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Total plan:

e 1'st Talk: Examples & strategy of the proof

e 2'nd Talk: Weak solutions

e 3'rd Talk: Strong solutions and pathwise unigueness

Qutline of 1'st talk:

e Dynamical soft edge scaling limit: Airyg RPFs (8 =1,2,4)
Dynamical bulk scaling limit: Sine RPFs and an SDE gap
Ginbre and Bessel RPFs

Histrical back ground of interacting Brownian motions
Strategy: Outline of the proof.



Geometric scaling limit

Geometric soft edge/bulk scaling limits
of Gaussian ensembles
e GUE (Gaussian unitary ensemble): Gaussian random matrices:

(Mll Mio M1N\
M1 Moo Moj
\MNl Mpyo v e MNN)
such that M are N x N-hermitian matrices whose entries satisfying
that
Gij1 +V-1Gyo .
M;j; = —= NG D= (i< j), My, =Gy (2)

and that G;;1, Gjj2, Gy are i.i.d. Gaussian random variables with
mean O and variance 1.

e We define GOE and GSE similarly as real/quoternion symmetric
Gaussian random variables.



Geometric scaling limit

e The distribution of eigen values of the G(O/U/S)E Random Ma-

trices are given by (8 =1,2,4)
N

ml (axy) = I b — ajle 8 25l ey (3)

1<j

This means the system can be regarded as particles interacting

through logaritimic potential (2D Coulomb potentials).

e Wigner's theorem: The distribution of

N

1

Nzém/\/ﬁ under mg
1=1

converges to the semi-circle law

1
s(z)dz = —1\/4 — z2dx (4)
2T

e T his convergence corresponds to the law of large numbers.



Bulk/Soft edge scaling

N
1 _BS N 14012
) = Ll - e ISPy, @
1<
1 2
s(x)de = —1\/4 — z4dx
2T

e Bulk scaling: For —2 < 0 < 2 take z; = (s; — 0)/v/N in @):
1 N N 2
/‘é\ifn,ﬁ,e(dsN) p— E H |Si _ SJ|B H e_ﬁlSk—m /4NdSN (5>
i<j k=1
e Soft edge scaling: Take z; — 2v/N + s;N~1/6 in (B):

N
1 BN ~1/6..2
“]A\\Ti ﬁ(dSN) = H |s; — 8j|56—z N |2V N+N-1/6g, ds .
1<g



Airy RPF — Soft edge scaling limit
Soft edge scaling limit

Airy RPF: ppig (8=1,2,4)

N
1 B
1<J

and set
N 1 N _ BN |2\/N_|_N—1/6 .|2

taigldsy) = ~ [11si— s;/Pe 7 2= ilds

i<j

Then “%B converge to Airy RPF paj s :

im u. . = A
N—)OOMAI’B HAI B



Airy RPF — Soft edge scaling limit
e 3=12 = ppjp is a determinantal RPF given by (Kaj,dz):

Ai(z)Ai'(y) — Ai'(z)Ai(y)
r—Yy

KAi(xay) —

Here Ai(-) is the Airy function.
The correlation function ph; is defined as

pai(x) = det[Kai(z;, zj)]; =1
o If 5 = 1,4, the correlation func of uaj g are given by similar formula
of quaternion determinant.

e \We discuss a dynamical counter part of this scaling limit.



Airy RPF — Soft edge scaling limit
e I give here minimal definition.

e Let S =RY [0,00), e.t.c.. S: configuration space over S
S={s=) b5 5 €58, s(Js| <r) <oo (Vr e N)}
i
e S is a Polish space with the vague topology.
e A prob meas. pu on S is called a random point field (RPF) on S.

e S is the set of unlabeled particles.
o SN is the space of labeled particles.

e A symmetric function p™" is called the n-correlation function of u
w.r.t. Radon m. m if

n : N < s(A4;)!
/Aklx---xAZ%m P (Xn) 21;[1 m(d%) - /Szl;ll (S(Az') — kiﬂdu

1

for any disjoint A; € B(S), k; e Ns.t. k1+ ...+ kmn =n.



Airy RPF — Soft edge scaling limit

e 1 is called the determinantal RPF generated by (K,m) if its n-
correlation functions p™ is given by

p"(xn) = det[K (z;, ;)] 1<i j<n
e It is known that (K, m) determines the RPF uniquely.

e T he N-particle system of Airy RPF is a determinantal RPF whose
kernel K*’A\fi(a:,y) is given by orthogonal polynomials.

e [ he convergence of M% 3 follows from that of correlation functions.

e This follows from that of kernels K&.(z,y).
e This follows from a calculation of orthogonal polynomials (special
functions).



Airy RPF — Dynamical soft edge scaling limit
e We return to a dynamical soft edge scaling limit.

e From

1 _BN¥N ~1/6. |2
pni g(dsy) = ~ [11si — s;lPe 2= RVNENTHEsl g
i<j
we deduce the SDE of the N particle system:

N

ngVfideHg > .1 .dt—é{N1/3_|_

N1
x Ny
N,i N,j 1/3°°1
=l A T A g 2N




e From

1 —1/6, (2
u%,g(dsm — EH 5 — Sj|6 O N L [2VN+N—1/6) ds

i<j
we deduce the SDE of the N particle system:
N,i B 1 / N,i
v ) 1/3 NG
X" =dBj+ 7 D TN ot —{N + 1/3Xt }dt
=l A T A 2N

e Indeed, ng’i are associated with the Dirichlet form:

8f dg
51“’A|B(f,g) = /RN 5 ,u%,ﬁ(dsN) on LQ(RN”UJA. B)
Then, by integration by parts the generator is
. N1/3+ S’L }]
oN1/3

z—l ]7&2
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Airy RPF — Dynamical soft edge scaling limit
e The SDE of the N particle system:

N
Ni__ piy P 1 1/3 N,i
X' =dBj+ 3 > NN t——{N + N1/3Xt }dt
J=1l,571 "t t
e T he dynamics are also given by the space-time correlation func-

tions.

e Problem: What SDE does the limit X; = limy_,, X;¥ satisfy?

N

1
Does lim { E . —N1/3} converge 7
N,i N,j
Noeo s i X 7 = Xy

How to solve the limit ISDE?
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Airy RPF — Dynamical soft edge scaling limit
For a configuration s = 3. ds,, let £(s) = (s1,50,...,) =s € RN be a
label such that s; > so > ---, which is well defined for MAI,B-a.s..
Thm 1 (O.-Tanemura '14). [Existence of strong solutions]
Let B =1,2,4. Define ISDE (B) of X = (X");cy as

i i, B 1 / o(x)
dX; =dB; + — |lim , ) — dx tdt §)
t t 274_)00{(. Z X;—Xg) w|<r — } (6)
jF£1, \Xg|<7“
o(x) = ;xl(—oo,O] (z).

o For pb, 4-a.s.s, ISDE (@) has a strong solution with Xo = s.
e The associated unlabeled dynamics X; = 3 724 0y IS paj g-reversible.
t Y

o If 3 =2 and Xg ~ p: 5, then X} ~ F5. Here F, is the Tracy-Widom
distribution and X} is the Airy process A(t).

12



Remarks:
e T he key idea to derive the |limit ISDE is to take the rescaled semi-

circle law ¢!V:

N(z) i =N3¢(— = +2)

N2/3
( 4N2/30)\/ x(1+
N,1

as the first approximation of the 1-correlation fun pAI’B

e We expect that our method can be applied to other soft edge
scaling.

e The SDE gives a kind of Girsanov formula.

)

4N2/ 3



Airy RPF — Dynamical soft edge scaling limit
Thm 2 (O.-Tanemura '14). [Pathwise uniqueness]
Let 3=1,2,4. Then:
e Solutions of ISDE (@) of X = (X*),;cN Starting at s

: . B 1 / o(x)
dX! = dB!4+ — |Iim ) — dx Y dt
t t‘|‘27,_>oo{( E Xi—Xj) p— T} (&)
g7, |X]|<r Tt t

satisfying abs cont cond ([{l) are pathwise unique for ;fAi g=a.s.s.

HAi Bt © Xt_l < HAI Bt for MAi,B—a.S. t. (7)
Here ppj g+ is @ regular conditional probability w.r.t.to the tail o-field
T of the configuration space. Namely

pai gt = aig(-[T)(L), T = () olrse]

r=1
where m4(s) = s(- N A) is a projection on configuration space, and
Sr=A{lz|<r}. eee
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Airy RPF — Dynamical soft edge scaling limit
Thm 3 (O.-Tanemura '14). [Pathwise uniqueness]
Let 3=1,2,4. Then:
e Solutions of ISDE (@) of X = (X");cy Starting at s

: . B 1 / o(x)
dX! =dB!4+ — |Iim ) — dxtdt
f=aBi+ S imiC Y - [ Edmi @
j#i, | X]|<r "t t

satisfying abs cont cond ([Zl) are pathwise unique for MAi g=a.S.s.

BALBLO Xy T < paige  fOr uajg-a.s. t. (@)
Here upaj g+ is @ regular conditional probability w.r.t.to the tail o-field
T of the configuration space.
o If B =2, then T is pajg-trivial. Hence the uniqueness holds.
e The solutions in Thm (1 satisfy (). Hence tail preserving solutions

exist uniquely.
e Weak solutions satisfying (({l) are automatically unique strong so-
lutions.
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Airy RPF — Dynamical soft edge scaling limit : algebraic construction
o If 3 = 2, then Johansson, Spohn, Katori-Tanemura, Corwin-
Hammond & others show that there exist stochastic dynamics Z;
associated with pajo> given by the space-time correlation function.
e [ he dynamics is originally specified by the finite-dimensional dis-
tributions give by space-time-correlation functions. The space-time-
correlation functions are defined as determinant of kernel (extended
Airy kernel). Hence we call this approach algebraic.

e Continuity of sample path (Johansson).

e Strong Markov property of unlabeled infinte system, and calculation
of the associated Dirichlet form. (Katori-Tanemura)

e Path level approach based on “Brownian-Gibbs property” (Corwin-
Hammond).

