

Osamu Saeki

(Institute of Mathematics for Industry, Kyushu University)

Joint work with **Vincent Blanlœil** (Univ. of Strasbourg, France)

April 13, 2012

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

$\S1$. An Example

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

 $f(z_1, z_2) = z_1^2 - z_2^3$ $V = \{(z_1, z_2) \in \mathbb{C}^2 \mid f(z_1, z_2) = 0\} \text{ complex plane curve}$

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

 $f(z_1, z_2) = z_1^2 - z_2^3$ $V = \{(z_1, z_2) \in \mathbb{C}^2 \mid f(z_1, z_2) = 0\} \text{ complex plane curve}$ $S_{\varepsilon}^3 = \{(z_1, z_2) \in \mathbb{C}^2 \mid |z_1|^2 + |z_2|^2 = \varepsilon^2\}, \ 0 < \varepsilon << 1$ $K = S_{\varepsilon}^3 \cap V \subset S_{\varepsilon}^3$

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

 $f(z_1, z_2) = z_1^2 - z_2^3$ $V = \{(z_1, z_2) \in \mathbb{C}^2 \mid f(z_1, z_2) = 0\} \text{ complex plane curve}$ $S_{\varepsilon}^3 = \{(z_1, z_2) \in \mathbb{C}^2 \mid |z_1|^2 + |z_2|^2 = \varepsilon^2\}, \ 0 < \varepsilon << 1$ $K = S_{\varepsilon}^3 \cap V \subset S_{\varepsilon}^3$

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

 $f(z_1, z_2) = z_1^2 - z_2^3$ $V = \{(z_1, z_2) \in \mathbb{C}^2 \mid f(z_1, z_2) = 0\} \text{ complex plane curve}$ $S_{\varepsilon}^3 = \{(z_1, z_2) \in \mathbb{C}^2 \mid |z_1|^2 + |z_2|^2 = \varepsilon^2\}, \ 0 < \varepsilon << 1$ $K = S_{\varepsilon}^3 \cap V \subset S_{\varepsilon}^3$

K is a knot in S^3 !

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Set $r_1 = |z_1|$ and $r_2 = |z_2|$.

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Set $r_1 = |z_1|$ and $r_2 = |z_2|$. $\exists ! r_1, r_2 > 0$ s.t. $r_1^2 = r_2^3$, $r_1^2 + r_2^2 = \varepsilon^2$

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Set
$$r_1 = |z_1|$$
 and $r_2 = |z_2|$.
 $\exists !r_1, r_2 > 0$ s.t. $r_1^2 = r_2^3, r_1^2 + r_2^2 = \varepsilon^2$
 $K = \{(z_1, z_2) \in S_{\varepsilon}^3 \mid z_1^2 = z_2^3\}$
 $= \{(r_1 e^{3\pi i t}, r_2 e^{2\pi i t}) \in \mathbf{C}^2 \mid t \in \mathbf{R}\} \subset S_{r_1}^1 \times S_{r_2}^1 \subset S_{\varepsilon}^3$

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Set
$$r_1 = |z_1|$$
 and $r_2 = |z_2|$.
 $\exists !r_1, r_2 > 0$ s.t. $r_1^2 = r_2^3, r_1^2 + r_2^2 = \varepsilon^2$
 $K = \{(z_1, z_2) \in S_{\varepsilon}^3 | z_1^2 = z_2^3\}$
 $= \{(r_1 e^{3\pi i t}, r_2 e^{2\pi i t}) \in \mathbf{C}^2 | t \in \mathbf{R}\} \subset S_{r_1}^1 \times S_{r_2}^1 \subset S_{\varepsilon}^3$

This is a trefoil knot!

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

§2. Milnor's Fibration Theorem

Complex hypersurface

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

 $f = f(z_1, z_2, ..., z_{n+1})$ complex polynomial with $f(\mathbf{0}) = 0$ s.t. **0** is an **isolated critical point** of f, i.e.,

$$\frac{\partial f}{\partial z_1}(z) = \dots = \frac{\partial f}{\partial z_{n+1}}(z) = 0 \iff z = \mathbf{0}$$

in a neighborhood of 0.

Complex hypersurface

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

 $f = f(z_1, z_2, ..., z_{n+1})$ complex polynomial with $f(\mathbf{0}) = 0$ s.t. **0** is an **isolated critical point** of f, i.e.,

$$\frac{\partial f}{\partial z_1}(z) = \dots = \frac{\partial f}{\partial z_{n+1}}(z) = 0 \iff z = \mathbf{0}$$

in a neighborhood of 0. $V = f^{-1}(0) \subset \mathbb{C}^{n+1}$: complex hypersurface $K_f = f^{-1}(0) \cap S_{\varepsilon}^{2n+1} \subset S_{\varepsilon}^{2n+1}$: algebraic knot associated with f, $0 < \varepsilon << 1$.

Complex hypersurface

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

 $f = f(z_1, z_2, ..., z_{n+1})$ complex polynomial with $f(\mathbf{0}) = 0$ s.t. **0** is an **isolated critical point** of f, i.e.,

$$\frac{\partial f}{\partial z_1}(z) = \dots = \frac{\partial f}{\partial z_{n+1}}(z) = 0 \iff z = \mathbf{0}$$

in a neighborhood of 0. $V = f^{-1}(0) \subset \mathbb{C}^{n+1}$: complex hypersurface $K_f = f^{-1}(0) \cap S_{\varepsilon}^{2n+1} \subset S_{\varepsilon}^{2n+1}$: algebraic knot associated with f, $0 < \varepsilon << 1$.

 K_f is a (2n-1)-dim. smooth closed manifold embedded in S_{ε}^{2n+1} .

Cone structure theorem

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Cone structure theorem

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Theorem 2.1 (Milnor, 1968) $(D_{\varepsilon}^{2n+2}, f^{-1}(0) \cap D_{\varepsilon}^{2n+2}) \approx \operatorname{Cone}(S_{\varepsilon}^{2n+1}, K_f)$ (homeo.)

