Cobordism of knots associated with complex hypersurface singularities

Osamu Saeki

(Institute of Mathematics for Industry, Kyushu University)

Joint work with Vincent Blanlœil
(Univ. of Strasbourg, France)

April 13, 2012

§1. An Example

Example

$$
\begin{aligned}
& f\left(z_{1}, z_{2}\right)=z_{1}^{2}-z_{2}^{3} \\
& V=\left\{\left(z_{1}, z_{2}\right) \in \mathbf{C}^{2} \mid f\left(z_{1}, z_{2}\right)=0\right\} \quad \text { complex plane curve }
\end{aligned}
$$

Example

$$
\begin{aligned}
& f\left(z_{1}, z_{2}\right)=z_{1}^{2}-z_{2}^{3} \\
& V=\left\{\left(z_{1}, z_{2}\right) \in \mathbf{C}^{2} \mid f\left(z_{1}, z_{2}\right)=0\right\} \quad \text { complex plane curve } \\
& S_{\varepsilon}^{3}=\left\{\left.\left(z_{1}, z_{2}\right) \in \mathbf{C}^{2}| | z_{1}\right|^{2}+\left|z_{2}\right|^{2}=\varepsilon^{2}\right\}, 0<\varepsilon \ll 1 \\
& K=S_{\varepsilon}^{3} \cap V \subset S_{\varepsilon}^{3}
\end{aligned}
$$

Example

$$
\begin{aligned}
& f\left(z_{1}, z_{2}\right)=z_{1}^{2}-z_{2}^{3} \\
& V=\left\{\left(z_{1}, z_{2}\right) \in \mathbf{C}^{2} \mid f\left(z_{1}, z_{2}\right)=0\right\} \quad \text { complex plane curve } \\
& S_{\varepsilon}^{3}=\left\{\left.\left(z_{1}, z_{2}\right) \in \mathbf{C}^{2}| | z_{1}\right|^{2}+\left|z_{2}\right|^{2}=\varepsilon^{2}\right\}, 0<\varepsilon \ll 1 \\
& K=S_{\varepsilon}^{3} \cap V \subset S_{\varepsilon}^{3}
\end{aligned}
$$

Example

$$
\begin{aligned}
& f\left(z_{1}, z_{2}\right)=z_{1}^{2}-z_{2}^{3} \\
& V=\left\{\left(z_{1}, z_{2}\right) \in \mathbf{C}^{2} \mid f\left(z_{1}, z_{2}\right)=0\right\} \quad \text { complex plane curve } \\
& S_{\varepsilon}^{3}=\left\{\left.\left(z_{1}, z_{2}\right) \in \mathbf{C}^{2}| | z_{1}\right|^{2}+\left|z_{2}\right|^{2}=\varepsilon^{2}\right\}, 0<\varepsilon \ll 1 \\
& K=S_{\varepsilon}^{3} \cap V \subset S_{\varepsilon}^{3}
\end{aligned}
$$

K is a knot in S^{3} !

A knot

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Set $r_{1}=\left|z_{1}\right|$ and $r_{2}=\left|z_{2}\right|$.

A knot

Set $r_{1}=\left|z_{1}\right|$ and $r_{2}=\left|z_{2}\right|$.
$\exists!r_{1}, r_{2}>0$ s.t. $r_{1}^{2}=r_{2}^{3}, \quad r_{1}^{2}+r_{2}^{2}=\varepsilon^{2}$

A knot

$$
\begin{aligned}
& \text { Set } r_{1}=\left|z_{1}\right| \text { and } r_{2}=\left|z_{2}\right| \\
& \exists!r_{1}, r_{2}>0 \text { s.t. } r_{1}^{2}=r_{2}^{3}, r_{1}^{2}+r_{2}^{2}=\varepsilon^{2} \\
& \qquad \begin{aligned}
K & =\left\{\left(z_{1}, z_{2}\right) \in S_{\varepsilon}^{3} \mid z_{1}^{2}=z_{2}^{3}\right\} \\
& =\left\{\left(r_{1} e^{3 \pi i t}, r_{2} e^{2 \pi i t}\right) \in \mathbf{C}^{2} \mid t \in \mathbf{R}\right\} \subset S_{r_{1}}^{1} \times S_{r_{2}}^{1} \subset S_{\varepsilon}^{3}
\end{aligned}
\end{aligned}
$$

A knot

$$
\begin{aligned}
& \text { Set } r_{1}=\left|z_{1}\right| \text { and } r_{2}=\left|z_{2}\right| \text {. } \\
& \exists!r_{1}, r_{2}>0 \text { s.t. } r_{1}^{2}=r_{2}^{3}, \quad r_{1}^{2}+r_{2}^{2}=\varepsilon^{2} \\
& K=\left\{\left(z_{1}, z_{2}\right) \in S_{\varepsilon}^{3} \mid z_{1}^{2}=z_{2}^{3}\right\} \\
& =\left\{\left(r_{1} e^{3 \pi i t}, r_{2} e^{2 \pi i t}\right) \in \mathbf{C}^{2} \mid t \in \mathbf{R}\right\} \subset S_{r_{1}}^{1} \times S_{r_{2}}^{1} \subset S_{\varepsilon}^{3}
\end{aligned}
$$

This is a trefoil knot!

§2. Milnor's Fibration Theorem

Complex hypersurface

$f=f\left(z_{1}, z_{2}, \ldots, z_{n+1}\right)$ complex polynomial with $f(\mathbf{0})=0$ s.t. 0 is an isolated critical point of f, i.e.,

$$
\frac{\partial f}{\partial z_{1}}(z)=\cdots=\frac{\partial f}{\partial z_{n+1}}(z)=0 \Longleftrightarrow z=\mathbf{0}
$$

in a neighborhood of $\mathbf{0}$.

Complex hypersurface

$f=f\left(z_{1}, z_{2}, \ldots, z_{n+1}\right)$ complex polynomial with $f(\mathbf{0})=0$ s.t. 0 is an isolated critical point of f, i.e.,

$$
\frac{\partial f}{\partial z_{1}}(z)=\cdots=\frac{\partial f}{\partial z_{n+1}}(z)=0 \Longleftrightarrow z=\mathbf{0}
$$

in a neighborhood of 0 .
$V=f^{-1}(0) \subset \mathbf{C}^{n+1}$: complex hypersurface
$K_{f}=f^{-1}(0) \cap S_{\varepsilon}^{2 n+1} \subset S_{\varepsilon}^{2 n+1}$: algebraic knot associated with f,

$$
0<\varepsilon \ll 1
$$

Complex hypersurface

$f=f\left(z_{1}, z_{2}, \ldots, z_{n+1}\right)$ complex polynomial with $f(\mathbf{0})=0$
s.t. 0 is an isolated critical point of f, i.e.,

$$
\frac{\partial f}{\partial z_{1}}(z)=\cdots=\frac{\partial f}{\partial z_{n+1}}(z)=0 \Longleftrightarrow z=\mathbf{0}
$$

in a neighborhood of 0 .
$V=f^{-1}(0) \subset \mathbf{C}^{n+1}$: complex hypersurface
$K_{f}=f^{-1}(0) \cap S_{\varepsilon}^{2 n+1} \subset S_{\varepsilon}^{2 n+1}$: algebraic knot associated with f,

$$
0<\varepsilon \ll 1 .
$$

K_{f} is a $(2 n-1)$-dim. smooth closed manifold embedded in $S_{\varepsilon}^{2 n+1}$.

