Novas Aplicações das Matemáticas na Indústria

Osamu Saeki

Institute of Mathematics for Industry
Kyushu University

Contents

I. Institute of Mathematics for Industry (IMI)

II. Application of Singularity Theory to Visualization of Big Data

Mathematics - Japanese Background

Policy Study in 2006 by the Japanese Government

Europe and USA:

65% of workers in R\&D departments in private companies have Mathematics as background.
Japan: only 26%
This shortage and nearly 40\% gap must be overcome.

In Japan, Pure Mathematics have been studied much more than Applied Mathematics.
$>$ Mathematics-for-Industry (MI, for short) is a new research area that will provide a foundation for creating future technologies. MIl responds to the industrial needs by reorganizing and merging pure and applied mathematics.
$>$ Main purpose of our program is to perform the education and research activities in MI.

http://gcoe-mi.jp/

Global Center Of Excellence Program (like CEPID-FAPESP) April 2008- March 2013
ganizng pure and applied mathematics into a torm with nuidity and versatity. This is
new research area in mathematits, which is to foundation for turur technologivs. A new
type of researchers is essential to develop Mi. The purpose of this procram is to drive the
type of researchers is essential to develop Mi. The purpose of this program is to drive the
education and research activitios in MI as woll as to train young internationaly minded M.
aducation and research activites in Ml as well as to train young internationally minded M.

Disciplines covered by MI

Forum "Math-for-Industry"

Study Group Workshops $(2010,2011,2012)$

```
3rd SGW: July 25-27 & 30-31, 2012
Kyushu University & University of Tokyo
```

Company	Subject
NTT Secure Platform	Arithmetic-Cryptography
Laboratories	

FUJITSU Integer factorization problems LABORATORIES LTD. Arithmetic-Cryptography

Kao Corporation
OLM Digital, Inc.

Graph Theory-Optimization

CG of animation
Geometry and Statistics

Multi-scale modeling, Anomalous diffusion Geometry-Topology-Probability-PDE

Railway Technical Research Institute

Space curves

Differential Geometry

RIKEN / The University of Mathematical Physics Tokyo

Institute of Mathematics for Industry (IMI)

First Industrial Math. Institute in Japan, Founded in April 2011

Organization of IMI (27 full-time staffs)
(© Advanced Math. Technology Section
© Applied Math. Research Section
(O) Fundamental Math. Section

Researchers of pure math., interested in application
© Laboratory of Advanced Software in Mathematics
(O Visitor Section (from Academia \& Industry)

Nikkei Newspaper (June 2010)

Joint Projects ($n o$ joint projects before 2005)

ASAHI GLASS	FUJITSU	NIPPON STEEL CORP.
PANASONIC	Nisshin Fire \& Marine Insurance Co., Ltd.	Mitsubishi Research Inst. Inc.
MAZDA MOTOR CORP.	KDDI	HITACHI
IBM Japan	ETRI, Korea	OLM Digital, Inc. $\&$ \&onprofit organization-- Science Accessibility Net
Studio Phones	Wealand (CREST)	
NTT $\Sigma \Sigma$	12R, Singapore	Appeared from Iong-term internship
New Energy and Industrial Technology Development Organization	National Institute of Information and Communications Technology	Progressing now

Joint Projects (no joint projects before 2005)

ASAHI GLASS	FUJITSU	NIPPON STEEL CORP.
PANASONIC	Nisshin Fire \& Marine Insurance Co., Ltd.	Mitsubishi Research Inst. Inc.
MAZDA MOTOR CORP.	KDDI	HITACHI

Journal of Math-for-Industry

Institute of Mathematics for Industry Kyushu University

Journal of Math-for-Industry
Editerch-Chiet Maselo Wheveyame
ISSN 1834-4774 (Prinit IS SN 1984-4702 (On the)

Math-for-industry
Wrushu Uriversity

Access Full Text

Editorial Board

Guide for Authors

Institute of Mathematics for Industry \& Faculty of Mathematics, Kyushu University

We are waiting for your submission to JMI!