15



Airy RPF — Dynamical soft edge scaling limit : algebraic construction
e Space-time correlation functions are given by the extended Airy
kernel:

Ik due~4E=3)/2 Aj(y 4 2)Ai(u + 1), t>s

Kails, it y) = {— ffoo due~4E=3) /2 Aj(u 4 2)Ai(u + 1), t<s

The unlabeled process /7; = Z,?;l 52@' IS given by its moment gener-
t

ating function (f = (f1,..., far), t = (1, tar), 4 < tjg1)

W] = Elexp{ % | fm@)21,(d))
m=1 R

defined as a Fredholm determinant
W] = Det s yer2 (zy)er2l0st0(x —y) + Kai(s, z; ¢, y)x:(y)].

Here I = {t1,...,tp} and xq,,(y) = efm(y) — 1,
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Airy RPF — Dynamical soft edge scaling limit : algebraic construction
Thm 3 [O.-Tanemura, '14]
Let 3 = 2. Then these two dynamics are the same.

e T his comes from the uniqueness of Dirichlet forms associated with
these dynamics. To prove the uniqueness of Dirichlet forms, we use
the uniqueness of weak solutions of the ISDE (@) .

e The first approach (ISDE) provides qualitative information, say,
semimartingale property of each tagged particle, HoOlder continuity
of sample paths, non-collision property of tagged paticles, and so
on.

e [ he second construction gives quantative information.

e By construction, if the total system start from the Airy>, RPF HLAI2
then the distribution of the top particle X} equals F cdge(x), the 2
Tracy-Widom distribution.

e If we label the particles decreasing order as X} > X§+1, then the
top particle X} is the Airy process A(t) studied by Spohn.

17



Airy RPF — Dynamical soft edge scaling limit
Let XV = (Xiv’z)gil be the N-particle system as before:

N
Ny _ i P 3 1 1/3 N,i
J=1j7F1 ¢ ¢

Set X&V:™m pe the first m-component.
xNm = (x; Nt X

Thm 4 [0.-Tanemura, O.-Kawamoto] (Finite-particle approximation)
Let 8 =1,2,4. Then for each 0 < ¢ € Ll(MAw) with fwgw =1,

XNVm with Xév’m ~ opa; 5 converge to the first m-component X™ of
the solution of the limit ISDE weakly in C([0,>0); R™).

e When 8 = 2, we have two proofs.

18



Bulk scaling

Bulk scaling limit & an SDE gap

19



Bulk scaling (geometric)

Bulk scaling limit & an SDE gap

e Bulk scaling:
For —2 < 6 < 2 take z; = (s5; — ) /v/N in (@):

N N
1 _Ble.—012
Hain g0 (dsN) = EH 5i — sj1” T] e 1017/ *Nasy (8)
i<j k=1

As N — oo, /‘é\ifn,ﬁ,e converge to the sineg RPF such that
- N
M _USine,8,0 = KSine,B,0

The right-hand side is independent of 8 up to constant scaling.
If B =2, then usjne 2, is determinantal with kernel

B 0.osin(xz —y)
K(z,y) = \/1 a (5) m(x —vy)

e We next consider the dynamical counter part of this scaling limit.

20



Bulk scaling (dynamical)

N N
1 _ 12
ué\irn,ﬂ,e(dSN) et EH |S’L _ S]|B H e 6|Sk 9| /4NdSN E:i
i<j k=1

e T he associated N particle system is given by the SDE:

N
dX! = dBl 4+ 2 dt — Xt 4+ e e
t tto AN T 4 (9)

) J
i X — Xi

e Very loosely, the associated oo particle system is given by

1 536 |
jdt +dt (i €N).

i X — X

@,

dX} :ng'+§

This is not the case for 6 = 0.

21



Sine RPF — Limit ISDE
For a configuration s =3, ds,, let £(s) = (s1,82,...,) =s € R be a
label which is defined for ug;., 5-a.s..

Limit ISDE:

Thm 5 [0.-Tanemura '14, O.-Kawamoto '14] [Existence of strong solutions]
Let = 1,2,4. Define ISDE (B) of X = (X%);en asS

B . 1
Erll—ggo{ Z X! XJ}dt (1O>
j#, | X]|<r Tt T

dX}! = dB} +

o For p&: . g-a.s.s, ISDE (10) has a strong solution with Xg =s.
e The associated unlabeled dynamics X; = > 721 0y iS pusine g-reversible.
t J
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Sine RPF - Dynamical bulk scaling limit
Thm 6 [O.-Tanemura '14] [Pathwise uniqueness]
Let 8 =1,2,4. Then:
e Solutions of ISDE (I0) of X = (X*%),;cn Starting at s

B . 1
— g - ()
2 TlI—UCZO{ . Xt xJ }dt il )

j#i, |X]|<r "t t

dX! = dB! +

satisfying abs cont cond ((I1) are pathwise unique for “éine 5a.s.s.

—1
USine, 8t ° Xy = < Usine, gt  TOr usineg-a.s. t. (11)

o If 3 =2, then T is Msme,ﬂ—trivial. Hence the uniqueness holds.

e The solutions in Thm satisfy (I1]). Hence tail preserving solutions
exist uniquely.

e Weak solutions satisfying (1) are automatically unique strong
solutions.

e If 3 = 2, the solution equal to the stochastic dynamics given by
space-time correlation functions (extended Sine kernels).

23



Sine RPF - Dynamical bulk scaling limit
Let XV = (XtN”‘)f;\Ll be the N-particle system as before:

N
N.i B 1 B N 50

dX,"’ = dB} —E dt — —X; dt + —dt O

t tt 3 ANt Ty ©)

Ni  oNJ
G Xy T Xy

Thm 7 [O.-Tanemura, O.-Kawamoto] (Finite-particle approxim)
Let 8 =1,2,4. Then for each 0 < ¢ € L1(uy; 5) wWith [@uy; 5= 1,

XN:m with Xév’m ~ gpqui g converge to the first m-component X" of
the solution of the limit ISDE

1
B Jim { > L dt (IQ)

57“—)00 . X! XJ
g, | X< T T

dX{ = dBj +

weakly in C([0,00);R™).

e The limit ISDE (I0Q) is independent of 6.
e In this sense, an SDE gap occurs.
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Bessel RPF: hard edge scaling
Bessel RPF & a hard edge scaling

e Bessel RPFs ug.., (=1 < a < oo) are probability measures on
the configuration space S over S = [0, 00), whose n-point correlation
functions p™ with respect to the Lebesgue measure are given by

p" (1, ..., 2n) = det[K(z;, z;)]1<4 j<n- (12)
Here K(x,y) is called the Bessel kernel defined with the Bessel func-
tion Jo of order o such that for x =y

K(z.y) = 22 VDVII (VD) = VEla(VE) V5 Ta (V)
2(z —y)

We note that 0 < K <Id as an operator on L2(S,dz).

e By definition 'uges,Q are determinantal random point fields with
Bessel kernels K

(13)
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Bessel RPF: hard edge scaling
Thm 8 [O.-Honda, '14] Let a > 1 and 8 = 2. Let ug.., be the
Bessel5 RPF. Then the associated ISDE is given by

+2 2. %
|X“7|<7“ t
j#i
These ISDEs have unique, strong solutions ( as in the same meaning
of the previous theorems).

dX} =

26



Bessel RPF: hard edge scaling
e T hese random point fields arise as a scaling limit at the hard left
edge of the distributions Nge];[z of the spectrum of the Laguerre
ensemble.
e The random point fields “gesz represent the thermodynamic limit

of the N-particle systems “gejzz' whose labeled densities ¢ (x)dx are

given by

N<:)<>—Z—e—Z 1%/4NH H|:ck—a:z| (14)

i=1 k<l
Thm 9 [O. Kawamoto] The associated N-particle system XN =

(ng’l,.. : NN) converge to the limit X; = (X} Nien in the same

sense as before.

e 3 =1,4is in progress.
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Universality in one dimension
In one dimension, Sineﬁ, AiryB, and Besselﬁ may be regarded to
have universality because they often appear in bulk, soft edge, and
hard edge scaling limit, respectively. If this is the case, we expext
that so is the ISDEs we discussed:
The following ISDE is universal.

b 1
dX} —dBt—I——TI|_>ngO{ > Z,_Xg}dt (bulk)

j7=i, | Xi—X]|<r

aXi=dBi+ 2 im{( Y — i - /yx,@ (max{~z,00" . .

2 r—00 ‘ —
JF£1, ]Xg|<fr
(soft edge)
1
dX! = dB! + det—l— > e det. (hard edge)
X7 |<r T
J#%
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Ginibre RPF
Ginibre RPF : Non-hermitian Gaussian random matrixes

e Ginibre RPF pgin is a determinantal RPF on C (R?) with (K, g).
o g(2) = (1/77)6_’7"2 is a Gauss measure on C.
e K is an exponential kernel
K(x,y) = ey,
e n-correlation function p™ of Gnibre RPF w.r.t.g"dx™ is defined as
pn(xla <. 755?1) — det[K(:U”u x])]?:]:]_
e [ he N-particle system is given by

N
1
p (dxp) = E [z — ;1% (xn)dx
i<j

o 1V is a determinantal RPF with (K¥,dz) such that

= (@)™
KN (z,y) = 20 k=

29



Ginibre RPF
Thm 11 [O.,'13, O.-Tanemura '14]
Let ugin be a Ginibre RPF. Then the associated ISDE is given by the
following, and has a unique strong solution as in the same meaning

of the previous theorems.

