symmetri
 matrix is unimodular. As a 
onsequen
e, we see that the number

of boundary 
omponents of a �ber is always odd. Furthermore, this allows us to


onstru
t a lot of non-trivial NS-pairs (S

5

;K), and then the Looijenga 
onstru
tion

[15℄ leads to non-trivial polynomial map germs with an isolated singularity.

Our se
ond aim in this paper is to introdu
e ne
essary and suÆ
ient 
onditions

under whi
h the Milnor �ber in the pairs of dimensions (2n; n) and (2n + 1; n),

n > 3, is, up to homotopy, a bouquet (or a wedge) of spheres. As appli
ations, we

give examples of polynomial map germs (R

n

; 0)! (R

p

; 0), n=2 > p > 2, su
h that

the asso
iated Milnor �ber is a bouquet of a non-zero number of spheres.

Throughout the paper, the (
o)homology groups are with integer 
oeÆ
ients

unless otherwise spe
i�ed. The symbol \

�

=

" denotes a di�eomorphism between

smooth manifolds or an appropriate isomorphism between algebrai
 obje
ts.

2. Classifi
ation of bundles

Let (S

5

;K

2

) be an NS-pair, where K

2

is a 
losed 2-dimensional manifold em-

bedded in the 5-dimensional sphere S

5

. We have the asso
iated �bration � :

S

5

n IntN(K

2

) ! S

2

, where N(K

2

) denotes a 
losed tubular neighborhood of

K

2

in S

5

, and we denote by F its �ber, whi
h is a 
ompa
t 3-dimensional mani-

fold bounded by a 
opy of K

2

. Sin
e S

5

does not �ber over S

2

, we have K

2

6= ;.

Furthermore, we have the homotopy exa
t sequen
e

�

2

(S

5

n IntN(K

2

))! �

2

(S

2

)! �

1

(F )! �

1

(S

5

n IntN(K

2

)):
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Sin
e � is trivial on the boundary, it has a se
tion, so that the homomorphism

�

2

(S

5

n IntN(K

2

)) ! �

2

(S

2

) is surje
tive. Furthermore, S

5

n IntN(K

2

) is sim-

ply 
onne
ted. Therefore, the 
ompa
t 3-dimensional manifold F is also simply


onne
ted.

Then, by a standard argument, we see that K

2

�

=

�F 
onsists of some 
opies

of S

2

and that F is homotopy equivalent to a 3-dimensional sphere with some

points removed. Then, by the solution to the Poin
ar�e Conje
ture, we see that F

is di�eomorphi
 to S

3

(k+1)

for some non-negative integer k, where S

3

(k+1)

denotes

the 3-sphere with the interiors of k + 1 disjoint 3-balls removed. Therefore, � is a

smooth �ber bundle with �ber S

3

(k+1)

su
h that it is trivial on the boundary. In

this se
tion, we 
lassify su
h �ber bundles.

Let Di�(S

3

) be the topologi
al group of di�eomorphisms of S

3

. By the solu-

tion to the Smale Conje
ture by Hat
her [12℄, we have that Di�(S

3

) is homotopy

equivalent to the orthogonal group O(4).

Let us denote by B

3

the 3-dimensional 
losed ball and for a non-negative in-

teger k, we denote by [

k+1

B

3

the disjoint union of k + 1 
opies of B

3

. We

sometimes regard [

k+1

B

3

to be \standardly" embedded in S

3

, and we denote

by j

k+1

: [

k+1

B

3

! S

3

the in
lusion map.

We denote by Emb([

k+1

B

3

; S

3

) the spa
e of all smooth embeddings of [

k+1

B

3

into S

3

, not ne
essarily the standard one, and by Di�(S

3

;[

k+1

B

3

) the subspa
e

of Di�(S

3

) 
onsisting of those di�eomorphisms whi
h restri
t to the in
lusion map

j

k+1

on [

k+1

B

3

. Furthermore, we denote by Di�(S

3

(k+1)

; �S

3

(k+1)

) the topologi
al

group of di�eomorphisms of S

3

(k+1)

whi
h restri
t to the identity on the boundary.

Note that S

3

(k+1)

= S

3

n [

k+1

IntB

3

.

The lemma below follows from [6, Proposition 1, p. 120℄.

Lemma 2.1. The 
anoni
al map Di�(S

3

;[

k+1

B

3

)! Di�(S

3

(k+1)

; �S

3

(k+1)

) indu
es

isomorphisms

�

i

(Di�(S

3

;[

k+1

B

3

))! �

i

(Di�(S

3

(k+1)

; �S

3

(k+1)

))

for all i.

Now 
onsider the natural map

' : Di�(S

3

)! Emb([

k+1

B

3

; S

3

)

that sends ea
h di�eomorphism of S

3

to its restri
tion to [

k+1

B

3

. The following

is a 
onsequen
e of the Cerf{Palais �bration theorem (see [6, Appendi
e℄, [17℄).

Lemma 2.2. The natural map ' as above is the proje
tion of a lo
ally trivial �ber

bundle with �ber Di�(S

3

;[

k+1

B

3

).

Therefore, we have the homotopy exa
t sequen
e:

�

2

(Di�(S

3

); id)! �

2

(Emb([

k+1

B

3

; S

3

); j

k+1

)! �

1

(Di�(S

3

;[

k+1

B

3

); id)

! �

1

(Di�(S

3

); id)! �

1

(Emb([

k+1

B

3

; S

3

); j

k+1

)! � � � : (2.1)

Let F

k+1

(S

3

) be the 
on�guration spa
e of k + 1 points in S

3

. This spa
e 
an

be naturally identi�ed with Emb(f0; 1; : : : ; kg; S

3

).
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Lemma 2.3. The spa
e Emb([

k+1

B

3

; S

3

) is homotopy equivalent to F

k+1

(S

3

) �

O(3)

k+1

.

