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We will work in the smooth category.

Definition 1.1
M , Σ: closed connected oriented manifolds
dim M = 4, dim Σ = 2
(1) A singularity of a smooth map M → Σ that has the normal form
(z, w) 7→ zw

w.r.t. complex coordinates compatible with the orientations,
is called a Lefschetz singularity.
(2) A singularity that has the normal form
(z, w) 7→ zw̄

is called an achiral Lefschetz singularity.
(3) A singularity that has the normal form

(x1, x2, x3, x4) 7→ (x1, x
2
2 + x2

3 − x2
4)

is called an indefinite fold singularity (or a round singularity).
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Definition 1.2 (Auroux, Donaldson and Katzarkov 2005, etc.)
Let f : M → Σ be a smooth map.
(1) f is a broken Lefschetz fibration (BLF, for short) if
it has at most Lefschetz and indefinite fold singularities.

(2) f is an achiral broken Lefschetz fibration (ABLF, for short) if
it has at most Lefschetz, achiral Lefschetz, and indefinite fold
singularities.
In either case, Z(f), the set of indefinite fold singularities of f ,
is a closed submanifold of M of dimension 1.

Remark 1.3 (1) A usual Lefschetz fibration is a special case of a
BLF.
(2) Regular fibers of a BLF (or ABLF) may not be connected.
Even if they are connected, their genera may not be constant.

Remark 1.4 Sometimes we impose the condition that f |Z(f)

should be an embedding into Σ (e.g. Gay–Kirby).
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Definition 1.5 (1) A singularity that has the normal form

(x1, x2, x3, x4) 7→ (x1, x
2
2 + x2

3 + x2
4)

is called a definite fold singularity.

(2) A singularity that has the normal form

(x1, x2, x3, x4) 7→ (x1, x
3
2 − 3x1x2 + x2

3 ± x2
4)

is called a cusp.
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Figure 2: Definite fold



Base Diagrams for Folds

§1. Introduction

Singularities

Broken Lefschetz
Fibration

Definite Fold and Cusp

Base Diagrams for
Folds

Base Diagrams for
Cusps

Excellent map

§2. Elimination of
Definite Fold

§3. Lekili’s Moves for
BLF

§3. Isotopies

6 / 29

PSfrag replacements
vanishing cycle

Figure 1: Indefinite fold

Figure 2: Definite fold



Base Diagrams for Cusps

§1. Introduction

Singularities

Broken Lefschetz
Fibration

Definite Fold and Cusp

Base Diagrams for
Folds

Base Diagrams for
Cusps

Excellent map

§2. Elimination of
Definite Fold

§3. Lekili’s Moves for
BLF

§3. Isotopies

7 / 29

Figure 3: Indefinite cusp

Figure 4: Definite cusp
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Figure 3: Indefinite cusp

Figure 4: Definite cusp
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Facts.
Whitney (1955) Every smooth map M → Σ is homotopic to a

map with at most definite fold, indefinite fold, and cusp singularities.

Such a map is called an excellent map.

Levine (1965) Every smooth map M → Σ is homotopic to an
excellent map without a cusp if χ(M) is even, and with exactly one
cusp if χ(M) is odd.
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Theorem 2.1 (S. 2006) Every smooth map g : M → S2 is
homotopic to an excellent map without definite fold singularities,
and possibly with a cusp.

In other words, we can eliminate definite fold singularities by
homotopy.
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Sketch of Proof

In the following, S(g) (⊂ M) denotes the set of singular points,
and S0(g) (⊂ S(g)) denotes the set of definite fold singular
points.

Step 1. Arrange S0(g) so that it consists of a single “unknotted”
component.

Use Levine’s cusp elimination technique (S. 1995).

Step 2. Arrange g so that g|S0(g) is an embedding into S2.

Use Reidemeister-like moves on S2 and their “lifts”. This is
possible, since the target is the 2-sphere.

