
定値折り目特異点の消去と
特異レフシェッツ束

佐伯　修　
（九州大学，マス・フォア・インダストリ研究所）

(Institute of Mathematics for Industry, Kyushu University)

June 6, 2011



§1. Broken Lefschetz
Fibrations

§1. Broken Lefschetz Fibrations §2. Singularities of Generic Maps §3. Elimination of Definite Fold §4. Moves for BLFs §5. Simplified BLFs



Singularities
§1. Broken Lefschetz Fibrations §2. Singularities of Generic Maps §3. Elimination of Definite Fold §4. Moves for BLFs §5. Simplified BLFs

3 / 32

We will work in the smooth category (= real C∞ category).



Singularities
§1. Broken Lefschetz Fibrations §2. Singularities of Generic Maps §3. Elimination of Definite Fold §4. Moves for BLFs §5. Simplified BLFs

3 / 32

We will work in the smooth category (= real C∞ category).

Definition 1.1
M , Σ: closed connected oriented manifolds, dimR M = 4, dimR Σ = 2



Singularities
§1. Broken Lefschetz Fibrations §2. Singularities of Generic Maps §3. Elimination of Definite Fold §4. Moves for BLFs §5. Simplified BLFs

3 / 32

We will work in the smooth category (= real C∞ category).

Definition 1.1
M , Σ: closed connected oriented manifolds, dimR M = 4, dimR Σ = 2
(1) A singularity of a C∞ map M → Σ that has the normal form

(z, w) �→ zw

w.r.t. complex coordinates compatible with the orientations,
is called a Lefschetz singularity.
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We will work in the smooth category (= real C∞ category).

Definition 1.1
M , Σ: closed connected oriented manifolds, dimR M = 4, dimR Σ = 2
(1) A singularity of a C∞ map M → Σ that has the normal form

(z, w) �→ zw

w.r.t. complex coordinates compatible with the orientations,
is called a Lefschetz singularity.
(2) A singularity that has the normal form

(x1, x2, x3, x4) �→ (x1, x
2
2 + x2

3 − x2
4)

is called an indefinite fold singularity.
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Definition 1.2 (Auroux–Donaldson–Katzarkov, 2005, etc.)
Let f : M 4 → Σ2 be a C∞ map.
f is a broken Lefschetz fibration (BLF, for short) if
it has at most Lefschetz and indefinite fold singularities.
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Definition 1.2 (Auroux–Donaldson–Katzarkov, 2005, etc.)
Let f : M 4 → Σ2 be a C∞ map.
f is a broken Lefschetz fibration (BLF, for short) if
it has at most Lefschetz and indefinite fold singularities.

In this case, SI(f), the set of indefinite fold singularities of f ,
is a closed submanifold of M 4 of dimension 1.

A usual Lefschetz fibration (LF, for short) is a special case of a BLF.
(LF ⇐⇒ BLF with SI(f) = ∅)
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Donaldson, Gompf, ∼2000
Lefschetz fibrations ⇐⇒ symplectic structures (up to blow-up)
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Donaldson, Gompf, ∼2000
Lefschetz fibrations ⇐⇒ symplectic structures (up to blow-up)

Symplectic structure: ω ∈ Ω2(M 4), dω = 0, non-degenerate (ω2 > 0)

Kähler =⇒ symplectic =⇒ almost complex
� Gauge theoretic invariants can be defined.

Auroux–Donaldson–Katzarkov, 2005
broken Lefschetz fibrations ⇐⇒ near-symplectic structures

(↑ admitting 1-dim. zero locus)
(up to blow up)

Near-symplectic structure: ω ∈ Ω2(M 4), dω = 0, ω2 ≥ 0,
ω vanishes along a 1-dim. submanifold “transversely”.
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Theorem 1.3 (ADK, 2005) M 4: closed oriented 4-manifold,
Z ⊂ M 4: 1-dim. closed submanifold
Then, the following two are equivalent.

(1) ∃near-symplectic form ω on M 4 with zero locus Z.
(2) ∃broken Lefschetz pencil (BLP) f over S2 with SI(f) = Z

s.t. there is an h ∈ H2(M 4;R) satisfying h(C) > 0 for every
component C of every fiber of f .