Proof. For a given embedding � : [

k+1

B

3

! S

3

, we asso
iate the element of

F

k+1

(S

3

) whi
h sends the i-th point to the �-image of the 
enter of the i-th 3-ball.

Furthermore, by asso
iating the normalized di�erential of � at ea
h 
enter, we get

an element of O(3)

k+1

. (Note that the tangent bundle TS

3

of S

3

is trivial, and we

�x its trivialization here.) Then, we 
an show that the map Emb([

k+1

B

3

; S

3

) !

F

k+1

(S

3

) � O(3)

k+1

thus obtained gives a homotopy equivalen
e. (For example,

see [6, Appendi
e, x5, Proposition 3℄.) �

Re
all that Di�(S

3

) ' O(4). Furthermore, F

k+1

(S

3

) is 1-
onne
ted (see [9℄, [10,

Proof of Proposition 2.30℄) and �

2

(O(3)) = 0. Thus, the exa
t sequen
e (2.1) turns

into

0 ! �

2

(F

k+1

(S

3

))! �

1

(Di�(S

3

;[

k+1

B

3

); id)! �

1

(O(4); id)

! �

1

(O(3)

k+1

; id)! � � � :

Note that �

1

(O(4); id)

�

=

Z

2

and �

1

(O(3)

k+1

; id)

�

=

(Z

2

)

k+1

. By 
hoosing the

standard embedding j

k+1

so that it is equivariant with respe
t to the natural SO(2)-

a
tions, we see that the homomorphism �

1

(O(4); id) ! �

1

(O(3)

k+1

; id) sends the

generator 1 2 Z

2

to (1; 1; : : : ; 1) 2 (Z

2

)

k+1

. In parti
ular, it is inje
tive. Thus, we

have that the boundary homomorphism

�

2

(F

k+1

(S

3

))! �

1

(Di�(S

3

;[

k+1

B

3

); id) (2.2)

is an isomorphism.

By [9℄ and [10, Proof of Proposition 2.30℄, we have the following important result.

Lemma 2.4. The homotopy group �

2

(F

k+1

(S

3

)) is isomorphi
 to Z

k(k�1)=2

.

Note that, for a smooth �ber bundle S

3

(k+1)

,! E

5

! S

2

with stru
ture group

Di�(S

3

(k+1)

; �S

3

(k+1)

), its 
hara
teristi
 map is an element of

�

1

(Di�(S

3

(k+1)

; �S

3

(k+1)

); id);

whi
h is isomorphi
 to �

1

(Di�(S

3

;[

k+1

B

3

); id)

�

=

Z

k(k�1)=2

by Lemma 2.1, (2.2)

and Lemma 2.4.

In fa
t, given su
h a smooth �ber bundle � : E

5

! S

2

, one 
an 
onsider S

2

=

D

2

1

[D

2

2

, where D

2

i

, i = 1; 2, denote the 2-dimensional 
losed disk. Sin
e ea
h D

2

i

is 
ontra
tible, the restri
tion � : �

�1

(D

2

i

)! D

2

i

is a trivial �ber bundle with �ber

S

3

(k+1)

, and we have �

�1

(D

2

i

)

�

=

S

3

(k+1)

�D

2

i

. Hen
e, we 
an re
over the total spa
e

E

5

= (S

3

(k+1)

�D

2

1

) [

h

(S

3

(k+1)

�D

2

2

)

for some di�eomorphism h : S

3

(k+1)

� �D

2

2

! S

3

(k+1)

� �D

2

1

de�ned by h(x; t) =

(�(t)(x); t), where � : S

1

= �D

2

! Di�(S

3

(k+1)

; �S

3

(k+1)

) 
orresponds to the 
hara
-

teristi
 map. Therefore, the stru
ture of the �ber bundle is 
ompletely determined

by the homotopy 
lass [�℄ 2 �

1

(Di�(S

3

(k+1)

; �S

3

(k+1)

); id).
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3. Chara
terization of NS-pairs

For a non-negative integer k, let

S

3

(k+1)

,! E

5

�

! S

2

(3.1)

be a smooth �ber bundle su
h that its restri
tion to the boundary �S

3

(k+1)

,!

�E

5

! S

2

is a trivial bundle. In this se
tion, we 
hara
terize su
h �ber bundles

that arise from an NS-pair (S

5

;K) with K

�

=

[

k+1

S

2

.

We start by gluing the trivial bundle [

k

(B

3

� S

2

) ! S

2

along the k boundary


omponents to get the B

3

-�bration

e� : Y = E

5

[ ([

k

(B

3

� S

2

))! S

2

: (3.2)

This �bration is trivial, sin
e the stru
ture group Di�(B

3

; �B

3

) is 
ontra
tible by

Hat
her's solution to the Smale Conje
ture [12℄, where Di�(B

3

; �B

3

) denotes the

spa
e of those di�eomorphisms of B

3

whi
h �x �B

3

pointwise. Therefore, the total

spa
e Y of the �bration (3.2) is di�eomorphi
 to B

3

�S

2

. Then, by gluing B

3

0

�S

2

to Y = B

3

� S

2

by the map �B

3

0

� S

2

! �B

3

� S

2

given by (x; y) 7! (y; x),

we get the sphere S

5

, where B

3

0

is a 
opy of the 
losed 3-dimensional ball. Set

S

2

0

= x

0

� S

2

, where x

0

is the 
enter of B

3

0

, and we write N(S

2

0

) = B

3

0

� S

2

, whi
h

is identi�ed with the 
losed tubular neighborhood of S

2

0

in S

5

.