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Theorem 2.2 (Milnor, 1968)

(1) $\varphi_f = f/|f| : S_{\varepsilon}^{2n+1} \setminus K_f \to S^1$ is a locally trivial fibration.

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Theorem 2.2 (Milnor, 1968)

(1) $\varphi_f = f/|f| : S_{\varepsilon}^{2n+1} \setminus K_f \to S^1$ is a locally trivial fibration. (2) K_f is (n-2)-connected, i.e., $\pi_i(K_f) = 0 \ \forall i \le n-2$.

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Theorem 2.2 (Milnor, 1968)

(1) $\varphi_f = f/|f| : S_{\varepsilon}^{2n+1} \setminus K_f \to S^1$ is a locally trivial fibration. (2) K_f is (n-2)-connected, i.e., $\pi_i(K_f) = 0 \ \forall i \le n-2$. (3) Fibers of φ_f are (n-1)-connected.

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Theorem 2.2 (Milnor, 1968) (1) $\varphi_f = f/|f| : S_{\varepsilon}^{2n+1} \setminus K_f \to S^1$ is a locally trivial fibration. (2) K_f is (n-2)-connected, i.e., $\pi_i(K_f) = 0 \ \forall i \le n-2$. (3) Fibers of φ_f are (n-1)-connected.

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

 K_f is a fibered knot, but K_f may not be a sphere.

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

 $K_f \subset S_{\varepsilon}^{2n+1}$: algebraic knot associated with f.

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

 $K_f \subset S_{\varepsilon}^{2n+1}$: algebraic knot associated with f. We put $F_f = \overline{\varphi_f^{-1}(1)} = \varphi_f^{-1}(1) \cup K_f$, which is called the Milnor fiber.

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

 $K_f \subset S_{\varepsilon}^{2n+1}$: algebraic knot associated with f. We put $F_f = \overline{\varphi_f^{-1}(1)} = \varphi_f^{-1}(1) \cup K_f$, which is called the Milnor fiber. $\partial F_f = K_f$: F_f is a Seifert manifold for K_f .

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

 $K_f \subset S_{\varepsilon}^{2n+1}$: algebraic knot associated with f. We put $F_f = \overline{\varphi_f^{-1}(1)} = \varphi_f^{-1}(1) \cup K_f$, which is called the **Milnor fiber**. $\partial F_f = K_f$: F_f is a Seifert manifold for K_f . $\dim K_f = 2n - 1$, $\dim F_f = 2n$.

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

 $K_f \subset S_{\varepsilon}^{2n+1}$: algebraic knot associated with f. We put $F_f = \overline{\varphi_f^{-1}(1)} = \varphi_f^{-1}(1) \cup K_f$, which is called the **Milnor fiber**. $\partial F_f = K_f$: F_f is a Seifert manifold for K_f . $\dim K_f = 2n - 1$, $\dim F_f = 2n$.

Algebraic knots are odd dim. fibered knots that are "highly connected".

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

 $K_f \subset S_{\varepsilon}^{2n+1}$: algebraic knot associated with f. We put $F_f = \overline{\varphi_f^{-1}(1)} = \varphi_f^{-1}(1) \cup K_f$, which is called the **Milnor fiber**. $\partial F_f = K_f$: F_f is a Seifert manifold for K_f . $\dim K_f = 2n - 1$, $\dim F_f = 2n$.

Algebraic knots are odd dim. fibered knots that are "highly connected". $\widetilde{H}_i(K_f; \mathbf{Z}) = 0$ for $i \neq n - 1, n$.

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

 $K_f \subset S_{\varepsilon}^{2n+1}$: algebraic knot associated with f. We put $F_f = \overline{\varphi_f^{-1}(1)} = \varphi_f^{-1}(1) \cup K_f$, which is called the **Milnor fiber**. $\partial F_f = K_f$: F_f is a Seifert manifold for K_f . $\dim K_f = 2n - 1$, $\dim F_f = 2n$.

Algebraic knots are odd dim. fibered knots that are "highly connected". $\widetilde{H}_i(K_f; \mathbf{Z}) = 0$ for $i \neq n - 1, n$. $F_f \simeq \vee^{\mu} S^n$: homotopy equivalent to a bouquet of *n*-spheres. The number μ is called the **Milnor number**.

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

 $K_f \subset S_{\varepsilon}^{2n+1}$: algebraic knot associated with f. We put $F_f = \overline{\varphi_f^{-1}(1)} = \varphi_f^{-1}(1) \cup K_f$, which is called the **Milnor fiber**. $\partial F_f = K_f$: F_f is a Seifert manifold for K_f . $\dim K_f = 2n - 1$, $\dim F_f = 2n$.

Algebraic knots are odd dim. fibered knots that are "highly connected". $\widetilde{H}_i(K_f; \mathbf{Z}) = 0$ for $i \neq n - 1, n$. $F_f \simeq \vee^{\mu} S^n$: homotopy equivalent to a bouquet of *n*-spheres. The number μ is called the Milnor number.

n = 1: fibered link in S^3

n = 2: connected 3-manifold in S^5 with simply connected fibers

n = 3: simply connected 5-manifold in S^7 with 2-connected fibers

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Case of n = 1: K_f is a classical link in S_{ε}^3 .

Suppose f is **irreducible** at **0**. Then K_f is a knot.

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Case of n = 1: K_f is a classical link in S^3_{ε} .

Suppose f is **irreducible** at 0. Then K_f is a knot. $f(z_1, z_2) = 0 \iff We$ can "solve" z_2 as a function of z_1 (polynomial with rational exponents), which is called a **Puiseux expansion**.

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Case of n = 1: K_f is a classical link in S^3_{ε} .

Suppose f is **irreducible** at 0. Then K_f is a knot. $f(z_1, z_2) = 0 \iff \text{We can "solve" } z_2$ as a function of z_1 (polynomial with rational exponents), which is called a **Puiseux expansion**.

Proposition 2.3 K_f is a certain **iterated torus knot**, *i.e.*, *it is a cable of a cable of a* \cdots *of a torus knot*.

