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K is a knot in S3 !
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Set r1 = |z1| and r2 = |z2|.
∃!r1, r2 > 0 s.t. r2

1 = r3
2, r2

1 + r2
2 = ε2

K = {(z1, z2) ∈ S3
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1 = z3
2}

= {(r1e
3πit, r2e

2πit) ∈ C2 | t ∈ R} ⊂ S1
r1
× S1

r2
⊂ S3

ε

This is a trefoil knot!
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f = f(z1, z2, . . . , zn+1) complex polynomial with f(0) = 0
s.t. 0 is an isolated critical point of f , i.e.,

∂f

∂z1

(z) = · · · =
∂f

∂zn+1

(z) = 0 ⇐⇒ z = 0

in a neighborhood of 0.
V = f−1(0) ⊂ Cn+1: complex hypersurface
Kf = f−1(0) ∩ S2n+1

ε ⊂ S2n+1
ε : algebraic knot associated with f ,

0 < ε << 1.

Kf is a (2n − 1)-dim. smooth closed manifold embedded in S2n+1
ε .
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Theorem 2.1 (Milnor, 1968)
(D2n+2

ε , f−1(0) ∩ D2n+2
ε ) ≈ Cone(S2n+1

ε , Kf ) (homeo.)
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Theorem 2.2 (Milnor, 1968)

(1) ϕf = f/|f | : S2n+1
ε \ Kf → S1 is a locally trivial fibration.

(2) Kf is (n − 2)-connected, i.e., πi(Kf ) = 0 ∀i ≤ n − 2.

(3) Fibers of ϕf are (n − 1)-connected.

S1

ϕf

Kf

Kf is a fibered knot, but Kf may not be a sphere.
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Kf ⊂ S2n+1
ε : algebraic knot associated with f .

We put Ff = ϕ−1
f (1) = ϕ−1

f (1) ∪ Kf , which is called the Milnor fiber.
∂Ff = Kf : Ff is a Seifert manifold for Kf .
dim Kf = 2n − 1, dim Ff = 2n.

Algebraic knots are odd dim. fibered knots that are “highly connected”.
H̃i(Kf ;Z) = 0 for i 6= n − 1, n.
Ff ≃ ∨µSn: homotopy equivalent to a bouquet of n-spheres.
The number µ is called the Milnor number.

n = 1: fibered link in S3

n = 2: connected 3-manifold in S5 with simply connected fibers
n = 3: simply connected 5-manifold in S7 with 2-connected fibers

...
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Case of n = 1: Kf is a classical link in S3
ε .

Suppose f is irreducible at 0. Then Kf is a knot.
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Case of n = 1: Kf is a classical link in S3
ε .

Suppose f is irreducible at 0. Then Kf is a knot.
f(z1, z2) = 0 ⇐ We can “solve” z2 as a function of z1 (polynomial with
rational exponents), which is called a Puiseux expansion.

Proposition 2.3 Kf is a certain iterated torus knot, i.e., it is a

cable of a cable of a · · · of a torus knot.

The general case where f may not be irreducible at 0:
According to Zariski’s theory of resolution of curve singularities, we have

Proposition 2.4 The isotopy class of the link Kf is completely

determined by the components and their linking numbers.
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ε \ Kf → S1 is a smooth fibration with fiber Int Ff .
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In general, ϕf : S2n+1
ε \ Kf → S1 is a smooth fibration with fiber Int Ff .

Let h : Int Ff

∼=−→ Int Ff be the geometric monodromy.
We denote by ∆f (t) the characteristic polynomial of

h∗ : Hn(Int Ff ;Z) → Hn(Int Ff ;Z).

It is known that ∆f (t) coincides with the Alexander polynomial of Kf .
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The Seifert form associated with f is the bilinear form

Lf : Hn(Ff ;Z) × Hn(Ff ;Z) → Z define by

Lf (α, β) = lk(a+, b), where

■ a and b are n-cycles representing α, β ∈ Hn(Ff ;Z),

■ a+ is obtained by pushing a into the positive normal direction of
Ff ⊂ S2n+1

ε ,

■ lk is the linking number in S2n+1
ε .

Theorem 3.1 (Durfee, Kato, 1974) For n ≥ 3,

two algebraic knots Kf and Kg are isotopic

⇐⇒ the Seifert forms Lf and Lg are isomorphic.
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A (2n − 1)-dim. fibered knot K in S2n+1 is simple if
(1) K is (n − 2)-connected, and (2) the fibers are (n − 1)-connected.