To �x the notation we write [

k+1

B

3

= [

k

i=0

B

3

i

, and denote by x

i

the 
enter of

B

3

i

, where we 
onsider [

k

B

3

= [

k

i=1

B

3

i

. We also write S

2

i

= x

i

�S

2

, i = 1; 2; : : : ; k.

Note that the 2-spheres S

2

i

, i = 0; 1; : : : ; k, are all embedded in S

5

in a standard

way. Furthermore, ea
h of S

2

i

, i = 1; 2; : : : ; k, has linking number �1 with S

2

0

. In

the following dis
ussions, we orient S

2

i

, i = 0; 1; 2; : : : ; k, in su
h a way that the

linking number of S

2

i

with S

2

0

is equal to +1, i = 1; 2; : : : ; k.

For y 2 S

2

, we have [

k

i=1

(B

3

i

� y) � e�

�1

(y)

�

=

B

3

. Therefore, to ea
h y 2 S

2

we


an naturally asso
iate an element of the k-point 
on�guration spa
e F

k

(IntB

3

)

�

=

F

k

(R

3

). This de�nes a 
lassifying map 
 : S

2

! F

k

(R

3

).

Then, we have the following.

Lemma 3.1. The isomorphism 
lasses of the �brations as in (3.1) are in one-to-

one 
orresponden
e with �

2

(F

k

(R

3

))

�

=

Z

k(k�1)=2

. The 
orresponden
e is given by

asso
iating the homotopy 
lass of the 
lassifying map 
.

Re
all that a

ording to [10, Lemma 2.31℄, a �ber bundle (3.1) 
orresponds to

the element (lk(S

2

i

; S

2

j

))

16i<j6k

2 Z

k(k�1)=2

in the above 
orresponden
e, where lk

denotes the linking number in S

5

, and we �x orientations of S

2

i

, i = 1; 2; : : : ; k, and

S

5

.

Proof of Lemma 3.1. As has been seen in Se
tion 2, the isomorphism 
lasses of

the bundles in question are in one-to-one 
orresponden
e with �

2

(F

k+1

(S

3

))

�

=

�

1

(Di�(S

3

;[

k+1

B

3

); id). On the other hand, it is known that �

2

(F

k

(R

3

)) is natu-

rally isomorphi
 to �

2

(F

k+1

(S

3

)) (see [9, p. 38℄).

Re
all the lo
ally trivial �ber bundle

Di�(S

3

;[

k+1

B

3

)

�

�! Di�(S

3

)

'

�! Emb([

k+1

B

3

; S

3

)
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of Lemma 2.2, where � is the natural in
lusion map. For the homotopy 
lass [�℄ 2

�

1

(Di�(S

3

(k+1)

; �S

3

(k+1)

))

�

=

�

1

(Di�(S

3

;[

k+1

B

3

)) of the 
hara
teristi
 map, its �

�

-

image vanishes in �

1

(Di�(S

3

)), so that there exists a 
ontinuous map e� : D

2

!

Di�(S

3

) whi
h extends � Æ � : S

1

! Di�(S

3

). Then, the homotopy 
lass of ' Æ e� :

D

2

! Emb([

k+1

B

3

; S

3

) in �

2

(Emb([

k+1

B

3

; S

3

))

�

=

�

2

(F

k+1

(S

3

))

�

=

�

2

(F

k

(R

3

))

is the 
lass 
orresponding to [�℄ by the isomorphism (2.2). By 
onstru
tion, this


oin
ides with the homotopy 
lass of the 
lassifying map 
. This 
ompletes the

proof. �

Now, we have the following natural question.

Problem 3.2. Whi
h elements of �

2

(F

k

(R

3

))

�

=

Z

k(k�1)=2


orrespond to an NS-pair?

We answer this question in our main result in this se
tion, as follows.

Theorem 3.3. The �ber bundle S

3

(k+1)

,! E

5

�

! S

2

as in (3.1) arises from an

NS-pair if and only if det

�

lk(S

2

i

; S

2

j

)

�

16i;j6k

= �1, where lk(S

2

i

; S

2

i

) = 0 for all

1 6 i 6 k by 
onvention.

Note that

�

lk(S

2

i

; S

2

j

)

�

16i;j6k

is a k � k skew-symmetri
 integer matrix.

The rest of this se
tion is devoted to the proof of the above theorem.

For a �ber bundle (3.1), let F be its �ber. We �x the trivialization of the

boundary �bration, and we write �E

5

= [

k

i=0

(K

i

� S

2

), where K

i

�

=

S

2

are the

boundary 
omponents of F

�

=

S

3

(k+1)

and are oriented in su
h a way that the


y
le represented by K

0

is homologous to the sum of the 
y
les represented by

K

i

, i = 1; 2; : : : ; k. Let X

5

= E

5

[ ([

k

i=0

(K

i

� B

3

)) be the 
losed 5-dimensional

manifold obtained by gluing E

5

and [

k

i=0

(K

i

�B

3

) along their boundaries in su
h

a way that the natural proje
tion

[

k

i=0

(K

i

� (B

3

n f0g))! S

2

extends to a smooth �bration X

5

nK ! S

2

, where K = [

k

i=0

(K

i

�f0g). Note that

in this notation, K

i

is identi�ed with �B

3

i

, i = 1; 2; : : : ; k, and K

0

is identi�ed with

� � S

2

� �B

3

0

� S

2

. We warn the reader that the way that K

i

� B

3

are atta
hed

to E

5

is very di�erent from that for the 
onstru
tion of Y � S

5

in (3.2).

The theorem is a 
onsequen
e of Lemmas 3.4 and 3.5 below.

Lemma 3.4. The �ber bundle � (3.1) arises from an NS-pair if and only if X

5

is

homotopy equivalent to S

5

.

The above lemma is a 
onsequen
e of the well-known fa
t that every homotopy

5-sphere is standard [18℄.

