定値折り目特異点の消去と特異レフシェッツ束

佐伯 修
（九州大学，マス・フォア・インダストリ研究所）
（Institute of Mathematics for Industry，Kyushu University）

June 6， 2011

§1. Broken Lefschetz Fibrations

Singularities

§1. Broken Lefschetz Fibrations §2. Singularities of Generic Maps §3. Elimination of Definite Fold §4. Moves for BLFs §5. Simplified BLFs

We will work in the smooth category ($=$ real C^{∞} category).

Singularities

§1. Broken Lefschetz Fibrations §2. Singularities of Generic Maps §3. Elimination of Definite Fold §4. Moves for BLFs §5. Simplified BLFs

We will work in the smooth category ($=$ real C^{∞} category).
Definition 1.1
M, Σ : closed connected oriented manifolds, $\operatorname{dim}_{\mathbf{R}} M=4, \operatorname{dim}_{\mathbf{R}} \Sigma=2$

Singularities

We will work in the smooth category (= real C^{∞} category).
Definition 1.1
M, Σ : closed connected oriented manifolds, $\operatorname{dim}_{\mathbf{R}} M=4, \operatorname{dim}_{\mathbf{R}} \Sigma=2$
(1) A singularity of a C^{∞} map $M \rightarrow \Sigma$ that has the normal form

$$
(z, w) \mapsto z w
$$

w.r.t. complex coordinates compatible with the orientations, is called a Lefschetz singularity.

Singularities

We will work in the smooth category ($=$ real C^{∞} category).
Definition 1.1
M, Σ : closed connected oriented manifolds, $\operatorname{dim}_{\mathbf{R}} M=4, \operatorname{dim}_{\mathbf{R}} \Sigma=2$
(1) A singularity of a C^{∞} map $M \rightarrow \Sigma$ that has the normal form

$$
(z, w) \mapsto z w
$$

w.r.t. complex coordinates compatible with the orientations, is called a Lefschetz singularity.
(2) A singularity that has the normal form

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto\left(x_{1}, x_{2}^{2}+x_{3}^{2}-x_{4}^{2}\right)
$$

is called an indefinite fold singularity.

Broken Lefschetz Fibration

§1. Broken Lefschetz Fibrations §2. Singularities of Generic Maps §3. Elimination of Definite Fold §4. Moves for BLFs §5. Simplified BLFs

Definition 1.2 (Auroux-Donaldson-Katzarkov, 2005, etc.)
Let $f: M^{4} \rightarrow \Sigma^{2}$ be a C^{∞} map.
f is a broken Lefschetz fibration (BLF, for short) if
it has at most Lefschetz and indefinite fold singularities.

Broken Lefschetz Fibration

Definition 1.2 (Auroux-Donaldson-Katzarkov, 2005, etc.)
Let $f: M^{4} \rightarrow \Sigma^{2}$ be a C^{∞} map.
f is a broken Lefschetz fibration (BLF, for short) if
it has at most Lefschetz and indefinite fold singularities.
In this case, $S_{\mathrm{I}}(f)$, the set of indefinite fold singularities of f, is a closed submanifold of M^{4} of dimension 1.

Broken Lefschetz Fibration

Definition 1.2 (Auroux-Donaldson-Katzarkov, 2005, etc.)
Let $f: M^{4} \rightarrow \Sigma^{2}$ be a C^{∞} map.
f is a broken Lefschetz fibration (BLF, for short) if
it has at most Lefschetz and indefinite fold singularities.
In this case, $S_{\mathrm{I}}(f)$, the set of indefinite fold singularities of f, is a closed submanifold of M^{4} of dimension 1.

