Novas Aplicações das Matemáticas na Indústria

Osamu Saeki

Institute of Mathematics for Industry Kyushu University Japan

Institute of Mathematics for Industry Kyushu University

I. Institute of Mathematics for Industry (IMI)

II. Application of Singularity Theory to Visualization of Big Data

Policy Study in 2006 by the Japanese Government

- **Europe and USA:**
- 65% of workers in R&D departments in private companies have Mathematics as background. Japan: only 26%
- This shortage and nearly 40% gap must be overcome.

In Japan, **Pure Mathematics** have been studied much more than **Applied Mathematics**.

What is Mathematics-for-Industry ?

- Mathematics-for-Industry (MI, for short) is a new research area that will provide a foundation for creating future technologies. MI responds to the industrial needs by reorganizing and merging pure and applied mathematics.
- Main purpose of our program is to perform the education and research activities in MI.

http://gcoe-mi.jp/

Global Center Of Excellence Program (like CEPID-FAPESP) April 2008- March 2013

The concentrated-funding-in Global COE Program (FY2008) supported by the MEXT

Disciplines covered by MI

Forum "Math-for-Industry"

Study Group Workshops (2010, 2011, 2012)

study croup		Graduate Students Students with
3 rd SGW: July 25-27 & 30 Kyushu University & Uni	0-31, 2012 versity of Tokyo	FUITSU LABORATORIES LTD. Group Kao Corporation Nippon Steel Corporation NTT Secure Platform Laboratories OLM Digital, Inc.
Company	Subject	Railway Technical Research Institute
NTT Secure Platform Laboratories	Arithmetic-Cryptography	RIKEN The University of Tokyo SOTATI Zieleste: Tapping 2012 mityschura.gr Co-Supported But Tablementers Syndo Stream Tablementers Str
FUJITSU LABORATORIES LTD.	Integer factorization problems Arithmetic-Cryptography	
Kao Corporation	Graph Theory-Optimization	
OLM Digital, Inc.	CG of animation Geometry and Statistics	
Nippon Steel Corporation	Multi-scale modeling, Anomalous diffusion Geometry-Topology-Probability-PDE	n
Railway Technical Research Institute	Space curves Differential Geometry	
RIKEN / The University of Tokyo	Mathematical Physics	

July 25-27. Institute of Mathematics for Industry.

Graduate School of Mathematics, Kyushu University July 30-31, Graduate School of Mathematical Sciences, the University of Tokyo Ministry of Education, Culture, Sports, Science & Technology in Japan (MEXT)

Faculty of Mathematics, Kyushu University

Institute of Mathematics for Industry (IMI)

First Industrial Math. Institute in Japan, Founded in April 2011

Joint Projects (no joint projects before 2005)

ASAHI GLASS	FUJITSU	NIPPON STEEL CORP.	
PANASONIC	Nisshin Fire & Marine Insurance Co., Ltd.	Mitsubishi Research Inst. Inc.	
MAZDA MOTOR CORP.	KDDI	HITACHI	
IBM Japan	ETRI, Korea	OLM Digital, Inc.	
Studio Phones	Nonprofit organization Science Accessibility Net	WETA Digital, New Zealand (CREST)	
NTT	12R, Singapore	Appeared from	
New Energy and Industrial Technology Development Organization	National Institute of Information and Communications Technology	Progressing now	

Joint Projects (no joint projects before 2005)

	I participate here !		
ASAHI GLASS	FUJITSU	NIPPON STEEL CORP.	
PANASONIC	Nisshin Fire & Marine Insurance Co., Ltd.	Mitsubishi Research Inst. Inc.	
MAZDA MOTOR CORP.	KDDI	HITACHI	
IBM Japan	ETRI, Korea	OLM Digital, Inc.	
Studio Phones	Nonprofit organization Science Accessibility Net	WETA Digital, New Zealand (CREST)	
NTT	12R, Singapore	Appeared from	
New Energy and Industrial Technology Development Organization	National Institute of Information and Communications Technology	Progressing now	