Sin
e we see easily that X

5

is simply 
onne
ted, it suÆ
es to study the homol-

ogy group H

2

(X

5

). Now 
onsider the following pie
e of the Mayer-Vietoris exa
t

sequen
e:

H

2

([

k

i=0

(K

i

� �B

3

))

�

! H

2

(E

5

)�H

2

([

k

i=0

(K

i

�B

3

))! H

2

(X

5

)! 0;

where the homomorphism � = (i

1�

;�i

2�

) is indu
ed by the in
lusions i

1

: [

k

i=0

(K

i

�

�B

3

)! E

5

and i

2

: [

k

i=0

(K

i

� �B

3

)! [

k

i=0

(K

i

�B

3

).



NEW EXAMPLES OF NEUWIRTH{STALLINGS PAIRS 9
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ements

S

2
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1
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1
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2
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�

0

�

1

�

2

�

k

Figure 1. Situation in S

5

Figure 1 helps us to understand the images of the elements ofH

2

([

k

i=0

(K

i

��B

3

))

by the homomorphism �. Note that this depi
ts the situation in S

5

and not in X

5

.

In order to des
ribe the homomorphism �, let us �x bases of the homology groups.

In the following, for a 
y
le z, we denote by [z℄ the homology 
lass represented by

z. First, we have

H

2

([

k

i=0

(K

i

� �B

3

))

�

=

�

k

i=0

H

2

(K

i

� �B

3

)

and ea
h H

2

(K

i

� �B

3

)

�

=

Z� Z is generated by [K

i

� �℄ and [y

i

� �B

3

℄, where

y

i

2 K

i

, i = 0; 1; : : : ; k. Furthermore, we have

H

2

([

k

i=0

(K

i

�B

3

))

�

=

�

k

i=0

H

2

(K

i

�B

3

)

and ea
h H

2

(K

i

� B

3

)

�

=

Z is generated by Æ

i

= [K

i

� �℄, � 2 B

3

, i = 0; 1; : : : ; k.

On the other hand, we have

E

5

= S

5

n ([

k

i=0

IntN(S

2

i

));

where N(S

2

i

) = B

3

i

� S

2

is the 
losed tubular neighborhood of S

2

i

in S

5

, and

S

2

i

= x

i

� S

2

, i = 1; 2; : : : ; k, are so-
alled \Hopf duals" to S

2

0

. Therefore, by

Alexander duality we have

H

2

(E

5

)

�

=

H

2

([

k

i=0

IntN(S

2

i

)):

Sin
e N(S

2

i

) = B

3

i

� S

2

, we 
an take the generators �

i

= [�B

3

i

� �℄ 2 H

2

(E

5

),

� 2 S

2

, and H

2

(E

5

) is freely generated by �

i

, i = 0; 1; : : : ; k. Here, we orient �

i

in su
h a way that the linking number of �

i

with S

2

i

is equal to +1. Observe that

�

i

= i

1�

([K

i

� �℄) for i = 1; 2; : : : ; k, and Æ

i

= i

2�

([K

i

� �℄) for i = 0; 1; : : : ; k.

Therefore, the images of the generators by the homomorphism � 
an be written as
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follows.

�([K

0

� �℄) = �

1

+ �

2

+ � � �+ �

k

� Æ

0

;

�([K

i

� �℄) = �

i

� Æ

i

(1 6 i 6 k);

�([y

0

� �B

3

℄) = �

0

+ 0;

�([y

i

� �B

3

℄) =

X

06j6k;j 6=i

lk(S

2

i

; S

2

j

)�

j

+ 0 (1 6 i 6 k):

Therefore, with respe
t to the above bases, the homomorphism � is represented

by the following matrix:

R =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

0 0 � � � 0 1 1 � � � 1

1 1 � � � 0 0 a

11

� � � a

1k

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 0 � � � 1 0 a

k1

� � � a

kk

�1 0 � � � 0 0 0 � � � 0

0 �1 � � � 0 0 0 � � � 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 � � � �1 0 0 � � � 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

;

where a

ij

= lk(S

2

j

; S

2

i

), i 6= j, 1 6 i; j 6 k and a

ii

= 0. Observe that a

ij

= �a

ji

.

Lemma 3.5. The 5-dimensional manifold X

5

is homotopy equivalent to S

5

if and

only if detR = �1.

Proof. If X

5

is homotopy equivalent to S

5

, then its se
ond homology group must

vanish and therefore the homomorphism � must be an epimorphism, whi
h implies

that detR = �1.

Conversely, if � is an isomorphism, by the above Mayer-Vietoris exa
t sequen
e,

we have H

2

(X

5

) = 0. Then by Poin
ar�e duality, we see that X

5

has the homology

of S

5

. Then, a standard argument in algebrai
 topology shows that X

5

is homotopy

equivalent to S

5

.

This 
ompletes the proof of Lemma 3.5, and hen
e Theorem 3.3 has been proved.

�

Sin
e a skew-symmetri
 integer matrix has determinant �1 only if its size is

even, we have the following.

Corollary 3.6. If the �ber bundle S

3

(k+1)

,! E

5

! S

2

as in (3.1) arises from an

NS-pair, then k must be even.

Remark 3.7. In [15℄ Looijenga showed how to use the 
onne
ted sum of NS-pairs

to 
onstru
t new ones. In fa
t, he proved that given an NS-pair (S

n

;K

n�p�1

) with

�ber F , there exists a polynomial map germ f : (R

n+1

; 0) ! (R

p+1

; 0) with an

isolated singularity at the origin su
h that the asso
iated NS-pair is isomorphi
 to

the 
onne
ted sum

(S

n

;K

n�p�1

)℄((�1)

n�1

S

n

; (�1)

n�p

K

n�p�1

)
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with �ber being di�eomorphi
 to the interior of F\(�1)

n�p

F , where \\" means the


onne
ted sum along the boundary. For further details the reader is referred to [15,

p. 421℄.