A usual Lefschetz fibration (LF, for short) is a special case of a BLF. (LF \Longleftrightarrow BLF with $\left.S_{\mathrm{I}}(f)=\emptyset\right)$

Fibers of a BLF

Near-Symplectic Structures

§1. Broken Lefschetz Fibrations §2. Singularities of Generic Maps §3. Elimination of Definite Fold §4. Moves for BLFs §5. Simplified BLFs

Donaldson, Gompf, ~2000
Lefschetz fibrations \Longleftrightarrow symplectic structures (up to blow-up)

Near-Symplectic Structures

§1. Broken Lefschetz Fibrations §2. Singularities of Generic Maps §3. Elimination of Definite Fold §4. Moves for BLFs §5. Simplified BLFs

Donaldson, Gompf, ~2000
Lefschetz fibrations \Longleftrightarrow symplectic structures (up to blow-up)
Symplectic structure: $\omega \in \Omega^{2}\left(M^{4}\right)$, $d \omega=0$, non-degenerate $\left(\omega^{2}>0\right)$

Near-Symplectic Structures

Donaldson, Gompf, ~2000
Lefschetz fibrations \Longleftrightarrow symplectic structures (up to blow-up)
Symplectic structure: $\omega \in \Omega^{2}\left(M^{4}\right)$, $d \omega=0$, non-degenerate $\left(\omega^{2}>0\right)$
Kähler \Longrightarrow symplectic \Longrightarrow almost complex

Near-Symplectic Structures

Donaldson, Gompf, ~2000
Lefschetz fibrations \Longleftrightarrow symplectic structures (up to blow-up)
Symplectic structure: $\omega \in \Omega^{2}\left(M^{4}\right), d \omega=0$, non-degenerate $\left(\omega^{2}>0\right)$
Kähler \Longrightarrow symplectic \Longrightarrow almost complex
\rightsquigarrow Gauge theoretic invariants can be defined.

Near-Symplectic Structures

Donaldson, Gompf, ~2000
Lefschetz fibrations \Longleftrightarrow symplectic structures (up to blow-up)
Symplectic structure: $\omega \in \Omega^{2}\left(M^{4}\right)$, $d \omega=0$, non-degenerate $\left(\omega^{2}>0\right)$
Kähler \Longrightarrow symplectic \Longrightarrow almost complex
\rightsquigarrow Gauge theoretic invariants can be defined.

Auroux-Donaldson-Katzarkov, 2005
broken Lefschetz fibrations \Longleftrightarrow near-symplectic structures
(\uparrow admitting 1-dim. zero locus)
(up to blow up)

Near-Symplectic Structures

Donaldson, Gompf, ~2000
Lefschetz fibrations \Longleftrightarrow symplectic structures (up to blow-up)
Symplectic structure: $\omega \in \Omega^{2}\left(M^{4}\right), d \omega=0$, non-degenerate $\left(\omega^{2}>0\right)$
Kähler \Longrightarrow symplectic \Longrightarrow almost complex
\rightsquigarrow Gauge theoretic invariants can be defined.

Auroux-Donaldson-Katzarkov, 2005
broken Lefschetz fibrations \Longleftrightarrow near-symplectic structures
(\uparrow admitting 1-dim. zero locus)
(up to blow up)
Near-symplectic structure: $\omega \in \Omega^{2}\left(M^{4}\right), d \omega=0, \omega^{2} \geq 0$,
ω vanishes along a 1-dim. submanifold "transversely".

Near-Symplectic vs BLF

Theorem 1.3 (ADK, 2005) M^{4} : closed oriented 4-manifold, $Z \subset M^{4}$: 1-dim. closed submanifold
Then, the following two are equivalent.
(1) \exists near-symplectic form ω on M^{4} with zero locus Z.
(2) \exists broken Lefschetz pencil (BLP) f over S^{2} with $S_{\mathrm{I}}(f)=Z$ s.t. there is an $h \in H^{2}\left(M^{4} ; \mathbf{R}\right)$ satisfying $h(C)>0$ for every component C of every fiber of f.
Furthermore, if (2) holds, then a deformation class of nearsymplectic forms that restrict to a volume form on each fiber away from Z is canonically associated to f.