Journal of Math-for-Industry

Journal of Math-for-Industry r-in-Chief: Masalo Wakayama SSN 1884-4774 (Print), ISSN 1884-4782 (On line)

Vol.4

Vol.3

Vol.2

Vol.1

Guide for Authors

- Significant applications of mathematics to industry, including feedback from industry to mathematics
- 2 New developments in Mathematics for industry
- New developments in Mathematics

What's new

JMI2012B has been published! (5 October 2012)

Institute of Mathematics for Industry & Faculty of Mathematics, Kyushu University

Copyright (C) 2012 JOURNAL OF MATH-FOR-INDUSTRY ALL RIGHTS RESERVED

We are waiting for your submission to JMI!

Osamu Saeki (IMI, Kyushu Univ.) Joint work with Shigeo Takahashi (Univ. of Tokyo)

November 28, 2012

§1. Visualization of Scalar Function Data

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

 M^n : differentiable manifold of dimension n (or a region in \mathbb{R}^n)

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

 M^n : differentiable manifold of dimension n (or a region in \mathbb{R}^n)

Definition 1.1 $f: M^n \to \mathbf{R}$ differentiable function (scalar function)

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

 M^n : differentiable manifold of dimension n (or a region in \mathbb{R}^n)

Definition 1.1 $f: M^n \to \mathbf{R}$ differentiable function (scalar function) For $c \in \mathbf{R}$, set

$$f^{-1}(c) = \{ x \in M^n \, | \, f(x) = c \},\$$

which is called a level set.

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

 M^n : differentiable manifold of dimension n (or a region in \mathbb{R}^n)

Definition 1.1 $f: M^n \to \mathbf{R}$ differentiable function (scalar function) For $c \in \mathbf{R}$, set

$$f^{-1}(c) = \{ x \in M^n \, | \, f(x) = c \},\$$

which is called a level set.

In general, a level set is of dimension n-1 (but may not be a manifold).

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

 M^n : differentiable manifold of dimension n (or a region in \mathbb{R}^n)

Definition 1.1 $f: M^n \to \mathbf{R}$ differentiable function (scalar function) For $c \in \mathbf{R}$, set

$$f^{-1}(c) = \{ x \in M^n \, | \, f(x) = c \},\$$

which is called a level set.

In general, a level set is of dimension n-1 (but may not be a manifold). For n = 2, it is a curve; for n = 3, it is a surface, etc.

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

 M^n : differentiable manifold of dimension n (or a region in \mathbb{R}^n)

Definition 1.1 $f: M^n \to \mathbf{R}$ differentiable function (scalar function) For $c \in \mathbf{R}$, set

$$f^{-1}(c) = \{ x \in M^n \, | \, f(x) = c \},\$$

which is called a level set.

In general, a level set is of dimension n-1 (but may not be a manifold). For n = 2, it is a curve; for n = 3, it is a surface, etc.

Example 1.2 Altitude from the sea level (height function): level set = contour line

Example of level sets

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

Example of level sets

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

A level set may not be connected.

Reeb graph

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

The space (or graph) obtained by contracting each connected component of the level set to a point is called a **Reeb graph** (or contour tree, volume skeleton tree, Stein factorization, ...).

Reeb graph

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

The space (or graph) obtained by contracting each connected component of the level set to a point is called a **Reeb graph** (or contour tree, volume skeleton tree, Stein factorization, ...).

Reeb graph and visualization

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

Reeb graph is very useful for visualizing $2 \mbox{ or } 3\mbox{-dimensional scalar functions.}$

Reeb graph and visualization

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

Reeb graph is very useful for visualizing $2 \mbox{ or } 3\mbox{-dimensional scalar functions.}$

Vertices of a Reeb graph \leftarrow critical points of a scalar function

Reeb graph is very useful for visualizing 2 or 3-dimensional scalar functions.

■ Vertices of a Reeb graph ⇔ critical points of a scalar function
■ It is important to study the topological change of the level sets around each critical point.

Reeb graph is very useful for visualizing 2 or 3-dimensional scalar functions.

■ Vertices of a Reeb graph ⇔ critical points of a scalar function
■ It is important to study the topological change of the level sets around each critical point.