The following proposition follows from the remark above and the previous result.

Proposition 3.8. For every even integer k > 0, there exists an NS-pair (S

5

; L

k+1

)

with L

k+1

being di�eomorphi
 to the disjoint union of k+1 
opies of S

2

, and there

exists a polynomial map germ f : (R

6

; 0) ! (R

3

; 0) with an isolated 
riti
al point

at 0 su
h that the asso
iated NS-pair is isomorphi
 to (S

5

; L

k+1

℄(�L

k+1

)). In

parti
ular, L

k+1

℄(�L

k+1

) 
onsists of 2k + 1 
onne
ted 
omponents.

Proof. First note that for ea
h positive even integer k, there exists a skew-symmetri


integer matrix of determinant �1. (For example, 
onsider the dire
t sum of the

matrix

�

0 1

�1 0

�

and its 
opies.) Then, by the above argument, there exists an NS-pair (S

5

; L

k+1

)


orresponding to that matrix. Now, one 
an just apply Looijenga's 
onstru
tion

explained above in Remark 3.7. �

Corollary 3.9. Given a real polynomial map germ as in Proposition 3.8 with k > 0,

the �ber of the asso
iated Milnor �bration is not di�eomorphi
 to a disk.

This answers to Milnor's non-triviality question, Problem 1.4, for the dimension

pair (6; 3).

4. A generalization to higher dimensions

We 
an generalize the 
onstru
tion of Se
tion 3 in higher dimensions as follows,

in order to obtain new non-trivial examples of real polynomial map germs with an

isolated singularity.

Let n > 3 be an integer. For a non-negative integer k, let S

n

(k+1)

denote the

n-dimensional sphere S

n

with the interior of the disjoint union of k + 1 
opies of

the n-dimensional disks removed. In this se
tion, we will 
onstru
t a smooth �ber

bundle

S

n

(k+1)

,! E

2n�1

�

! S

n�1

su
h that the restri
tion to the boundary

�S

n

(k+1)

,! �E

2n�1

�

! S

n�1

is a trivial bundle and that it arises from an NS-pair (S

2n�1

;K

n�1

).

Let A = (a

ij

) be a k � k integer matrix whi
h is (�1)

n

-symmetri
 su
h that

the diagonal entries all vanish. Let S

0

�

=

S

n�1

be a trivially embedded oriented

(n � 1)-sphere in S

2n�1

. Then, there exist mutually disjoint smoothly embedded

oriented (n� 1)-spheres S

i

in S

2n�1

, i = 1; 2; : : : ; k, su
h that

(1) S

i

do not interse
t S

0

,

(2) S

i

have linking number +1 with S

0

,

(3) the linking number lk(S

i

; S

j

) = a

ij

, i 6= j.
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Su
h embeddings do exist (for example, see [11℄). Note that then

E

2n�1

= S

2n�1

n [

k

i=0

IntN(S

i

)

naturally �bers over S

n�1

in su
h a way that the restri
tion to the boundary is triv-

ial. (More pre
isely, 
onsider the asso
iated sub-�bration of the trivial �ber bundle

S

2n�1

nIntN(S

0

)

�

=

B

n

�S

n�1

! S

n�1

.) Then, by the same 
onstru
tion as in Se
-

tion 3, we obtain an obje
t (X

2n�1

;K

n�1

), where X

2n�1

is a (2n� 1)-dimensional

smooth 
losed manifold, X

2n�1

n IntN(K

n�1

) is di�eomorphi
 to E

2n�1

, and it

�bers over S

n�1

with �ber S

n

(k+1)

in su
h a way that the proje
tion map is 
om-

patible with a trivialization of the 
losed tubular neighborhood N(K

n�1

). Then,

we have the following.

Lemma 4.1. The manifold X

2n�1

is a homotopy (2n � 1)-sphere if and only if

detA = �1.

Proof. We see easily that E

2n�1

, and hen
e X

2n�1

is (n � 2)-
onne
ted. Thus,

X

2n�1

is a homotopy (2n� 1)-sphere if and only if H

n�1

(X

2n�1

) vanishes. Then,

an argument using a Mayer-Vietoris exa
t sequen
e as in the previous se
tion leads

to the desired result. �

Combining this with the Looijenga 
onstru
tion (Remark 3.7), we have the fol-

lowing.

Corollary 4.2. Let n > 3 be an integer. For every positive integer k with k � 1

(mod 4), there exists an NS-pair (S

2n�1

; L

k

) with L

k

being di�eomorphi
 to the

disjoint union of k 
opies of S

n�1

, and there exists a polynomial map germ f :

(R

2n

; 0)! (R

n

; 0) with an isolated singularity at 0 su
h that the asso
iated NS-pair

is isomorphi
 to (S

2n�1

; L

k

℄(�1)

n

L

k

). In parti
ular, L

k

℄(�1)

n

L

k


onsists of 2k�1


onne
ted 
omponents.

Note that the asso
iated Milnor �ber is di�eomorphi
 to S

n

(2k�1)

and is homotopy

equivalent to the bouquet of 2k � 2 
opies of the (n� 1)-sphere.

Proof of Corollary 4.2. Set ` = (k � 1)=2, whi
h is a nonnegative even integer.

There exists an `� ` (�1)

n

-symmetri
 integer matrix A with determinant �1. By

Hae
iger [11℄, there exists an embedding of [

k

i=0

S

n�1

i

into S

2n�1

su
h that ea
h


omponent is embedded trivially, that S

n�1

i

links with S

0

on
e for all i > 0, and

that the linking matrix for [

`

i=1

S

n�1

i


oin
ides with A, where ea
h S

n�1

i

is a 
opy

of S

n�1

and the linking number lk(S

n�1

i

; S

n�1

i

) = 0, i = 1; 2; : : : ; `, by 
onvention.