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Case of n = 1: K_f is a classical link in S^3_{ε} .

Suppose f is **irreducible** at 0. Then K_f is a knot. $f(z_1, z_2) = 0 \iff \text{We can "solve" } z_2$ as a function of z_1 (polynomial with rational exponents), which is called a **Puiseux expansion**.

Proposition 2.3 K_f is a certain **iterated torus knot**, *i.e.*, *it is a cable of a cable of a* \cdots *of a torus knot*.

The general case where f may not be irreducible at 0: According to Zariski's theory of resolution of curve singularities, we have

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Case of n = 1: K_f is a classical link in S^3_{ε} .

Suppose f is **irreducible** at 0. Then K_f is a knot. $f(z_1, z_2) = 0 \iff \text{We can "solve" } z_2$ as a function of z_1 (polynomial with rational exponents), which is called a **Puiseux expansion**.

Proposition 2.3 K_f is a certain **iterated torus knot**, *i.e.*, *it is a cable of a cable of a* \cdots *of a torus knot*.

The general case where f may not be irreducible at 0: According to Zariski's theory of resolution of curve singularities, we have

Proposition 2.4 The isotopy class of the link K_f is completely determined by the components and their linking numbers.

Characteristic polynomial

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

In general, $\varphi_f : S_{\varepsilon}^{2n+1} \setminus K_f \to S^1$ is a smooth fibration with fiber $\operatorname{Int} F_f$.

Characteristic polynomial

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

In general, $\varphi_f : S_{\varepsilon}^{2n+1} \setminus K_f \to S^1$ is a smooth fibration with fiber $\operatorname{Int} F_f$. Let $h : \operatorname{Int} F_f \xrightarrow{\cong} \operatorname{Int} F_f$ be the geometric monodromy. We denote by $\Delta_f(t)$ the characteristic polynomial of

 $h_*: H_n(\operatorname{Int} F_f; \mathbf{Z}) \to H_n(\operatorname{Int} F_f; \mathbf{Z}).$
Characteristic polynomial

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

In general, $\varphi_f : S_{\varepsilon}^{2n+1} \setminus K_f \to S^1$ is a smooth fibration with fiber $\operatorname{Int} F_f$. Let $h : \operatorname{Int} F_f \xrightarrow{\cong} \operatorname{Int} F_f$ be the geometric monodromy. We denote by $\Delta_f(t)$ the characteristic polynomial of

 $h_*: H_n(\operatorname{Int} F_f; \mathbf{Z}) \to H_n(\operatorname{Int} F_f; \mathbf{Z}).$

It is known that $\Delta_f(t)$ coincides with the **Alexander polynomial** of K_f .

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

\S **3.** Classification

Seifert form

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

The **Seifert form** associated with f is the bilinear form

$$L_f: H_n(F_f; \mathbf{Z}) \times H_n(F_f; \mathbf{Z}) \to \mathbf{Z}$$
 define by
 $L_f(\alpha, \beta) = lk(a_+, b),$ where

Seifert form

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

The **Seifert form** associated with f is the bilinear form

 $L_f: H_n(F_f; \mathbf{Z}) \times H_n(F_f; \mathbf{Z}) \to \mathbf{Z}$ define by

 $L_f(\alpha, \beta) = \operatorname{lk}(a_+, b), \text{ where}$

 \blacksquare and b are n-cycles representing $\alpha, \beta \in H_n(F_f; \mathbb{Z})$,

- a_+ is obtained by pushing a into the positive normal direction of $F_f \subset S^{2n+1}_{\varepsilon}$,
- Ik is the linking number in S_{ε}^{2n+1} .

Seifert form

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

The **Seifert form** associated with f is the bilinear form

 $L_f: H_n(F_f; \mathbf{Z}) \times H_n(F_f; \mathbf{Z}) \to \mathbf{Z}$ define by

 $L_f(\alpha, \beta) = \operatorname{lk}(a_+, b), \text{ where}$

 \blacksquare and b are n-cycles representing $\alpha, \beta \in H_n(F_f; \mathbb{Z})$,

- a_+ is obtained by pushing a into the positive normal direction of $F_f \subset S^{2n+1}_{\varepsilon}$,
- lk is the linking number in S_{ε}^{2n+1} .

Theorem 3.1 (Durfee, Kato, 1974) For $n \ge 3$, two algebraic knots K_f and K_g are isotopic \iff the Seifert forms L_f and L_g are isomorphic.

Simple fibered knots

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

A (2n-1)-dim. fibered knot K in S^{2n+1} is **simple** if (1) K is (n-2)-connected, and (2) the fibers are (n-1)-connected.

Simple fibered knots

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

A (2n-1)-dim. fibered knot K in S^{2n+1} is **simple** if (1) K is (n-2)-connected, and (2) the fibers are (n-1)-connected.

In fact, we have the following.

Theorem 3.2 (Durfee, Kato, 1974) For $n \ge 3$, (2n - 1)-dim. simple fibered knots are in one-to-one correspondence with the isomorphism classes of integral unimodular bilinear forms.

Simple fibered knots

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

A (2n-1)-dim. fibered knot K in S^{2n+1} is **simple** if (1) K is (n-2)-connected, and (2) the fibers are (n-1)-connected.

In fact, we have the following.

Theorem 3.2 (Durfee, Kato, 1974) For $n \ge 3$, (2n - 1)-dim. simple fibered knots are in one-to-one correspondence with the isomorphism classes of integral unimodular bilinear forms.

For n = 1, 2, the above theorem does not hold.

Theorem 3.3 (S, 1999) For every $k \ge 2$, there exist simple fibered 3-knots K_1, K_2, \ldots, K_k s.t.

(1) they are all diffeomorphic as abstract 3-manifolds,

(2) their Seifert forms are all isomorphic,

(3) K_i and K_j are not isotopic if $i \neq j$.

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

For $a_1, a_2, ..., a_{n+1} \ge 2$, set

$$f(z_1, z_2, \dots, z_{n+1}) = z_1^{a_1} + z_2^{a_2} + \dots + z_{n+1}^{a_{n+1}},$$

which is called a Brieskorn–Pham type polynomial.