Example of level-surface change for a 3-dimensional scalar function

Direct Volume Rendering

Example: an analytic function

Visualization Result (size 64³)

opacity 1 + 0.05 0.01 + 0.05 0.05 + 0.05 0.05 + 1 + 1 0.95 + 0.97field

Accentuated TF

Example: Proton and Hydrogen-atom collision

This was found by virtue of the topologically accentuated TF. opacity 0.6-0.30 0.05 0.005 field 0 0.12 0.15 0.13 0.14 Characteristic **Designed TF** Visualization result iso-surfaces After the Collision

Shigeo Takahashi

I am now engaged in a joint work with a steel company in Japan.

They can get **3D data** of steel materials by taking pictures of a lot of slices. (This is already not so easy!)

We can construct a Reeb graph (contour tree) to visualize the 3D data.

Can be used to estimate certain physical properties of the material (without doing any experiments that cost a lot). In fact, certain technologies in **Topology** can be also useful!

Homology, Cohomology, Betti Numbers, Euler Characteristics, Persistent Homology, ...

An Example of MI

§2. Visualization of Multi-function Data

 M^n : differentiable manifold of dimension n (or a region in \mathbb{R}^n)

Fiber

 M^n : differentiable manifold of dimension n (or a region in \mathbb{R}^n) $f: M^n \to \mathbb{R}^m \ (m \ge 1)$ differentiable map (or multi-function)

$$f(x) = (f_1(x), f_2(x), \dots, f_m(x))$$

Fiber

 M^n : differentiable manifold of dimension n (or a region in \mathbb{R}^n) $f: M^n \to \mathbb{R}^m \ (m \ge 1)$ differentiable map (or multi-function)

$$f(x) = (f_1(x), f_2(x), \dots, f_m(x))$$

Definition 2.1 For $c \in \mathbb{R}^m$, $f^{-1}(c)$ is called a **fiber** (rather than a level set).
Example of fibers

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

 $n = 3, M^3$: sea water, $f : M^3 \rightarrow \mathbb{R}^2$ f = (temperature, salt density)

Example of fibers

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

Example of fibers

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

A fiber containing a singular point is called a **singular fiber**.

 Topology of the fibers change around singular fibers

\$1. Visualization of Scalar Function Data $\$ \$2. Visualization of Multi-function Data

 $f: M^n \to \mathbf{R}$ differentiable function (scalar function)

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

 $f: M^n \to \mathbf{R}$ differentiable function (scalar function) critical point: a point in M^n where all 1st order partial derivatives of f vanish

\$1. Visualization of Scalar Function Data $\$ \$2. Visualization of Multi-function Data

 $f: M^n \to \mathbf{R}$ differentiable function (scalar function) critical point: a point in M^n where all 1st order partial derivatives of f vanish

Theorem 2.2 (Morse lemma) If f is **generic** enough, then around each critical point, f is expressed as

$$f = \pm x_1^2 \pm x_2^2 \pm \dots \pm x_n^2 + c$$

w.r.t. certain local coordinates for some constant c.

 $\S1.$ Visualization of Scalar Function Data $~\S2.$ Visualization of Multi-function Data

 $f: M^n \to \mathbf{R}$ differentiable function (scalar function) critical point: a point in M^n where all 1st order partial derivatives of f vanish

Theorem 2.2 (Morse lemma) If f is **generic** enough, then around each critical point, f is expressed as

$$f = \pm x_1^2 \pm x_2^2 \pm \dots \pm x_n^2 + c$$

w.r.t. certain local coordinates for some constant c.

The number of negative signs "-" is called the **index**.

 $\S1.$ Visualization of Scalar Function Data $~\S2.$ Visualization of Multi-function Data

 $f: M^n \to \mathbf{R}$ differentiable function (scalar function) critical point: a point in M^n where all 1st order partial derivatives of f vanish

Theorem 2.2 (Morse lemma) If f is **generic** enough, then around each critical point, f is expressed as

$$f = \pm x_1^2 \pm x_2^2 \pm \dots \pm x_n^2 + c$$

w.r.t. certain local coordinates for some constant c.