Then by the above 
onstru
tion, we get the homotopy sphere X

2n�1

in whi
h the

disjoint union of `+1 
opies of the (n�1)-spheres is embedded. Then, the 
onne
ted

sum X

2n�1

℄(�X

2n�1

) is di�eomorphi
 to S

2n�1

by [13℄, sin
e n > 3. Therefore,

by the 
onne
ted sum 
onstru
tion, we get an NS-pair (S

2n�1

; L

k

), where L

k

is

di�eomorphi
 to the disjoint union of 2`+ 1 = k 
opies of S

n�1

.

Then, applying Looijenga's 
onstru
tion, we get the desired 
on
lusion. �

5. Bouquet theorems for real isolated singularities

It is known that for a holomorphi
 fun
tion germ f : (C

n+1

; 0) ! (C ; 0) with

an isolated singularity at the origin, the Milnor �ber F

f

has the homotopy type of
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a bouquet (or a wedge) of n-dimensional spheres. For real polynomial map germs

with an isolated singularity, we 
annot expe
t, in general, su
h a bouquet theorem,

whi
h 
an be seen as follows.

By Zeeman's twist spinning 
onstru
tion [20℄, one 
an 
onstru
t an NS-pair

(S

4

;K

2

) su
h that the fundamental group of the �ber is not a free group. Then

Looijenga's 
onstru
tion leads to a non-trivial polynomial map germ (R

5

; 0) !

(R

2

; 0) with an isolated singularity at the origin su
h that the Milnor �ber does not

have a free fundamental group. Consequently, the Milnor �ber is not homotopy

equivalent to a bouquet of spheres.

Remark 5.1. In the following, in order to get examples in higher dimensions, we

use the spinning 
onstru
tion due to Artin [5℄. For 
ompleteness, let us re
all the


onstru
tion. Let (S

m

;K

k

) be an NS-pair with K

k

6= ; and � : S

m

nK

k

! S

m�k�1

the asso
iated �bration. We denote the �ber of the �bration S

m

n IntN(K

k

) !

S

m�k�1

by F

k+1

, where N(K

k

) is the 
losed tubular neighborhood of K

k

in S

m

.

We take a point q 2 K

k

and a smallm-disk neighborhoodD in S

m

su
h that (D;D\

K

k

) is di�eomorphi
 to the standard disk pair (D

m

; D

k

) and that � restri
ted to

D n (D\K

k

) is equivalent to the standard �bration D

m

nD

k

! S

m�k�1

. Then, we


onsider the quotient spa
e of (S

m

n IntD;K

k

n (IntD\K

k

))�S

1

, where for ea
h

x 2 �D, the points of the form (x; t) are identi�ed to a point for all t. This kind

of a 
onstru
tion is 
alled the spinning. The resulting pair gives (S

m+1

;

e

K

k+1

),

where

e

K

k+1

is a smoothly embedded submanifold of S

m+1

of dimension k+1. By


onstru
tion, there exists a �bration e� : S

m+1

n

e

K

k+1

! S

m�k�1

whi
h restri
ts

to � on (S

m

n (IntD [K

k

))�ftg for ea
h t 2 S

1

. It is straightforward to see that

(S

m+1

;

e

K

k+1

) is an NS-pair. We 
all it the spun of the NS-pair (S

m

;K

k

). Note

that the �ber

e

F

k+2

of the �bration S

m+1

nIntN(

e

K

k+1

)! S

m�k�1

is di�eomorphi


to the (k + 2)-dimensional manifold obtained from F

k+1

� S

1

by identifying, for

ea
h x 2 �

k

, the points of the form (x; t) to a point for all t, where �

k

is a k-

dimensional disk embedded in �F

k+1

(near q). Note that the fundamental groups

of S

m

nK

k

and S

m+1

n

e

K

k+1

are isomorphi
, and that F

k+1

and

e

F

k+2

also have

isomorphi
 fundamental groups.

Let (S

4

;K

2

) be an NS-pair su
h that the �ber has non-free fundamental group.

Then, applying on
e the spinning 
onstru
tion explained above to (S

4

;K

2

), one gets

a non-trivial example in dimension (6; 2) su
h that the Milnor �ber is not homotopy

equivalent to a bouquet of spheres. Performing su
h pro
edures indu
tively one 
an


onstru
t examples in all pairs of dimensions (n; 2), n > 5, su
h that the Milnor

�ber is not homotopy equivalent to a bouquet of spheres.

In this se
tion we give suÆ
ient 
onditions to guarantee that the real Milnor

�ber is homotopy equivalent to a bouquet of spheres of the same dimension, or of

di�erent dimensions.

Throughout this se
tion we 
onsider f : (R

n

; 0)! (R

p

; 0), n > p > 2, a polyno-

mial map germ with an isolated singularity at the origin and the Milnor �bration

(the \Milnor tube"),

f : f

�1

(S

p�1

Æ

) \D

n

"

! S

p�1

Æ

;

where 0 < Æ � "� 1. We denote by F

f

its �ber and by �

j

= rankH

j

(F

f

) its j-th

Betti number.
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Consider � : (R

p

; 0) ! (R

p�1

; 0), p > 3, the germ of the 
anoni
al proje
tion.