Furthermore, if (2) holds, then a deformation class of near-
symplectic forms that restrict to a volume form on each fiber away
from Z is canonically associated to f .
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Theorem 1.3 (ADK, 2005) M 4: closed oriented 4-manifold,
Z ⊂ M 4: 1-dim. closed submanifold
Then, the following two are equivalent.

(1) ∃near-symplectic form ω on M 4 with zero locus Z.
(2) ∃broken Lefschetz pencil (BLP) f over S2 with SI(f) = Z

s.t. there is an h ∈ H2(M 4;R) satisfying h(C) > 0 for every
component C of every fiber of f .

Furthermore, if (2) holds, then a deformation class of near-
symplectic forms that restrict to a volume form on each fiber away
from Z is canonically associated to f .

∃BLP =⇒ ∃BLF on a blown up 4-manifold

BLF is a special case of a BLP (BLF = BLP without base points).
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Not every 4-manifold admits a symplectic structure.
(e.g. �nCP 2, n ≥ 2, etc.)
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On the other hand, it is known that every closed oriented 4-manifold
M 4 with b+

2 (M 4) > 0 admits a near-symplectic structure.
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Remark 1.4
Not every 4-manifold admits a symplectic structure.
(e.g. �nCP 2, n ≥ 2, etc.)

On the other hand, it is known that every closed oriented 4-manifold
M 4 with b+

2 (M 4) > 0 admits a near-symplectic structure.

In fact, there are a variety of such structures on a given 4-manifold M 4.
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Let us discuss the relation to the singularity theory of C∞ maps.
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Let us discuss the relation to the singularity theory of C∞ maps.

Definition 2.5 (1) A singularity that has the normal form

(x1, x2, x3, x4) �→ (x1, x
2
2 + x2

3 + x2
4)

is called a definite fold singularity.
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Let us discuss the relation to the singularity theory of C∞ maps.

Definition 2.5 (1) A singularity that has the normal form

(x1, x2, x3, x4) �→ (x1, x
2
2 + x2

3 + x2
4)

is called a definite fold singularity.
(2) A singularity that has the normal form

(x1, x2, x3, x4) �→ (x1, x
3
2 − 3x1x2 + x2

3 ± x2
4)

is called a cusp.
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vanishing cycle

Figure 1: Indefinite fold
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vanishing cycle

Figure 1: Indefinite fold

Figure 2: Definite fold
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Figure 3: Indefinite cusp
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Figure 3: Indefinite cusp Figure 4: Definite cusp
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Facts.

Whitney (1955) Every C∞ map M 4 → Σ2 is homotopic to (actually,

approximated by) a C∞ map with at most definite fold, indefinite fold,
definite cusp, and indefinite cusp singularities.
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approximated by) a C∞ map with at most definite fold, indefinite fold,
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Levine (1965) [Cusps can be eliminated in pairs.]

Every C∞ map M 4 → Σ2 is homotopic to an excellent map without a
cusp if χ(M 4) is even, and with exactly one cusp if χ(M 4) is odd.
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Lefschetz critical point.
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Facts.

Whitney (1955) Every C∞ map M 4 → Σ2 is homotopic to (actually,

approximated by) a C∞ map with at most definite fold, indefinite fold,
definite cusp, and indefinite cusp singularities.
Such a map is called an excellent map.

Levine (1965) [Cusps can be eliminated in pairs.]

Every C∞ map M 4 → Σ2 is homotopic to an excellent map without a
cusp if χ(M 4) is even, and with exactly one cusp if χ(M 4) is odd.

■ Excellent maps may have definite folds and cusps, but have no
Lefschetz critical point.

■ BLFs may have Lefschetz critical points, but have no definite fold or
cusp.
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Theorem 3.1 (S., 2006)
Every C∞ map g : M 4 → S2 is homotopic to an excellent map
without definite fold singularities, and possibly with a cusp.
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Theorem 3.1 (S., 2006)
Every C∞ map g : M 4 → S2 is homotopic to an excellent map
without definite fold singularities, and possibly with a cusp.

In other words, we can eliminate definite fold singularities by
homotopy.
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We may assume that g is an excellent map.
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Step 1. Modify SD(g) to a single “unknotted” component.