II. Application of Singularity Theory to Visualization of Big Data

Osamu Saeki (IMI, Kyushu Univ.)

Joint work with Shigeo Takahashi (Univ. of Tokyo)

November 28, 2012

§1. Visualization of Scalar Function Data

Level set

M^{n} : differentiable manifold of dimension n (or a region in \mathbf{R}^{n})

Level set

M^{n} : differentiable manifold of dimension n (or a region in \mathbf{R}^{n})
Definition $1.1 f: M^{n} \rightarrow \mathbf{R}$ differentiable function (scalar function)

Level set

M^{n} : differentiable manifold of dimension n (or a region in \mathbf{R}^{n})
Definition $1.1 f: M^{n} \rightarrow \mathbf{R}$ differentiable function (scalar function) For $c \in \mathbf{R}$, set

$$
f^{-1}(c)=\left\{x \in M^{n} \mid f(x)=c\right\},
$$

which is called a level set.

Level set

M^{n} : differentiable manifold of dimension n (or a region in \mathbf{R}^{n})
Definition $1.1 f: M^{n} \rightarrow \mathbf{R}$ differentiable function (scalar function) For $c \in \mathbf{R}$, set

$$
f^{-1}(c)=\left\{x \in M^{n} \mid f(x)=c\right\}
$$

which is called a level set.
In general, a level set is of dimension $n-1$ (but may not be a manifold).

Level set

M^{n} : differentiable manifold of dimension n (or a region in \mathbf{R}^{n})
Definition $1.1 f: M^{n} \rightarrow \mathbf{R}$ differentiable function (scalar function) For $c \in \mathbf{R}$, set

$$
f^{-1}(c)=\left\{x \in M^{n} \mid f(x)=c\right\},
$$

which is called a level set.
In general, a level set is of dimension $n-1$ (but may not be a manifold). For $n=2$, it is a curve; for $n=3$, it is a surface, etc.

Level set

M^{n} : differentiable manifold of dimension n (or a region in \mathbf{R}^{n})
Definition $1.1 f: M^{n} \rightarrow \mathbf{R}$ differentiable function (scalar function) For $c \in \mathbf{R}$, set

$$
f^{-1}(c)=\left\{x \in M^{n} \mid f(x)=c\right\},
$$

which is called a level set.
In general, a level set is of dimension $n-1$ (but may not be a manifold). For $n=2$, it is a curve; for $n=3$, it is a surface, etc.

Example 1.2 Altitude from the sea level (height function): level set $=$ contour line

Example of level sets

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

Example of level sets

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

A level set may not be connected.

Reeb graph

The space (or graph) obtained by contracting each connected component of the level set to a point is called a Reeb graph (or contour tree, volume skeleton tree, Stein factorization, ...).

Reeb graph

The space (or graph) obtained by contracting each connected component of the level set to a point is called a Reeb graph (or contour tree, volume skeleton tree, Stein factorization, ...).

Reeb graph and visualization

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

Reeb graph is very useful for visualizing 2 or 3-dimensional scalar functions.

Reeb graph and visualization

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

Reeb graph is very useful for visualizing 2 or 3-dimensional scalar functions.

- Vertices of a Reeb graph \Longleftrightarrow critical points of a scalar function

Reeb graph and visualization

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

Reeb graph is very useful for visualizing 2 or 3-dimensional scalar functions.

■ Vertices of a Reeb graph \Longleftrightarrow critical points of a scalar function

- It is important to study the topological change of the level sets around each critical point.

Reeb graph and visualization

Reeb graph is very useful for visualizing 2 or 3-dimensional scalar functions.

■ Vertices of a Reeb graph \Longleftrightarrow critical points of a scalar function

- It is important to study the topological change of the level sets around each critical point.