. . Xt xJ

dX{=dB}+ lim ) L~ 1 gt (i eN).
r—00 , |Xz _ X]|2
Xi—x]|<r 1 L
JF1
T he solution also satisfy the following ISDEs for all a € C:
1 T (A : t t .
dX} = dBj - (X{ — a)dt + lim_ Z P Xj|2dt (i €N)
|a—Xg|<7“ t t
J7F1
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Ginibre RPF
The associated N-particle system is given by

N N Nz XN,j
U ) )2 o
dX,"' =dBj — X, 'dt + Z Aot
j#i 1% |
Thm 12 [O.-Kawamoto] The N-particle system
N _ ;vN,1 N,N
=(X;"7,..., X, )

converge to the limit X in the same sense as before.

Simulation!!
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Histrical background of IBMs
A histrical background of IBMs

e Interacting Brownian motions in infinite-dimensions X = (X%),cn
are stochastic dynamics in (R4 given by ISDE

dX! = dB! — p S vw(x] - Xx)dt (i €N)
2 . oy
J€N, 5751

Here W is an interaction potential and 3 is inverse temperature.
This ISDE has been studied by Lang ('79), Fritz ('87), Tanemura
('96), and others.
They construct strong solutions.
e So far W is taken to be CS(IR%d) or exponential decay at infinity.
e Itd scheme (Picard approximation) is used here.
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Known results.

dX,f:ng—g > V(X — X))dt (i eN)

jEN, jF£i
e [There many interesting potentials W with polynomial decay or
unbounded at infinity:
e [ hese are excluded by the classical approach based on It0 scheme.
e In this talk, we present a new scheme applicable to polynomial
decay or logatithmic potentials:

V(x) = —log|x].

T his appears in random matrix theory and vortex dynamics. If d = 1,
B8 =2, and WV is as above, then the ISDE is

dXt_dBt—I—;XZ Xg.dt (i € N).
JF1
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Known results.

e [tO0 scheme uses Lipschitz continuity of coefficients, which does
not hold in infinite dimensions.

e We l|ocalize ISDE with increasing sets Hj and exit times 7, such
that coefficients are Lipschits continuous on each H; and that

lim TH = OQ.

k—o00
e Since ISDEs like as
dX}! = dB! + ; X Xg.dt (i € N).
J 1

are complicated, it is hard to find out such a sequence of subsets
{H}. We give an algorithm to find out such sets by Dirichlet form
theory and tail analysis. (In our theoem, exit times do not appear).

34



Out line of the proof.

Our approach consists of 6 steps:
By the first three steps we construct weak solutions.
By the next three steps we lift them to strong solutions and prove
the pathwise uniqueness of ISDEs.
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Idea to solve ISDE: S = C([0,00):5) = C([0,0); SMN)
(Step 1) e We start with a random point field p (a probability mea-
sure on configuration space S).

e We construct p-reversible unlabeled diffusions X by Dirichlet forms.

o0
1=1

For this we introduce the map from RPF px on S to bilinear forms :

s ER(f,g) = /S DIf,gldu  on L2(S, u).

Here D is the standard square field on S:

1 < 9f 07
Dlf,gl(s) = = :
596 =53 5, 5
Here f is a local and smooth function on S, and f(s1,...,) is a
symmetric function such that f(s) = f(s1,...,), where s = >"2, Js,.



e If u is the Poisson RPF = A with Lebesgue intensity, then the
associated diffusion X; is S-valued Brownian motion B; = > °2 1 5B@"
t

which is a reason we call D the standard square field.
Thus this Dirichlet space is a distorted Brownian motion on S al-
though u does not have a density with respect to A usually.
e \We assume:

@ is a W-quasi-Gibbs measure.
Roughly speaking, quasi-Gibbs means that x has a local density con-
ditioned out side. Gibbs measures are of course quasi-Gibbs, and
there exist RPF that are quasi-Gibbs for logarithmic potential W.

e Assume that u is W-quasi-Gibbs with upper semicontinuous WV, and
that > "1 mu(S7") < oo (S = {s;s(Sr) = m}), and that m-density
functions on S, are in L2(S™) for all r,m € N. Here S, = {|s| < r}.

e With these assumption, the bilinear form is closable and its closure
IS @ quasi-regular Dirichlet form.

e \We thus have unlabeled diffusions.
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Step 2

S = C([0,00);S) = C([0,00);5™)
(Step 2) e Assuming non-collision and non-explosion of tagged par-
ticles, we can construct labeled dynamics.

Indeed, particles keep their initial label forever.
Hence we have the correspondence:

@)
__ _ 1 2
Xt—zzzl(st = X = (Xt7Xt>°'°)°
e [ he difficulty to construct SN_valued diffusion X, there is no good
measure on SY. (Hence no associated Dirichlet forms).
Even if Brownian motions, the measure should be dzM!
Hence we introduce a countable sequence of spaces

SkxS (ke N)
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Step 2

S = C([0,00);S) = C([0,00); SN

SkxS (keN) < SN

e Hence we consider M-Campbell measure M[M] of u.
Introduce the countable family of Dirichlet forms:

@)
e LM s My XML = ()M MM ST
i=M-+1
There is natural coupling associated diffusions. =
XM are independent of M. =
From this consistency we can construct the labeled diffusion on SN,

e \We use unlabeled diffusion Xy to couple with these X [M]
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(Step 3) Calculate the logarithmic derivative d#. ISDE becomes

. 1 .
R (/ “AM [/ :
dX{ = dBj + Zd"(X}, Z(ng)dt
J7Fi
In the case of Ginibre, Sineg(Dyson), Bessel, and Gibbs measures:

V() + 4 lim Y VV(z—s))

]#7’7 ‘w—Sj’<?“
Then we have the ISDE (weak solution):

dX! = dB} — §v¢<xg> _ 5 im S VW (X} — X7)dt

2 r—o0 - .
j7#, | Xp =X |<r

To calculate the logarithmic derivative we use finite particle approx-
imation. In particular, orthogonal polynomials.
The shape of Airy RPF is different.
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(Step 4) Introduce:
The infinite system of finite-dimensional SDEs with consistency (IFC):
Let (X,B) be a weak solution.

We regard X as a part of coefficients of SDEs.

For each M consider SDE of YM = (yM.1 . yMMy.

Ay =aBj — Cye(yM)
M
5 Tw iy Mivg BN gurMi - xya
_EZ <t—t>—5z (Y™ — Xi)at.
j=1,571i j=M+1
These (time inhomogeneous, finite-dimensional) SDEs have unique
strong solution (under suitable assumptions). Hence
YM =xM.=(x1 .. xM

e We solve infinite-many finite-dimensional SDEs with consistency
in stead of solving a single ISDE.
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(Step 5)
o Let 7’path(SN) be the tail o-field of labeled path space w.r.t.label.

0. @)

Toath(S) = () o[x™,... 1.
M=1

e YM js a functional of (B, (XM+1 .. ).
= If limy; oo YM exists, then o[B] V Tpatnh(SY)-measurable.
= Since limy;_00 YM =X, X is o[B] V Tpath (SY)-measurable.

= If 7'path(SN) is trivial, then X is a strong solution.

e Since we see in the (Step 5) that
YM =xM.—(x1 . xM)
YM satisy these.
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(Step 6) e We say unlabeled diffusion satisfies the absolutely conti-
nuity condition (ACQ) if

Py(X¢ € ) <p  for all t.
e If ACC is satisfied and if u is tail trivial, then 7'path(SN) is trivial.

e Tail triviality of RPF = tail tiriviality of labeled path space.

o 7’path(SN) is the tail o-field of the labeled path space w.r.t. the
label.

e We regard Tpath(SY) as a boundary condition of ISDE.

So if its trivial and unique, then the solution of ISDE is unique.

e Our pathwise uniqueness does not exclude the posiibility of the
existence of a tail moving or shock solution. It is related to the
uniqueness of Dirichlet forms (domain choice).

e \We have not yet solved the non-equilibrium problem. We have not
yet fully utilize the property of this method, and expect that with
this we can solve the non-equilibrium problem at the lebel of Fritz
(1987).
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Tail triviality of u is not a real restriction. Indeed,
Prop 1. Determinantal RPFs (in continuous spaces) are tail trivial.
In particular, Ginibre RPF is tail trivial.

This result is a generalization of Shirai- Talahashi, and Russel Lyons
for discrete spaces.
Note that RPFs appearing in random matrix theory are determinantal
random point fields if 8 = 2. So our results provide the unigueness
for these.

Even if u is not tail trivial, we can still apply our results to quasi-
Gibbs measures because of the following result.
Prop 2. Quasi-Gibbs measures u have decomposition w.r.t. their tail
o-fields T (S) such that each components are tail trivial: For pu-a.s. s

w(A|T(S))(s) = 1a(s) for all A € T(S).

This is an analogy of the result of Georgii on Gibbs measures on
discrete spaces.
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e We solve ISDEs of the form
dX} = dBi + b(X},XY)dt (i € N) (1)
Here X; = (X},...,) € (R?)N-valued, and

X = (Xiﬁj)jeN\{z‘}-

The coefficient b(x,y) is symmetric in y = (y;);en for each z € R?.
B, = (B},...,) is (R?)N-valued standard Brownian motion.

We will construct weak solution (X, B). |

Our method can be applied to the case with o (X7, X¥")dB!.