Near-Symplectic vs BLF

Theorem 1.3 (ADK, 2005) M^{4} : closed oriented 4-manifold, $Z \subset M^{4}$: 1-dim. closed submanifold
Then, the following two are equivalent.
(1) \exists near-symplectic form ω on M^{4} with zero locus Z.
(2) \exists broken Lefschetz pencil (BLP) f over S^{2} with $S_{\mathrm{I}}(f)=Z$ s.t. there is an $h \in H^{2}\left(M^{4} ; \mathbf{R}\right)$ satisfying $h(C)>0$ for every component C of every fiber of f.

Furthermore, if (2) holds, then a deformation class of nearsymplectic forms that restrict to a volume form on each fiber away from Z is canonically associated to f.
$\exists B L P \Longrightarrow \exists B L F$ on a blown up 4-manifold

Near-Symplectic vs BLF

Theorem 1.3 (ADK, 2005) M^{4} : closed oriented 4-manifold, $Z \subset M^{4}$: 1-dim. closed submanifold
Then, the following two are equivalent.
(1) \exists near-symplectic form ω on M^{4} with zero locus Z.
(2) \exists broken Lefschetz pencil (BLP) f over S^{2} with $S_{\mathrm{I}}(f)=Z$ s.t. there is an $h \in H^{2}\left(M^{4} ; \mathbf{R}\right)$ satisfying $h(C)>0$ for every component C of every fiber of f.

Furthermore, if (2) holds, then a deformation class of nearsymplectic forms that restrict to a volume form on each fiber away from Z is canonically associated to f.
$\exists B L P \Longrightarrow \exists B L F$ on a blown up 4-manifold
BLF is a special case of a BLP (BLF = BLP without base points).

A Remark

Remark 1.4

Not every 4-manifold admits a symplectic structure. (e.g. $\sharp^{n} \mathbf{C} P^{2}, n \geq 2$, etc.)

A Remark

Remark 1.4

Not every 4-manifold admits a symplectic structure. (e.g. $\sharp^{n} \mathbf{C} P^{2}, n \geq 2$, etc.)

On the other hand, it is known that every closed oriented 4-manifold M^{4} with $b_{2}^{+}\left(M^{4}\right)>0$ admits a near-symplectic structure.

A Remark

Remark 1.4

Not every 4-manifold admits a symplectic structure. (e.g. $\sharp^{n} \mathbf{C} P^{2}, n \geq 2$, etc.)

On the other hand, it is known that every closed oriented 4-manifold M^{4} with $b_{2}^{+}\left(M^{4}\right)>0$ admits a near-symplectic structure.
In fact, there are a variety of such structures on a given 4-manifold M^{4}.
§1. Broken Lefschetz Fibrations §2. Singularities of Generic Maps §3. Flimination of Definite Fold §4. Moves for BLFs §5. Simplified BLFs

§2. Singularities of Generic Maps

Definite Fold and Cusp

Let us discuss the relation to the singularity theory of C^{∞} maps.

Definite Fold and Cusp

Let us discuss the relation to the singularity theory of C^{∞} maps.

Definition 2.5 (1) A singularity that has the normal form

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto\left(x_{1}, x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right)
$$

is called a definite fold singularity.

Definite Fold and Cusp

Let us discuss the relation to the singularity theory of C^{∞} maps.

Definition 2.5 (1) A singularity that has the normal form

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto\left(x_{1}, x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right)
$$

is called a definite fold singularity.
(2) A singularity that has the normal form

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto\left(x_{1}, x_{2}^{3}-3 x_{1} x_{2}+x_{3}^{2} \pm x_{4}^{2}\right)
$$

is called a cusp.

Base Diagrams for Folds

Figure 1: Indefinite fold

Base Diagrams for Folds

Figure 1: Indefinite fold

Figure 2: Definite fold

Base Diagrams for Cusps

Figure 3: Indefinite cusp

Base Diagrams for Cusps

Figure 3: Indefinite cusp

Figure 4: Definite cusp

Excellent Map

Facts.