Sketch of Proof
§1. Broken Lefschetz Fibrations §2. Singularities of Generic Maps §3. Elimination of Definite Fold §4. Moves for BLFs §5. Simplified BLFs

16 / 32

Sketch of Proof
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S(g) (⊂ M 4): set of singular points
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Step 1. Modify SD(g) to a single “unknotted” component.

For this, we use the proof of the following theorem.
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Sketch of Proof
We may assume that g is an excellent map.
S(g) (⊂ M 4): set of singular points
SD(g) (⊂ S(g)): set of definite fold singular points

Step 1. Modify SD(g) to a single “unknotted” component.

For this, we use the proof of the following theorem.

Theorem 3.2 (S., 1995) g : M 4 → Σ2 a C∞ map
L ⊂ M 4: a non-empty closed 1-dim. submanifold
∃excellent map f : M 4 → Σ2 homotopic to g s.t. S(f) = L
⇐⇒ [L]2 = 0 in H1(M

4;Z2)
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Flip

Merge

Figure 5: Moves for modifying the definite fold locus
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Step 2. Arrange g so that g|SD(g) is an embedding into S2.
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Step 2. Arrange g so that g|SD(g) is an embedding into S2.

Use Reidemeister-like moves on S2 and their “lifts”. This is possible,
since the target is the 2-sphere.
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Step 2. Arrange g so that g|SD(g) is an embedding into S2.

Use Reidemeister-like moves on S2 and their “lifts”. This is possible,
since the target is the 2-sphere.

For Step 3, we need the following additional move.

∅

indefinite fold

definite fold

Figure 6: Birth
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Step 3. Definite fold circle � Indefinite one (Williams, 2010)
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Step 3. Definite fold circle � Indefinite one (Williams, 2010)

Isotopy

IsotopyBirth

Merge

Birth−1

Merge−1

Q.E.D.
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Corollary 3.3 (Baykur, 2008)
Every closed oriented 4-manifold admits a BLF over S2.
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Corollary 3.3 (Baykur, 2008)
Every closed oriented 4-manifold admits a BLF over S2.

Figure 7: Sinking and Unsinking (Lekili, 2009)

Remark 3.4 For the existence of BLF, several proofs are known
(Gay–Kirby, Baykur, Lekili, Akbulut–Karakurt).
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We can also prove the following (cf. Lekili, 2009).
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We can also prove the following (cf. Lekili, 2009).

Theorem 3.5 g : M 4 → S2 a C∞ map
L ⊂ M 4: a non-empty closed 1-dim. submanifold
∃f : M 4 → S2 BLF homotopic to g s.t. SI(f) = L
⇐⇒ [L]2 = 0 in H1(M

4;Z2)
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We can also prove the following (cf. Lekili, 2009).

Theorem 3.5 g : M 4 → S2 a C∞ map
L ⊂ M 4: a non-empty closed 1-dim. submanifold
∃f : M 4 → S2 BLF homotopic to g s.t. SI(f) = L
⇐⇒ [L]2 = 0 in H1(M

4;Z2)

Using similar techiniques in the context of near-symplectic structures
(Perutz, 2006; Lekili, 2009), we can prove the following.
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We can also prove the following (cf. Lekili, 2009).

Theorem 3.5 g : M 4 → S2 a C∞ map
L ⊂ M 4: a non-empty closed 1-dim. submanifold
∃f : M 4 → S2 BLF homotopic to g s.t. SI(f) = L
⇐⇒ [L]2 = 0 in H1(M

4;Z2)

Using similar techiniques in the context of near-symplectic structures
(Perutz, 2006; Lekili, 2009), we can prove the following.

Theorem 3.6 M 4: closed oriened 4-manifold with b+
2 (M 4) > 0

L ⊂ M 4: a non-empty closed 1-dim. submanifold
∃near-symplectic structure ω whose zero locus coincides with L
⇐⇒ [L]2 = 0 in H1(M

4;Z2)
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Theorem 3.7 (Gay–Kirby, 2011) g : M 4 → Σ2 a C∞ map
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Theorem 3.7 (Gay–Kirby, 2011) g : M 4 → Σ2 a C∞ map
∃f : M 4 → Σ2 BLF homotopic to g
⇐⇒ [π1(Σ

2) : g∗π1(M
4)] < +∞

Furthermore, if g∗ : π1(M
4) → π1(Σ

2) is surjective, then we can
arrange so that ∀fibers are connected.