For simplicity we talk about () only.

e Because of the symmetry of b(z,y) in y, we can rewrite

dX} = dB} + b(X},X)dt (i € N) (2)
Here we regard b(x,-) as a function on the configuration space, and
Xy = Z 5Xg'

J7Fi



e We recall the examples: (¢ € N)

. .3 1 .
1 7 s
dX; = dB; + 5 Tll_@o | E i det (Sine)
[ Xi-XT|<r, j#i ¢ t
- o, B 1 o(x) .
dX; = dB; + = lim {( E : ) —/ —=dx}dt (Airy)
J —
2100 i, | <r X! — X x| <r —T
dXi = dBi + " ar + 5 EOO: L (Bessel)
1 ) J
2X¢ 2 e X — Xj
dX{=dB;+ lim - ! J?th (Ginibre)
T—00 . 1 __
|Xti—Xg\<7° |Xt Xt |
J71



e Gibbsian examples for suitable o and d: (i € N)

3 i 12(X] - X})  6(X] - X})

dX{=dBj+ = .
t i Xi— X714 |xi— x]|8

5 Ydt (LJ 6-12)

j=1,j7i
= X! - XJ

dX! =dB!+ = %;p(z Xj| dt. (Riesz)
JF1




Cofiguration spaces
Set up:
e S = R%: Space, where particles move,
o S ={lz| <r},
o S={s=)> .65, s(Sr) < oo(Vr)}:
Configuration space over S.
Polish space with vague topology.
The space of unlabeled particles.
o SN is the space of labeled particles.
e s= ) .05, denotes unlabeled particles.
s = (s;) € SN denotes labeled particles.
e Since SN is too large, we use S instead.

e B, => "1 53%- is S-valued Brownian motion.

e B = (B});cn is SN-valued Brownian motion.



Canonical square field _ _
For a fun f onSlet f(s) =: f(s1,...), where f is symmetric, s = > Js,.
Let Dy be the set of bounded, local, smooth functions f on S.
i.e. f is o[mr]-measurable for some r < co, f is smooth.

Let D be the canonical square field on S:

DS, 1) = 5 Y- Vil - Vi

Here vi:(ﬁ%lv'“’asd)

The rhs is independent of particular choice of label.
e For a RPF u we set
E4(f, g) = / DL, glu(ds).

S
D}y = {f € Do; EX(f, f) < oo, f € L?(p)}

o If we take u = A, Poisson RPF with Lebesgue intensiy, then the
bilinear form associates Brownian motion B; = ) _, (5BZ

In this sense D is the canonical square field.



From RPF to unlabeled diffusion
Outline of the proof:

@)
po=(EF, DY, L2 (1) =X =) Oy =X = (X));eny = ISDE
1=1

e T he first arrow is automatic. For a given RPF i, we can associated
a positive bilinear form through the square field D.

o If (SN,DS,LQ(N)) is closable and its closue is quasi-regular, then by
Dirichlet form theory an associated u-reversible diffusion X; exists.
e For this we introduce a notion of quasi-Gibbs measure.

If 1 is quasi-Gibbs with upper semi-continuous potential W, then the
bilinear form id closable. In addition, u satisies a marginal condition
(local boundedness of correlation functions, say), then the form be-
comes quasi-regular. Hence by the general theory of Dirichlet form
there exists the associated unlabeled diffusion X.



W-Quasi-Gibbs meas.

Quasi-Gibbs measures:
o mq, m..S—S: projections
m(s) =s(-NSy), 7E(s) =s(-NSE)
e For a RPF u we set
W7 () = u(my € -Is(Sr) = m, wE(s) = wE(£))
o Let W:S—RU{cx} (interaction).

Hy = Z W(s; — 55)

S/L',SjESr,'I:<j



W-Quasi-Gibbs meas.

e () = p(mr € -[s(Sp) = m, mi(s) = m(€))
H, = Z \U(SZ — S]>

Si,SjESr,i<j
Def: u is W-quasi-Gibbs measure if 3 c;”fg S.t.

cTT,nS_le_Hrd/\;Cn < ,uJTT,ng < cﬁge_Hrd/\T

Here A" = A(:|s(Sr) =m) and A, is the Poisson RPF with 1g dx.

e T he above definition is a simplified version.
e Gibbs measures = Quasi-Gibbs measures: If

—7'[7"— . . c W 1997

p, = e e gyesi Ve) am, (QG)

then p is a canonical Gibbs measure. (QG) does not make sense for
V(z,y) = —log |z — y|



Application of quasi-Gibbs property to dynamics

u =(EX, DF L2 (1)) =X = Z Oy =X = (XH),eny = ISDE
1=1

Unlabeled diffusions

(Al) pis a W-quasi-Gibbs m with upper-semicont W. = (closability)

(A2) 322 1 ku(SF) < oo, of € L2(SF,dx) = (existence of diffusions)
Here Sk = {s(S,) = k}, oF is k-density fun on S¥.

Thm 1 (0.’96 (CMP)). (1) (Al) = (&#,Df) is closable on L?(p).
(2) (A1), (A2) = F diffusion Xy =, 6XZ associated with the closure

(E#,DM) of (EM, D) on L?(p).
Proof. Outline of (1): Let

£E(f.g) = [ DUf,glaue

10



Then (8“?6,1)/5“5) is closable on LQ(ujﬂ”g) by (Al).

Hence (&, Df) are closable on L?(u). Here

_ 1 of 0g .
EL(f, g) = /— . —2d reflecting BQC).
*(f.9) > §T6’Sz‘ 55 2H ( g BC)

By the monotone convergence theorem of closable forms we see
EF(f, f) = lim EX(f, f), Do=A{f; lim E(f,f) < oo}
r—00 r—00

is closable. Hence (8”,2?’5) is closable.
(2) follows from a concrete construction of cut off function. L]

Remark 1.In general, the closures of the limit Dirichlet forms
(EH, D) and (EH,DH)

are not equal. We will prove the coincidence of these by using the

strong uniqueness of the solutions of the associated ISDAES.A

Lang's dynamics ('79) are given by the Dirichlet form (E#, D).

O's ('96) dynamics are given by (EF, DH).



Let Wo(x,y) = —log |z — y| be the 2-dim Coulomb potential.

Thm 2 (O. AOP '13, O.-Honda (14), O.-Tanemura (14)).
(1) Ginibre RPF is a 2W»-quasi Gibbs measure.

(2) Sineg RPF are BWy-quasi Gibbs m for 3 =1,2,4.

(3) Besseld RPF is a 2Wy-quasi Gibbs m.

(4) Airyg RPF are BWy-quasi Gibbs m for 8 =1,2,4.

11



General theorems on infinite-dim SDESs

un =(EX,DF L2 (1)) =X = Z Oy =X = (XH,eny = ISDE
1=1

Labeled dynamics

(Al) pis a \IJ—quasi—Gibbs m with upper-semicont W.
(A2) > 7= 1k,u(5k) < 00, ok e L2(Sk, dx)
(A3) {X}} do not collide each other (non-collision)

(A4) each tagged particle XZ never explode (non-explosion)
By (A3) and (A4) the Iabeled dynamics

Xy = (X}, X2,..)
can be constructed from the unlabeled dynamics
— Z 5)(;"
i€EN
Indeed, the particles keep the initial label forever.

12



Sufficient condition of (A3) & (A4)
et SS,’i — SS M S’L
Ss={s€S;s({x})=0forall xS}, S,={s€S;s(5) = o0}
e (A3) is equaivalent to
Cap“(Sg,i) = 0. (3)

Let p" be a n-correlation function of u.
Lem 1. Suppose pn is quasi-Gibbs with V. Let p? be 2-correlation
function of u. Suppose one of the following holds. Then (A3) holds.
(1) d > 2 and p? are locally bounded.
(2) d=1 and

02 (z,y) < Ch(|x —y|) locally near {x = y}.

Here h(t) such that

19
/ =0
0+ h(t)

Corollary 1. Sineg, Airyg, Besselg (8 > 1), Ginibre RPFs satsfy (A2).

13



General theorems on infinite-dim SDEs
e By (A3) we represent one-labeled process (th, ;?022 5Xj) by the
t

Dirichlet space
1 1
e pr™ r2¢,0y).
Applying Takeda criteria based on Lyons-Zheng decomposition we

deduce (A4) from IT > 0

lim inf{ pl(ac)dm}{/ g(w)du}) =0 forall T. (4)
r—00 |$|§’I"—|—R T
v (r+R)T
Lem 2. (A4) follows from (4).

14



SDE representation

@)
po=(EM,DE, L2 (1) =X = ) Ox; =X = (X})jen = ISDE
1=1

ISDE representation

15



Log derivative of u: precise correspondence between RPFs & potentials

e Let uy be the (reduced) Palm m. of p conditioned at x

pr(-) = p(- — ozls(z) > 1)
o Let u! be the 1-Campbell measure on R¢xS:

W (AxB) = / o (2) pa(B)da
A

o dh € LL (R¥xS,ul) is called the log derivative of p if

Vaefdu' = —/ fdtdut  Yf e CSO(Rd) ® Dg
RAIxS RIS

Here V. is the nabla on RY.
e Very informally
d* =V log pt

e A caluculation of log derivative of Gibbs measures are trivial.
Indeed, it is immediate from DLR equation.

e [ his is not the case for RPFs appearing in RMT.
We will give a sufficient condition later.

16



LLog derivative
A very informal calculation shows:

o If ul(dxds) = m(x,sq,...)dz ][], ds;, then
- / Vaf(z,s1,...)ul (dads - )
= — /Vg;f(a:, s1,...om(x,s1,...)dx Hdsi
)

— / f(x,s81,...)Vem(x,sqy,...)dx H ds;

:/f(a:, s1, .. .>Va;m(a:, L ')m(az, s1, .. .)da:Hdsi.

m(x,s1,...)
Hence
V(. s, . ..
dt = 22, 51 )=Vxlogm(33,31,..
m(x,s1,...)