The number of negative signs "-" is called the **index**. The topology of a critical point is determined by the index.

 $\S1.$ Visualization of Scalar Function Data $~\S2.$ Visualization of Multi-function Data

 $f: M^n \to \mathbf{R}$ differentiable function (scalar function) critical point: a point in M^n where all 1st order partial derivatives of f vanish

Theorem 2.2 (Morse lemma) If f is **generic** enough, then around each critical point, f is expressed as

$$f = \pm x_1^2 \pm x_2^2 \pm \dots \pm x_n^2 + c$$

w.r.t. certain local coordinates for some constant c.

The number of negative signs "—" is called the **index**. The topology of a critical point is determined by the index. For the study of level-set changes, the Morse lemma is essential!

 $\S1.$ Visualization of Scalar Function Data $~\S2.$ Visualization of Multi-function Data

 $f: M^n \to \mathbf{R}$ differentiable function (scalar function) critical point: a point in M^n where all 1st order partial derivatives of f vanish

Theorem 2.2 (Morse lemma) If f is **generic** enough, then around each critical point, f is expressed as

 $f = \pm x_1^2 \pm x_2^2 \pm \dots \pm x_n^2 + c$

w.r.t. certain local coordinates for some constant c.

The number of negative signs "—" is called the **index**. The topology of a critical point is determined by the index. For the study of level-set changes, the Morse lemma is essential!

How about the case of multi-functions?

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

 $f: M^n \to \mathbf{R}^m \ (n \ge m)$ differentiable map (multi-function)

 $\S1.$ Visualization of Scalar Function Data $~\S2.$ Visualization of Multi-function Data

 $f: M^n \to \mathbf{R}^m \ (n \ge m)$ differentiable map (multi-function)

Definition 2.3 For a point $x \in M^n$,

 $df_x: T_x M^n \to T_{f(x)} \mathbf{R}^m$

is the linear map associated with the **Jacobian matrix** of f (the $m \times n$ matrix whose entries are the first order partial derivatives).

 $\S1.$ Visualization of Scalar Function Data $~\S2.$ Visualization of Multi-function Data

 $f: M^n \to \mathbf{R}^m \ (n \ge m)$ differentiable map (multi-function)

Definition 2.3 For a point $x \in M^n$,

 $df_x: T_x M^n \to T_{f(x)} \mathbf{R}^m$

is the linear map associated with the Jacobian matrix of f (the $m \times n$ matrix whose entries are the first order partial derivatives). Singular point is a point $x \in M^n$ such that rank $df_x < m$.

 $\S1.$ Visualization of Scalar Function Data $~\S2.$ Visualization of Multi-function Data

 $f: M^n \to \mathbf{R}^m \ (n \ge m)$ differentiable map (multi-function)

Definition 2.3 For a point $x \in M^n$,

$$df_x: T_x M^n \to T_{f(x)} \mathbf{R}^m$$

is the linear map associated with the Jacobian matrix of f (the $m \times n$ matrix whose entries are the first order partial derivatives). Singular point is a point $x \in M^n$ such that rank $df_x < m$. The set of singular points

$$J(f) = \{ x \in M^n \mid \text{rank } df_x < m \}$$

is called the **Jacobi set** of f.

 $\S1.$ Visualization of Scalar Function Data $~\S2.$ Visualization of Multi-function Data

 $f: M^n \to \mathbf{R}^m \ (n \ge m)$ differentiable map (multi-function)

Definition 2.3 For a point $x \in M^n$,

$$df_x: T_x M^n \to T_{f(x)} \mathbf{R}^m$$

is the linear map associated with the Jacobian matrix of f (the $m \times n$ matrix whose entries are the first order partial derivatives). Singular point is a point $x \in M^n$ such that rank $df_x < m$. The set of singular points

$$J(f) = \{ x \in M^n \mid \text{rank } df_x < m \}$$

is called the **Jacobi set** of f.

In general, the Jacobi set J(f) is of dimension m-1.

Case of maps into \mathbf{R}^2

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

Example 2.4 When n = 2 and m = 2.