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

For $a_1, a_2, ..., a_{n+1} \ge 2$, set

$$f(z_1, z_2, \dots, z_{n+1}) = z_1^{a_1} + z_2^{a_2} + \dots + z_{n+1}^{a_{n+1}},$$

which is called a **Brieskorn–Pham type polynomial**. The integers $a_1, a_2, \ldots, a_{n+1}$ are called the **exponents**.

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

For $a_1, a_2, ..., a_{n+1} \ge 2$, set

$$f(z_1, z_2, \dots, z_{n+1}) = z_1^{a_1} + z_2^{a_2} + \dots + z_{n+1}^{a_{n+1}},$$

which is called a **Brieskorn–Pham type polynomial**. The integers $a_1, a_2, \ldots, a_{n+1}$ are called the **exponents**. Seifert forms for algebraic knots associated with Brieskorn–Pham type polynomials are known.

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

For $a_1, a_2, ..., a_{n+1} \ge 2$, set

$$f(z_1, z_2, \dots, z_{n+1}) = z_1^{a_1} + z_2^{a_2} + \dots + z_{n+1}^{a_{n+1}},$$

which is called a **Brieskorn–Pham type polynomial**.

The integers $a_1, a_2, \ldots, a_{n+1}$ are called the **exponents**.

Seifert forms for algebraic knots associated with Brieskorn–Pham type polynomials are known.

In fact, we have the following.

Theorem 3.4 (Yoshinaga–Suzuki, 1978) For two Brieskorn–Pham type polynomials f and g, the following three are equivanent. (1) K_f and K_g are isotopic. (2) f and g have the same set of exponents. (3) $\Delta_f(t) = \Delta_g(t)$. §1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

\S 4. Cobordism

Cobordism of knots

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Definition 4.1 Two oriented (2n - 1)-knots K_0 and K_1 in S^{2n+1} are **cobordant** if $\exists X (\cong K_0 \times [0, 1]) \subset S^{2n+1} \times [0, 1]$, a properly embedded oriented 2n-dim. submanifold, such that

 $\partial X = (K_0 \times \{0\}) \cup (-K_1 \times \{1\}).$

Cobordism of knots

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Definition 4.1 Two oriented (2n - 1)-knots K_0 and K_1 in S^{2n+1} are **cobordant** if $\exists X (\cong K_0 \times [0, 1]) \subset S^{2n+1} \times [0, 1]$, a properly embedded oriented 2n-dim. submanifold, such that

$$\partial X = (K_0 \times \{0\}) \cup (-K_1 \times \{1\}).$$

X is called a **cobordism** between K_0 and K_1 .

Cobordism of knots

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Definition 4.1 Two oriented (2n - 1)-knots K_0 and K_1 in S^{2n+1} are **cobordant** if $\exists X (\cong K_0 \times [0, 1]) \subset S^{2n+1} \times [0, 1]$, a properly embedded oriented 2n-dim. submanifold, such that

$$\partial X = (K_0 \times \{0\}) \cup (-K_1 \times \{1\}).$$

X is called a **cobordism** between K_0 and K_1 .

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

If two algebraic knots K_f and K_g are **cobordant**, then the topological types of f and g are mildly related.

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

If two algebraic knots K_f and K_g are **cobordant**, then the topological types of f and g are mildly related.

Problem 4.2 Given f and g, determine whether K_f and K_g are cobordant.

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

If two algebraic knots K_f and K_g are **cobordant**, then the topological types of f and g are mildly related.

Problem 4.2 Given f and g, determine whether K_f and K_g are cobordant.

An answer has been given in terms of **Seifert forms**, which are in general **very difficult to compute**.

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

If two algebraic knots K_f and K_g are **cobordant**, then the topological types of f and g are mildly related.

Problem 4.2 Given f and g, determine whether K_f and K_g are cobordant.

An answer has been given in terms of **Seifert forms**, which are in general **very difficult to compute**.

Even if we know the Seifert forms, it is still difficult to check if the corresponding knots are cobordant.

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

If two algebraic knots K_f and K_g are **cobordant**, then the topological types of f and g are mildly related.

Problem 4.2 Given f and g, determine whether K_f and K_g are cobordant.

An answer has been given in terms of **Seifert forms**, which are in general **very difficult to compute**.

Even if we know the Seifert forms, it is still difficult to check if the corresponding knots are cobordant.

Today's Topic: Problem 4.2 for weighted homogeneous polynomials (in particular, Brieskorn polynomials).

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

\S **5. Results**

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Case where n = 1 and the polynomials are irreducible at **0**.

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Case where n = 1 and the polynomials are irreducible at 0.

Theorem 5.1 (Lê, 1972) For algebraic knots K_f and K_g in S^3_{ε} , the following three are equivalent.

(1) K_f and K_g are isotopic.

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Case where n = 1 and the polynomials are irreducible at **0**.

Theorem 5.1 (Lê, 1972) For algebraic knots K_f and K_g in S^3_{ε} , the following three are equivalent.

(1) K_f and K_g are isotopic. (2) K_f and K_q are cobordant.

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Case where n = 1 and the polynomials are irreducible at 0.

Theorem 5.1 (Lê, 1972) For algebraic knots K_f and K_g in S^3_{ε} , the following three are equivalent. (1) K_f and K_g are isotopic. (2) K_f and K_g are cobordant. (3) Alexander polynomials coincide: $\Delta_f(t) = \Delta_q(t)$.

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Case where n = 1 and the polynomials are irreducible at **0**.

Theorem 5.1 (Lê, 1972) For algebraic knots K_f and K_g in S^3_{ε} , the following three are equivalent. (1) K_f and K_g are isotopic. (2) K_f and K_g are cobordant. (3) Alexander polynomials coincide: $\Delta_f(t) = \Delta_g(t)$.

It has long been conjectured that cobordant algebraic knots would be isotopic for all n.

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Case where n = 1 and the polynomials are irreducible at **0**.