).

17



General theorems on infinite-dim SDEs
(Al) p is a W-quasi-Gibbs m with upper-semicont W.
(A2) Y321 ku(SE) < oo, of € L2(SF, dx)
(A3) {X}!} do not collide each other
(A4) each tagged particle X} never explode

(A5) The log derivative d* ¢ Llloc(ul) exists = (SDE representation)

18



General theorems on infinite-dim SDEs
(Al) p is a W-quasi-Gibbs m with upper-semicont W.

(A2) Y021 ku(SE) < oo, of € L2(SF, dx)

(A3) {X{} do not collide each other

(A4) each tagged particle X} never explode

(A5) The log derivative d* € LL (u!) exists =(SDE representation)

Thm 3. (0.12(PTRF)) (A1)—(A5) = 3Sg C S such that u(Sg) =1,
and that, for Vs € u=1(Sp), there exists a solution (X,B) satisfying

: 1 . :
dX! = dB}! + 5GW(X,%, Z(SXg)dt, (X8)ien = s
J7Fi

Xt € u_l(So) for all t

Here u: SN S such that u((s;)) = 3, 6s,.
Corollary 2. Suppose that there exists a RPF p satisfying (Al1)—(A4)
and

Vg log ,u[l](a:, s) = 2b(x,s).
Then ISDE (1) has a weak solution.

19



General theorems on infinite-dim SDEs
Proof:
e SN does not have good measures = no Dirichlet forms on SN —

Introduce a sequence of spaces with Campbel measures M[M]:
SMxs,  du™M = pM(xpp) pix,, (ds)dx s

Here pM is a M-correlation function of u and Ux,, 1S the reduced

Palm measure conditioned at x;,.
Let DIM] pe the natural square field of SM xS. Let

eMi(f,g) = [ DF gl

SMXS
L2(uMy, oo (sM) @ D..

Lem 3. These bilinear forms are closable, and their closures are
quasi-regular Dirichlet forms. Hence associated diffusion (XM, XM*)
exISts:

M ~yMxy __ M,1 M, M
(X, X ) = (X7, X 3 Z 0 M)

20



Coupling of Dirichlet forms:
e Let fix a label £. Let

©.
Xp =) Oxi
1=1

be the unlabeld diffusion associated with the original unlabeled Dirich-

let form
(€, DH, L*(1)).
Thm 4. Associated diffusions have consistency
(x Mt MM MMy = x b xMOXMEL Y in law

or equivalently

©.@)
M My _ (1 M | .
(XX = (XL X > Oxi) in law
i=M+1
From this coupling and Fukushima decomposition (Itd formula) we

prove that (X;f) satisfies the ISDE. We use the M-labeled process
(XM xM*), to apply Itd formula to coordinate functions x1, ...,z ;.

21



Coupling of Dirichlet forms:
e T he key point here is that, instead of large space

gN
we use a system of countably infinite good infinite dimensional sapce
Sle, 52><S, S3><S, S4><S, S5><S, S6><S, S7><S,
e By the diffusion X on the original unlabeled space
S,

we construct a coupling of diffusions (XM, XM*) on these inifinite
many spaces SM xS§.

e From this coupling, we have the ISDE representation. Indeed, we
can apply Itod formula to each coordinate functions f(x) = x;. We
use EMI(£ g) for 1 <k < M.

22



Log derivative of u: precise correspondence between RPFs & potentials

e [ he log derivative gives the precise correspondence
between RPFs i and potentials ($, V).

e We next give examples of logarithmic derivatives

23



d¢ =V log pt
Thm 5 (O. PTRF 12).
(1) Let pgin be the Ginibre RPF. Then

| . T — 8;
dHain(x,s) = lim 2 -
r—00 [z — si]2
|x—s;|<T
dhoin(z,s) = -2z + lim 2 Y
r—o0 |z — 5]

(2) Let usin g be the Sineg RPF. Suppose = 1,2,4.

dtsinB(z,s) = lim B Z 1

r—00 Tr — S
lx—s;|<T

T hen

Thm 6 (O.-Honda). Let 'uges,Q be the Bessel§ RPF. Then

a 1
d“’bes,z(x’ S) — ﬁ _|_ 2 E
X x — S;
lx—s;|<r



Thm 7 (O.-Tanemura). [ Airy RPFs: pupig |
Let B3 =1,2,4. Then the log derivative d"Ai.8 js
. 1
dHaLs(z,s) = B lim {( ) )—/ Q(w)dac}
' lx|<r

r—00 —
|lx—s;|<T

Here




A criteria of Quasi-Gibbs property

A criteria of Quasi-Gibbs property.

For ®:S—RU{oco} and W:SxS—RU{cc}, let
HTV) =Y @)+ Y W(z,z), wherex=) 4,
)

r;,EA a:i,ijA,i<j

We assume & < co almost everywhere (a.e.) to avoid triviality.
We set

Hr(x) = Hg' " (x). (5)

For a subset A C S, we define the map m4:5—S by m4(s) =s(AnN-).
Let A be the Poisson RPF for which the intensity is the Lebesgue
measure on S. We set

We write v1 < vy if l/l(A) < I/Q(A) for all A € B. Here vq1,v> are
measures on (€2, B).
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A criteria of Quasi-Gibbs property
Definition 1. A RPF u is called a (@, W)-quasi-Gibbs measure if
(1) There exists an increasing sequence {b,} C N such that, for each
r,m € N, there exists a sequence of Borel subsets Sﬂfk satisfying

S?]{ C S??k+1 C S7’Cn for all k, (6)
lim @ = weakly, (7)
k—oo 7

where p% = p(-NST) and w® = p(- NST).
(2) For all r,m,k € N and p%-a.e. s €S,

Ze MO G GONT () < () < Ce M D16 INR (. (8)

Here, C' = C(r,m,k,mgc(s)) is a positive constant and p% _ is the
regular conditional probability measure of ujﬂ”k defined as

Hy g s(dx) = p i (s, € dx| mge(s)). (9)
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A criteria of Quasi-Gibbs property
We give a set of conditions for the quasi-Gibbs property.
(H.1) The measure p has a locally bounded, n-correlation function
p't for each n € N,

(H.2) 3 probability measures {uN} yen On S such that:

(1) The n-correlation functions p?, of uV satisfy
PN H

lim ph(xn) = p"(xn) a.e. forallneN, (10)
N —o0

sup{p%(xn); N €N, x, € S?} < {Cn°}* forall n,r €N,  (11)
where C = C(r) > 0, and 6 = 6(r) < 1.

(2) uN(s(S) =npn) =1 for each N, where ny 1€ N.
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[A good finite-particle approximation {u™N} yen]

(3) Y is a (N, WwN)-canonical Gibbs measure.

(4) There exists a sequence {mY }yey in RY such that
lim {dV (z) — m]ovo cx} = P(x) for a.e. x, (12)
N—00

inf inf{V —mi). > —00.
NENazeS{ (z) —meo - 2} >

(5) The interaction potentials WV :SxS—R U {co} satisfies
lim W& = W compactly and uniformly in Cl(SxS\{az =1y}), (13)

N—00

inf inf WNV(z,y) >—-00 forall reN.
NENCB,yGSr
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[Airy RPF (soft edge scaling limit)]
Remark 2.
e For the GUE soft-edge (the Airy RPF), we take mY = N1/3.
e In fact, in this case, the limit of ®¥ diverges.
e Hence, we substitute mY), - « from &~ (z) to make the limit finite.
e \We see that the terms mévo-a: are cancelled by the interaction terms.

=1

N N
b _ 5 _
—Z;|2\/N+N 1/64,% = —ZZ{4N+N 132,12 + aN1/32,).
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[W-tightness]
e The next assumption (H.3) is a tightness condition on {uV} ac-
cording to the interaction W,

o Let x = 25337,’ y — Z(Sy] - S, Sfrs — Ss\S/r', and S’I‘OO — S,,g
Forr<8§t<u<oo we set

Wis tu(x y) = Z wN(xia yj) : (14)

T;€Srs, Y;EStu

We write \Ué\; (X, y) = \Uor oz, y) if x =4z

Wi tu(x y) = Wfrs tu(xa y) + 1 Z Ti} (mi\f - muN) (15)

ZUZ'GSTS
For {WV}, r k€N, and {ml'}

‘WOTrs(:’U7y) o OT”I"S(w y)|

HNk:{yGS;y(S)an, { sup sup } <k}
r<s€N a:,z;ESr |z — w)|

30



[A sufficient condition of quasi-Gibbs property]
We define H,. ;. as

@)
e = > HY. (16)
N=1

(H.3) There exists a sequence {mY} in R? such that the set Hy k
satisfies the following:

im limsupp(H¢,) =0 for all r € N, (17)
k—oo N—oco ’

: N _ N

Jim m’ = mg, (18)
sup [m¥| < oo for all s € N. (19)
NeN

Thm 8. Assume (H.1), (H.2) and (H.3). Then u is a (®,WV)-quasi-
Gibbs measure.
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[d =1,2]
e We next assume d = 1,2. To unify these two cases, we set § =C
and regard here R? as C.
e We assume WY is independent of N and of the form

W(z,y) =V (z,y) = —Bloglz —y|  (BER). (20)
e We give a suff condition of (H.3) through correlation functions.