Clearly, the 
omposition map germ G = � Æ f : (R

n

; 0) ! (R

p�1

; 0) also has an

isolated singularity at the origin and thus we have two �brations:

f : f

�1

(S

p�1

Æ

) \D

n

"

! S

p�1

Æ

;

and

G : G

�1

(S

p�2

Æ

) \D

n

"

! S

p�2

Æ

:

In [8℄ it was shown the relationship between the Milnor �bers F

f

and F

G

. It

is worth pointing out that the results in [8℄ hold in a more general setting whi
h

in
ludes the 
ase of non-isolated singularities. Nevertheless, in the spe
ial 
ase of an

isolated singularity, it provides a positive answer to a 
onje
ture stated by Milnor

in [16, p. 100℄ as follows:

Theorem 5.2 ([8℄). Let f : (R

n

; 0) ! (R

p

; 0), n > p > 2, be a polynomial map

germ with an isolated singularity at the origin and set G = � Æ f : (R

n

; 0) !

(R

p�1

; 0). Then, the Milnor �ber F

G

of G is homeomorphi
 to F

f

� [0; 1℄, where

for p = 2 the Milnor �ber of G is, by de�nition, the interse
tion of a suÆ
iently

small 
losed ball 
entered at the origin and the inverse image of a regular value

suÆ
iently 
lose to the origin. In parti
ular, the Milnor �bers F

f

and F

G

have the

same homotopy type.

In [16, Chapter 11℄, Milnor provided information 
on
erning the topology of the

�ber F

f

. It was proved in Lemma 11.4 that if n < 2(p�1), then the Milnor �ber is

ne
essarily 
ontra
tible. It also follows from the �rst paragraph of the proof that for

n > p > 2 in general, if the link is not empty, then the �ber F

f

is (p�2)-
onne
ted,

i.e., �

i

(F

f

) = 0, i = 0; 1; : : : ; p� 2.

In [3℄ the authors proved formulae relating the Euler 
hara
teristi
 of the Milnor

�ber and the topologi
al degree of the gradient mapping of the 
oordinate fun
-

tions, whi
h extends Milnor's formula for 
omplex fun
tion germs with an isolated

singularity (see [16, p. 64℄) and Khimshiashvili's formula [14℄ for isolated singularity

real analyti
 fun
tion germs, as follows.

Theorem 5.3 ([3℄). Let f : (R

n

; 0) ! (R

p

; 0), n > p > 2, be a polynomial map

germ with an isolated singularity at the origin, and 
onsider

f(x) = (f

1

(x); f

2

(x); : : : ; f

p

(x));

an arbitrary representative of the germ. Denote by deg

0

(rf

i

(x)), for i = 1; 2; : : : ; p,

the topologi
al degree of the map "

rf

i

krf

i

k

: S

n�1

"

! S

n�1

"

, for " > 0 small enough.

(i) If n is even, then �(F

f

) = 1� deg

0

rf

1

. Moreover, we have

deg

0

rf

1

= deg

0

rf

2

= � � � = deg

0

rf

p

:

(ii) If n is odd, then �(F

f

) = 1. Moreover, we have deg

0

rf

i

= 0 for i =

1; 2; : : : ; p.

In parti
ular, from item (ii) above it follows that if the sour
e spa
e is odd-

dimensional, then the �ber 
an never be homotopy equivalent to a bouquet of a

positive number of spheres of the same dimension.

In the following subse
tions, we 
onsider the dimension pairs (2n; n) and (2n+

1; n), and study 
onditions for a Milnor �ber to have the homotopy type of a
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bouquet of spheres. We also study the dimension pairs (2n; p) and (2n+1; p) with

2 6 p 6 n using the 
omposition with a proje
tion.

5.1. The 
ase of (R

2n

; 0) ! (R

n

; 0). Consider f : (R

2n

; 0) ! (R

n

; 0), n > 2, a

polynomial map germ with an isolated singularity at the origin. Note that S

2n�1

does not smoothly �ber over S

n�1

. Hen
e, in this 
ase F

f

is an n-dimensional


ompa
t orientable manifold with non-empty boundary and �

i

(F

f

) = 0 for i =

0; 1; : : : ; n � 2. Sin
e �F

f

6= ;, we have H

n

(F

f

) = 0. Moreover, sin
e F

f

is

orientable, the homology H

n�1

(F

f

) is torsion free. Then, by Theorem 5.3, item (i),

we have �

n�1

= (�1)

n

deg

0

(rf

1

).

Furthermore, in the spe
ial 
ase n = 2, the �bers are 
ompa
t 
onne
ted surfa
es

with non-empty boundary, so that they have the homotopy type of a bouquet of 1-

dimensional spheres (
ir
les). Furthermore, for n = 3, we have seen in Se
tion 2 that

the �bers are di�eomorphi
 to S

3

(k+1)

for some non-negative integer k, and hen
e

they are homotopy equivalent to a bouquet of 2-spheres. Therefore, we may assume

that n > 4. Note that if deg

0

(rf

1

) = 0, then the Milnor �ber is 
ontra
tible.

It follows from the Hurewi
z theorem that the Hurewi
z homomorphism

�

n�1

: �

n�1

(F

f

)! H

n�1

(F

f

)

�

=

Z

�

n�1

is an isomorphism. Then, for ea
h generator 


i

2 H

n�1

(F

f

)

�

=

Z

�

n�1

there exists

a 
ontinuous map '

i

: S

n�1

! F

f

, i = 1; 2; : : : ; �

n�1

, su
h that 


i

= �

n�1

(['

i

℄) =

('

i

)

�

([S

n�1

℄), where [S

n�1

℄ 2 H

n�1

(S

n�1

)

�

=

Z is the fundamental 
lass (given by

the natural orientation of S

n�1

). Therefore, we have the 
ontinuous map

' :

�

n�1

_

S

n�1

! F

f

obtained by the wedge of the maps '

i

: S

n�1

! F

f

, for i = 1; 2; : : : ; �

n�1

, whi
h is

a homotopy equivalen
e by the Whitehead theorem.