Example of level-surface change for a 3-dimensional scalar function

Direct Volume Rendering

- Big Size
- Complicated Structure
- Noise

Example: an analytic function

Visualization Result (size 64³)

Default TF

Accentuated TF

Example: Proton and Hydrogen-atom collision

I am now engaged in a joint work with a steel company in Japan.

They can get 3D data of steel materials by taking pictures of a lot of slices. (This is already not so easy!)

We can construct a Reeb graph (contour tree) to visualize the 3D data.

Can be used to estimate certain physical properties of the material (without doing any experiments that cost a lot).

In fact, certain technologies in Topology can be also useful!

'Homology, Cohomology, Betti Numbers, Euler Characteristics, Persistent Homology, ...

An Example of MI

§2. Visualization of Multi-function Data

Fiber

M^{n} : differentiable manifold of dimension n (or a region in \mathbf{R}^{n})

Fiber

M^{n} : differentiable manifold of dimension n (or a region in \mathbf{R}^{n})
$f: M^{n} \rightarrow \mathbf{R}^{m}(m \geq 1) \quad$ differentiable map (or multi-function)

$$
f(x)=\left(f_{1}(x), f_{2}(x), \ldots, f_{m}(x)\right)
$$

M^{n} : differentiable manifold of dimension n (or a region in \mathbf{R}^{n})
$f: M^{n} \rightarrow \mathbf{R}^{m}(m \geq 1) \quad$ differentiable map (or multi-function)

$$
f(x)=\left(f_{1}(x), f_{2}(x), \ldots, f_{m}(x)\right)
$$

Definition 2.1 For $c \in \mathbf{R}^{m}, f^{-1}(c)$ is called a fiber (rather than a level set).

Example of fibers

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data
$n=3, M^{3}$: sea water, $f: M^{3} \rightarrow \mathbf{R}^{2}$
$f=$ (temperature, salt density)

Example of fibers

```
n=3, M}\mp@subsup{M}{}{3}:\mathrm{ sea water, }f:\mp@subsup{M}{}{3}->\mp@subsup{\mathbf{R}}{}{2
f= (temperature, salt density)
```


Example of fibers

```
\(n=3, M^{3}\) : sea water, \(f: M^{3} \rightarrow \mathbf{R}^{2}\)
\(f=\) (temperature, salt density)
```


A fiber containing a singular point is called a singular fiber.

Singular Fibers

- Topology of the fibers change around singular fibers

$$
\begin{gathered}
f: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2} \\
(x, y, z) \rightarrow(P, Q)
\end{gathered}
$$

Morse lemma

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data
$f: M^{n} \rightarrow \mathbf{R} \quad$ differentiable function (scalar function)

Morse lemma

$f: M^{n} \rightarrow \mathbf{R} \quad$ differentiable function (scalar function) critical point: a point in M^{n} where all 1st order partial derivatives of f vanish

Morse lemma

$f: M^{n} \rightarrow \mathbf{R} \quad$ differentiable function (scalar function) critical point: a point in M^{n} where all 1st order partial derivatives of f vanish

Theorem 2.2 (Morse lemma) If f is generic enough, then around each critical point, f is expressed as

$$
f= \pm x_{1}^{2} \pm x_{2}^{2} \pm \cdots \pm x_{n}^{2}+c
$$

w.r.t. certain local coordinates for some constant c.

Morse lemma

$f: M^{n} \rightarrow \mathbf{R} \quad$ differentiable function (scalar function) critical point: a point in M^{n} where all 1st order partial derivatives of f vanish
Theorem 2.2 (Morse lemma) If f is generic enough, then around each critical point, f is expressed as

$$
f= \pm x_{1}^{2} \pm x_{2}^{2} \pm \cdots \pm x_{n}^{2}+c
$$

w.r.t. certain local coordinates for some constant c.

The number of negative signs "-" is called the index.