Theorem 5.1 (Lê, 1972) For algebraic knots K_f and K_g in S^3_{ε} , the following three are equivalent. (1) K_f and K_g are isotopic. (2) K_f and K_g are cobordant. (3) Alexander polynomials coincide: $\Delta_f(t) = \Delta_g(t)$.

It has long been conjectured that cobordant algebraic knots would be isotopic for all n.

This conjecture was negatively answered almost twenty years later.

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Case where n = 1 and the polynomials are irreducible at **0**.

Theorem 5.1 (Lê, 1972) For algebraic knots K_f and K_g in S^3_{ε} , the following three are equivalent. (1) K_f and K_g are isotopic. (2) K_f and K_g are cobordant. (3) Alexander polynomials coincide: $\Delta_f(t) = \Delta_q(t)$.

It has long been conjectured that cobordant algebraic knots would be isotopic for all n.

This conjecture was negatively answered almost twenty years later.

du Bois-Michel, 1993

Examples of two algebraic (spherical) knots that are cobordant, but are not isotopic, $n \ge 3$.

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Let $L_i: G_i \times G_i \to \mathbb{Z}$, i = 0, 1, be two bilinear forms defined on free Z-modules of finite ranks.

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Let $L_i: G_i \times G_i \to \mathbb{Z}$, i = 0, 1, be two bilinear forms defined on free \mathbb{Z} -modules of finite ranks. Set $G = G_0 \oplus G_1$ and $L = L_0 \oplus (-L_1)$.

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Let $L_i: G_i \times G_i \to \mathbb{Z}$, i = 0, 1, be two bilinear forms defined on free \mathbb{Z} -modules of finite ranks. Set $G = G_0 \oplus G_1$ and $L = L_0 \oplus (-L_1)$.

Definition 5.2 Suppose $m = \operatorname{rank} G$ is even. A direct summand $M \subset G$ is called a **metabolizer** if $\operatorname{rank} M = m/2$ and L vanishes on M.

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Let $L_i: G_i \times G_i \to \mathbb{Z}$, i = 0, 1, be two bilinear forms defined on free \mathbb{Z} -modules of finite ranks. Set $G = G_0 \oplus G_1$ and $L = L_0 \oplus (-L_1)$.

Definition 5.2 Suppose $m = \operatorname{rank} G$ is even. A direct summand $M \subset G$ is called a **metabolizer** if $\operatorname{rank} M = m/2$ and L vanishes on M.

 L_0 is algebraically cobordant to L_1 if there exists a metabolizer satisfying additional properties about $S = L \pm L^T$.

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Let $L_i: G_i \times G_i \to \mathbb{Z}$, i = 0, 1, be two bilinear forms defined on free \mathbb{Z} -modules of finite ranks. Set $G = G_0 \oplus G_1$ and $L = L_0 \oplus (-L_1)$.

Definition 5.2 Suppose $m = \operatorname{rank} G$ is even. A direct summand $M \subset G$ is called a **metabolizer** if $\operatorname{rank} M = m/2$ and L vanishes on M.

 L_0 is algebraically cobordant to L_1 if there exists a metabolizer satisfying additional properties about $S = L \pm L^T$.

Theorem 5.3 (Blanlœil–Michel, 1997) For $n \ge 3$, two algebraic knots K_f and K_g are cobordant \iff Seifert forms L_f and L_g are algebraically cobordant.

Cobordism of fibered knots

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

In fact, for (possibly non-simple) fibered knots, we have the following.

Cobordism of fibered knots

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

In fact, for (possibly non-simple) fibered knots, we have the following. **Theorem 5.4 (Blanlœil–S., 2011)** K_0, K_1 : fibered (2n - 1)-knots, (n - 2)-connected, $n \ge 3$. K_0 and K_1 are cobordant \iff their Seifert forms are algebraically cobordant.
Witt equivalence

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Remark 5.5 At present, there is no efficient criterion for algebraic cobordism.

It is usually very difficult to determine whether given two forms are algebraically cobordant or not.

Witt equivalence

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Remark 5.5 At present, there is no efficient criterion for algebraic cobordism.

It is usually very difficult to determine whether given two forms are algebraically cobordant or not.

Two forms L_0 and L_1 are **Witt equivalent over R** if there exists a metabolizer over **R** for $L_0 \otimes \mathbf{R}$ and $L_1 \otimes \mathbf{R}$.

Witt equivalence

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Remark 5.5 At present, there is no efficient criterion for algebraic cobordism.

It is usually very difficult to determine whether given two forms are algebraically cobordant or not.

Two forms L_0 and L_1 are **Witt equivalent over R** if there exists a metabolizer over **R** for $L_0 \otimes \mathbf{R}$ and $L_1 \otimes \mathbf{R}$.

Lemma 5.6 If two algebraic knots K_f and K_g are cobordant, then their Seifert forms L_f and L_g are Witt equivalent over \mathbf{R} .

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Let f be a weighted homogeneous polynomial in \mathbb{C}^{n+1} ,

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Let f be a weighted homogeneous polynomial in \mathbb{C}^{n+1} , i.e. $\exists (w_1, w_2, \dots, w_{n+1}) \in \mathbb{Q}_{>0}^{n+1}$, called weights, such that for each monomial $cz_1^{k_1}z_2^{k_2}\cdots z_{n+1}^{k_{n+1}}$, $c \neq 0$, of f, we have

$$\sum_{j=1}^{n+1} \frac{k_j}{w_j} = 1.$$

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Let f be a weighted homogeneous polynomial in \mathbb{C}^{n+1} , i.e. $\exists (w_1, w_2, \dots, w_{n+1}) \in \mathbb{Q}_{>0}^{n+1}$, called weights, such that for each monomial $cz_1^{k_1}z_2^{k_2}\cdots z_{n+1}^{k_{n+1}}$, $c \neq 0$, of f, we have

$$\sum_{j=1}^{n+1} \frac{k_j}{w_j} = 1.$$

f is **non-degenerate** if it has an isolated critical point at **0**.