o Let x = Y. 8z, and Sys = S5\S;, where S, = {s € S; [s| <r}, as
before. For 1 <r <s < oo let vy,.,:5—C such that

s =8{ 3 =} (¢>2) (21)
a:iégrs xi

Vs () = B{ ) —}+ (£=1). (22)
;€ Srs

Here mN = mr1 \/ — mr2 IS the complex conjugate of m
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[d=1,2]
Now the key assumption is as follows.
(H.4) There exists an ¢5 such that 2 < /5 € N and that

1
sup { / _ ok (2)dz} < oo (23)
NeN Ji<|z|<oo |Z|%0

and that, for each 1 < /¢ < £y,

SUp ||vp s ”Ll(uN) < oo for all r < s €N, (24)
NeN
s||—>ngo ]%Lé% HVE,soo HLl(,UN) =0 (25)

and that, for each ¢/ =1,

M
sup || sup vy, |lr10,8y < oo forall r < s €N, (26)
NeNHMEN brs NLE(u)
lim sup || sup Veﬂ,dsoo lr1¢vy = 0. (27)

SO NeN MeN

Thm 9. Assume (20) and S = C. Assume (H.1), (H.2) and (H.4).
Assume (I8). Then p is a (®,V)-quasi-Gibbs measure.
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Calculation of logarithmic derivative

e Assume that n-point cor funs {p?V:"} satisfy for each r,n € N

im o™V (x) = p"(x)  uniformly on Sy, (28)
N—00

sup suppN”(x)<C "l2n 0 < C<o00,0<Cr<1, . (29)
NeNxeSh
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Calculation of logarithmic derivative

e We assume that u!¥ have log derivative d&V such that
dV (z,y) =V (z) + g5 (z,y) + vl (2,y) (30)
Here g, g/, v, vIV: 52 - R? and w:S—R% and set (y =3, dy,)

s@=[ e+ 3 o

lz—y;|<s

gs (z,y) =/ Wiz, dy+ Y gV (@ w),

vl oyl <s

wy (z,y) = / Wiz, dy+ Y g (zy) € LY (uh).

s<|z—y| s<|z—y4|
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Calculation of logarithmic derivative
o let]l <p<p<oo. Assume that

lim sup/ dY — VPNt < 0o forall r €N (31)
N —00 STXS
: N _ i~ TP
]J!I;;u =u in L (S, dz) (32)
: N _ : p 1
]\}Toogs =gs in L .(un") foralls, (33)
lim lim Sup/ wl¥ (z,y) — w(z)Pdp™N't = 0. (34)
§—7X0 N—oo JSG,xS
Recall that

gs(x,y)=/|w_y’<8v(x,y)dy+ > gl )

lz—y;|<s

Thm 10. Assume (28)—(34). Then d* exists in L (u') given by

d(z,y) = u(z) + lim gs(z,y) + w(z). (35)
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Calculation of logarithmic derivative

Recall that
gs(x,y) =/ v(z,dy+ > gz, y)
oyl -yl <s
Thm The log derivative d# exists in L _(u!) and is given by
d"(z,y) = u(z) + lim gs(z,y) + w(x). (36)
S— 0O

Example 1. In the case of Ginibre RPF, we take
uV(2) = u(z) = -2z, w(z) = 2z,
N (z,y) = v(z,y) =0,

2(x —y)
lz — y|?

gV (z,y) = g(z,y) =

37



Calculation of logarithmic derivative
Example 2.1In the case of Airy RPF, we take

1
. P5.2(Y) o(y)
u(x) =06 | _ ENI/
(=) ﬁSI_)rQO{ s|<s T —Y /|y\<s —Y
w(x) =
N.1
pg (Y)
oV (z,y) = —p-L2
T —y
ps . (y)
v(z,y) = —p-L2
T —y

gV (z,y) = g(z,y) = i-
T —y

38



Strong solutions and pathwise uniqueness
2014/9/1/Mon—-2014/9/5/Wed Warwick

UK-Japan Stochastic Analysis School (JSPS Core-to-Core programme)

Outline:

e Unique strong solutions of ISDEs (general theorems)

e Triviality of tail o-fields of labeled path spaces.

e Applications to interacting Brownian motions in infinite dimensions.



General theorems on infinite-dim SDEs
(Al) p is a W-quasi-Gibbs m with upper-semicont W.
(A2) Y021 ku(SE) < oo, of € L2(SF, dx)
(A3) {X}!} do not collide each other
(A4) each tagged particle X} never explode

(A5) The log derivative d# € LL (u!) exists



General theorems on infinite-dim SDEs
(Al) p is a W-quasi-Gibbs m with upper-semicont W.
(A2) Y721 ku(Sy) < oo, of € L?(SF, dx)
(A3) {X}!} do not collide each other
(A4) each tagged particle X} never explode
(A5) The log derivative d# € LL (u!) exists

l:isde

Thm 1. (O.12(PTRF)) (A1)—(A5) = 355 C S such that
u(So) =1,

and that, for Vs € u=1(Sg), Ju"1(Sg)-valued pr. (X});eny and 3ISN-
valued Brownian m. (B});cN Satisfying

:isde
AX] = dB} + Sd"(X}, Y6, Dt (X ien =s (1)
jE
Here u: SN —S such that u((s;)) = 3, ds,.
e The solution (X,B) is not a strong solution.
e In this talk we construct a strong solution from a weak solution,
and prove pathwise uniqueness.



Tail o-field
Tail o-field of configuration space s

e TO construct strong solutions, we use two geometric properties of
RPFs. : Tail triviality & Tail decomposition
e Let £:S—S such that n&(s) =s(- N S%), where S = {|s| < r}.
e Let 7 =T(S) be the tail o field of S:
oo
T(S) = () olnl.
1:tail r=1
Thm 2, Let u be a determinantal RPF. Then T(S) is u-trivial.
e Thm IS @ generalization of the result for the discrete determi-
nantal RPFs due to Russel Lyons, Shirai- Takahashi.
e In general, quasi-Gibbs measures p are not tail trivial. Hence we
introduce the tail decomposition of wu.



Tail triviality of determinantal RPFs & Tail decomp of quasi-Gibbs m
Let 7 = 7(S) be the tail o field of S as above.
Let u(-|7) be the regular conditional probability.
Then by construction

() = / 11T () ()
S
and, for any A € T,

p(AIT)(E) = 14(8)  for p-a.s.€.
We can interchange the roll of “for any A € 7" and “for u-a.s. £".

l:decom

Thm 3. Let u be a quasi-Gibbs measure. Then for p-a.s. &,

o uw(A|T)(E) = 14(8) for any A e T.

e Thm IS a generalization of the result for the discrete Gibbs m
due to Georqii.

e With this, the assumption of tail triviality of u turn out to be not
an essential restriction.



existence of strong solution
. 1 . :
dXy = dB; + 5d“(X§, Z5Xg')dt, (X0)ien =
7
We introduce the condition such that the drifts d#(x,s) are locally
Lipschitz continuous in z for fixed outside 7&(s).

Let S, = {|z| <r} and
H(r,n) = {s = Z(SSZ.; |VdH(sj,s — ds;,)| < n for Vi s.t.s; € S},
)

H= () | H(rn).

r=1n=1

(A6) CapH(H®) = 0 + marginal assumption |
e We pose in (A6) a condition that the coefficients dl‘(a;,x;io) in x

are Lipschitz constinuous in each H(r,n). Here Xf;<> = ik 0 i
t



existence of strong solution
(Al) p is a W-quasi-Gibbs m with upper-semicont W.
(A2) Y721 ku(Sy) < oo, of € L?(SF, dx)
(A3) {X}!} do not collide each other
(A4) each tagged particle X} never explode
(A5) The log derivative d# € LL (ul) exists

1:strkd6) CapH(He) = 0.

Thm 4 (O.-Tanemura). (A1)—(A6). = (1) The ISDE

. 1 . .
dX} = dBj + Zd"(X{, ) §,)dt, (Xp)ien = s
2 — Xj
7
has a strong solution for s = (s;) € SN s.t. 3, s, € H.



existence of strong solution
(Al) p is a W-quasi-Gibbs m with upper-semicont W.
(A2) Y721 ku(Sy) < oo, of € L?(Sy, dx)
(A3) {X}!} do not collide each other
(A4) each tagged particle X} never explode
(A5) The log derivative d# € LL (u!) exists
(A6) Gapi{H?) = 0.
Thm 4[O.-Tanemura] (A1)—(A6). = (1) The ISDE

. 1 . .
dX} = dBj + Zd"(X}, Z(SXg)dt, (X8)ien = s
7
has a strong solution for s = (s;) € SN s.t. .65, € H.
(2) The ass unlabeled diffusion X = ). 4§ satisfies

Py oXt_1 <pe  (vt) for p-a.s. &

l:decom

Here pe = p([7(S))(€) in Thm 3.



Decomposition of unlabeled state space of strong solutions 1

e By construction u(-|§)(A) are T-measurable in £ for each A € B(S).
e By Thm 3, we take a version of u(-|§) such that, for y-a.s.a€s,

p(-l€)(A) =1p(a) forall AcT. (2)
o Let ~7 be the equivalence relation such that a ~7 b if and only if
1pr(a) =15(b) forall AcT. (3)

122w l:strong

e From (2)) we deduce that the set H in Thm 4 can be decomposed

as a disjoint sum .22y

H= Y H® suchthat u(|6)(H) =1. (4)
[£leH/~T

l:strong

The solution in Thm @ satisfy for pe-a.s.s € H
P(X; € HS for all t) = 1.



