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Policy Study in 2006 by the Japanese Government 
Europe and USA:  
65% of workers in R&D departments in private 
companies have Mathematics as background. 
Japan: only 26% 
This shortage and nearly 40% gap must be overcome.  

Mathematics – Japanese Background  
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In Japan, Pure Mathematics have been studied 
much more than Applied Mathematics. 



 Mathematics-for-Industry (MI, for short) is a  
     new research area that will provide a foundation 

for creating future technologies. MI responds to 
the industrial needs by reorganizing and merging 
pure and applied mathematics. 

 Main purpose of our program is to perform the 
education and research activities in MI.  

What is Mathematics-for-Industry ? 
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http://gcoe-mi.jp/ 

Global Center Of Excellence 
Program (like CEPID-FAPESP) 
April 2008- March 2013 

http://gcoe-mi.jp/�


Disciplines covered by MI 

5 



FMI 
2009 

Fukuoka November 9-13 Casimir Force, Casimir Operators and  
the Riemann Hypothesis 

FMI 
2010 

Fukuoka October 21-23 
Information Security, Visualization,  
and Inverse Problems, on the basis  
of Optimization Techniques 

 
FMI 
2011 

 
 
Honolulu 

 
October 24- 28 

TSUNAMI - Mathematical Modelling 
 - Using Mathematics for Natural  
Disaster Prediction, Recovery and  
Provision for the Future -  

 
FMI 
2012 

 
Fukuoka 

 
 
 
 
 
 

October 22-26 
Information Recovery and Discovery   

Forum “Math-for-Industry” 
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IMI founded 



Company Subject 
NTT Secure Platform 
Laboratories 

Arithmetic-Cryptography 

FUJITSU 
LABORATORIES LTD. 

Integer factorization problems 
Arithmetic-Cryptography 

Kao Corporation  Graph Theory-Optimization 

OLM Digital, Inc. CG of animation 
Geometry and Statistics 

Nippon Steel Corporation  
 

Multi-scale modeling, Anomalous diffusion 
Geometry-Topology-Probability-PDE 

Railway Technical 
Research Institute  

Space curves 
Differential Geometry 

RIKEN / The University of 
Tokyo  
 

Mathematical Physics 
 

3rd SGW: July 25-27 & 30-31, 2012 
Kyushu University & University of Tokyo 
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   Study Group Workshops (2010, 2011, 2012)  



Nikkei Newspaper (June 2010) 

Carrier Pass for 
PhD increased Team 

Research 

Organization of IMI (27 full-time staffs) 
◎ Advanced Math. Technology Section 
◎ Applied Math. Research Section 
◎ Fundamental Math. Section 
      Researchers of pure math., interested in application 
◎ Laboratory of Advanced Software in Mathematics 
◎ Visitor Section  (from Academia & Industry） 

PhD numbers 
increased 

 (new system for 
degree) 

Doctoral course (Master course) 
・Experiencing joint research 
・Human exchange 

R&D in 
Companies 

University, 
etc. 

Nishinippon Newspaper 
 (Feb. 2010) 

Joint research 
with companies 

Institute of Mathematics for Industry (IMI) 
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First Industrial Math. Institute 
in Japan, Founded in April 2011 



ASAHI GLASS FUJITSU NIPPON STEEL CORP.  

PANASONIC Nisshin Fire & Marine 
Insurance Co., Ltd. 

Mitsubishi Research Inst. 
Inc. 

MAZDA MOTOR CORP.  KDDI HITACHI    

IBM Japan ETRI, Korea  OLM Digital, Inc.  
& 
WETA Digital, New 
Zealand  
(CREST) 

Studio Phones Nonprofit organization--
Science Accessibility Net 

NTT 12R, Singapore 

New Energy and 
Industrial Technology 
Development 
Organization 

National Institute of 
Information and 
Communications 
Technology 
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Progressing now 

Appeared from 
long-term internship 

Joint Projects （no joint projects before 2005） 
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Progressing now 

Appeared from 
long-term internship 

Joint Projects （no joint projects before 2005） 

I participate here ! 



Journal of Math-for-Industry 
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We are waiting for your 
submission to JMI! 