Cone structure theorem

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Cone structure theorem

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Theorem 2.1 (Milnor, 1968)
$\left(D_{\varepsilon}^{2 n+2}, f^{-1}(0) \cap D_{\varepsilon}^{2 n+2}\right) \approx \operatorname{Cone}\left(S_{\varepsilon}^{2 n+1}, K_{f}\right) \quad$ (homeo.)

Milnor's fibration theorem

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Theorem 2.2 (Milnor, 1968)
(1) $\varphi_{f}=f /|f|: S_{\varepsilon}^{2 n+1} \backslash K_{f} \rightarrow S^{1}$ is a locally trivial fibration.

Milnor's fibration theorem

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Theorem 2.2 (Milnor, 1968)
(1) $\varphi_{f}=f /|f|: S_{\varepsilon}^{2 n+1} \backslash K_{f} \rightarrow S^{1}$ is a locally trivial fibration.
(2) K_{f} is $(n-2)$-connected, i.e., $\pi_{i}\left(K_{f}\right)=0 \forall i \leq n-2$.

Milnor's fibration theorem

Theorem 2.2 (Milnor, 1968)
(1) $\varphi_{f}=f /|f|: S_{\varepsilon}^{2 n+1} \backslash K_{f} \rightarrow S^{1}$ is a locally trivial fibration.
(2) K_{f} is $(n-2)$-connected, i.e., $\pi_{i}\left(K_{f}\right)=0 \forall i \leq n-2$.
(3) Fibers of φ_{f} are $(n-1)$-connected.

Milnor's fibration theorem

Theorem 2.2 (Milnor, 1968)

(1) $\varphi_{f}=f /|f|: S_{\varepsilon}^{2 n+1} \backslash K_{f} \rightarrow S^{1}$ is a locally trivial fibration.
(2) K_{f} is $(n-2)$-connected, i.e., $\pi_{i}\left(K_{f}\right)=0 \forall i \leq n-2$.
(3) Fibers of φ_{f} are $(n-1)$-connected.

Milnor's fibration theorem

Theorem 2.2 (Milnor, 1968)

(1) $\varphi_{f}=f /|f|: S_{\varepsilon}^{2 n+1} \backslash K_{f} \rightarrow S^{1}$ is a locally trivial fibration.
(2) K_{f} is $(n-2)$-connected, i.e., $\pi_{i}\left(K_{f}\right)=0 \forall i \leq n-2$.
(3) Fibers of φ_{f} are $(n-1)$-connected.

K_{f} is a fibered knot, but K_{f} may not be a sphere.

Algebraic knots

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

$K_{f} \subset S_{\varepsilon}^{2 n+1}:$ algebraic knot associated with f.

Algebraic knots

$K_{f} \subset S_{\varepsilon}^{2 n+1}$: algebraic knot associated with f.
We put $F_{f}=\overline{\varphi_{f}^{-1}(1)}=\varphi_{f}^{-1}(1) \cup K_{f}$, which is called the Milnor fiber.

Algebraic knots

$K_{f} \subset S_{\varepsilon}^{2 n+1}$: algebraic knot associated with f.
We put $F_{f}=\overline{\varphi_{f}^{-1}(1)}=\varphi_{f}^{-1}(1) \cup K_{f}$, which is called the Milnor fiber. $\partial F_{f}=K_{f}: F_{f}$ is a Seifert manifold for K_{f}.

Algebraic knots

$K_{f} \subset S_{\varepsilon}^{2 n+1}$: algebraic knot associated with f.
We put $F_{f}=\overline{\varphi_{f}^{-1}(1)}=\varphi_{f}^{-1}(1) \cup K_{f}$, which is called the Milnor fiber. $\partial F_{f}=K_{f}: F_{f}$ is a Seifert manifold for K_{f}. $\operatorname{dim} K_{f}=2 n-1, \operatorname{dim} F_{f}=2 n$.

Algebraic knots

$K_{f} \subset S_{\varepsilon}^{2 n+1}$: algebraic knot associated with f.
We put $F_{f}=\overline{\varphi_{f}^{-1}(1)}=\varphi_{f}^{-1}(1) \cup K_{f}$, which is called the Milnor fiber.
$\partial F_{f}=K_{f}: F_{f}$ is a Seifert manifold for K_{f}.
$\operatorname{dim} K_{f}=2 n-1, \operatorname{dim} F_{f}=2 n$.
Algebraic knots are odd dim. fibered knots that are "highly connected".

Algebraic knots

$K_{f} \subset S_{\varepsilon}^{2 n+1}$: algebraic knot associated with f.
We put $F_{f}=\overline{\varphi_{f}^{-1}(1)}=\varphi_{f}^{-1}(1) \cup K_{f}$, which is called the Milnor fiber.
$\partial F_{f}=K_{f}: F_{f}$ is a Seifert manifold for K_{f}.
$\operatorname{dim} K_{f}=2 n-1, \operatorname{dim} F_{f}=2 n$.
Algebraic knots are odd dim. fibered knots that are "highly connected". $\widetilde{H}_{i}\left(K_{f} ; \mathbf{Z}\right)=0$ for $i \neq n-1, n$.

Algebraic knots

$K_{f} \subset S_{\varepsilon}^{2 n+1}$: algebraic knot associated with f.
We put $F_{f}=\overline{\varphi_{f}^{-1}(1)}=\varphi_{f}^{-1}(1) \cup K_{f}$, which is called the Milnor fiber.
$\partial F_{f}=K_{f}: F_{f}$ is a Seifert manifold for K_{f}.
$\operatorname{dim} K_{f}=2 n-1, \operatorname{dim} F_{f}=2 n$.
Algebraic knots are odd dim. fibered knots that are "highly connected". $\widetilde{H}_{i}\left(K_{f} ; \mathbf{Z}\right)=0$ for $i \neq n-1, n$.
$F_{f} \simeq \vee^{\mu} S^{n}$: homotopy equivalent to a bouquet of n-spheres.
The number μ is called the Milnor number.

Algebraic knots

$K_{f} \subset S_{\varepsilon}^{2 n+1}$: algebraic knot associated with f.
We put $F_{f}=\overline{\varphi_{f}^{-1}(1)}=\varphi_{f}^{-1}(1) \cup K_{f}$, which is called the Milnor fiber.
$\partial F_{f}=K_{f}: F_{f}$ is a Seifert manifold for K_{f}.
$\operatorname{dim} K_{f}=2 n-1, \operatorname{dim} F_{f}=2 n$.
Algebraic knots are odd dim. fibered knots that are "highly connected". $\widetilde{H}_{i}\left(K_{f} ; \mathbf{Z}\right)=0$ for $i \neq n-1, n$.
$F_{f} \simeq \vee^{\mu} S^{n}$: homotopy equivalent to a bouquet of n-spheres.
The number μ is called the Milnor number.
$n=1$: fibered link in S^{3}
$n=2$: connected 3 -manifold in S^{5} with simply connected fibers
$n=3$: simply connected 5 -manifold in S^{7} with 2 -connected fibers

Two-variable case

Case of $n=1: \quad K_{f}$ is a classical link in S_{ε}^{3}.
Suppose f is irreducible at 0 . Then K_{f} is a knot.