Whitney (1955) Every C^{∞} map $M^{4} \rightarrow \Sigma^{2}$ is homotopic to (actually, approximated by) a C^{∞} map with at most definite fold, indefinite fold, definite cusp, and indefinite cusp singularities.

Excellent Map

Facts.

Whitney (1955) Every C^{∞} map $M^{4} \rightarrow \Sigma^{2}$ is homotopic to (actually, approximated by) a C^{∞} map with at most definite fold, indefinite fold, definite cusp, and indefinite cusp singularities.
Such a map is called an excellent map.

Excellent Map

Facts.

Whitney (1955) Every C^{∞} map $M^{4} \rightarrow \Sigma^{2}$ is homotopic to (actually, approximated by) a C^{∞} map with at most definite fold, indefinite fold, definite cusp, and indefinite cusp singularities.
Such a map is called an excellent map.
Levine (1965) [Cusps can be eliminated in pairs.]
Every C^{∞} map $M^{4} \rightarrow \Sigma^{2}$ is homotopic to an excellent map without a cusp if $\chi\left(M^{4}\right)$ is even, and with exactly one cusp if $\chi\left(M^{4}\right)$ is odd.

Excellent Map

Facts.

Whitney (1955) Every C^{∞} map $M^{4} \rightarrow \Sigma^{2}$ is homotopic to (actually, approximated by) a C^{∞} map with at most definite fold, indefinite fold, definite cusp, and indefinite cusp singularities.
Such a map is called an excellent map.
Levine (1965) [Cusps can be eliminated in pairs.]
Every C^{∞} map $M^{4} \rightarrow \Sigma^{2}$ is homotopic to an excellent map without a cusp if $\chi\left(M^{4}\right)$ is even, and with exactly one cusp if $\chi\left(M^{4}\right)$ is odd.

- Excellent maps may have definite folds and cusps, but have no Lefschetz critical point.

Excellent Map

Facts.

Whitney (1955) Every C^{∞} map $M^{4} \rightarrow \Sigma^{2}$ is homotopic to (actually, approximated by) a C^{∞} map with at most definite fold, indefinite fold, definite cusp, and indefinite cusp singularities.
Such a map is called an excellent map.
Levine (1965) [Cusps can be eliminated in pairs.]
Every C^{∞} map $M^{4} \rightarrow \Sigma^{2}$ is homotopic to an excellent map without a cusp if $\chi\left(M^{4}\right)$ is even, and with exactly one cusp if $\chi\left(M^{4}\right)$ is odd.

- Excellent maps may have definite folds and cusps, but have no Lefschetz critical point.
- BLFs may have Lefschetz critical points, but have no definite fold or cusp.
§1. Broken Lefschetz Fibrations §2, Singularities of Generic Maps §3. Elimination of Definite Fold §4. Moves for BLFs §5. Simplified BLFs

§3. Elimination of Definite Fold

Elimination of Definite Fold

Theorem 3.1 (S., 2006)
Every C^{∞} map $g: M^{4} \rightarrow S^{2}$ is homotopic to an excellent map without definite fold singularities, and possibly with a cusp.

Elimination of Definite Fold

Theorem 3.1 (S., 2006)
Every C^{∞} map $g: M^{4} \rightarrow S^{2}$ is homotopic to an excellent map without definite fold singularities, and possibly with a cusp.

In other words, we can eliminate definite fold singularities by homotopy.

Sketch of Proof

§1. Broken Lefschetz Fibrations §2. Singularities of Generic Maps §3. Elimination of Definite Fold §4. Moves for BLFs §5. Simplified BLFs

Sketch of Proof

Sketch of Proof

Sketch of Proof
We may assume that g is an excellent map.