Morse lemma

$f: M^{n} \rightarrow \mathbf{R} \quad$ differentiable function (scalar function) critical point: a point in M^{n} where all 1st order partial derivatives of f
vanish
Theorem 2.2 (Morse lemma) If f is generic enough, then around each critical point, f is expressed as

$$
f= \pm x_{1}^{2} \pm x_{2}^{2} \pm \cdots \pm x_{n}^{2}+c
$$

w.r.t. certain local coordinates for some constant c.

The number of negative signs "-" is called the index. The topology of a critical point is determined by the index.

Morse lemma

$f: M^{n} \rightarrow \mathbf{R} \quad$ differentiable function (scalar function)
critical point: a point in M^{n} where all 1st order partial derivatives of f
vanish
Theorem 2.2 (Morse lemma) If f is generic enough, then around each critical point, f is expressed as

$$
f= \pm x_{1}^{2} \pm x_{2}^{2} \pm \cdots \pm x_{n}^{2}+c
$$

w.r.t. certain local coordinates for some constant c.

The number of negative signs "-" is called the index.
The topology of a critical point is determined by the index.
For the study of level-set changes, the Morse lemma is essential!

Morse lemma

$f: M^{n} \rightarrow \mathbf{R} \quad$ differentiable function (scalar function)
critical point: a point in M^{n} where all 1st order partial derivatives of f
vanish
Theorem 2.2 (Morse lemma) If f is generic enough, then around each critical point, f is expressed as

$$
f= \pm x_{1}^{2} \pm x_{2}^{2} \pm \cdots \pm x_{n}^{2}+c
$$

w.r.t. certain local coordinates for some constant c.

The number of negative signs "-" is called the index.
The topology of a critical point is determined by the index.
For the study of level-set changes, the Morse lemma is essential!
How about the case of multi-functions?

Singular points and Jacobi set

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

$$
f: M^{n} \rightarrow \mathbf{R}^{m}(n \geq m) \quad \text { differentiable map (multi-function) }
$$

Singular points and Jacobi set

$f: M^{n} \rightarrow \mathbf{R}^{m}(n \geq m) \quad$ differentiable map (multi-function)
Definition 2.3 For a point $x \in M^{n}$,

$$
d f_{x}: T_{x} M^{n} \rightarrow T_{f(x)} \mathbf{R}^{m}
$$

is the linear map associated with the Jacobian matrix of f (the $m \times n$ matrix whose entries are the first order partial derivatives).

Singular points and Jacobi set

$f: M^{n} \rightarrow \mathbf{R}^{m}(n \geq m) \quad$ differentiable map (multi-function)
Definition 2.3 For a point $x \in M^{n}$,

$$
d f_{x}: T_{x} M^{n} \rightarrow T_{f(x)} \mathbf{R}^{m}
$$

is the linear map associated with the Jacobian matrix of f (the $m \times n$ matrix whose entries are the first order partial derivatives).
Singular point is a point $x \in M^{n}$ such that rank $d f_{x}<m$.

Singular points and Jacobi set

$f: M^{n} \rightarrow \mathbf{R}^{m}(n \geq m) \quad$ differentiable map (multi-function)
Definition 2.3 For a point $x \in M^{n}$,

$$
d f_{x}: T_{x} M^{n} \rightarrow T_{f(x)} \mathbf{R}^{m}
$$

is the linear map associated with the Jacobian matrix of f (the $m \times n$ matrix whose entries are the first order partial derivatives).
Singular point is a point $x \in M^{n}$ such that rank $d f_{x}<m$.
The set of singular points

$$
J(f)=\left\{x \in M^{n} \mid \operatorname{rank} d f_{x}<m\right\}
$$

is called the Jacobi set of f.

Singular points and Jacobi set

$f: M^{n} \rightarrow \mathbf{R}^{m}(n \geq m) \quad$ differentiable map (multi-function)
Definition 2.3 For a point $x \in M^{n}$,

$$
d f_{x}: T_{x} M^{n} \rightarrow T_{f(x)} \mathbf{R}^{m}
$$

is the linear map associated with the Jacobian matrix of f (the $m \times n$ matrix whose entries are the first order partial derivatives).
Singular point is a point $x \in M^{n}$ such that rank $d f_{x}<m$.
The set of singular points

$$
J(f)=\left\{x \in M^{n} \mid \operatorname{rank} d f_{x}<m\right\}
$$

is called the Jacobi set of f.
In general, the Jacobi set $J(f)$ is of dimension $m-1$.