Two-variable case

Case of $n=1: \quad K_{f}$ is a classical link in S_{ε}^{3}.
Suppose f is irreducible at 0 . Then K_{f} is a knot. $f\left(z_{1}, z_{2}\right)=0 \Leftarrow$ We can "solve" z_{2} as a function of z_{1} (polynomial with rational exponents), which is called a Puiseux expansion.

Case of $n=1: \quad K_{f}$ is a classical link in S_{ε}^{3}.
Suppose f is irreducible at 0 . Then K_{f} is a knot. $f\left(z_{1}, z_{2}\right)=0 \Leftarrow$ We can "solve" z_{2} as a function of z_{1} (polynomial with rational exponents), which is called a Puiseux expansion.

Proposition 2.3 K_{f} is a certain iterated torus knot, i.e., it is a cable of a cable of a ... of a torus knot.

Two-variable case

Case of $n=1: \quad K_{f}$ is a classical link in S_{ε}^{3}.
Suppose f is irreducible at 0 . Then K_{f} is a knot.
$f\left(z_{1}, z_{2}\right)=0 \Leftarrow$ We can "solve" z_{2} as a function of z_{1} (polynomial with rational exponents), which is called a Puiseux expansion.

Proposition 2.3 K_{f} is a certain iterated torus knot, i.e., it is a cable of a cable of a \cdots of a torus knot.

The general case where f may not be irreducible at 0 :
According to Zariski's theory of resolution of curve singularities, we have

Two-variable case

Case of $n=1: \quad K_{f}$ is a classical link in S_{ε}^{3}.
Suppose f is irreducible at 0 . Then K_{f} is a knot.
$f\left(z_{1}, z_{2}\right)=0 \Leftarrow$ We can "solve" z_{2} as a function of z_{1} (polynomial with rational exponents), which is called a Puiseux expansion.

Proposition 2.3 K_{f} is a certain iterated torus knot, i.e., it is a cable of a cable of a ... of a torus knot.

The general case where f may not be irreducible at 0 :
According to Zariski's theory of resolution of curve singularities, we have
Proposition 2.4 The isotopy class of the link K_{f} is completely determined by the components and their linking numbers.

Characteristic polynomial

In general, $\varphi_{f}: S_{\varepsilon}^{2 n+1} \backslash K_{f} \rightarrow S^{1}$ is a smooth fibration with fiber $\operatorname{Int} F_{f}$.

Characteristic polynomial

In general, $\varphi_{f}: S_{\varepsilon}^{2 n+1} \backslash K_{f} \rightarrow S^{1}$ is a smooth fibration with fiber $\operatorname{Int} F_{f}$. Let $h: \operatorname{Int} F_{f} \xrightarrow{\cong} \operatorname{Int} F_{f}$ be the geometric monodromy. We denote by $\Delta_{f}(t)$ the characteristic polynomial of

$$
h_{*}: H_{n}\left(\operatorname{Int} F_{f} ; \mathbf{Z}\right) \rightarrow H_{n}\left(\operatorname{Int} F_{f} ; \mathbf{Z}\right) .
$$

Characteristic polynomial

In general, $\varphi_{f}: S_{\varepsilon}^{2 n+1} \backslash K_{f} \rightarrow S^{1}$ is a smooth fibration with fiber $\operatorname{Int} F_{f}$. Let $h: \operatorname{Int} F_{f} \xrightarrow{\cong} \operatorname{Int} F_{f}$ be the geometric monodromy. We denote by $\Delta_{f}(t)$ the characteristic polynomial of

$$
h_{*}: H_{n}\left(\operatorname{Int} F_{f} ; \mathbf{Z}\right) \rightarrow H_{n}\left(\operatorname{Int} F_{f} ; \mathbf{Z}\right) .
$$

It is known that $\Delta_{f}(t)$ coincides with the Alexander polynomial of K_{f}.

§3. Classification

Seifert form

The Seifert form associated with f is the bilinear form

$$
\begin{gathered}
L_{f}: H_{n}\left(F_{f} ; \mathbf{Z}\right) \times H_{n}\left(F_{f} ; \mathbf{Z}\right) \rightarrow \mathbf{Z} \quad \text { define by } \\
L_{f}(\alpha, \beta)=\operatorname{lk}\left(a_{+}, b\right), \quad \text { where }
\end{gathered}
$$

Seifert form

The Seifert form associated with f is the bilinear form

$$
\begin{gathered}
L_{f}: H_{n}\left(F_{f} ; \mathbf{Z}\right) \times H_{n}\left(F_{f} ; \mathbf{Z}\right) \rightarrow \mathbf{Z} \quad \text { define by } \\
L_{f}(\alpha, \beta)=\operatorname{lk}\left(a_{+}, b\right), \quad \text { where }
\end{gathered}
$$

■ a and b are n-cycles representing $\alpha, \beta \in H_{n}\left(F_{f} ; \mathbf{Z}\right)$,

- a_{+}is obtained by pushing a into the positive normal direction of $F_{f} \subset S_{\varepsilon}^{2 n+1}$,

■ lk is the linking number in $S_{\varepsilon}^{2 n+1}$.

Seifert form

The Seifert form associated with f is the bilinear form

$$
\begin{gathered}
L_{f}: H_{n}\left(F_{f} ; \mathbf{Z}\right) \times H_{n}\left(F_{f} ; \mathbf{Z}\right) \rightarrow \mathbf{Z} \quad \text { define by } \\
L_{f}(\alpha, \beta)=\operatorname{lk}\left(a_{+}, b\right), \quad \text { where }
\end{gathered}
$$

■ a and b are n-cycles representing $\alpha, \beta \in H_{n}\left(F_{f} ; \mathbf{Z}\right)$,

- a_{+}is obtained by pushing a into the positive normal direction of $F_{f} \subset S_{\varepsilon}^{2 n+1}$,

■ lk is the linking number in $S_{\varepsilon}^{2 n+1}$.
Theorem 3.1 (Durfee, Kato, 1974) For $n \geq 3$, two algebraic knots K_{f} and K_{g} are isotopic \Longleftrightarrow the Seifert forms L_{f} and L_{g} are isomorphic.

Simple fibered knots

A $(2 n-1)$-dim. fibered knot K in $S^{2 n+1}$ is simple if
(1) K is $(n-2)$-connected, and (2) the fibers are $(n-1)$-connected.

Simple fibered knots

A $(2 n-1)$-dim. fibered knot K in $S^{2 n+1}$ is simple if
(1) K is $(n-2)$-connected, and (2) the fibers are $(n-1)$-connected.

In fact, we have the following.
Theorem 3.2 (Durfee, Kato, 1974) For $n \geq 3$, ($2 n-1$)-dim. simple fibered knots are in one-to-one correspondence with the isomorphism classes of integral unimodular bilinear forms.

Simple fibered knots

A $(2 n-1)$-dim. fibered knot K in $S^{2 n+1}$ is simple if
(1) K is $(n-2)$-connected, and (2) the fibers are $(n-1)$-connected.

In fact, we have the following.
Theorem 3.2 (Durfee, Kato, 1974) For $n \geq 3$, ($2 n-1$)-dim. simple fibered knots are in one-to-one correspondence with the isomorphism classes of integral unimodular bilinear forms.