Sketch of Proof

Sketch of Proof
We may assume that g is an excellent map.
$S(g)\left(\subset M^{4}\right)$: set of singular points
$S_{\mathrm{D}}(g)(\subset S(g))$: set of definite fold singular points

Sketch of Proof

Sketch of Proof
We may assume that g is an excellent map.
$S(g)\left(\subset M^{4}\right)$: set of singular points
$S_{\mathrm{D}}(g)(\subset S(g))$: set of definite fold singular points
Step 1. Modify $S_{\mathrm{D}}(g)$ to a single "unknotted" component.

Sketch of Proof

Sketch of Proof
We may assume that g is an excellent map.
$S(g)\left(\subset M^{4}\right)$: set of singular points
$S_{\mathrm{D}}(g)(\subset S(g))$: set of definite fold singular points
Step 1. Modify $S_{\mathrm{D}}(g)$ to a single "unknotted" component.
For this, we use the proof of the following theorem.

Sketch of Proof

Sketch of Proof
We may assume that g is an excellent map.
$S(g)\left(\subset M^{4}\right)$: set of singular points
$S_{\mathrm{D}}(g)(\subset S(g))$: set of definite fold singular points
Step 1. Modify $S_{\mathrm{D}}(g)$ to a single "unknotted" component.
For this, we use the proof of the following theorem.
Theorem 3.2 (S., 1995) $g: M^{4} \rightarrow \Sigma^{2}$ a C^{∞} map
$L \subset M^{4}$: a non-empty closed 1-dim. submanifold \exists excellent map $f: M^{4} \rightarrow \Sigma^{2}$ homotopic to g s.t. $S(f)=L$ $\Longleftrightarrow[L]_{2}=0$ in $H_{1}\left(M^{4} ; \mathbf{Z}_{2}\right)$

Moves for Excellent Maps

Merge

Figure 5: Moves for modifying the definite fold locus

Proof (continued)

§1. Broken Lefschetz Fibrations §2. Singularities of Generic Maps §3. Elimination of Definite Fold §4. Moves for BLFs §5. Simplified BLFs

Step 2. Arrange g so that $\left.g\right|_{S_{\mathrm{D}}(g)}$ is an embedding into S^{2}.

Proof (continued)

Step 2. Arrange g so that $\left.g\right|_{S_{\mathrm{D}}(g)}$ is an embedding into S^{2}.
Use Reidemeister-like moves on S^{2} and their "lifts". This is possible, since the target is the 2 -sphere.

Proof (continued)

Step 2. Arrange g so that $\left.g\right|_{S_{\mathrm{D}}(g)}$ is an embedding into S^{2}.
Use Reidemeister-like moves on S^{2} and their "lifts". This is possible, since the target is the 2 -sphere.

For Step 3, we need the following additional move.

Figure 6: Birth

Definite to Indefinite

Step 3. Definite fold circle \rightsquigarrow Indefinite one (Williams, 2010)

Definite to Indefinite

Step 3. Definite fold circle \rightsquigarrow Indefinite one (Williams, 2010)

Q.E.D.

Existence of BLF

Corollary 3.3 (Baykur, 2008)
Every closed oriented 4-manifold admits a BLF over S^{2}.

Existence of BLF

Corollary 3.3 (Baykur, 2008)

Every closed oriented 4-manifold admits a BLF over S^{2}.

Figure 7: Sinking and Unsinking (Lekili, 2009)

Existence of BLF

Corollary 3.3 (Baykur, 2008)
 Every closed oriented 4-manifold admits a BLF over S^{2}.

Figure 7: Sinking and Unsinking (Lekili, 2009)
Remark 3.4 For the existence of BLF, several proofs are known (Gay-Kirby, Baykur, Lekili, Akbulut-Karakurt).

Prescribed Indefinite Locus

§1. Broken Lefschetz Fibrations §2. Singularities of Generic Maps §3. Elimination of Definite Fold §4. Moves for BLFs §5. Simplified BLFs

We can also prove the following (cf. Lekili, 2009).