Case of maps into \mathbf{R}^2

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

Example 2.4 When n = 2 and m = 2. Types of singularities: **fold** and **cusp** (Whitney, 1955)

Case of maps into \mathbf{R}^2

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

Example 2.4 When n = 2 and m = 2. Types of singularities: **fold** and **cusp** (Whitney, 1955)

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

 $f: M^n \to \mathbf{R}^m$ Suppose $n \ge m = 2$.

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

 $f: M^n \to \mathbb{R}^m$ Suppose $n \ge m = 2$. fold: A generalization of the Morse critical points for scalar functions

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

 $f: M^n \to \mathbf{R}^m$ Suppose $n \ge m = 2$. fold: A generalization of the Morse critical points for scalar functions **cusp**: A degeneration of fold singularities

 $\S1.$ Visualization of Scalar Function Data $~\S2.$ Visualization of Multi-function Data

 $f: M^n \to \mathbb{R}^m$ Suppose $n \ge m = 2$. fold: A generalization of the Morse critical points for scalar functions **cusp**: A degeneration of fold singularities For m = 3, a **swallowtail** may appear, which is a degeneration of cusp singularities.

 $\S1.$ Visualization of Scalar Function Data $~\S2.$ Visualization of Multi-function Data

 $f: M^n \to \mathbb{R}^m$ Suppose $n \ge m = 2$. fold: A generalization of the Morse critical points for scalar functions **cusp**: A degeneration of fold singularities For m = 3, a swallowtail may appear, which is a degeneration of cusp singularities.

 $\S1.$ Visualization of Scalar Function Data $~\S2.$ Visualization of Multi-function Data

 $f: M^n \to \mathbb{R}^m$ Suppose $n \ge m = 2$. fold: A generalization of the Morse critical points for scalar functions **cusp**: A degeneration of fold singularities For m = 3, a swallowtail may appear, which is a degeneration of cusp singularities.

For $m \ge 4$, the situation is much more complicated.

 $\S1.$ Visualization of Scalar Function Data $~\S2.$ Visualization of Multi-function Data

 $f: M^n \to \mathbb{R}^m$ Suppose $n \ge m = 2$. fold: A generalization of the Morse critical points for scalar functions **cusp**: A degeneration of fold singularities For m = 3, a **swallowtail** may appear, which is a degeneration of cusp singularities.

For $m \ge 4$, the situation is much more complicated. \implies still extensively studied!

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

 $f: M^n \to \mathbf{R}^m$ Suppose n - m > 0 is odd.

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

 $f: M^n \to \mathbf{R}^m$ Suppose n - m > 0 is odd. We can define an **index** λ for each fold: $\lambda = 0, 1, \dots, (n - m + 1)/2.$

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

$$\begin{split} f: M^n &\to \mathbf{R}^m \\ \text{Suppose } n-m > 0 \text{ is odd.} \\ \text{We can define an index } \lambda \text{ for each fold:} \\ \lambda &= 0, 1, \dots, (n-m+1)/2. \end{split}$$

Cusps can be characterized as the singularities where these indices jump.

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

 $f: M^n \to \mathbb{R}^m$ Suppose n - m > 0 is odd. We can define an **index** λ for each fold: $\lambda = 0, 1, \dots, (n - m + 1)/2.$

Cusps can be characterized as the singularities where these indices jump.

When n = 3 and m = 2.

\$1. Visualization of Scalar Function Data $\$ \$2. Visualization of Multi-function Data

Edelsbrunner–Harer (2002) Suggested an algorithm for obtaining the Jacobi set.

\$1. Visualization of Scalar Function Data $\$ \$2. Visualization of Multi-function Data

Edelsbrunner–Harer (2002) Suggested an algorithm for obtaining the Jacobi set. However, it does not indentify the types of singularities.

 $\S1.$ Visualization of Scalar Function Data $~\S2.$ Visualization of Multi-function Data

Edelsbrunner–Harer (2002) Suggested an algorithm for obtaining the Jacobi set. However, it does not indentify the types of singularities.