Case of maps into R^{2}

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

Example 2.4 When $n=2$ and $m=2$.

Case of maps into R^{2}

Example 2.4 When $n=2$ and $m=2$.
Types of singularities: fold and cusp (Whitney, 1955)

Case of maps into R^{2}

Example 2.4 When $n=2$ and $m=2$.
Types of singularities: fold and cusp (Whitney, 1955)

Singular points of multi-functions

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

$$
\begin{aligned}
& f: M^{n} \rightarrow \mathbf{R}^{m} \\
& \text { Suppose } n \geq m=2 .
\end{aligned}
$$

Singular points of multi-functions

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

$$
\begin{aligned}
& f: M^{n} \rightarrow \mathbf{R}^{m} \\
& \text { Suppose } n \geq m=2 .
\end{aligned}
$$

fold: A generalization of the Morse critical points for scalar functions

Singular points of multi-functions

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data
$f: M^{n} \rightarrow \mathbf{R}^{m}$
Suppose $n \geq m=2$.
fold: A generalization of the Morse critical points for scalar functions cusp: A degeneration of fold singularities

Singular points of multi-functions

$f: M^{n} \rightarrow \mathbf{R}^{m}$
Suppose $n \geq m=2$.
fold: A generalization of the Morse critical points for scalar functions cusp: A degeneration of fold singularities
For $m=3$, a swallowtail may appear, which is a degeneration of cusp singularities.

Singular points of multi-functions

$f: M^{n} \rightarrow \mathbf{R}^{m}$
Suppose $n \geq m=2$.
fold: A generalization of the Morse critical points for scalar functions cusp: A degeneration of fold singularities
For $m=3$, a swallowtail may appear, which is a degeneration of cusp singularities.

Singular points of multi-functions

$f: M^{n} \rightarrow \mathbf{R}^{m}$
Suppose $n \geq m=2$.
fold: A generalization of the Morse critical points for scalar functions
cusp: A degeneration of fold singularities
For $m=3$, a swallowtail may appear, which is a degeneration of cusp singularities.

For $m \geq 4$, the situation is much more complicated.

Singular points of multi-functions

$f: M^{n} \rightarrow \mathbf{R}^{m}$
Suppose $n \geq m=2$.
fold: A generalization of the Morse critical points for scalar functions
cusp: A degeneration of fold singularities
For $m=3$, a swallowtail may appear, which is a degeneration of cusp singularities.

For $m \geq 4$, the situation is much more complicated.
\Longrightarrow still extensively studied!

Identifying cusps

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

$$
\begin{aligned}
& f: M^{n} \rightarrow \mathbf{R}^{m} \\
& \text { Suppose } n-m>0 \text { is odd. }
\end{aligned}
$$

Identifying cusps

$f: M^{n} \rightarrow \mathbf{R}^{m}$
Suppose $n-m>0$ is odd.
We can define an index λ for each fold:
$\lambda=0,1, \ldots,(n-m+1) / 2$.

Identifying cusps

$f: M^{n} \rightarrow \mathbf{R}^{m}$
Suppose $n-m>0$ is odd.
We can define an index λ for each fold:
$\lambda=0,1, \ldots,(n-m+1) / 2$.
Cusps can be characterized as the singularities where these indices jump.

Identifying cusps

$f: M^{n} \rightarrow \mathbf{R}^{m}$
Suppose $n-m>0$ is odd.
We can define an index λ for each fold:
$\lambda=0,1, \ldots,(n-m+1) / 2$.
Cusps can be characterized as the singularities where these indices jump.

When $n=3$ and $m=2$.
§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

Edelsbrunner-Harer (2002)
Suggested an algorithm for obtaining the Jacobi set.