In fact, we have the following.

Theorem 3.2 (Durfee, Kato, 1974) For n ≥ 3, (2n − 1)-dim.

simple fibered knots are in one-to-one correspondence with the

isomorphism classes of integral unimodular bilinear forms.

For n = 1, 2, the above theorem does not hold.

Theorem 3.3 (S, 1999) For every k ≥ 2, there exist simple fibered

3-knots K1, K2, . . . , Kk s.t.

(1) they are all diffeomorphic as abstract 3-manifolds,

(2) their Seifert forms are all isomorphic,

(3) Ki and Kj are not isotopic if i 6= j.
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For a1, a2, . . . , an+1 ≥ 2, set

f(z1, z2, . . . , zn+1) = za1

1 + za2

2 + · · · + z
an+1

n+1 ,

which is called a Brieskorn–Pham type polynomial.
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For a1, a2, . . . , an+1 ≥ 2, set

f(z1, z2, . . . , zn+1) = za1

1 + za2

2 + · · · + z
an+1

n+1 ,

which is called a Brieskorn–Pham type polynomial.
The integers a1, a2, . . . , an+1 are called the exponents.
Seifert forms for algebraic knots associated with Brieskorn–Pham type
polynomials are known.
In fact, we have the following.

Theorem 3.4 (Yoshinaga–Suzuki, 1978)
For two Brieskorn–Pham type polynomials f and g, the following

three are equivanent.

(1) Kf and Kg are isotopic.

(2) f and g have the same set of exponents.

(3) ∆f (t) = ∆g(t).
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Definition 4.1 Two oriented (2n − 1)-knots K0 and K1 in S2n+1 are
cobordant if ∃X(∼= K0 × [0, 1]) ⊂ S2n+1 × [0, 1], a properly embedded
oriented 2n-dim. submanifold, such that

∂X = (K0 × {0}) ∪ (−K1 × {1}).
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Definition 4.1 Two oriented (2n − 1)-knots K0 and K1 in S2n+1 are
cobordant if ∃X(∼= K0 × [0, 1]) ⊂ S2n+1 × [0, 1], a properly embedded
oriented 2n-dim. submanifold, such that

∂X = (K0 × {0}) ∪ (−K1 × {1}).

X is called a cobordism between K0 and K1.

 

S2n+1 × {0} S2n+1 × {1}

K0 × {0} K1 × {1}

X
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If two algebraic knots Kf and Kg are cobordant, then the topological
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If two algebraic knots Kf and Kg are cobordant, then the topological
types of f and g are mildly related.

Problem 4.2 Given f and g, determine whether Kf and Kg are

cobordant.

An answer has been given in terms of Seifert forms, which are in
general very difficult to compute.
Even if we know the Seifert forms, it is still difficult to check if the
corresponding knots are cobordant.

Today’s Topic: Problem 4.2 for weighted homogeneous polynomials (in
particular, Brieskorn polynomials).
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For algebraic knots Kf and Kg in S3

ε , the following three are equiv-

alent.

(1) Kf and Kg are isotopic.

(2) Kf and Kg are cobordant.

(3) Alexander polynomials coincide: ∆f (t) = ∆g(t).

It has long been conjectured that cobordant algebraic knots would be
isotopic for all n.



Known results
§1. An Example §2. Milnor’s Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

20 / 40

Case where n = 1 and the polynomials are irreducible at 0.

Theorem 5.1 (Lê, 1972)
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Case where n = 1 and the polynomials are irreducible at 0.

Theorem 5.1 (Lê, 1972)
For algebraic knots Kf and Kg in S3

ε , the following three are equiv-

alent.

(1) Kf and Kg are isotopic.

(2) Kf and Kg are cobordant.

(3) Alexander polynomials coincide: ∆f (t) = ∆g(t).

It has long been conjectured that cobordant algebraic knots would be
isotopic for all n.
This conjecture was negatively answered almost twenty years later.

du Bois–Michel, 1993
Examples of two algebraic (spherical) knots that are cobordant, but are
not isotopic, n ≥ 3.
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Let Li : Gi × Gi → Z, i = 0, 1, be two bilinear forms defined on free
Z-modules of finite ranks.
Set G = G0 ⊕ G1 and L = L0 ⊕ (−L1).

Definition 5.2 Suppose m = rank G is even.
A direct summand M ⊂ G is called a metabolizer
if rank M = m/2 and L vanishes on M .