For $n=1,2$, the above theorem does not hold.
Theorem $3.3(\mathbf{S}, \mathbf{1 9 9 9})$ For every $k \geq 2$, there exist simple fibered 3-knots $K_{1}, K_{2}, \ldots, K_{k}$ s.t.
(1) they are all diffeomorphic as abstract 3-manifolds,
(2) their Seifert forms are all isomorphic,
(3) K_{i} and K_{j} are not isotopic if $i \neq j$.

Brieskorn-Pham type polynomial

For $a_{1}, a_{2}, \ldots, a_{n+1} \geq 2$, set

$$
f\left(z_{1}, z_{2}, \ldots, z_{n+1}\right)=z_{1}^{a_{1}}+z_{2}^{a_{2}}+\cdots+z_{n+1}^{a_{n+1}}
$$

which is called a Brieskorn-Pham type polynomial.

Brieskorn-Pham type polynomial

For $a_{1}, a_{2}, \ldots, a_{n+1} \geq 2$, set

$$
f\left(z_{1}, z_{2}, \ldots, z_{n+1}\right)=z_{1}^{a_{1}}+z_{2}^{a_{2}}+\cdots+z_{n+1}^{a_{n+1}}
$$

which is called a Brieskorn-Pham type polynomial. The integers $a_{1}, a_{2}, \ldots, a_{n+1}$ are called the exponents.

Brieskorn-Pham type polynomial

For $a_{1}, a_{2}, \ldots, a_{n+1} \geq 2$, set

$$
f\left(z_{1}, z_{2}, \ldots, z_{n+1}\right)=z_{1}^{a_{1}}+z_{2}^{a_{2}}+\cdots+z_{n+1}^{a_{n+1}}
$$

which is called a Brieskorn-Pham type polynomial. The integers $a_{1}, a_{2}, \ldots, a_{n+1}$ are called the exponents. Seifert forms for algebraic knots associated with Brieskorn-Pham type polynomials are known.

Brieskorn-Pham type polynomial

For $a_{1}, a_{2}, \ldots, a_{n+1} \geq 2$, set

$$
f\left(z_{1}, z_{2}, \ldots, z_{n+1}\right)=z_{1}^{a_{1}}+z_{2}^{a_{2}}+\cdots+z_{n+1}^{a_{n+1}}
$$

which is called a Brieskorn-Pham type polynomial.
The integers $a_{1}, a_{2}, \ldots, a_{n+1}$ are called the exponents.
Seifert forms for algebraic knots associated with Brieskorn-Pham type polynomials are known.
In fact, we have the following.
Theorem 3.4 (Yoshinaga-Suzuki, 1978)
For two Brieskorn-Pham type polynomials f and g, the following three are equivanent.
(1) K_{f} and K_{g} are isotopic.
(2) f and g have the same set of exponents.
(3) $\Delta_{f}(t)=\Delta_{g}(t)$.

§4. Cobordism

Cobordism of knots

Definition 4.1 Two oriented $(2 n-1)$-knots K_{0} and K_{1} in $S^{2 n+1}$ are cobordant if $\exists X\left(\cong K_{0} \times[0,1]\right) \subset S^{2 n+1} \times[0,1]$, a properly embedded oriented $2 n$-dim. submanifold, such that

$$
\partial X=\left(K_{0} \times\{0\}\right) \cup\left(-K_{1} \times\{1\}\right) .
$$

Cobordism of knots

Definition 4.1 Two oriented $(2 n-1)$-knots K_{0} and K_{1} in $S^{2 n+1}$ are cobordant if $\exists X\left(\cong K_{0} \times[0,1]\right) \subset S^{2 n+1} \times[0,1]$, a properly embedded oriented $2 n$-dim. submanifold, such that

$$
\partial X=\left(K_{0} \times\{0\}\right) \cup\left(-K_{1} \times\{1\}\right) .
$$

X is called a cobordism between K_{0} and K_{1}.

Cobordism of knots

Definition 4.1 Two oriented $(2 n-1)$-knots K_{0} and K_{1} in $S^{2 n+1}$ are cobordant if $\exists X\left(\cong K_{0} \times[0,1]\right) \subset S^{2 n+1} \times[0,1]$, a properly embedded oriented $2 n$-dim. submanifold, such that

$$
\partial X=\left(K_{0} \times\{0\}\right) \cup\left(-K_{1} \times\{1\}\right) .
$$

X is called a cobordism between K_{0} and K_{1}.

Problem

If two algebraic knots K_{f} and K_{g} are cobordant, then the topological types of f and g are mildly related.

If two algebraic knots K_{f} and K_{g} are cobordant, then the topological types of f and g are mildly related.

Problem 4.2 Given f and g, determine whether K_{f} and K_{g} are cobordant.

If two algebraic knots K_{f} and K_{g} are cobordant, then the topological types of f and g are mildly related.

Problem 4.2 Given f and g, determine whether K_{f} and K_{g} are cobordant.

An answer has been given in terms of Seifert forms, which are in general very difficult to compute.

If two algebraic knots K_{f} and K_{g} are cobordant, then the topological types of f and g are mildly related.

Problem 4.2 Given f and g, determine whether K_{f} and K_{g} are cobordant.

An answer has been given in terms of Seifert forms, which are in general very difficult to compute.
Even if we know the Seifert forms, it is still difficult to check if the corresponding knots are cobordant.

Problem

If two algebraic knots K_{f} and K_{g} are cobordant, then the topological types of f and g are mildly related.

Problem 4.2 Given f and g, determine whether K_{f} and K_{g} are cobordant.

An answer has been given in terms of Seifert forms, which are in general very difficult to compute.
Even if we know the Seifert forms, it is still difficult to check if the corresponding knots are cobordant.

Today's Topic: Problem 4.2 for weighted homogeneous polynomials (in particular, Brieskorn polynomials).

§5. Results

Known results

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Case where $n=1$ and the polynomials are irreducible at 0 .

Known results

Case where $n=1$ and the polynomials are irreducible at 0 .
Theorem 5.1 (Lê, 1972)
For algebraic knots K_{f} and K_{g} in S_{ε}^{3}, the following three are equivalent.
(1) K_{f} and K_{g} are isotopic.

Known results

Case where $n=1$ and the polynomials are irreducible at 0 .
Theorem 5.1 (Lê, 1972)
For algebraic knots K_{f} and K_{g} in S_{ε}^{3}, the following three are equivalent.
(1) K_{f} and K_{g} are isotopic.
(2) K_{f} and K_{g} are cobordant.

Known results

Case where $n=1$ and the polynomials are irreducible at 0 .
Theorem 5.1 (Lê, 1972)
For algebraic knots K_{f} and K_{g} in S_{ε}^{3}, the following three are equivalent.
(1) K_{f} and K_{g} are isotopic.
(2) K_{f} and K_{g} are cobordant.
(3) Alexander polynomials coincide: $\Delta_{f}(t)=\Delta_{g}(t)$.

Known results

Case where $n=1$ and the polynomials are irreducible at 0 .
Theorem 5.1 (Lê, 1972)
For algebraic knots K_{f} and K_{g} in S_{ε}^{3}, the following three are equivalent.
(1) K_{f} and K_{g} are isotopic.
(2) K_{f} and K_{g} are cobordant.
(3) Alexander polynomials coincide: $\Delta_{f}(t)=\Delta_{g}(t)$.

