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sequence of Birth, Merge, Flip, Wrinkle, and Sink operations
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However, these cusps can be turned into Lefschetz singularities by
“unsinking”.

Idea of Proof of Theorem 3.1

Each BLF can be homotoped to an excellent map without definite
fold (by Wrinkle moves).

By singularity theory, the two excellent maps can be connected by a
generic 1-parameter family { f;} of smooth maps.
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Williams’ Idea

— The generic 1-parameter family { f;} satisfies the following.

Deinie Fod B Every f; : M — X is an excellent map, except for a finite
oy e number of values of ¢, say t1, s, ..., tj.

Birth and Merge B For each bifurcation value t;, the difference between ftiie IS
o “well-understood”.

wnemsTeoen ¢ The generic homotopy £ : M x [0,1] — X x |0, 1] defined by
ST L F(x,t) = (fi(x), ) has folds, cusps and swallowtails.
swes i Note. The BLFs fy and f; do not have definite folds, while for

0<t<l1,f;: M — > may have definite folds.

We need to eliminate the definite folds appearing in the generic
homotopy F'.

Williams’ idea: Remove the definite folds of the homotopy F' by
modifying it by “surgery” (not by homotopy).
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83. Isotopies

Suppose that the generic homotopy F' has no definite folds.
Then, Lekili has shown that his moves (together with isotopies)
generate F', by essentially using singularity theory.

[]
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|l 6

/ N\

© >

Figure 13: Moves involving isotopies

1 \)< 6\/
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Y.K.S. Furuya, Sobre aplicacdes genéricas M* — R?
(in Portuguese), PhD Thesis, University of Sao Paulo, 1986.

She studies the “essential’ changes of global base diagrams
during the three moves.

More precisely, she studies the case where the corresponding
vanishing cycles lie on the same component of a fiber.

Otherwise, the change is easy to describe: only the combination of
the connected components changes.

Number of essential change types
Ill: 8 types

[ll: 13 types

C: 6 types
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Figure 14: A type Il move
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g1+ 1

A

b

g—aq

Figure 15: A type C move

g—ag
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Lekili gives one-parameter families of near-symplectic forms for the
deformations corresponding to his moves.

Remark 4.2 Perutz (2007) defines Lagrangian matching
invariants for BLFs.

We do not know if they are invariant under Lekili's moves (or under
Isotopies).

It is conjectured that Lagrangian matching invariants equal the
Seiberg-Witten invariants.
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Problem 4.3 (Baykur)
Find a sufficient sequence of moves that guarantees to stay
within the class of fibrations without null-homologous fiber

components.
How about the class of fibrations with connected fibers?

Note.

These guarantee that if we start with a near-symplectic BLF,
then we can perform the moves within the subclass of
near-symplectic BLFs.
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Thank you!
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