> Singularity theory of differentiable mappings $\downarrow\downarrow$ One can identify the singularity types (to a certain extent)

 $\S1.$ Visualization of Scalar Function Data $~\S2.$ Visualization of Multi-function Data

Edelsbrunner–Harer (2002) Suggested an algorithm for obtaining the Jacobi set. However, it does not indentify the types of singularities.

> Singularity theory of differentiable mappings \downarrow One can identify the singularity types (to a certain extent)

If one can identify the folds, cusps and swallowtails, this can contribute a lot to the **visualization** of big data sets.

For visualization

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

For visualization of multi-function data, we need to

For visualization

\$1. Visualization of Scalar Function Data $\$ \$2. Visualization of Multi-function Data

For visualization of multi-function data, we need to

1. Identify the Jacobi set
\$1. Visualization of Scalar Function Data $\$ \$2. Visualization of Multi-function Data

For visualization of multi-function data, we need to

- 1. Identify the Jacobi set
- 2. Identify the singularity types

\$1. Visualization of Scalar Function Data $\$ \$2. Visualization of Multi-function Data

For visualization of multi-function data, we need to

- 1. Identify the Jacobi set
- 2. Identify the singularity types
- 3. Identify the Jacobi set image

 $\S1.$ Visualization of Scalar Function Data $~\S2.$ Visualization of Multi-function Data

For visualization of multi-function data, we need to

- 1. Identify the Jacobi set
- 2. Identify the singularity types
- 3. Identify the Jacobi set image
- 4. Identify the (singular) fibers

 $\S1.$ Visualization of Scalar Function Data $~\S2.$ Visualization of Multi-function Data

For visualization of multi-function data, we need to

- 1. Identify the Jacobi set
- 2. Identify the singularity types
- 3. Identify the Jacobi set image
- 4. Identify the (singular) fibers

In particular, for item 4 above, it is essential to identify the **singular fibers** and the **fiber changes** near singular fibers.

Example of a Jacobi set image

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

Jacobi set image of a map of a surface into ${f R}^2$

When n = 3, m = 2

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

When n = 3, m = 2:

When n = 3, m = 2

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

When n = 3, m = 2: Jacobi set is a curve.

When n=3, m=2

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

When n = 3, m = 2: Jacobi set is a curve.

Local configurations of a Jacobi set image

When n = 3, m = 2

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

When n = 3, m = 2: Jacobi set is a curve.

Local configurations of a Jacobi set image

Example of a Jacobi set image

Example of local fiber changes

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

Fiber over each region of $\mathbf{R}^2 \setminus f(J(f))$

Complexity of a fiber

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

Fibers are classified into some classes according to their complexities. This is measured by the complexity κ (called the **codimension**).

Complexity of a fiber

 $\S1.$ Visualization of Scalar Function Data $~\S2.$ Visualization of Multi-function Data

Fibers are classified into some classes according to their complexities. This is measured by the complexity κ (called the **codimension**).

Most complicated,
$$\kappa = 2$$
, appears discretely

Moderately complicated, $\kappa = 1$, appears along curves

Most simple, $\kappa = 0$, appears along surfaces

When n = 4, m = 3

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

Local configurations of the Jacobi set image for maps $f: M^4 \to \mathbf{R}^3$

Example of fiber changes

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

An example of fiber changes for a map $f: M^4 \to \mathbf{R}^3$

List of singular fibers

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

When n = 4, m = 3

Conclusion

 $\S1.$ Visualization of Scalar Function Data $~\S2.$ Visualization of Multi-function Data

By using the singularity theory of differentiable mappings,

- We can list up singularity types that appear generically.
- We can list up types of fibers.
- We can identify the singularities (or the singular fibers), and we can determine their types (to a certain extent).

↑
still being investigated

This contributes a lot to visualization of big data!

Conclusion

 $\S1.$ Visualization of Scalar Function Data $~\S2.$ Visualization of Multi-function Data

By using the singularity theory of differentiable mappings,

- We can list up singularity types that appear generically.
- We can list up types of fibers.
- We can identify the singularities (or the singular fibers), and we can determine their types (to a certain extent).

↑
still being investigated

This contributes a lot to visualization of big data!

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

Muito obrigado!