Thus we have proved the following:

Proposition 5.4. Let f : (R

2n

; 0) ! (R

n

; 0) be a polynomial map germ with an

isolated singularity at the origin, n > 2. Given f(x) = (f

1

(x); f

2

(x); : : : ; f

n

(x)), a

representative of the germ f , we have the following.

(i) �

n�1

= (�1)

n

deg

0

(rf

1

).

(ii) The Milnor �ber F

f

has the homotopy type of a bouquet of (n�1)-dimensional

spheres

�

n�1

_

S

n�1

;

where it means a point when �

n�1

= 0.

For n > 4, it follows from Theorem 1.6, item (
), that in all pairs of dimensions

(2n; n) there exist non-trivial examples. However, these non-trivial examples due

to Chur
h{Lamotke [7℄ have 
ontra
tible Milnor �bers (with non-simply 
onne
ted

links). On the other hand, a

ording to our 
onstru
tion in Se
tion 4 together with

Theorem 5.2, we get the following.

Corollary 5.5. For ea
h pair of dimensions (2n; p), 2 6 p 6 n, there exists a real

isolated singularity polynomial map germ (R

2n

; 0) ! (R

p

; 0) su
h that the Milnor
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�ber is, up to homotopy, a bouquet of (n� 1)-dimensional spheres with the number

of spheres equal to jdeg

0

(rf

1

)j > 0, where f(x) = (f

1

(x); f

2

(x); : : : ; f

p

(x)).

5.2. The 
ase of (R

2n+1

; 0) ! (R

n

; 0). Consider now f : (R

2n+1

; 0) ! (R

n

; 0),

n > 3, a polynomial map germ with an isolated singularity at the origin. In this


ase, the Milnor �ber F

f

is an (n + 1)-dimensional 
ompa
t orientable manifold

with non-empty boundary and is (n� 2)-
onne
ted. Then, H

n+1

(F

f

) = 0, H

n

(F

f

)

is torsion free and, by Theorem 5.3, �

n

= �

n�1

. Suppose that H

n�1

(F

f

) is torsion

free. Then, we have H

n�1

(F

f

)

�

=

Z

�

n�1 �

=

H

n

(F

f

). By Hurewi
z theorem, the

Hurewi
z homomorphisms

�

n�1

: �

n�1

(F

f

)! H

n�1

(F

f

)

�

=

Z

�

n�1

and

�

n

: �

n

(F

f

)! H

n

(F

f

)

�

=

Z

�

n�1

are surje
tive. Then, by an argument similar to that used in the 
ase (2n; n), we


an 
onstru
t a homotopy equivalen
e

' :

0

�

�

n�1

_

S

n�1

1

A

_

 

�

n

_

S

n

!

! F

f

:

Thus, we have proved the following result.

Proposition 5.6. Let f : (R

2n+1

; 0)! (R

n

; 0), n > 3, be a real isolated singularity

polynomial map germ. Then, the (n� 1)-th homology H

n�1

(F

f

) of the Milnor �ber

is torsion free if and only if F

f

has the homotopy type of a bouquet of spheres of

the form

0

�

�

n�1

_

S

n�1

1

A

_

0

�

�

n�1

_

S

n

1

A

=

�

n�1

_

(S

n�1

_ S

n

);

where it means a point when �

n�1

= 0.

A

ording to our 
onstru
tion in Se
tion 4 together with Theorem 5.2 again, we

get the following.

Corollary 5.7. For ea
h pair of dimensions (2n + 1; p), 2 6 p 6 n, there exists

a real isolated singularity polynomial map germ (R

2n+1

; 0)! (R

p

; 0) su
h that the

Milnor �ber is, up to homotopy, a bouquet of ` 
opies of the n-dimensional sphere

and ` 
opies of the (n� 1)-dimensional sphere with ` > 0.

Proof. For n > 3, this is a 
onsequen
e of Proposition 5.6. For n = 2, we start with

a non-trivial �bered knot (S

3

;K). Then, its spun (S

4

;

e

K) is a non-trivial �bered

2-knot, and its �ber is obtained by spinning a positive genus surfa
e with boundary.

Therefore, the �ber of (S

4

;

e

K) has the homotopy type of a bouquet of a positive

number of 
ir
les and 2-spheres. This 
ompletes the proof. �

5.3. Appli
ation to k-stairs maps. Given a polynomial map germ f : (R

n

; 0)!

(R

q

; 0), n > q > 1, with an isolated singularity at the origin, we say that a map

germ F : (R

n

; 0) ! (R

p

; 0), 1 6 q 6 p, is a (p � q)-stairs map for f if there exist

germs of polynomial fun
tions g

j

: (R

n

; 0) ! (R; 0), q + 1 6 j 6 p, su
h that

F (x) = (f(x); g

q+1

(x); g

q+2

(x); : : : ; g

p

(x)) has an isolated singularity at the origin.

If p = q, then by de�nition, we have F (x) = f(x) and f is its own 0-stairs map.
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Corollary 5.8. Let f : (R

n

; 0)! (R

p

; 0), n=2 > p > 2, be a polynomial map germ

with an isolated singularity at the origin. Then we have the following.

(i) If n is even and f admits a (n=2� p)-stairs map, then the Milnor �ber is

homotopy equivalent to a bouquet of (n=2� 1)-dimensional spheres.

(ii) Suppose n is odd and H

k

(F

f

) is torsion free for k = (n � 1)=2� 1, where

F

f

denotes the Milnor �ber. If f admits a ((n� 1)=2� p)-stairs map, then

the Milnor �ber is homotopy equivalent to a bouquet of k- and (k + 1)-

dimensional spheres, where the numbers of spheres are the same.

Proof. Just apply Propositions 5.4, 5.6, and Theorem 5.2. �

We do not know whether or not the bouquet stru
ture in the �ber 
hara
terizes

the existen
e of su
h k-stairs maps for k > 1.
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