L0 is algebraically cobordant to L1 if there exists a metabolizer
satisfying additional properties about S = L ± LT .

Theorem 5.3 (Blanlœil–Michel, 1997) For n ≥ 3,

two algebraic knots Kf and Kg are cobordant

⇐⇒ Seifert forms Lf and Lg are algebraically cobordant.
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In fact, for (possibly non-simple) fibered knots, we have the following.

Theorem 5.4 (Blanlœil–S., 2011)
K0, K1: fibered (2n − 1)-knots, (n − 2)-connected, n ≥ 3.

K0 and K1 are cobordant

⇐⇒ their Seifert forms are algebraically cobordant.
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algebraically cobordant or not.
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Remark 5.5 At present, there is no efficient criterion for algebraic
cobordism.
It is usually very difficult to determine whether given two forms are
algebraically cobordant or not.

Two forms L0 and L1 are Witt equivalent over R if there exists a
metabolizer over R for L0 ⊗ R and L1 ⊗ R.

Lemma 5.6 If two algebraic knots Kf and Kg are cobordant, then their

Seifert forms Lf and Lg are Witt equivalent over R.
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Let f be a weighted homogeneous polynomial in Cn+1,
i.e. ∃(w1, w2, . . . , wn+1) ∈ Qn+1

>0 , called weights, such that for each

monomial czk1

1 zk2

2 · · · zkn+1

n+1 , c 6= 0, of f , we have

n+1∑

j=1

kj

wj

= 1.

f is non-degenerate if it has an isolated critical point at 0.

We may assume ∀weights ≥ 2.

Brieskorn–Pham type polynomial za1

1 + za2

2 + · · · + z
an+1

n+1

=⇒ weighted homogeneous of weights (a1, a2, . . . , an+1)
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Set

Pf (t) =
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j=1

t − t1/wj

t1/wj − 1
.

Pf (t) is a polynomial in t1/m over Z for some integer m > 0.
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Set

Pf (t) =
n+1∏

j=1

t − t1/wj

t1/wj − 1
.

Pf (t) is a polynomial in t1/m over Z for some integer m > 0.

Two non-degenerate weighted homogeneous polynomials
f and g have the same weights if and only if Pf (t) = Pg(t).

Theorem 5.7 Let f and g be non-degenerate weighted homoge-

neous polynomials in Cn+1. Then, their Seifert forms Lf and Lg are

Witt equivalent over R iff

Pf (t) ≡ Pg(t) mod t + 1.
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The above theorem should be compared with the following.

Remark 5.8 The Seifert forms Lf and Lg associated with

non-degenerate weighted homogeneous polynomials f and g are

isomorphic over R iff

Pf (t) ≡ Pg(t) mod t2 − 1.
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Proposition 5.9 Let

f(z) =
n+1∑

j=1

z
aj

j and g(z) =
n+1∑

j=1

z
bj

j

be Brieskorn–Pham type polynomials.
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Proposition 5.9 Let

f(z) =
n+1∑

j=1

z
aj

j and g(z) =
n+1∑

j=1

z
bj

j

be Brieskorn–Pham type polynomials.

Then, their Seifert forms are Witt equivalent over R iff

n+1∏

j=1

cot
πℓ

2aj

=
n+1∏

j=1

cot
πℓ

2bj

holds for all odd integers ℓ.



Cobordism invariance of exponents
§1. An Example §2. Milnor’s Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

28 / 40

Theorem 5.10 Suppose that for each of the Brieskorn–Pham type

polynomials

f(z) =
n+1∑

j=1

z
aj

j and g(z) =
n+1∑

j=1

z
bj

j ,

no exponent is a multiple of another one.
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Theorem 5.10 Suppose that for each of the Brieskorn–Pham type

polynomials

f(z) =
n+1∑

j=1

z
aj

j and g(z) =
n+1∑

j=1

z
bj

j ,

no exponent is a multiple of another one.

Then, the knots Kf and Kg are cobordant iff

aj = bj, j = 1, 2, . . . , n + 1,

up to order.
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Proposition 5.11 Let f and g be weighted homogeneous polynomials

of two variables with weights (w1, w2) and (w′
1, w

′
2), respectively, with

wj, w
′
j ≥ 2.

If their Seifert forms are Witt equivalent over R, then

wj = w′
j, j = 1, 2, up to order.
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Proposition 5.11 Let f and g be weighted homogeneous polynomials

of two variables with weights (w1, w2) and (w′
1, w

′
2), respectively, with

wj, w
′
j ≥ 2.