Prescribed Indefinite Locus

We can also prove the following (cf. Lekili, 2009).
Theorem $3.5 \mathrm{~g}: M^{4} \rightarrow S^{2}$ a C^{∞} map
$L \subset M^{4}$: a non-empty closed 1-dim. submanifold
$\exists f: M^{4} \rightarrow S^{2}$ BLF homotopic to g s.t. $S_{\mathrm{I}}(f)=L$
$\Longleftrightarrow[L]_{2}=0$ in $H_{1}\left(M^{4} ; \mathbf{Z}_{2}\right)$

Prescribed Indefinite Locus

We can also prove the following (cf. Lekili, 2009).
Theorem $3.5 \mathrm{~g}: M^{4} \rightarrow S^{2}$ a C^{∞} map
$L \subset M^{4}$: a non-empty closed 1-dim. submanifold
$\exists f: M^{4} \rightarrow S^{2}$ BLF homotopic to g s.t. $S_{\mathrm{I}}(f)=L$
$\Longleftrightarrow[L]_{2}=0$ in $H_{1}\left(M^{4} ; \mathbf{Z}_{2}\right)$

Using similar techiniques in the context of near-symplectic structures (Perutz, 2006; Lekili, 2009), we can prove the following.

Prescribed Indefinite Locus

We can also prove the following (cf. Lekili, 2009).
Theorem $3.5 \mathrm{~g}: M^{4} \rightarrow S^{2}$ a C^{∞} map
$L \subset M^{4}$: a non-empty closed 1-dim. submanifold
$\exists f: M^{4} \rightarrow S^{2}$ BLF homotopic to g s.t. $S_{\mathrm{I}}(f)=L$
$\Longleftrightarrow[L]_{2}=0$ in $H_{1}\left(M^{4} ; \mathbf{Z}_{2}\right)$

Using similar techiniques in the context of near-symplectic structures (Perutz, 2006; Lekili, 2009), we can prove the following.

Theorem 3.6 M^{4} : closed oriened 4-manifold with $b_{2}^{+}\left(M^{4}\right)>0$
$L \subset M^{4}$: a non-empty closed 1-dim. submanifold \exists near-symplectic structure ω whose zero locus coincides with L $\Longleftrightarrow[L]_{2}=0$ in $H_{1}\left(M^{4} ; \mathbf{Z}_{2}\right)$

Recent Result by Gay-Kirby

Theorem 3.7 (Gay-Kirby, 2011) $g: M^{4} \rightarrow \Sigma^{2}$ a C^{∞} map
$\exists f: M^{4} \rightarrow \Sigma^{2} \quad$ BLF homotopic to g
$\Longleftrightarrow\left[\pi_{1}\left(\Sigma^{2}\right): g_{*} \pi_{1}\left(M^{4}\right)\right]<+\infty$
Furthermore, if $g_{*}: \pi_{1}\left(M^{4}\right) \rightarrow \pi_{1}\left(\Sigma^{2}\right)$ is surjective, then we can arrange so that \forall fibers are connected.

Remark 3.8 Fiber connectedness is very important!

Recent Result by Gay-Kirby

Theorem 3.7 (Gay-Kirby, 2011) $g: M^{4} \rightarrow \Sigma^{2}$ a C^{∞} map $\exists f: M^{4} \rightarrow \Sigma^{2} \quad$ BLF homotopic to g
$\Longleftrightarrow\left[\pi_{1}\left(\Sigma^{2}\right): g_{*} \pi_{1}\left(M^{4}\right)\right]<+\infty$
Furthermore, if $g_{*}: \pi_{1}\left(M^{4}\right) \rightarrow \pi_{1}\left(\Sigma^{2}\right)$ is surjective, then we can arrange so that \forall fibers are connected.