It has long been conjectured that cobordant algebraic knots would be isotopic for all n.

Known results

Case where $n=1$ and the polynomials are irreducible at 0 .
Theorem 5.1 (Lê, 1972)
For algebraic knots K_{f} and K_{g} in S_{ε}^{3}, the following three are equivalent.
(1) K_{f} and K_{g} are isotopic.
(2) K_{f} and K_{g} are cobordant.
(3) Alexander polynomials coincide: $\Delta_{f}(t)=\Delta_{g}(t)$.

It has long been conjectured that cobordant algebraic knots would be isotopic for all n.
This conjecture was negatively answered almost twenty years later.

Known results

Case where $n=1$ and the polynomials are irreducible at 0 .
Theorem 5.1 (Lê, 1972)
For algebraic knots K_{f} and K_{g} in S_{ε}^{3}, the following three are equivalent.
(1) K_{f} and K_{g} are isotopic.
(2) K_{f} and K_{g} are cobordant.
(3) Alexander polynomials coincide: $\Delta_{f}(t)=\Delta_{g}(t)$.

It has long been conjectured that cobordant algebraic knots would be isotopic for all n.
This conjecture was negatively answered almost twenty years later.

du Bois-Michel, 1993

Examples of two algebraic (spherical) knots that are cobordant, but are not isotopic, $n \geq 3$.

Algebraic cobordism

Let $L_{i}: G_{i} \times G_{i} \rightarrow \mathbf{Z}, i=0,1$, be two bilinear forms defined on free Z-modules of finite ranks.

Algebraic cobordism

Let $L_{i}: G_{i} \times G_{i} \rightarrow \mathbf{Z}, i=0,1$, be two bilinear forms defined on free Z-modules of finite ranks.
Set $G=G_{0} \oplus G_{1}$ and $L=L_{0} \oplus\left(-L_{1}\right)$.

Algebraic cobordism

Let $L_{i}: G_{i} \times G_{i} \rightarrow \mathbf{Z}, i=0,1$, be two bilinear forms defined on free Z-modules of finite ranks.
Set $G=G_{0} \oplus G_{1}$ and $L=L_{0} \oplus\left(-L_{1}\right)$.
Definition 5.2 Suppose $m=\operatorname{rank} G$ is even.
A direct summand $M \subset G$ is called a metabolizer
if rank $M=m / 2$ and L vanishes on M.

Algebraic cobordism

Let $L_{i}: G_{i} \times G_{i} \rightarrow \mathbf{Z}, i=0,1$, be two bilinear forms defined on free Z-modules of finite ranks.
Set $G=G_{0} \oplus G_{1}$ and $L=L_{0} \oplus\left(-L_{1}\right)$.
Definition 5.2 Suppose $m=\operatorname{rank} G$ is even.
A direct summand $M \subset G$ is called a metabolizer
if rank $M=m / 2$ and L vanishes on M.
L_{0} is algebraically cobordant to L_{1} if there exists a metabolizer satisfying additional properties about $S=L \pm L^{T}$.

Algebraic cobordism

Let $L_{i}: G_{i} \times G_{i} \rightarrow \mathbf{Z}, i=0,1$, be two bilinear forms defined on free Z-modules of finite ranks.
Set $G=G_{0} \oplus G_{1}$ and $L=L_{0} \oplus\left(-L_{1}\right)$.
Definition 5.2 Suppose $m=\operatorname{rank} G$ is even.
A direct summand $M \subset G$ is called a metabolizer
if rank $M=m / 2$ and L vanishes on M.
L_{0} is algebraically cobordant to L_{1} if there exists a metabolizer satisfying additional properties about $S=L \pm L^{T}$.

Theorem 5.3 (Blanlœil-Michel, 1997) For $n \geq 3$, two algebraic knots K_{f} and K_{g} are cobordant \Longleftrightarrow Seifert forms L_{f} and L_{g} are algebraically cobordant.

Cobordism of fibered knots

In fact, for (possibly non-simple) fibered knots, we have the following.

Cobordism of fibered knots

In fact, for (possibly non-simple) fibered knots, we have the following.
Theorem 5.4 (Blanlœil-S., 2011)
K_{0}, K_{1} : fibered $(2 n-1)$-knots, $(n-2)$-connected, $n \geq 3$.
K_{0} and K_{1} are cobordant
\Longleftrightarrow their Seifert forms are algebraically cobordant.

Witt equivalence

Remark 5.5 At present, there is no efficient criterion for algebraic cobordism.
It is usually very difficult to determine whether given two forms are algebraically cobordant or not.

Witt equivalence

Remark 5.5 At present, there is no efficient criterion for algebraic cobordism.
It is usually very difficult to determine whether given two forms are algebraically cobordant or not.

Two forms L_{0} and L_{1} are Witt equivalent over \mathbf{R} if there exists a metabolizer over \mathbf{R} for $L_{0} \otimes \mathbf{R}$ and $L_{1} \otimes \mathbf{R}$.

Witt equivalence

Remark 5.5 At present, there is no efficient criterion for algebraic cobordism.
It is usually very difficult to determine whether given two forms are algebraically cobordant or not.

Two forms L_{0} and L_{1} are Witt equivalent over \mathbf{R} if there exists a metabolizer over \mathbf{R} for $L_{0} \otimes \mathbf{R}$ and $L_{1} \otimes \mathbf{R}$.

Lemma 5.6 If two algebraic knots K_{f} and K_{g} are cobordant, then their Seifert forms L_{f} and L_{g} are Witt equivalent over \mathbf{R}.

Weighted homogeneous poly.

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Let f be a weighted homogeneous polynomial in C^{n+1},

Weighted homogeneous poly.

Let f be a weighted homogeneous polynomial in \mathbf{C}^{n+1}, i.e. $\exists\left(w_{1}, w_{2}, \ldots, w_{n+1}\right) \in \mathbf{Q}_{>0}^{n+1}$, called weights, such that for each monomial $c z_{1}^{k_{1}} z_{2}^{k_{2}} \cdots z_{n+1}^{k_{n+1}}, c \neq 0$, of f, we have

$$
\sum_{j=1}^{n+1} \frac{k_{j}}{w_{j}}=1
$$

Weighted homogeneous poly.

Let f be a weighted homogeneous polynomial in \mathbf{C}^{n+1}, i.e. $\exists\left(w_{1}, w_{2}, \ldots, w_{n+1}\right) \in \mathbf{Q}_{>0}^{n+1}$, called weights, such that for each monomial $c z_{1}^{k_{1}} z_{2}^{k_{2}} \cdots z_{n+1}^{k_{n+1}}, c \neq 0$, of f, we have

$$
\sum_{j=1}^{n+1} \frac{k_{j}}{w_{j}}=1
$$

f is non-degenerate if it has an isolated critical point at 0 .

Weighted homogeneous poly.

Let f be a weighted homogeneous polynomial in \mathbf{C}^{n+1}, i.e. $\exists\left(w_{1}, w_{2}, \ldots, w_{n+1}\right) \in \mathbf{Q}_{>0}^{n+1}$, called weights, such that for each monomial $c z_{1}^{k_{1}} z_{2}^{k_{2}} \cdots z_{n+1}^{k_{n+1}}, c \neq 0$, of f, we have

$$
\sum_{j=1}^{n+1} \frac{k_{j}}{w_{j}}=1
$$

f is non-degenerate if it has an isolated critical point at 0 .
We may assume \forall weights ≥ 2.