II. Application of
Singularity Theory

to Visualization of Big Data

Osamu Saeki (IMI, Kyushu Univ.)

Joint work with Shigeo Takahashi
(Univ. of Tokyo)

November 28, 2012



§1. Visualization of Scalar
Function Data

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data



Level set
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Mn : differentiable manifold of dimension n (or a region in R
n)

Definition 1.1 f : Mn → R differentiable function (scalar function)
For c ∈ R, set

f−1(c) = {x ∈ Mn | f(x) = c},

which is called a level set.

In general, a level set is of dimension n− 1 (but may not be a manifold).
For n = 2, it is a curve; for n = 3, it is a surface, etc.

Example 1.2 Altitude from the sea level (height function):
level set = contour line
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A level set may not be connected.
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Reeb graph
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The space (or graph) obtained by contracting each connected
component of the level set to a point is called a Reeb graph
(or contour tree, volume skeleton tree, Stein factorization, ...).
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Reeb graph and visualization
§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data
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Reeb graph is very useful for visualizing 2 or 3-dimensional scalar
functions.

n Vertices of a Reeb graph ⇐⇒ critical points of a scalar function
n It is important to study the topological change of the level sets

around each critical point.

PSfrag replacements ∅

Example of level-surface change for a 3-dimensional scalar function
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Direct Volume Rendering 

Shigeo Takahashi 

Volume Data 

Visual Feedback 

1 3 5 3 5 3 1 
3 5 7 5 7 5 3 
5 7 9 7 9 7 5 
7 9 1 8 1 9 7 
5 7 9 7 9 7 5 
3 5 7 5 7 5 3 
1 3 5 3 5 3 1 

1 2 3 2 1 
3 4 5 

4 3 
5 

6 7 
6 5 8 8 8 7 

5 6 7 6 5 
3 4 5 4 3 
1 2 3 2 1 
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Transfer Function 
Design 

Rendering Analysis 

 Big Size 
 Complicated Structure 
 Noise 

Reeb graph 



Example: an analytic function 

   Visualization Result (size 643) 

Shigeo Takahashi 

Default TF 
Accentuated 
TF 



Example: Proton and Hydrogen-atom 
collision 

Shigeo Takahashi 

Visualization result Designed  TF Characteristic  
iso-surfaces After the Collision 

This was found by virtue of the 
topologically accentuated TF. 



I am now engaged in a joint work with a 
steel company in Japan. 

They can get 3D data of steel materials by taking 
pictures of a lot of slices. (This is already not so easy!) 

We can construct a Reeb graph (contour tree) to 
visualize the 3D data. 

Can be used to estimate certain physical properties 
of the material (without doing any experiments that 
cost a lot). 



In fact, certain technologies in Topology can be 
also useful! 
 
Homology, Cohomology, Betti Numbers,  
Euler Characteristics, Persistent Homology, … 

An Example of MI 
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Mn: differentiable manifold of dimension n (or a region in R
n)

f : Mn → R
m (m ≥ 1) differentiable map (or multi-function)

f(x) = (f1(x), f2(x), . . . , fm(x))

Definition 2.1 For c ∈ R
m, f−1(c) is called a fiber (rather than a

level set).



Fiber
§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

8 / 25

Mn: differentiable manifold of dimension n (or a region in R
n)

f : Mn → R
m (m ≥ 1) differentiable map (or multi-function)

f(x) = (f1(x), f2(x), . . . , fm(x))

Definition 2.1 For c ∈ R
m, f−1(c) is called a fiber (rather than a

level set).



Fiber
§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

8 / 25

Mn: differentiable manifold of dimension n (or a region in R
n)

f : Mn → R
m (m ≥ 1) differentiable map (or multi-function)

f(x) = (f1(x), f2(x), . . . , fm(x))

Definition 2.1 For c ∈ R
m, f−1(c) is called a fiber (rather than a

level set).