If their Seifert forms are Witt equivalent over R, then

wj = w′
j, j = 1, 2, up to order.

Proposition 5.12 Let f(z) = za1

1 + za2

2 + za3

3 and g(z) = zb1
1 + zb2

2 + zb3
3

be Brieskorn–Pham type polynomials

of three variables.

If the Seifert forms Lf and Lg are Witt equivalent over R,

then aj = bj, j = 1, 2, 3, up to order.
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Theorem 5.7 Let f and g be non-degenerate weighted homogeneous
polynomials in Cn+1. Then, their Seifert forms Lf and Lg are Witt
equivalent over R iff

Pf (t) ≡ Pg(t) mod t + 1.
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Theorem 5.7 Let f and g be non-degenerate weighted homogeneous
polynomials in Cn+1. Then, their Seifert forms Lf and Lg are Witt
equivalent over R iff

Pf (t) ≡ Pg(t) mod t + 1.

Proof. For simplicity, we consider the case of n even.

Let ∆f (t) be the characteristic polynomial of the monodromy

h∗ : Hn(Int Ff ;C) → Hf (Int Ff ;C),

where h : Int Ff → Int Ff is the characteristic diffeomorphism of the
Milnor fibration ϕf : S2n+1

ε \ Kf → S1.



Proof of Theorem 5.7 (Continued)
§1. An Example §2. Milnor’s Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

32 / 40

We have
Hn(Ff ;C) = ⊕λH

n(Ff ;C)λ,

where λ runs over all the roots of ∆f (t), and Hn(Ff ;C)λ is the
eigenspace of h∗ corresponding to the eigenvalue λ.
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We have
Hn(Ff ;C) = ⊕λH

n(Ff ;C)λ,

where λ runs over all the roots of ∆f (t), and Hn(Ff ;C)λ is the
eigenspace of h∗ corresponding to the eigenvalue λ.

The intersection form Sf = Lf + LT
f of Ff on Hn(Ff ;C) decomposes

as the orthogonal direct sum of (Sf )|Hn(Ff ;C)λ
.

Let µ(f)+
λ (resp. µ(f)−λ ) denote the number of positive (resp. negative)

eigenvalues of (Sf )|Hn(F ;C)λ
.

The integer
σλ(f) = µ(f)+

λ − µ(f)−λ

is called the equivariant signature of f with respect to λ.
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Lemma 6.1 (Steenbrink, 1977)
Set Pf (t) =

∑
cαtα. Then we have

σλ(f) =
∑

λ=exp(−2πiα)
⌊α⌋: even

cα −
∑

λ=exp(−2πiα),
⌊α⌋: odd

cα

for λ 6= 1, where i =
√
−1, and ⌊α⌋ is the largest integer not exceeding

α.
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Lemma 6.1 (Steenbrink, 1977)
Set Pf (t) =

∑
cαtα. Then we have

σλ(f) =
∑

λ=exp(−2πiα)
⌊α⌋: even

cα −
∑

λ=exp(−2πiα),
⌊α⌋: odd

cα

for λ 6= 1, where i =
√
−1, and ⌊α⌋ is the largest integer not exceeding

α.

Remark 6.2 The equivariant signature for λ = 1 is always equal to
zero.



Proof of Theorem 5.7 (Continued)
§1. An Example §2. Milnor’s Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

34 / 40

Seifert forms Lf and Lg are Witt equivalent over R.
=⇒ σλ(f) = σλ(g) for all λ.



Proof of Theorem 5.7 (Continued)
§1. An Example §2. Milnor’s Fibration Theorem §3. Classification §4. Cobordism §5. Results §6. Proofs

34 / 40

Seifert forms Lf and Lg are Witt equivalent over R.
=⇒ σλ(f) = σλ(g) for all λ.

Set
Pf (t) = P 0

f (t) + P 1
f (t), where

P 0
f (t) =

∑

⌊α⌋≡0 (mod 2)

cαtα,

P 1
f (t) =

∑

⌊α⌋≡1 (mod 2)

cαtα.

We define P 0
g (t) and P 1

g (t) similarly.
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Seifert forms Lf and Lg are Witt equivalent over R.
=⇒ σλ(f) = σλ(g) for all λ.

Set
Pf (t) = P 0

f (t) + P 1
f (t), where

P 0
f (t) =

∑

⌊α⌋≡0 (mod 2)

cαtα,

P 1
f (t) =

∑

⌊α⌋≡1 (mod 2)

cαtα.