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Let f be a weighted homogeneous polynomial in \mathbb{C}^{n+1} , i.e. $\exists (w_1, w_2, \dots, w_{n+1}) \in \mathbb{Q}_{>0}^{n+1}$, called weights, such that for each monomial $cz_1^{k_1}z_2^{k_2}\cdots z_{n+1}^{k_{n+1}}$, $c \neq 0$, of f, we have

$$\sum_{j=1}^{n+1} \frac{k_j}{w_j} = 1$$

f is **non-degenerate** if it has an isolated critical point at **0**.

We may assume \forall weights ≥ 2 .

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Let f be a weighted homogeneous polynomial in \mathbb{C}^{n+1} , i.e. $\exists (w_1, w_2, \dots, w_{n+1}) \in \mathbb{Q}_{>0}^{n+1}$, called weights, such that for each monomial $cz_1^{k_1}z_2^{k_2}\cdots z_{n+1}^{k_{n+1}}$, $c \neq 0$, of f, we have

$$\sum_{j=1}^{n+1} \frac{k_j}{w_j} = 1$$

f is **non-degenerate** if it has an isolated critical point at **0**.

We may assume \forall weights ≥ 2 .

Brieskorn–Pham type polynomial $z_1^{a_1} + z_2^{a_2} + \cdots + z_{n+1}^{a_{n+1}}$ \implies weighted homogeneous of weights $(a_1, a_2, \dots, a_{n+1})$

Criterion for Witt equiv. over ${\bf R}$

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Set

$$P_f(t) = \prod_{j=1}^{n+1} \frac{t - t^{1/w_j}}{t^{1/w_j} - 1}.$$

 $P_f(t)$ is a polynomial in $t^{1/m}$ over \mathbb{Z} for some integer m > 0.

Criterion for Witt equiv. over ${\bf R}$

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Set

$$P_f(t) = \prod_{j=1}^{n+1} \frac{t - t^{1/w_j}}{t^{1/w_j} - 1}.$$

 $P_f(t)$ is a polynomial in $t^{1/m}$ over **Z** for some integer m > 0.

Two non-degenerate weighted homogeneous polynomials f and g have the same weights if and only if $P_f(t) = P_g(t)$.

Criterion for Witt equiv. over ${\bf R}$

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Set

$$P_f(t) = \prod_{j=1}^{n+1} \frac{t - t^{1/w_j}}{t^{1/w_j} - 1}.$$

 $P_f(t)$ is a polynomial in $t^{1/m}$ over **Z** for some integer m > 0.

Two non-degenerate weighted homogeneous polynomials f and g have the same weights if and only if $P_f(t) = P_g(t)$.

Theorem 5.7 Let f and g be non-degenerate weighted homogeneous polynomials in \mathbb{C}^{n+1} . Then, their Seifert forms L_f and L_g are **Witt equivalent over R** iff

 $P_f(t) \equiv P_g(t) \mod t + 1.$

Criterion for isomorphism over $\ensuremath{\mathbf{R}}$

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

The above theorem should be compared with the following.

Remark 5.8 The Seifert forms L_f and L_g associated with non-degenerate weighted homogeneous polynomials f and g are **isomorphic over** \mathbf{R} iff

 $P_f(t) \equiv P_g(t) \mod t^2 - 1.$

Brieskorn–Pham type polynomials

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Proposition 5.9 Let

$$f(z) = \sum_{j=1}^{n+1} z_j^{a_j}$$
 and $g(z) = \sum_{j=1}^{n+1} z_j^{b_j}$

be Brieskorn–Pham type polynomials.

Brieskorn–Pham type polynomials

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Proposition 5.9 Let

$$f(z) = \sum_{j=1}^{n+1} z_j^{a_j}$$
 and $g(z) = \sum_{j=1}^{n+1} z_j^{b_j}$

be Brieskorn–Pham type polynomials. Then, their Seifert forms are Witt equivalent over ${\bf R}$ iff

$$\prod_{j=1}^{n+1} \cot \frac{\pi \ell}{2a_j} = \prod_{j=1}^{n+1} \cot \frac{\pi \ell}{2b_j}$$

holds for all odd integers ℓ .

Cobordism invariance of exponents

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Theorem 5.10 Suppose that for each of the Brieskorn–Pham type polynomials

$$f(z) = \sum_{j=1}^{n+1} z_j^{a_j} \quad \text{and} \quad g(z) = \sum_{j=1}^{n+1} z_j^{b_j},$$

no exponent is a multiple of another one.

Cobordism invariance of exponents

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Theorem 5.10 Suppose that for each of the Brieskorn–Pham type polynomials

$$f(z) = \sum_{j=1}^{n+1} z_j^{a_j} \quad \text{and} \quad g(z) = \sum_{j=1}^{n+1} z_j^{b_j},$$

no exponent is a multiple of another one. Then, the knots K_f and K_q are **cobordant** iff

$$a_j = b_j, \quad j = 1, 2, \dots, n+1,$$

up to order.

Case of two or three variables

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Proposition 5.11 Let f and g be weighted homogeneous polynomials of two variables with weights (w_1, w_2) and (w'_1, w'_2) , respectively, with $w_j, w'_j \ge 2$. If their Seifert forms are Witt equivalent over \mathbf{R} , then $w_j = w'_j$, j = 1, 2, up to order.

Case of two or three variables

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Proposition 5.11 Let f and g be weighted homogeneous polynomials of two variables with weights (w_1, w_2) and (w'_1, w'_2) , respectively, with $w_j, w'_j \ge 2$. If their Seifert forms are Witt equivalent over \mathbf{R} , then $w_j = w'_j$, j = 1, 2, up to order.