Uniqueness of strong solutions 1
1l:strong0

Thm 5 (O.-Tanemura). Assume (A1)—(A6).
Let X = (X*) and X = (X%) be strong sol of the ISDE

. 1 . .
dX{ = dBj+ Ed“(Xf, Z5Xg)dt, (X0)ien =5 = (8i)ieN
7
on the same Brownian motion B = (B}),cn. Let

0. o
Xp= 0y and X=) by
1=1 1=1

Suppose, for p-a.s. &,
Pue o X; 1 < pg and Py o X1 < e (V).
Then

©.@)
Ps(X=X)=1 forp-as s=>» 0
i=1

10



Uniqueness of strong solutions

l:strongx

Thm 6 (O.-Tanemura). Assume (A1)—(AT7). Here
(A7) p is tail trivial.
Then the strong solution X = (X*) such that

P#oxt—1<u for all t

is unique for p-a.e. x =5 . dq,.
Here X is the unlabeled dynamics of X:

oo
Xy = Zng
1

Cor If u is a determinantal RPF, then the associated ISDE has a

unique strong solution that is reversible w.r.t. u.
e Tail o-fields of Airy, Sine, Ginibre RPFs with 8 = 2 and all other

determinantal RPFs are trivial.

11



Uniqueness of Dirichlet forms

Let Dgoly be the closure of the set of polynomials on S such that
EY(f,f) < oo. Then
W
Doy C DH

1:stro@Cause polynomials are local and smooth.
Thm 7 (O.-Tanemura '14). Assume (A1)—(AT). Then quasi-regular
Dirichlet forms that are extension of (E*, DY | ) are unique.

poly
In particular, Dgoly — DH, and Lang’'s construction and O.’s con-
struction are same.

r:df

Remark 1. (1) Dirichlet forms here are same as those constructed by
Albeverio-et al, and Yoshida. | :strong?

(2) If (A5) (non-explosion) does not hold. Then Thm [7] does not
hold. Thisis very natural theorem that says the uniqueness of Dirich-
let forms is related to the non-explosion problem of tagged problem.

12



Idea of "strong sol of ISDES"

e General theory to construct unique, strong solutions of
infinite-dimensional stochastic differential equations

e Weak solution: (O. JPSJ 10, PTRF 12, AOP 13, SPA 13)
e |logarithmic derivative d*: Very informally,

d"(z,y) = Vlog pll!

Here ulll is a 1-Campbell measure of u.

e 11 iS quasi-Gibbs with upper semi-continuous potential W,
e Mariginal assumptions

Then ISDE has a weak solution (X, B):

. 1 =
1 1 U ) , .
dXj = dBj + ~d (Xt,; Z 5Xg)dt (i € N)



Strong solutions of ISDE: Non Markov type

e Strong solutions and uniqueness:

e We lift weak solutions to strong solutions.

e IFC solutions.
e T[ail analysis.

e [ he key idea is the following:

e \We interpret single ISDE as an infinite system of finite dimensional
SDEs with consistency (IFC).

e We regard the tail o-field of the labeled path spaces as boundary
condition of ISDEs.

13



Strong solutions of ISDE: Non Markov type
e We consider non-Markov SDEs because the arguement is general.

S =R% [0, 0),C, e.t.c.. (the space where particles move),
w (s = ([0, T]; SNY), (0 < T < oo) (labeled path spaces)

e a quadruplet (Wso, So, {o'}, {b'})
Weol : a Borel subset of W(SY) (space of solutions of ISDE)

So: a Borel subset of SN (initial starting points of ISDE)
ol bbb Weg = W (SM) (coefficients of ISDE)
e the ISDE on SN of the form 0n
dXy = 0" (X)dBy + b"(X)¢dt (i € N) (20
Xo =5 = (5;)ieN € So (Qoe
X € Wyq)- (7)

o X = {(X})ien}ico.1]
e B= (B}) (i €N) is the SN-valued standard Brownian motion.

14



Strong solutions of ISDE: Assump (P1)

dX! = 0" (X)dB! + b"(X)¢dt (i € N)
Xo =5 = (8;)ieN € So
X E Wso|.

:q0a
(P1) ISDE (B has a weak solution (X,B). (not a strong solution!)

Here B = (B%),cy is Brownian motion on SN

Problem: Prove that X is a functional of the Brownian motion B

Idea:
Strong solutions of Infinite-dimensional SDE
&
Infinite-many, Finite-dimensional SDEs with Consistency (IFC)

_|_
Tail Triviality of Labeled path spaces w.r.t.the label (TTL)

15



Assump (P2) infinite-many, finite-dimensional SDEs with consistency

e Ps: a prob meas on W(SY) x WO(sSN): dist. of weak sol (X,B).
e For each X € W¢y, s € Sg, and m € N, we define the new SDE of
1
Y= (LY
such that q1b
dY;™" = o' (Y™, X"™*)dB} + b'(Y™, X"*)dt (8)
Y5 = (s1,...,5m) €S, where s = (s;)21,
(Y™, X"™) € Wy
Here we set
1 2
XM = (xth xmt2 )
(Y™, XY = (v, Yy xml xmt2 )

:qlb
X™* is interpreted as a part of the coefficients of the SDE (8)).
‘9
In fact, we regard (8) as SDEs of Y such as

16



Form=1
dyht = o1 (Y, X ) dBE + b1 (YL, X 1), dt.
For m = 2
Ayt = o1 (Y2, X?)dBE + b1 (Y2, X2%)dt
dY;Q,Q
For m =3
dyt = o1 (Y3, X3)dBE + b1 (Y3, X3%)dt
dY;>? = 02 (Y3, X3)dB? + b2 (Y3, X3%)dt

dY; >3 = o3(Y3,X3*)dB3 + b3 (Y3, X3)dt.

o2(Y?2, X?*)dB? + b2(Y?2, X?*)dt.

17



For m =4
ay,"t = o1 (Y4 X)) dBE + b1 (Y4, XA) dt
dY;7? = o2(Y* X¥)dB? + b2 (Y*, X4)dt
Ay, = o3(Y4, X¥)dB3 + b (Y4, X*)dt

a7 = o (Y4, X¥)dBf 4+ b (Y4, XH),dt.

For m =5
dy>t = o1 (Y2, X5 dBE + b1 (Y2, X5%)dt
dY;>? = 02(Y®, X5)dB? + b2 (Y2, X5)dt
dY;3 = o3(Y2, X)) dB3 + b° (Y2, X°%)dt
4y, = 0% (Y2, X5*)dBf + b (Y2, X5)dt

dY;>° = ¢2(Y>, X5 ) dBP 4+ b3 (Y2, X5)dt.



Strong solutions of ISDE: (P2) seq of finite-dim SDEs with consistecy

. . . . qlb
ay,"" = o' (Y™, X"™)dB} + b' (Y™, X"™)dt (l)
Ygz — (S]_, .. Sm) - Sm,

Y™, Xm*) € Wsol-

(P2) The SDE (I) has a unique, strong solution

for each s € So, X € WS, and m € N.

e (P2) is a reasonable assumption. Since X € Wgo and Wy, is a

nice subset of W, we can assume this for the weak solution we have

constructed. Here we use Dirichlet form theory again to prove X

stay WSOl'

e In the case of Dyson Brownian motions with m = 1, we see that
oy) = Sy = im Y

2 r—00

]:1,‘y3‘<7“

x—yj.

Hence we see that bl(z, X1*) is locally Lipschitz continuous in z for
fixed weak solution X.

18



Strong solutions of ISDE: (P3) Tail triviality
Let Tpath(SY) be the tail o-field of W(SY); we set

o

Tpatn(S™) = [ o[X™].

m=1

(P3) Tpath(SY) is Ps-trivial for each s € Sp.

19
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Strong solutions of FSDE: Theorem =
(P1) ISDE (&) has a solution (X, B).
(P2) SDE (8) has a unique, strong solution for all s, X, m.
(B3) Tpath(S™) is Ps-trivial for each s € Sp.
Thm 8. Asgume(P1)—(P3). Then
(1) ISDE (B)—(Z) has a strong solution for each s.&.Sqqoc
(2) Let Ys and Y. be strong solutions of ISDE (B)—([)) starting at
s € Sg defined on the same space of Brownian motions B. Then

Ys =Y, a.s.

if and only if .q1d

— v/ ;

o. 2ince Y is strong solution, 7'path(SN) is trivial w.r.t. Ys. Hence
(1Q) is equivalent to

Tail 1 (Ys) = Tail 1Y)
Here :qlf

Tail 11 (Ys) = {A € Tpatn(SY); P(Ys € A) = 1}. (11)

20



1:q1

Strong solutions of {)SDE Idea of Theorem [
(P1) ISDE ([51)D has a solution (X, B).
(P2) SDE (I) has a unique, strong solution for all s, X, m.
(P3) Tpath(SY) is Ps-trivial for each s € Sy.

e (X,B): sol of ISDE by (P1). Let (?gbe) be fixed.

e Y is a unique strong sol of SDE(8]) by (P2)

e Y™ is o[B] \ o[X™*]-m'ble. X™* = (X")m<n<oo.

e Y™ = (X1 .. XxX™m) by (P2)

o X is o[B]V Tpath (SY)-m’ble by m — oco.

o Tpath(SY) is trivial by (P3) = X is a strong solution.

21



IFC and ISDE
Let (X,B) be a weak solution.
e For (X,B) we introduce IFC: (m € N)

dY;™" = o' (Y™, X™)d Bl 4+ b1 (Y™, X™*) dt ()1b
Y6n= (s1,...,8m) €S,
(Y™, X)) € Wsg.

e We emphasize IFC is a collection of infinitely many finite dimen-

sional equations:
e [ his system is equivalent to a single ISDE:

. . . . :q0a

dX} = o*(X)dB! + b'(X)¢dt (i € N) E),
-9

Xo =s = (si)ien € So @),
X E Wsol- (M)

e \We show that these two are equivalent, and by using IFC we give
a notion of strong solution and pathwise uniqueness in terms of tail

o-field of the labeled path space.