Remark 3.8 Fiber connectedness is very important!
Recall the cohomological condition appearing in the ADK theorem on the existence and uniqueness of near-symplectic structures.
§1. Broken Lefschetz Fibrations

§4. Moves for BLFs

There is a set of "moves" for BLFs, called Lekili's moves.

Lekili's Moves

There is a set of "moves" for BLFs, called Lekili's moves.

Figure 8: Lekili's moves

Uniqueness

Theorem 4.1 (Williams, 2010; Gay-Kirby, 2011)
If two BLFs $M^{4} \rightarrow \Sigma^{2}$ are homotopic, then one is obtained from the other by a finite sequence of Lekili's moves (Birth, Merge, Flip, Wrinkle, and Sink operations, and their inverses), together with "Isotopies".

Uniqueness

Theorem 4.1 (Williams, 2010; Gay-Kirby, 2011)
If two BLFs $M^{4} \rightarrow \Sigma^{2}$ are homotopic, then one is obtained from the other by a finite sequence of Lekili's moves (Birth, Merge, Flip, Wrinkle, and Sink operations, and their inverses), together with "Isotopies".

If one can describe the change in the corresponding near-symplectic structures, one would be able to define a gauge theoretic invariant for 4 -manifolds \Longrightarrow Lagrangian matching invariant (Perutz, 2007)

Uniqueness

Theorem 4.1 (Williams, 2010; Gay-Kirby, 2011)
If two BLFs $M^{4} \rightarrow \Sigma^{2}$ are homotopic, then one is obtained from the other by a finite sequence of Lekili's moves (Birth, Merge, Flip, Wrinkle, and Sink operations, and their inverses), together with "Isotopies".

If one can describe the change in the corresponding near-symplectic structures, one would be able to define a gauge theoretic invariant for 4 -manifolds \Longrightarrow Lagrangian matching invariant (Perutz, 2007) It is conjectured that Lagrangian matching invariants equal the Seiberg-Witten invariants.

Another Problem

Problem 4.2 (Baykur)

Find a sufficient sequence of moves that guarantees to stay within the class of fibrations without null-homologous fiber components.

Another Problem

Problem 4.2 (Baykur)

Find a sufficient sequence of moves that guarantees to stay within the class of fibrations without null-homologous fiber components. How about the class of fibrations with connected fibers?

Another Problem

Problem 4.2 (Baykur)

Find a sufficient sequence of moves that guarantees to stay within the class of fibrations without null-homologous fiber components.
How about the class of fibrations with connected fibers?
Note.
These guarantee that if we start with a near-symplectic BLF, then we can perform the moves within the subclass of near-symplectic BLFs.

An Answer

Theorem 4.3 (Gay-Kirby, 2011)
$f_{0}, f_{1}: M^{4} \rightarrow \Sigma^{2}$ excellent maps without definite folds
s.t. all the fibers are connected.
$\Longrightarrow \exists$ generic homotopy f_{t} between f_{0} and f_{1}
s.t. \forall fibers of f_{t} are connected.

An Answer

Theorem 4.3 (Gay-Kirby, 2011)
$f_{0}, f_{1}: M^{4} \rightarrow \Sigma^{2}$ excellent maps without definite folds
s.t. all the fibers are connected.
$\Longrightarrow \exists$ generic homotopy f_{t} between f_{0} and f_{1}
s.t. \forall fibers of f_{t} are connected.

Idea: A careful application of the classical Cerf theory.

An Answer

Theorem 4.3 (Gay-Kirby, 2011)
$f_{0}, f_{1}: M^{4} \rightarrow \Sigma^{2}$ excellent maps without definite folds
s.t. all the fibers are connected.
$\Longrightarrow \exists$ generic homotopy f_{t} between f_{0} and f_{1}
s.t. \forall fibers of f_{t} are connected.