Weighted homogeneous poly.

Let f be a weighted homogeneous polynomial in C^{n+1}, i.e. $\exists\left(w_{1}, w_{2}, \ldots, w_{n+1}\right) \in \mathbf{Q}_{>0}^{n+1}$, called weights, such that for each monomial $c z_{1}^{k_{1}} z_{2}^{k_{2}} \cdots z_{n+1}^{k_{n+1}}, c \neq 0$, of f, we have

$$
\sum_{j=1}^{n+1} \frac{k_{j}}{w_{j}}=1
$$

f is non-degenerate if it has an isolated critical point at 0 .
We may assume \forall weights ≥ 2.
Brieskorn-Pham type polynomial $z_{1}^{a_{1}}+z_{2}^{a_{2}}+\cdots+z_{n+1}^{a_{n+1}}$
\Longrightarrow weighted homogeneous of weights $\left(a_{1}, a_{2}, \ldots, a_{n+1}\right)$

Criterion for Witt equiv. over R

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Set

$$
P_{f}(t)=\prod_{j=1}^{n+1} \frac{t-t^{1 / w_{j}}}{t^{1 / w_{j}}-1}
$$

$P_{f}(t)$ is a polynomial in $t^{1 / m}$ over \mathbf{Z} for some integer $m>0$.

Criterion for Witt equiv. over R

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Set

$$
P_{f}(t)=\prod_{j=1}^{n+1} \frac{t-t^{1 / w_{j}}}{t^{1 / w_{j}}-1}
$$

$P_{f}(t)$ is a polynomial in $t^{1 / m}$ over \mathbf{Z} for some integer $m>0$.
Two non-degenerate weighted homogeneous polynomials f and g have the same weights if and only if $P_{f}(t)=P_{g}(t)$.

Criterion for Witt equiv. over R

Set

$$
P_{f}(t)=\prod_{j=1}^{n+1} \frac{t-t^{1 / w_{j}}}{t^{1 / w_{j}}-1}
$$

$P_{f}(t)$ is a polynomial in $t^{1 / m}$ over \mathbf{Z} for some integer $m>0$.
Two non-degenerate weighted homogeneous polynomials f and g have the same weights if and only if $P_{f}(t)=P_{g}(t)$.

Theorem 5.7 Let f and g be non-degenerate weighted homogeneous polynomials in C^{n+1}. Then, their Seifert forms L_{f} and L_{g} are Witt equivalent over \mathbf{R} iff

$$
P_{f}(t) \equiv P_{g}(t) \quad \bmod t+1
$$

Criterion for isomorphism over R

The above theorem should be compared with the following.
Remark 5.8 The Seifert forms L_{f} and L_{g} associated with non-degenerate weighted homogeneous polynomials f and g are isomorphic over \mathbf{R} iff

$$
P_{f}(t) \equiv P_{g}(t) \quad \bmod t^{2}-1
$$

Brieskorn-Pham type polynomials

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Proposition 5.9 Let

$$
f(z)=\sum_{j=1}^{n+1} z_{j}^{a_{j}} \quad \text { and } \quad g(z)=\sum_{j=1}^{n+1} z_{j}^{b_{j}}
$$

be Brieskorn-Pham type polynomials.

Brieskorn-Pham type polynomials

Proposition 5.9 Let

$$
f(z)=\sum_{j=1}^{n+1} z_{j}^{a_{j}} \quad \text { and } \quad g(z)=\sum_{j=1}^{n+1} z_{j}^{b_{j}}
$$

be Brieskorn-Pham type polynomials.
Then, their Seifert forms are Witt equivalent over \mathbf{R} iff

$$
\prod_{j=1}^{n+1} \cot \frac{\pi \ell}{2 a_{j}}=\prod_{j=1}^{n+1} \cot \frac{\pi \ell}{2 b_{j}}
$$

holds for all odd integers ℓ.

Cobordism invariance of exponents

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Theorem 5.10 Suppose that for each of the Brieskorn-Pham type polynomials

$$
f(z)=\sum_{j=1}^{n+1} z_{j}^{a_{j}} \quad \text { and } \quad g(z)=\sum_{j=1}^{n+1} z_{j}^{b_{j}}
$$

no exponent is a multiple of another one.

Cobordism invariance of exponents

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Theorem 5.10 Suppose that for each of the Brieskorn-Pham type polynomials

$$
f(z)=\sum_{j=1}^{n+1} z_{j}^{a_{j}} \quad \text { and } \quad g(z)=\sum_{j=1}^{n+1} z_{j}^{b_{j}}
$$

no exponent is a multiple of another one.
Then, the knots K_{f} and K_{g} are cobordant iff

$$
a_{j}=b_{j}, \quad j=1,2, \ldots, n+1,
$$

up to order.

Case of two or three variables

Proposition 5.11 Let f and g be weighted homogeneous polynomials of two variables with weights $\left(w_{1}, w_{2}\right)$ and $\left(w_{1}^{\prime}, w_{2}^{\prime}\right)$, respectively, with $w_{j}, w_{j}^{\prime} \geq 2$.
If their Seifert forms are Witt equivalent over \mathbf{R}, then $w_{j}=w_{j}^{\prime}, j=1,2$, up to order.

Case of two or three variables

Proposition 5.11 Let f and g be weighted homogeneous polynomials of two variables with weights $\left(w_{1}, w_{2}\right)$ and $\left(w_{1}^{\prime}, w_{2}^{\prime}\right)$, respectively, with $w_{j}, w_{j}^{\prime} \geq 2$.
If their Seifert forms are Witt equivalent over \mathbf{R}, then $w_{j}=w_{j}^{\prime}, j=1,2$, up to order.

Proposition 5.12 Let $f(z)=z_{1}^{a_{1}}+z_{2}^{a_{2}}+z_{3}^{a_{3}}$ and $g(z)=z_{1}^{b_{1}}+z_{2}^{b_{2}}+z_{3}^{b_{3}}$ be Brieskorn-Pham type polynomials of three variables.
If the Seifert forms L_{f} and L_{g} are Witt equivalent over \mathbf{R}, then $a_{j}=b_{j}, j=1,2,3$, up to order.

§6. Proofs

Proof of Theorem 5.7

Theorem 5.7 Let f and g be non-degenerate weighted homogeneous polynomials in C^{n+1}. Then, their Seifert forms L_{f} and L_{g} are Witt equivalent over \mathbf{R} iff

$$
P_{f}(t) \equiv P_{g}(t) \quad \bmod t+1
$$

Proof of Theorem 5.7

Theorem 5.7 Let f and g be non-degenerate weighted homogeneous polynomials in \mathbf{C}^{n+1}. Then, their Seifert forms L_{f} and L_{g} are Witt equivalent over \mathbf{R} iff

$$
P_{f}(t) \equiv P_{g}(t) \quad \bmod t+1
$$

Proof. For simplicity, we consider the case of n even.