Proposition 5.12 Let $f(z) = z_1^{a_1} + z_2^{a_2} + z_3^{a_3}$ and $g(z) = z_1^{b_1} + z_2^{b_2} + z_3^{b_3}$ be Brieskorn–Pham type polynomials of three variables. If the Seifert forms L_f and L_g are Witt equivalent over \mathbf{R} , then $a_j = b_j$, j = 1, 2, 3, up to order. §1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

$\S 6. Proofs$

Proof of Theorem 5.7

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Theorem 5.7 Let f and g be non-degenerate weighted homogeneous polynomials in \mathbb{C}^{n+1} . Then, their Seifert forms L_f and L_g are Witt equivalent over \mathbb{R} iff

 $P_f(t) \equiv P_g(t) \mod t + 1.$

Proof of Theorem 5.7

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Theorem 5.7 Let f and g be non-degenerate weighted homogeneous polynomials in \mathbb{C}^{n+1} . Then, their Seifert forms L_f and L_g are **Witt** equivalent over \mathbb{R} iff

 $P_f(t) \equiv P_g(t) \mod t + 1.$

Proof. For simplicity, we consider the case of n even.

Proof of Theorem 5.7

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Theorem 5.7 Let f and g be non-degenerate weighted homogeneous polynomials in \mathbb{C}^{n+1} . Then, their Seifert forms L_f and L_g are **Witt** equivalent over \mathbb{R} iff

 $P_f(t) \equiv P_g(t) \mod t+1.$

Proof. For simplicity, we consider the case of n even.

Let $\Delta_f(t)$ be the characteristic polynomial of the monodromy

 $h_*: H_n(\operatorname{Int} F_f; \mathbf{C}) \to H_f(\operatorname{Int} F_f; \mathbf{C}),$

where $h : \operatorname{Int} F_f \to \operatorname{Int} F_f$ is the characteristic diffeomorphism of the Milnor fibration $\varphi_f : S_{\varepsilon}^{2n+1} \setminus K_f \to S^1$.

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

We have

$$H^n(F_f; \mathbf{C}) = \bigoplus_{\lambda} H^n(F_f; \mathbf{C})_{\lambda},$$

where λ runs over all the roots of $\Delta_f(t)$, and $H^n(F_f; \mathbb{C})_{\lambda}$ is the eigenspace of h_* corresponding to the eigenvalue λ .

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

We have

$$H^n(F_f; \mathbf{C}) = \bigoplus_{\lambda} H^n(F_f; \mathbf{C})_{\lambda},$$

where λ runs over all the roots of $\Delta_f(t)$, and $H^n(F_f; \mathbb{C})_{\lambda}$ is the eigenspace of h_* corresponding to the eigenvalue λ .

The intersection form $S_f = L_f + L_f^T$ of F_f on $H^n(F_f; \mathbb{C})$ decomposes as the orthogonal direct sum of $(S_f)|_{H^n(F_f; \mathbb{C})_{\lambda}}$.

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

We have

$$H^n(F_f; \mathbf{C}) = \bigoplus_{\lambda} H^n(F_f; \mathbf{C})_{\lambda},$$

where λ runs over all the roots of $\Delta_f(t)$, and $H^n(F_f; \mathbf{C})_{\lambda}$ is the eigenspace of h_* corresponding to the eigenvalue λ .

The intersection form $S_f = L_f + L_f^T$ of F_f on $H^n(F_f; \mathbb{C})$ decomposes as the orthogonal direct sum of $(S_f)|_{H^n(F_f; \mathbb{C})_{\lambda}}$.

Let $\mu(f)^+_{\lambda}$ (resp. $\mu(f)^-_{\lambda}$) denote the number of positive (resp. negative) eigenvalues of $(S_f)|_{H^n(F;\mathbf{C})_{\lambda}}$.

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

We have

$$H^n(F_f; \mathbf{C}) = \bigoplus_{\lambda} H^n(F_f; \mathbf{C})_{\lambda},$$

where λ runs over all the roots of $\Delta_f(t)$, and $H^n(F_f; \mathbf{C})_{\lambda}$ is the eigenspace of h_* corresponding to the eigenvalue λ .

The intersection form $S_f = L_f + L_f^T$ of F_f on $H^n(F_f; \mathbb{C})$ decomposes as the orthogonal direct sum of $(S_f)|_{H^n(F_f; \mathbb{C})_{\lambda}}$.

Let $\mu(f)^+_{\lambda}$ (resp. $\mu(f)^-_{\lambda}$) denote the number of positive (resp. negative) eigenvalues of $(S_f)|_{H^n(F;\mathbf{C})_{\lambda}}$. The integer

 $\sigma_{\lambda}(f) = \mu(f)_{\lambda}^{+} - \mu(f)_{\lambda}^{-}$

is called the **equivariant signature** of f with respect to λ .

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Lemma 6.1 (Steenbrink, 1977) Set $P_f(t) = \sum c_{\alpha} t^{\alpha}$. Then we have

$$\sigma_{\lambda}(f) = \sum_{\substack{\lambda = \exp(-2\pi i\alpha) \\ \lfloor \alpha \rfloor: \text{ even}}} c_{\alpha} - \sum_{\substack{\lambda = \exp(-2\pi i\alpha), \\ \lfloor \alpha \rfloor: \text{ odd}}} c_{\alpha}$$

for $\lambda \neq 1$, where $i = \sqrt{-1}$, and $\lfloor \alpha \rfloor$ is the largest integer not exceeding α .

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Lemma 6.1 (Steenbrink, 1977) Set $P_f(t) = \sum c_{\alpha} t^{\alpha}$. Then we have

$$\sigma_{\lambda}(f) = \sum_{\substack{\lambda = \exp(-2\pi i\alpha) \\ \lfloor \alpha \rfloor: \text{ even}}} c_{\alpha} - \sum_{\substack{\lambda = \exp(-2\pi i\alpha), \\ \lfloor \alpha \rfloor: \text{ odd}}} c_{\alpha}$$

for $\lambda \neq 1$, where $i = \sqrt{-1}$, and $\lfloor \alpha \rfloor$ is the largest integer not exceeding α .

Remark 6.2 The equivariant signature for $\lambda = 1$ is always equal to zero.

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Seifert forms L_f and L_g are Witt equivalent over \mathbf{R} . $\implies \sigma_{\lambda}(f) = \sigma_{\lambda}(g)$ for all λ .

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Seifert forms
$$L_f$$
 and L_g are Witt equivalent over **R**.
 $\implies \sigma_{\lambda}(f) = \sigma_{\lambda}(g)$ for all λ .