22



IFC solutions
e \We set

o Let F'"":S— Wso the map defined as
F(s,X,B) = (Y™, X").

:qlb
Here Y™ is a unique strong solution of (8)). (by (P2)).
e Let Ps be a probability on S such that Ps(Xg=1s) = 1. We say

lim F™ =F> in W, under Ps
m—00

if for Ps-a.s.s and Vi € N
H m - oo
ﬂ?![)nooF (SaXa B) = F (S7X7B) < WSO|7

t | t |
lim aZ(Fm(s,X,B))ude:/ o' (F*(s, X, B))udB,,
0

m—0o0 0

t t
im [ (™ (s, X, B))udu = / b (F(s, X, B))udu.

23



IFC solutions
1.iedet Py bqban IFC solution, and
Lem 1. (I) has an IFC solution Ps iff (5 (I) has a weak solution (X,B).

Proof. e Set
Y = F*®(s,X,B).

Then (Y®,B) under Ps is a weak solution.
e Let (X,B) be a weak solution with distribution Ps. Since X is a fix
point of F>®, Py is an IFC solution. ]

24



IFC solutions

1.isdet P B= = Ps(X € -|B): the regular conditional prob%bnlty

Thm 9. (1) (Y,B) under Ps is a strong solution of (& (I) iff 7'path(S )
IS PS7B trivial for Pg} B.

(2) Let Xs and X[ be strong solutions defined on the same Brownian

motion starting ats. Then
:qldd

Xs = X{ for a.s. < Xsl7 (s = Xg|%ath(SN) in Law.. (12)

25



Strong solutions of ISDE:

1l:q1

Application of Thm 8 to

Interacting Brownian motions.

26



1:ql
Application of Thm [8 to interacting Brownian motions.
:isde

1l:q1
e We apply Thm @ to ISDE ({I)):
. 1 . .
dXi = dB; + Sd"(Xy, > 8. )dt, (Xb)ien =s
jE
or more generally
dX{ = o(X{,) 5Xg-)d,Bfg +b(X{, ) (5Xg)dt.
JF1 JF1
Here a = olo and

b(r,y) = {Valz,y) + ale,y)d(z,y))dt

d*(x,y) is the logarithmic derivative (informally) defined as
Ve log plt]
with 1-Campbel measure ulll of u:
dplt = pl(2) pa(dy)da

:isde

(@

:isde

(@

(13)

27



Strong solutions of ISDE: iede
We check .(oﬁal)_(P?’) for (). L iade
(P1) ISDE ([;,pD has a solution (X,B). (by Thm T )
(P2) SDE (8) has a unique, strong solution for all s, X, m.
(P3) Tpath(SY) is Ps-trivial for each s € Sy.

[1]
e How to prove (P2)?= V.d" e D/ _

e How to prove (P3)?= Tail Theorems.

28



Strong solutions of ISDE: How to prove (P3)
e We give a sufficient condition of (P3):
(P3) Tpath(SY) is Ps-trivial for each s € Sp.

e The following implies (P3):
(Q1) p is tail trivial.
(Q2) Pﬂoxt_1 < for all t.
(@3) Pu(M3Ly {mr(X) < co}) = 1.
Here S, = {|z| < r}, X = ZieN(SXg' X' ={X}},
mr = inf{m € N; X* € C([0, T]; SS) for m < Vi € N}.
1:tail3

Thm 10. Assume (Q1)—(Q3). Then (P3) holds.

e (Q2) is trivial because the unlabeled dynamics is u-reversible.
e (Q3) is immediate from Lyons-Zheng decomposition.

29



l:Talilo

Qut line of the proof of Thm ;

o Let T={t=(t1,...,tm); t; €[0,T],m € N}.
® Tpatnh(S) is the cylindrical tail o-field of the unlabeled path space

:40a

Toath(S) = \/ [ olmse(Xe)]. (14)

teT r=1
o Thath(SY) is the cylindrical tail o-field of the labeled path space:

:40a

Toath(SY) = \V () o[X{]. (15)
tecT n=1

nx n* n*
Here X" = (th,...,Xtm .

e We will deduce the triviality of Tpatn(SY) from that of S. We will
do this along the scheme: (P, = Jc Psdp).

T(S)=  Toath(S)=  Toatn(SH=  Toatn(S™)=  Tpatn(SY)
Py Py, ng Ps a.s.s Ps a.s.s

30



1:tail3

Out line of the proof of Thm ;

Below we assume (Q1): u is tail trivial.

T(S) = Tpath(S) = Tpatn(S") = Tpatn(S™) a.s. = Tpatn(S") a.s.

1:tt0
Lem 2.7(S) is Ps(Xy € -)-trivial for u-a.s.s.
Proof. Since X; is u-reversible, P,(X; € ) = p.
Hence by (Q1) we see that 7(S),is Pu(X; € -)-trivial.

,.Erom this we easily obtain Lem [2. N
Lem 3. Tpath(S) islf,;o—trivia/ and Ps-trivial for p-a.s.s.
Proof. Frorp:tlaem and the Markov property of unlabeled dynamics
yields Lem 3. | ]
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T(S) = Tpatn(S) = Tpatn(S") = Tpatn(S™) a.s. = Tpatn(S™) a.s.
1:tt2
Lem 4. Tpath(SN) is P -trivial.
Proof. For a label ¢, we have a natural map Epath:W(S)%W(SN):
lpath(X) = (X1, X2..).
For each A € ;2 ; o[X}*] for some t € T, we see

path (A) = ﬂ path(A) ﬂ{mr(X) < 00}]
r=1
C ﬂ o[mge(X¢)] ﬂ{mr(X) < oo}
r=1
= [ olrse(X)] C Tpatn(S)
r=1
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1:tail3

Out line of the proof of Thm :
T(S) = Tpath(S) = Tpath(S") = Tpath(S™) a.s. = Tpatn(S™) as.

1:tt3
Lem 5. Tpatn(S) is Ps-trivial for u*-a.s.s.

Proof. Easy.

33



1:tail3

Out line of the proof of Thm ;
T(S) = Tpath(S) = Tpath(S") = Tpath(S™) a.s. = Tpatn(S™) a.s.

1:tt4

Thm 11. Tpaen(SY) is Ps-trivial for pf-a.s.s.

The difficulty is that the o-field 7'path(SN) is not countbly deter-
mined because tail fields are not topologcally well behaved. But if
we restrict the support of F°°, then 7'path(SN) is coutably determined
under Pg.

e Recall the map
F®(s,X,B) =Y

given by the IFC solution of ISDE.
e [hen X is a weak solution.
e Hence X is a fix point:

F*®(s,X,B) = X.
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1:tail3

Out line of the proof of Thm :
For a measurable space (U,U/) we call a subset V C U a determi-
nation class of (U,U) if any two probability measures P and @ on
1:1€L4,U) are equal if and only if P(A) = Q(A) for all A€ V.
Lem 6. Let V = {Vp},eny be a countable determination class of
(U,U). Let m be a probability measure on (U,U). Then

m(Vy) € {0,1} for all Vi, € V = m(A) € {0,1} for all AecU.
Proof. Let N(1) = {n € Nym(Vp) = 1}. If N(1) = 0, then m is the
zero measure. If N(1) #= 0, then we take

v=_( ] W ) V)

neN(1) ngN (1)

Clearly, we obtain m(V) = 1.

Let A € U. Suppose that VN A ¢ {0,V}. Then we can not
determine the value of m(V N A) by the value of m(V,) (n € N).
This yields contradiction. Hence VNA e {§,V}. If VN A =0, then
m(A) =0. f VNA=V, then m(A) >m(V) = 1. L]
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1:tail3

Out line of the proof of Thm ;
e Since SN is Polish, 3 a countable dense set SON = {s;}. Let

U=U;_1A[Ur(s);0<r € Q, ke N]

Here U,r(s) is a ball centered at s with radius r, A[-] denotes the
algebra generated by -. Let

V=U2 {(X) A Aet, te{Qn[o,TIM}.

1:1¢dshen V becomes a countable determination class of (W (SY), B(W (SM))).
Lem 7. Then, for each V €V,

F>(s,, B) "N (V) [\ Wrfix € Toatn(S™) [\ Wrsix  for Pg-a.s. B

l:ifc4d

Lem 8. For each A € Tpatn(SY),
P,p(A) € {0,1} for P§;-a.s. B
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1:tt4

Thm II Tpath (SY) is Ps-trivial for uf-a.s.s.
Proof. From F*°(s,X,B) = X, we deduce that, for Pgl-a.s. B, 454
1:ifc3 ES_UEZLO FOO(S’ K B>—1 — —S,B' (16)
e From Lem [, Lem 8, and F*°°(s, ',B)(WT,ﬂX) =1, for all V €V,
Py g o F™(s, ,B)71(V) e {0,1} for Pg;-a.s. B.
Since V is countable, we deduce that, for Pgi-a.s. B, 45
P,go F™(s,-,B)"1(V) € {0,1} forall VeV. (17)

:45b
Since, X.is a countable determination class, we obtain from ([I7]) and

Lem [6 that 45c
P,go F™(s,-,B)"1(A) € {0,1}  for all A € B(W(S™M)). (18)
Hence we deduce that
P, g o (s, ., B)™! = §x for some X = X(s,B) € W(SY). e

In particular, X is a function of (s,B). This combined with (18]
implies that P g = dx(s ), and Tpatn(SY) is Ps-trivial for pf-a.s.. [
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