Idea: A careful application of the classical Cerf theory. cf. The proof that the Kirby moves are enough for converting one framed link diagram to another for a given 3-manifold.
§1. Broken Lefschetz Fibrations

§5. Simplified BLFs

Simplified BLF

§1. Broken Lefschetz Fibrations §2. Singularities of Generic Maps §3. Elimination of Definite Fold §4. Moves for BLFs §5. Simplified BLFs

Let $f: M^{4} \rightarrow S^{2}$ be a BLF.

Simplified BLF

Let $f: M^{4} \rightarrow S^{2}$ be a BLF. Suppose
(1) $\quad S_{\mathrm{I}}(f) \cong S^{1}$,
(2) $\left.f\right|_{S_{\mathrm{I}}(f)}$ is an embedding onto the equator of S^{2},
(3) \forall fibers are connected.

Simplified BLF

Let $f: M^{4} \rightarrow S^{2}$ be a BLF. Suppose
(1) $\quad S_{\mathrm{I}}(f) \cong S^{1}$,
(2) $\left.f\right|_{S_{\mathrm{I}}(f)}$ is an embedding onto the equator of S^{2},
(3) \forall fibers are connected.

Then, f is a simplified broken Lefschetz fibration (SBLF, for short).

Simplified BLF

Let $f: M^{4} \rightarrow S^{2}$ be a BLF. Suppose
(1) $\quad S_{\mathrm{I}}(f) \cong S^{1}$,
(2) $\left.f\right|_{S_{\mathrm{I}}(f)}$ is an embedding onto the equator of S^{2},
(3) \forall fibers are connected.

Then, f is a simplified broken Lefschetz fibration (SBLF, for short).

Simplified BLF

Let $f: M^{4} \rightarrow S^{2}$ be a BLF. Suppose
(1) $\quad S_{\mathrm{I}}(f) \cong S^{1}$,
(2) $\left.f\right|_{S_{\mathrm{I}}(f)}$ is an embedding onto the equator of S^{2},
(3) \forall fibers are connected.

Then, f is a simplified broken Lefschetz fibration (SBLF, for short).

It is known that every closed oriented 4-manifold admits a SBLF (Gay-Kirby, etc.).

Surface Diagram

Williams (2010): Convert the Lefschetz singularities to cusps by Lekili's moves.

Surface Diagram

Williams (2010): Convert the Lefschetz singularities to cusps by Lekili's moves.

Surface Diagram

Williams (2010): Convert the Lefschetz singularities to cusps by Lekili's moves.

Then, one can represent the 4 -manifold by a finite sequence of simple closed curves on a fiber surface. \rightsquigarrow surface diagram of a 4 -manifold

Surface Diagram

Williams (2010): Convert the Lefschetz singularities to cusps by Lekili's moves.

Then, one can represent the 4 -manifold by a finite sequence of simple closed curves on a fiber surface. \rightsquigarrow surface diagram of a 4-manifold

Theorem 5.1 (Williams, 2011)
Surface diagram of a given closed oriented 4-manifold is unique up to certain moves, called stabilization, handleslide, multislide, and shift.

Summary

(1) Every closed oriented 4-manifold admits a lot of BLFs; when $b_{2}^{+}\left(M^{4}\right)>0$, a lot of BLFs with associated near-symplectic structures.
(2) Two BLFs in a fixed homotopy class are related by Lekili's moves. They are also related in the class of BLFs with connected fibers. This would lead to prove the conjecture that the Lagrangian matching invariant defined for near-symplectic structures equals the Seiberg-Witten invariant.
(3) The indefinite locus of a BLF can be prescribed, and the zero locus of a near-symplectic structure as well.
(4) Surface diagrams arising from SBLFs may be useful to describe a given 4-manifold, like Heegaard diagrams or framed link diagrams for 3-manifolds.
§1. Broken Lefschetz Fibrations §2. Singularities of Generic Maps §3. Elimination of Definite Fold §4. Moves for BLFs §5. Simplified BLFs

Thank you for your attention !