Algorithm

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

Edelsbrunner-Harer (2002)
Suggested an algorithm for obtaining the Jacobi set.
However, it does not indentify the types of singularities.

Algorithm

Edelsbrunner-Harer (2002)
Suggested an algorithm for obtaining the Jacobi set.
However, it does not indentify the types of singularities.

> Singularity theory of differentiable mappings \Downarrow
> One can identify the singularity types (to a certain extent)

Algorithm

Edelsbrunner-Harer (2002)
Suggested an algorithm for obtaining the Jacobi set.
However, it does not indentify the types of singularities.

Singularity theory of differentiable mappings \Downarrow

One can identify the singularity types (to a certain extent)
If one can identify the folds, cusps and swallowtails, this can contribute a lot to the visualization of big data sets.

For visualization

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

For visualization of multi-function data, we need to

For visualization

For visualization of multi-function data, we need to

1. Identify the Jacobi set

For visualization

For visualization of multi-function data, we need to

1. Identify the Jacobi set
2. Identify the singularity types

For visualization

For visualization of multi-function data, we need to

1. Identify the Jacobi set
2. Identify the singularity types
3. Identify the Jacobi set image

For visualization

For visualization of multi-function data, we need to

1. Identify the Jacobi set
2. Identify the singularity types
3. Identify the Jacobi set image
4. Identify the (singular) fibers

For visualization

For visualization of multi-function data, we need to

1. Identify the Jacobi set
2. Identify the singularity types
3. Identify the Jacobi set image
4. Identify the (singular) fibers

In particular, for item 4 above, it is essential to identify the singular fibers and the fiber changes near singular fibers.

Example of a Jacobi set image

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

Jacobi set image of a map of a surface into \mathbf{R}^{2}

When $n=3, m=2$

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

When $n=3, m=2$:

When $n=3, m=2$

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

When $n=3, m=2$: Jacobi set is a curve.

When $n=3, m=2$

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

When $n=3, m=2$: Jacobi set is a curve.

Local configurations of a Jacobi set image

When $n=3, m=2$

When $n=3, m=2$: Jacobi set is a curve.

Local configurations of a Jacobi set image

Example of a Jacobi set image

Example of local fiber changes

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

Fiber over each region of $\mathbf{R}^{2} \backslash f(J(f))$

Complexity of a fiber

§1. Visualization of Scalar Function Data §2. Visualization of Multi-function Data

Fibers are classified into some classes according to their complexities. This is measured by the complexity κ (called the codimension).

Complexity of a fiber

Fibers are classified into some classes according to their complexities. This is measured by the complexity κ (called the codimension).

Most complicated, $\kappa=2$, appears discretely

Moderately complicated, $\kappa=1$, appears along curves

Most simple, $\kappa=0$, appears along surfaces

When $n=4, m=3$

Local configurations of the Jacobi set image for maps $f: M^{4} \rightarrow \mathbf{R}^{3}$

Example of fiber changes

An example of fiber changes for a map $f: M^{4} \rightarrow \mathbf{R}^{3}$

List of singular fibers

When $n=4, m=3$

-	∞				
.	- ∞	\&	8	8	\bigcirc
...	$\ddot{\circ}$:	\&	-8	- 8
88	88	\%	γ	8	∞
@	$\dot{\circ}$	$\stackrel{\infty}{\circ}$	8	-	

Conclusion

By using the singularity theory of differentiable mappings,

- We can list up singularity types that appear generically.
- We can list up types of fibers.
- We can identify the singularities (or the singular fibers), and we can determine their types (to a certain extent).

This contributes a lot to visualization of big data!

Conclusion

By using the singularity theory of differentiable mappings,

- We can list up singularity types that appear generically.
- We can list up types of fibers.
- We can identify the singularities (or the singular fibers), and we can determine their types (to a certain extent).

This contributes a lot to visualization of big data!

Muito obrigado!