Theorem 5.7 Let f and g be non-degenerate weighted homogeneous polynomials in C^{n+1}. Then, their Seifert forms L_{f} and L_{g} are Witt equivalent over \mathbf{R} iff

$$
P_{f}(t) \equiv P_{g}(t) \quad \bmod t+1
$$

Proof. For simplicity, we consider the case of n even.
Let $\Delta_{f}(t)$ be the characteristic polynomial of the monodromy

$$
h_{*}: H_{n}\left(\operatorname{Int} F_{f} ; \mathbf{C}\right) \rightarrow H_{f}\left(\operatorname{Int} F_{f} ; \mathbf{C}\right),
$$

where $h: \operatorname{Int} F_{f} \rightarrow \operatorname{Int} F_{f}$ is the characteristic diffeomorphism of the Milnor fibration $\varphi_{f}: S_{\varepsilon}^{2 n+1} \backslash K_{f} \rightarrow S^{1}$.

Proof of Theorem 5.7 (Continued)

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

We have

$$
H^{n}\left(F_{f} ; \mathbf{C}\right)=\oplus_{\lambda} H^{n}\left(F_{f} ; \mathbf{C}\right)_{\lambda},
$$

where λ runs over all the roots of $\Delta_{f}(t)$, and $H^{n}\left(F_{f} ; \mathbf{C}\right)_{\lambda}$ is the eigenspace of h_{*} corresponding to the eigenvalue λ.

Proof of Theorem 5.7 (Continued)

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

We have

$$
H^{n}\left(F_{f} ; \mathbf{C}\right)=\oplus_{\lambda} H^{n}\left(F_{f} ; \mathbf{C}\right)_{\lambda},
$$

where λ runs over all the roots of $\Delta_{f}(t)$, and $H^{n}\left(F_{f} ; \mathbf{C}\right)_{\lambda}$ is the eigenspace of h_{*} corresponding to the eigenvalue λ.
The intersection form $S_{f}=L_{f}+L_{f}^{T}$ of F_{f} on $H^{n}\left(F_{f} ; \mathbf{C}\right)$ decomposes as the orthogonal direct sum of $\left.\left(S_{f}\right)\right|_{H^{n}\left(F_{f} ; \mathrm{C}\right)_{\lambda}}$.

Proof of Theorem 5.7 (Continued)

We have

$$
H^{n}\left(F_{f} ; \mathbf{C}\right)=\oplus_{\lambda} H^{n}\left(F_{f} ; \mathbf{C}\right)_{\lambda},
$$

where λ runs over all the roots of $\Delta_{f}(t)$, and $H^{n}\left(F_{f} ; \mathbf{C}\right)_{\lambda}$ is the eigenspace of h_{*} corresponding to the eigenvalue λ.
The intersection form $S_{f}=L_{f}+L_{f}^{T}$ of F_{f} on $H^{n}\left(F_{f} ; \mathbf{C}\right)$ decomposes as the orthogonal direct sum of $\left.\left(S_{f}\right)\right|_{H^{n}\left(F_{f} ; \mathrm{C}_{\lambda}\right.}$.

Let $\mu(f)_{\lambda}^{+}$(resp. $\left.\mu(f)_{\lambda}^{-}\right)$denote the number of positive (resp. negative) eigenvalues of $\left.\left(S_{f}\right)\right|_{H^{n}(F ; \mathbf{C})_{\lambda}}$.

Proof of Theorem 5.7 (Continued)

We have

$$
H^{n}\left(F_{f} ; \mathbf{C}\right)=\oplus_{\lambda} H^{n}\left(F_{f} ; \mathbf{C}\right)_{\lambda},
$$

where λ runs over all the roots of $\Delta_{f}(t)$, and $H^{n}\left(F_{f} ; \mathbf{C}\right)_{\lambda}$ is the eigenspace of h_{*} corresponding to the eigenvalue λ.
The intersection form $S_{f}=L_{f}+L_{f}^{T}$ of F_{f} on $H^{n}\left(F_{f} ; \mathbf{C}\right)$ decomposes as the orthogonal direct sum of $\left.\left(S_{f}\right)\right|_{H^{n}\left(F_{f} ; \mathrm{C}\right)_{\lambda}}$.
Let $\mu(f)_{\lambda}^{+}$(resp. $\left.\mu(f)_{\lambda}^{-}\right)$denote the number of positive (resp. negative) eigenvalues of $\left.\left(S_{f}\right)\right|_{H^{n}(F ; \mathbf{C})_{\lambda}}$.
The integer

$$
\sigma_{\lambda}(f)=\mu(f)_{\lambda}^{+}-\mu(f)_{\lambda}^{-}
$$

is called the equivariant signature of f with respect to λ.

Proof of Theorem 5.7 (Continued)

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Lemma 6.1 (Steenbrink, 1977)

Set $P_{f}(t)=\sum c_{\alpha} t^{\alpha}$. Then we have

$$
\sigma_{\lambda}(f)=\sum_{\substack{\lambda=\exp (-2 \pi i \alpha) \\\lfloor\alpha\rfloor: \text { even }}} c_{\alpha}-\sum_{\substack{\lambda=\exp (-2 \pi i \alpha),\lfloor\alpha\rfloor: \text { odd }}} c_{\alpha}
$$

for $\lambda \neq 1$, where $i=\sqrt{-1}$, and $\lfloor\alpha\rfloor$ is the largest integer not exceeding α.

Proof of Theorem 5.7 (Continued)

Lemma 6.1 (Steenbrink, 1977)

Set $P_{f}(t)=\sum c_{\alpha} t^{\alpha}$. Then we have

$$
\sigma_{\lambda}(f)=\sum_{\substack{\lambda=\exp (-2 \pi i \alpha) \\\lfloor\alpha\rfloor: \text { even }}} c_{\alpha}-\sum_{\substack{\lambda=\exp (-2 \pi i \alpha),\lfloor\alpha\rfloor: \text { odd }}} c_{\alpha}
$$

for $\lambda \neq 1$, where $i=\sqrt{-1}$, and $\lfloor\alpha\rfloor$ is the largest integer not exceeding α.

Remark 6.2 The equivariant signature for $\lambda=1$ is always equal to zero.

Proof of Theorem 5.7 (Continued)

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Seifert forms L_{f} and L_{g} are Witt equivalent over \mathbf{R}.
$\Longrightarrow \quad \sigma_{\lambda}(f)=\sigma_{\lambda}(g)$ for all λ.

Proof of Theorem 5.7 (Continued)

Seifert forms L_{f} and L_{g} are Witt equivalent over \mathbf{R}.
$\Longrightarrow \quad \sigma_{\lambda}(f)=\sigma_{\lambda}(g)$ for all λ.
Set

$$
\begin{aligned}
& P_{f}(t)=P_{f}^{0}(t)+P_{f}^{1}(t), \quad \text { where } \\
P_{f}^{0}(t)= & \sum_{\lfloor\alpha\rfloor \equiv 0} c_{\alpha} t^{\alpha}, \\
P_{f}^{1}(t)= & \left.\sum_{\lfloor\alpha\rfloor \equiv 1} \bmod 2\right) c_{\alpha} t^{\alpha} .
\end{aligned}
$$

We define $P_{g}^{0}(t)$ and $P_{g}^{1}(t)$ similarly.