Example of fibers
§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data
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n = 3, M 3: sea water, f : M 3 → R
2

f = (temperature, salt density)

PSfrag replacements

curves of constant salt density

surfaces of constant
temperature

singular fiber
singular point

A fiber containing a singular point is called a singular fiber.
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Singular Fibers 

 Topology of the fibers change around 
singular fibers 

(x, y, z)® (P,Q)

f :R3 ®R2

Q

P

P

Q



Morse lemma
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f : Mn → R differentiable function (scalar function)

critical point: a point in Mn where all 1st order partial derivatives of f
vanish

Theorem 2.2 (Morse lemma) If f is generic enough, then

around each critical point, f is expressed as

f = ±x2
1 ± x2

2 ± · · · ± x2
n + c

w.r.t. certain local coordinates for some constant c.

The number of negative signs “−” is called the index.
The topology of a critical point is determined by the index.
For the study of level-set changes, the Morse lemma is essential!

How about the case of multi-functions?
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Singular points and Jacobi set
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f : Mn → R
m (n ≥ m) differentiable map (multi-function)

Definition 2.3 For a point x ∈ Mn,

dfx : TxM
n → Tf(x)R

m

is the linear map associated with the Jacobian matrix of f (the m × n
matrix whose entries are the first order partial derivatives).
Singular point is a point x ∈ Mn such that rank dfx < m.

The set of singular points

J(f) = {x ∈ Mn | rank dfx < m}

is called the Jacobi set of f .

In general, the Jacobi set J(f) is of dimension m − 1.
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Case of maps into R
2

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data
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Example 2.4 When n = 2 and m = 2.

Types of singularities: fold and cusp (Whitney, 1955)
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Singular points of multi-functions
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f : Mn → R
m

Suppose n ≥ m = 2.

fold: A generalization of the Morse critical points for scalar functions
cusp: A degeneration of fold singularities
For m = 3, a swallowtail may appear, which is a degeneration of cusp
singularities.

For m ≥ 4, the situation is much more complicated.
=⇒ still extensively studied!
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Identifying cusps
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f : Mn → R
m

Suppose n − m > 0 is odd.

We can define an indexλ for each fold:
λ = 0, 1, . . . , (n − m + 1)/2.
Cusps can be characterized as the singularities where these indices jump.
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When n = 3 and m = 2.
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Edelsbrunner–Harer (2002)
Suggested an algorithm for obtaining the Jacobi set.

However, it does not indentify the types of singularities.

Singularity theory of differentiable mappings
⇓

One can identify the singularity types (to a certain extent)

If one can identify the folds, cusps and swallowtails, this can contribute a
lot to the visualization of big data sets.
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For visualization of multi-function data, we need to

1. Identify the Jacobi set
2. Identify the singularity types
3. Identify the Jacobi set image
4. Identify the (singular) fibers

In particular, for item 4 above, it is essential to identify the singular
fibers and the fiber changes near singular fibers.
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Jacobi set image of a map of a surface into R
2
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When n = 3, m = 2:

Jacobi set is a curve.

Local configurations of a Jacobi set image

Example of a Jacobi set image



When n = 3, m = 2
§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

18 / 25

When n = 3, m = 2: Jacobi set is a curve.

Local configurations of a Jacobi set image

Example of a Jacobi set image



When n = 3, m = 2
§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

18 / 25

When n = 3, m = 2: Jacobi set is a curve.

Local configurations of a Jacobi set image

Example of a Jacobi set image



When n = 3, m = 2
§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

18 / 25

When n = 3, m = 2: Jacobi set is a curve.

Local configurations of a Jacobi set image

Example of a Jacobi set image



Example of local fiber changes
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Fiber over each region of R
2 \ f(J(f))
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Fibers are classified into some classes according to their complexities.
This is measured by the complexity κ (called the codimension).
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Most complicated, κ = 2, appears discretely

Moderately complicated, κ = 1, appears along curves

Most simple, κ = 0, appears along surfaces
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(1) (2) (3)

(4) (5) (6)

Local configurations of the Jacobi set image for maps f : M 4 → R
3
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An example of fiber changes for a map f : M 4 → R
3



List of singular fibers
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When n = 4, m = 3
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By using the singularity theory of differentiable mappings,

n We can list up singularity types that appear generically.
n We can list up types of fibers.
n We can identify the singularities (or the singular fibers), and we can

determine their types (to a certain extent).

⇑
still being investigated

This contributes a lot to visualization
of big data!
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Muito obrigado!
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