Set

M

$$P_f(t) = P_f^0(t) + P_f^1(t), \quad \text{where}$$

$$P_f^0(t) = \sum_{\lfloor \alpha \rfloor \equiv 0 \pmod{2}} c_\alpha t^\alpha,$$

$$P_f^1(t) = \sum_{\lfloor \alpha \rfloor \equiv 1 \pmod{2}} c_\alpha t^\alpha.$$
/e define $P_g^0(t)$ and $P_g^1(t)$ similarly.

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Seifert forms
$$L_f$$
 and L_g are Witt equivalent over **R**.
 $\implies \sigma_{\lambda}(f) = \sigma_{\lambda}(g)$ for all λ .

Set

$$P_{f}(t) = P_{f}^{0}(t) + P_{f}^{1}(t), \text{ where}$$

$$P_{f}^{0}(t) = \sum_{\lfloor \alpha \rfloor \equiv 0 \pmod{2}} c_{\alpha} t^{\alpha},$$

$$P_{f}^{1}(t) = \sum_{\lfloor \alpha \rfloor \equiv 1 \pmod{2}} c_{\alpha} t^{\alpha}.$$

We define $P_g^0(t)$ and $P_g^1(t)$ similarly. Since the equivariant signatures of f and g coincide, we have

$$tP_f^0(t) - P_f^1(t) \equiv tP_g^0(t) - P_g^1(t) \mod t^2 - 1,$$

$$tP_f^1(t) - P_f^0(t) \equiv tP_g^1(t) - P_g^0(t) \mod t^2 - 1.$$

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Adding up these two congruences we have

$$(t-1)P_f(t) \equiv (t-1)P_g(t) \mod t^2 - 1,$$
 (1)

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Adding up these two congruences we have

$$(t-1)P_f(t) \equiv (t-1)P_g(t) \mod t^2 - 1,$$

which implies

 $P_f(t) \equiv P_g(t) \mod t + 1.$ ⁽²⁾

(1)

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Adding up these two congruences we have

$$(t-1)P_f(t) \equiv (t-1)P_g(t) \mod t^2 - 1,$$

which implies

 $P_f(t) \equiv P_g(t) \mod t+1.$

Conversely, suppose that (2) holds.

- \implies (1) holds.
- \implies f and g have the same equivariant signatures.

(1)

(2)

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Adding up these two congruences we have

$$(t-1)P_f(t) \equiv (t-1)P_g(t) \mod t^2 - 1,$$

which implies

 $P_f(t) \equiv P_g(t) \mod t+1.$

Conversely, suppose that (2) holds.

- \implies (1) holds.
- \implies f and g have the same equivariant signatures.

Then, we can prove that they are Witt equivalent over \mathbf{R} .

This completes the proof.

(1)

(2)

Proof of Proposition 5.9

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Proof of Proposition 5.9 (Cont.)

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Proof. $P_f(t)$ and $P_g(t)$ are polynomials in $s = t^{1/m}$ for some m. Put $Q_f(s) = P_f(t)$ and $Q_g(s) = P_g(t)$. Then, $P_f(t) \equiv P_g(t) \mod t + 1$ holds $\iff Q_f(\xi) = Q_g(\xi)$ for all ξ with $\xi^m = -1$.

Proof of Proposition 5.9 (Cont.)

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Proof. $P_f(t)$ and $P_g(t)$ are polynomials in $s = t^{1/m}$ for some m. Put $Q_f(s) = P_f(t)$ and $Q_g(s) = P_g(t)$. Then, $P_f(t) \equiv P_g(t) \mod t + 1$ holds $\iff Q_f(\xi) = Q_g(\xi)$ for all ξ with $\xi^m = -1$. Note that ξ is of the form

$$\exp(\pi\sqrt{-1}\ell/m)$$

with ℓ odd and that

$$\frac{-1 - \exp(\pi \sqrt{-1}\ell/a_j)}{\exp(\pi \sqrt{-1}\ell/a_j) - 1} = \sqrt{-1} \cot \frac{\pi \ell}{2a_j}$$

Then, we immediately get Proposition 5.9.

Proof of Theorem 5.10

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Theorem 5.10 Suppose that for each of the Brieskorn–Pham type polynomials

$$f(z) = \sum_{j=1}^{n+1} z_j^{a_j}$$
 and $g(z) = \sum_{j=1}^{n+1} z_j^{b_j}$,

no exponent is a multiple of another one. Then, the knots K_f and K_q are **cobordant** iff

$$a_j = b_j, \quad j = 1, 2, \dots, n+1,$$

up to order.

Proof of Theorem 5.10

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Theorem 5.10 Suppose that for each of the Brieskorn–Pham type polynomials

$$f(z) = \sum_{j=1}^{n+1} z_j^{a_j}$$
 and $g(z) = \sum_{j=1}^{n+1} z_j^{b_j}$,

no exponent is a multiple of another one. Then, the knots K_f and K_a are **cobordant** iff

$$a_j = b_j, \quad j = 1, 2, \dots, n+1,$$

up to order.

This is a consequence of the "**Fox–Milnor type relation**" for the Alexander polynomials of cobordant algebraic knots.

Open problem

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Problem 6.3 Are the exponents cobordism invariants for Brieskorn–Pham type polynomials?

Open problem

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Problem 6.3 Are the exponents cobordism invariants for Brieskorn–Pham type polynomials?

Proposition 5.9 reduces the above problem to a number theoretical problem involving cotangents.

Open problem

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Problem 6.3 Are the exponents cobordism invariants for Brieskorn–Pham type polynomials?

Proposition 5.9 reduces the above problem to a number theoretical problem involving cotangents.

$$\prod_{j=1}^{n+1} \cot \frac{\pi \ell}{2a_j} = \prod_{j=1}^{n+1} \cot \frac{\pi \ell}{2b_j} \quad \forall \text{odd integers } \ell$$
$$\implies a_j = b_j \quad \text{up to order ?}$$

§1. An Example §2. Milnor's Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

Thank you!