We define P 0
g (t) and P 1

g (t) similarly.
Since the equivariant signatures of f and g coincide, we have

tP 0
f (t) − P 1

f (t) ≡ tP 0
g (t) − P 1

g (t) mod t2 − 1,

tP 1
f (t) − P 0

f (t) ≡ tP 1
g (t) − P 0

g (t) mod t2 − 1.
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Adding up these two congruences we have

(t − 1)Pf (t) ≡ (t − 1)Pg(t) mod t2 − 1, (1)
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Adding up these two congruences we have

(t − 1)Pf (t) ≡ (t − 1)Pg(t) mod t2 − 1, (1)

which implies

Pf (t) ≡ Pg(t) mod t + 1. (2)
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Adding up these two congruences we have

(t − 1)Pf (t) ≡ (t − 1)Pg(t) mod t2 − 1, (1)

which implies

Pf (t) ≡ Pg(t) mod t + 1. (2)

Conversely, suppose that (2) holds.
=⇒ (1) holds.
=⇒ f and g have the same equivariant signatures.
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Adding up these two congruences we have

(t − 1)Pf (t) ≡ (t − 1)Pg(t) mod t2 − 1, (1)

which implies

Pf (t) ≡ Pg(t) mod t + 1. (2)

Conversely, suppose that (2) holds.
=⇒ (1) holds.
=⇒ f and g have the same equivariant signatures.

Then, we can prove that they are Witt equivalent over R.

This completes the proof.
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Proposition 5.9 Let

f(z) =
n+1∑

j=1

z
aj

j and g(z) =
n+1∑

j=1

z
bj

j

be Brieskorn–Pham type polynomials. Then, their Seifert forms are
Witt equivalent over R iff

n+1∏

j=1

cot
πℓ

2aj

=
n+1∏

j=1

cot
πℓ

2bj

holds for all odd integers ℓ.
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Proof.

Pf (t) and Pg(t) are polynomials in s = t1/m for some m.
Put Qf (s) = Pf (t) and Qg(s) = Pg(t).

Then, Pf (t) ≡ Pg(t) mod t + 1 holds
⇐⇒ Qf (ξ) = Qg(ξ) for all ξ with ξm = −1.
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Proof.

Pf (t) and Pg(t) are polynomials in s = t1/m for some m.
Put Qf (s) = Pf (t) and Qg(s) = Pg(t).

Then, Pf (t) ≡ Pg(t) mod t + 1 holds
⇐⇒ Qf (ξ) = Qg(ξ) for all ξ with ξm = −1.

Note that ξ is of the form

exp(π
√
−1ℓ/m)

with ℓ odd and that

−1 − exp(π
√
−1ℓ/aj)

exp(π
√
−1ℓ/aj) − 1

=
√
−1 cot

πℓ

2aj

.

Then, we immediately get Proposition 5.9.
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Theorem 5.10 Suppose that for each of the Brieskorn–Pham type
polynomials

f(z) =
n+1∑

j=1

z
aj

j and g(z) =
n+1∑

j=1

z
bj

j ,

no exponent is a multiple of another one.
Then, the knots Kf and Kg are cobordant iff

aj = bj, j = 1, 2, . . . , n + 1,

up to order.
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Theorem 5.10 Suppose that for each of the Brieskorn–Pham type
polynomials

f(z) =
n+1∑

j=1

z
aj

j and g(z) =
n+1∑

j=1

z
bj

j ,

no exponent is a multiple of another one.
Then, the knots Kf and Kg are cobordant iff

aj = bj, j = 1, 2, . . . , n + 1,

up to order.

This is a consequence of the “Fox–Milnor type relation” for the
Alexander polynomials of cobordant algebraic knots.
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Problem 6.3 Are the exponents cobordism invariants for

Brieskorn–Pham type polynomials?
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Problem 6.3 Are the exponents cobordism invariants for

Brieskorn–Pham type polynomials?

Proposition 5.9 reduces the above problem to a number theoretical
problem involving cotangents.
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Problem 6.3 Are the exponents cobordism invariants for

Brieskorn–Pham type polynomials?

Proposition 5.9 reduces the above problem to a number theoretical
problem involving cotangents.

n+1∏

j=1

cot
πℓ

2aj

=
n+1∏

j=1

cot
πℓ

2bj

∀odd integers ℓ

=⇒ aj = bj up to order ?
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Thank you!
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