For Step 3, we need the following “moves”.
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Step 3. Change the definite fold circle into an indefinite one
(Williams 2010).
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Corollary 2.2 (Baykur 2008) Every closed oriented 4-manifold
admits a BLF over S2.

Figure 7: Sinking and Unsinking (Lekili 2009)

Remark 2.3 For the existence of BLF (or ABLF), several proofs
have been known (Auroux–Donaldson–Katzarkov, Gay–Kirby,
Baykur, Lekili, Akbulut–Karakurt).
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Figure 8: Birth

Figure 9: Merge
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Figure 10: Flip

Figure 11: Wrinkle
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One can convert each achiral Lefschetz singularity to
one circle of indefinite fold and three Lefschetz singularities
(Lekili 2009).
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Theorem 3.1 (Williams 2010) If two BLFs M → Σ are
homotopic, then one is obtained from the other by a finite
sequence of Birth, Merge, Flip, Wrinkle, and Sink operations
(and their inverses), together with “Isotopies”.

Remark 3.2 During the moves, indefinite cusps may appear.
However, these cusps can be turned into Lefschetz singularities by
“unsinking”.

Idea of Proof of Theorem 3.1
Each BLF can be homotoped to an excellent map without definite
fold (by Wrinkle moves).
By singularity theory, the two excellent maps can be connected by a
generic 1-parameter family {ft} of smooth maps.
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The generic 1-parameter family {ft} satisfies the following.

� Every ft : M → Σ is an excellent map, except for a finite
number of values of t, say t1, t2, . . . , tk.

� For each bifurcation value ti, the difference between fti±ε is
“well-understood”.

The generic homotopy F : M × [0, 1] → Σ × [0, 1] defined by
F (∗, t) = (ft(∗), t) has folds, cusps and swallowtails.

Note. The BLFs f0 and f1 do not have definite folds, while for
0 < t < 1, ft : M → Σ may have definite folds.

We need to eliminate the definite folds appearing in the generic
homotopy F .
Williams’ idea: Remove the definite folds of the homotopy F by
modifying it by “surgery” (not by homotopy).
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Suppose that the generic homotopy F has no definite folds.
Then, Lekili has shown that his moves (together with isotopies)
generate F , by essentially using singularity theory. �
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“Isotopies” are generated by the following moves.
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Figure 13: Moves involving isotopies
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Y.K.S. Furuya, Sobre aplicações genéricas M 4 → R
2

(in Portuguese), PhD Thesis, University of São Paulo, 1986.

She studies the “essential” changes of global base diagrams
during the three moves.
More precisely, she studies the case where the corresponding
vanishing cycles lie on the same component of a fiber.
Otherwise, the change is easy to describe: only the combination of
the connected components changes.

Number of essential change types
II: 8 types
III: 13 types
C: 6 types
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The integers indicate the genus of the corresponding fiber
component.
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Remark 4.1 To a BLF is associated a deformation class of
near-symplectic forms (Lekili).

Lekili gives one-parameter families of near-symplectic forms for the
deformations corresponding to his moves.

Remark 4.2 Perutz (2007) defines Lagrangian matching
invariants for BLFs.
We do not know if they are invariant under Lekili’s moves (or under
isotopies).
It is conjectured that Lagrangian matching invariants equal the
Seiberg–Witten invariants.
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Problem 4.3 (Baykur)
Find a sufficient sequence of moves that guarantees to stay
within the class of fibrations without null-homologous fiber
components.

How about the class of fibrations with connected fibers?

Note.
These guarantee that if we start with a near-symplectic BLF,
then we can perform the moves within the subclass of
near-symplectic BLFs.
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within the class of fibrations without null-homologous fiber
components.
How about the class of fibrations with connected fibers?

Note.
These guarantee that if we start with a near-symplectic BLF,
then we can perform the moves within the subclass of
near-symplectic BLFs.
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Thank you!
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