Remark 3.8 Fiber connectedness is very important!
Recall the cohomological condition appearing in the ADK theorem on
the existence and uniqueness of near-symplectic structures.
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There is a set of “moves” for BLFs, called Lekili’s moves.

∅
Birth Merge

Flip

Wrinkle Sinking

Figure 8: Lekili’s moves
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Theorem 4.1 (Williams, 2010; Gay–Kirby, 2011)
If two BLFs M 4 → Σ2 are homotopic, then one is obtained from
the other by a finite sequence of Lekili’s moves (Birth, Merge,
Flip, Wrinkle, and Sink operations, and their inverses), together with
“Isotopies”.
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Theorem 4.1 (Williams, 2010; Gay–Kirby, 2011)
If two BLFs M 4 → Σ2 are homotopic, then one is obtained from
the other by a finite sequence of Lekili’s moves (Birth, Merge,
Flip, Wrinkle, and Sink operations, and their inverses), together with
“Isotopies”.

If one can describe the change in the corresponding near-symplectic
structures, one would be able to define a gauge theoretic invariant for
4-manifolds =⇒ Lagrangian matching invariant (Perutz, 2007)

It is conjectured that Lagrangian matching invariants equal the
Seiberg–Witten invariants.
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Problem 4.2 (Baykur)
Find a sufficient sequence of moves that guarantees to stay
within the class of fibrations without null-homologous fiber
components.
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Problem 4.2 (Baykur)
Find a sufficient sequence of moves that guarantees to stay
within the class of fibrations without null-homologous fiber
components.
How about the class of fibrations with connected fibers?

Note.
These guarantee that if we start with a near-symplectic BLF,
then we can perform the moves within the subclass of
near-symplectic BLFs.
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Theorem 4.3 (Gay–Kirby, 2011)
f0, f1 : M 4 → Σ2 excellent maps without definite folds
s.t. all the fibers are connected.
=⇒ ∃generic homotopy ft between f0 and f1

s.t. ∀fibers of ft are connected.
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Theorem 4.3 (Gay–Kirby, 2011)
f0, f1 : M 4 → Σ2 excellent maps without definite folds
s.t. all the fibers are connected.
=⇒ ∃generic homotopy ft between f0 and f1

s.t. ∀fibers of ft are connected.

Idea: A careful application of the classical Cerf theory.
cf. The proof that the Kirby moves are enough for converting one
framed link diagram to another for a given 3-manifold.
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Let f : M 4 → S2 be a BLF.
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Let f : M 4 → S2 be a BLF. Suppose

(1) SI(f) ∼= S1,
(2) f |SI(f) is an embedding onto the equator of S2,
(3) ∀fibers are connected.

Then, f is a simplified broken Lefschetz fibration (SBLF, for short).

g g + 1

It is known that every closed oriented 4-manifold admits a SBLF
(Gay–Kirby, etc.).
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Williams (2010): Convert the Lefschetz singularities to cusps by
Lekili’s moves.
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Williams (2010): Convert the Lefschetz singularities to cusps by
Lekili’s moves.

Then, one can represent the 4-manifold by a finite sequence of simple
closed curves on a fiber surface. � surface diagram of a 4-manifold

Theorem 5.1 (Williams, 2011)
Surface diagram of a given closed oriented 4-manifold is unique up to
certain moves, called stabilization, handleslide, multislide, and shift.



Summary
§1. Broken Lefschetz Fibrations §2. Singularities of Generic Maps §3. Elimination of Definite Fold §4. Moves for BLFs §5. Simplified BLFs

31 / 32

(1) Every closed oriented 4-manifold admits a lot of BLFs; when
b+
2 (M 4) > 0, a lot of BLFs with associated near-symplectic

structures.
(2) Two BLFs in a fixed homotopy class are related by Lekili’s moves.

They are also related in the class of BLFs with connected fibers.
This would lead to prove the conjecture that the Lagrangian
matching invariant defined for near-symplectic structures equals
the Seiberg-Witten invariant.

(3) The indefinite locus of a BLF can be prescribed, and the zero
locus of a near-symplectic structure as well.

(4) Surface diagrams arising from SBLFs may be useful to describe a
given 4-manifold, like Heegaard diagrams or framed link diagrams for
3-manifolds.
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Thank you for your attention !
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