Proof of Theorem 5.7 (Continued)

Seifert forms L_{f} and L_{g} are Witt equivalent over \mathbf{R}.
$\Longrightarrow \quad \sigma_{\lambda}(f)=\sigma_{\lambda}(g)$ for all λ.
Set

$$
\begin{aligned}
& P_{f}(t)=P_{f}^{0}(t)+P_{f}^{1}(t), \quad \text { where } \\
& P_{f}^{0}(t)= \sum_{\lfloor\alpha\rfloor \equiv 0} c_{\alpha} t^{\alpha}, \\
& P_{f}^{1}(t)= \sum_{\lfloor\alpha\rfloor \equiv 1}(\bmod 2) \\
& c_{\alpha} t^{\alpha} .
\end{aligned}
$$

We define $P_{g}^{0}(t)$ and $P_{g}^{1}(t)$ similarly.
Since the equivariant signatures of f and g coincide, we have

$$
\begin{aligned}
t P_{f}^{0}(t)-P_{f}^{1}(t) & \equiv t P_{g}^{0}(t)-P_{g}^{1}(t) \quad \bmod t^{2}-1 \\
t P_{f}^{1}(t)-P_{f}^{0}(t) & \equiv t P_{g}^{1}(t)-P_{g}^{0}(t) \quad \bmod t^{2}-1
\end{aligned}
$$

Proof of Theorem 5.7 (Continued)

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Adding up these two congruences we have

$$
\begin{equation*}
(t-1) P_{f}(t) \equiv(t-1) P_{g}(t) \quad \bmod t^{2}-1, \tag{1}
\end{equation*}
$$

Proof of Theorem 5.7 (Continued)

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Adding up these two congruences we have

$$
\begin{equation*}
(t-1) P_{f}(t) \equiv(t-1) P_{g}(t) \quad \bmod t^{2}-1, \tag{1}
\end{equation*}
$$

which implies

$$
\begin{equation*}
P_{f}(t) \equiv P_{g}(t) \quad \bmod t+1 \tag{2}
\end{equation*}
$$

Proof of Theorem 5.7 (Continued)

Adding up these two congruences we have

$$
\begin{equation*}
(t-1) P_{f}(t) \equiv(t-1) P_{g}(t) \quad \bmod t^{2}-1, \tag{1}
\end{equation*}
$$

which implies

$$
\begin{equation*}
P_{f}(t) \equiv P_{g}(t) \quad \bmod t+1 \tag{2}
\end{equation*}
$$

Conversely, suppose that (2) holds.
$\Longrightarrow \quad(1)$ holds.
$\Longrightarrow \quad f$ and g have the same equivariant signatures.

Proof of Theorem 5.7 (Continued)

Adding up these two congruences we have

$$
\begin{equation*}
(t-1) P_{f}(t) \equiv(t-1) P_{g}(t) \quad \bmod t^{2}-1, \tag{1}
\end{equation*}
$$

which implies

$$
\begin{equation*}
P_{f}(t) \equiv P_{g}(t) \quad \bmod t+1 \tag{2}
\end{equation*}
$$

Conversely, suppose that (2) holds.
$\Longrightarrow \quad(1)$ holds.
$\Longrightarrow \quad f$ and g have the same equivariant signatures.
Then, we can prove that they are Witt equivalent over \mathbf{R}.
This completes the proof.

Proof of Proposition 5.9

Proposition 5.9 Let

$$
f(z)=\sum_{j=1}^{n+1} z_{j}^{a_{j}} \quad \text { and } \quad g(z)=\sum_{j=1}^{n+1} z_{j}^{b_{j}}
$$

be Brieskorn-Pham type polynomials. Then, their Seifert forms are Witt equivalent over \mathbf{R} iff

$$
\prod_{j=1}^{n+1} \cot \frac{\pi \ell}{2 a_{j}}=\prod_{j=1}^{n+1} \cot \frac{\pi \ell}{2 b_{j}}
$$

holds for all odd integers ℓ.

Proof of Proposition 5.9 (Cont.)

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Proof.
$P_{f}(t)$ and $P_{g}(t)$ are polynomials in $s=t^{1 / m}$ for some m.
Put $Q_{f}(s)=P_{f}(t)$ and $Q_{g}(s)=P_{g}(t)$.
Then, $P_{f}(t) \equiv P_{g}(t) \bmod t+1$ holds
$\Longleftrightarrow \quad Q_{f}(\xi)=Q_{g}(\xi)$ for all ξ with $\xi^{m}=-1$.

Proof of Proposition 5.9 (Cont.)

Proof.
$P_{f}(t)$ and $P_{g}(t)$ are polynomials in $s=t^{1 / m}$ for some m.
Put $Q_{f}(s)=P_{f}(t)$ and $Q_{g}(s)=P_{g}(t)$.
Then, $P_{f}(t) \equiv P_{g}(t) \bmod t+1$ holds
$\Longleftrightarrow \quad Q_{f}(\xi)=Q_{g}(\xi)$ for all ξ with $\xi^{m}=-1$.
Note that ξ is of the form

$$
\exp (\pi \sqrt{-1} \ell / m)
$$

with ℓ odd and that

$$
\frac{-1-\exp \left(\pi \sqrt{-1} \ell / a_{j}\right)}{\exp \left(\pi \sqrt{-1} \ell / a_{j}\right)-1}=\sqrt{-1} \cot \frac{\pi \ell}{2 a_{j}} .
$$

Then, we immediately get Proposition 5.9.

Theorem 5.10 Suppose that for each of the Brieskorn-Pham type polynomials

$$
f(z)=\sum_{j=1}^{n+1} z_{j}^{a_{j}} \quad \text { and } \quad g(z)=\sum_{j=1}^{n+1} z_{j}^{b_{j}}
$$

no exponent is a multiple of another one.
Then, the knots K_{f} and K_{g} are cobordant iff

$$
a_{j}=b_{j}, \quad j=1,2, \ldots, n+1,
$$

up to order.

Theorem 5.10 Suppose that for each of the Brieskorn-Pham type polynomials

$$
f(z)=\sum_{j=1}^{n+1} z_{j}^{a_{j}} \quad \text { and } \quad g(z)=\sum_{j=1}^{n+1} z_{j}^{b_{j}},
$$

no exponent is a multiple of another one.
Then, the knots K_{f} and K_{g} are cobordant iff

$$
a_{j}=b_{j}, \quad j=1,2, \ldots, n+1,
$$

up to order.

This is a consequence of the "Fox-Milnor type relation" for the Alexander polynomials of cobordant algebraic knots.

Open problem

Problem 6.3 Are the exponents cobordism invariants for Brieskorn-Pham type polynomials?

Open problem

Problem 6.3 Are the exponents cobordism invariants for Brieskorn-Pham type polynomials?

Proposition 5.9 reduces the above problem to a number theoretical problem involving cotangents.

Open problem

Problem 6.3 Are the exponents cobordism invariants for Brieskorn-Pham type polynomials?

Proposition 5.9 reduces the above problem to a number theoretical problem involving cotangents.

$$
\prod_{j=1}^{n+1} \cot \frac{\pi \ell}{2 a_{j}}=\prod_{j=1}^{n+1} \cot \frac{\pi \ell}{2 b_{j}} \quad \forall \text { odd integers } \ell
$$

$\Longrightarrow \quad a_{j}=b_{j} \quad$ up to order ?

Thank you!

