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Total plan:
• 1’st Talk: Examples & strategy of the proof
• 2’nd Talk: Weak solutions
• 3’rd Talk: Strong solutions and pathwise uniqueness

Outline of 1’st talk:
• Dynamical soft edge scaling limit: Airyβ RPFs (β = 1,2,4)
• Dynamical bulk scaling limit: Sine RPFs and an SDE gap
• Ginbre and Bessel RPFs
• Histrical back ground of interacting Brownian motions
• Strategy: Outline of the proof.



Geometric scaling limit

Geometric soft edge/bulk scaling limits
of Gaussian ensembles

• GUE (Gaussian unitary ensemble): Gaussian random matrices:

M =


M11 M12 · · · · · · M1N
M21 M22 · · · · · · M2N
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
MN1 MN2 · · · · · · MNN

 (1)

such that M are N × N-hermitian matrices whose entries satisfying
that

Mij =
Gij,1 +

√
−1Gij,2√
2

(i < j), Mkk = Gk (2)

and that Gij,1, Gij,2, Gk are i.i.d. Gaussian random variables with
mean 0 and variance 1.
• We define GOE and GSE similarly as real/quoternion symmetric
Gaussian random variables.
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Geometric scaling limit

• The distribution of eigen values of the G(O/U/S)E Random Ma-

trices are given by (β = 1,2,4)

mN
β (dxN) =

1

Z

N∏
i<j

|xi − xj|βe−
β
4

∑N
i=1 |xi|2dxN , (3)

This means the system can be regarded as particles interacting

through logaritimic potential (2D Coulomb potentials).

• Wigner’s theorem: The distribution of

1

N

N∑
i=1

δ
xi/

√
N

under mN
β

converges to the semi-circle law

ς(x)dx =
1

2π

√
4− x2dx (4)

• This convergence corresponds to the law of large numbers.
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Bulk/Soft edge scaling

mN
β (dxN) =

1

Z

N∏
i<j

|xi − xj|βe−
β
4

∑N
i=1 |xi|2dxN , (3)

ς(x)dx =
1

2π

√
4− x2dx

• Bulk scaling: For −2 < θ < 2 take xi = (si − θ)/
√
N in (3):

µNsin,β,θ(dsN) =
1

Z

N∏
i<j

|si − sj|β
N∏

k=1

e−β|sk−θ|2/4NdsN (5)

• Soft edge scaling: Take xi 7→ 2
√
N + siN

−1/6 in (3):

µNAi,β(dsN) =
1

Z

N∏
i<j

|si − sj|βe−
β
4

∑N
i=1 |2

√
N+N−1/6si|2dsN .
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Airy RPF – Soft edge scaling limit

Soft edge scaling limit

Airy RPF: µAi,β (β = 1,2,4)

• Take the scaling xi 7→ 2
√
N + siN

−1/6 in

mN
β (dxN) =

1

Z

N∏
i<j

|xi − xj|βe−
β
4

∑N
i=1 |xi|2dxN

and set

µNAi,β(dsN) =
1

Z

N∏
i<j

|si − sj|βe−
β
4

∑N
i=1 |2

√
N+N−1/6si|2dsN .

Then µNAi,β converge to Airy RPF µAi,β :

lim
N→∞

µNAi,β = µAi,β
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Airy RPF – Soft edge scaling limit

• β = 2 ⇒ µAi,β is a determinantal RPF given by (KAi, dx):

KAi(x, y) =
Ai(x)Ai′(y)−Ai′(x)Ai(y)

x− y

Here Ai(·) is the Airy function.

The correlation function ρnAi is defined as

ρnAi(x) = det[KAi(xi, xj)]
n
i,j=1.

• If β = 1,4, the correlation func of µAi,β are given by similar formula

of quaternion determinant.

• We discuss a dynamical counter part of this scaling limit.
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Airy RPF – Soft edge scaling limit

• I give here minimal definition.

• Let S = Rd, [0,∞), e.t.c.. S: configuration space over S

S = {s =
∑
i

δsi ; si ∈ S, s(|s| < r) < ∞ (∀r ∈ N)}

• S is a Polish space with the vague topology.

• A prob meas. µ on S is called a random point field (RPF) on S.

• S is the set of unlabeled particles.

• SN is the space of labeled particles.

• A symmetric function ρn is called the n-correlation function of µ

w.r.t. Radon m. m if∫
A
k1
1 ×···×Akm

m

ρn(xn)
n∏

i=1

m(dxi) =

∫
S

m∏
i=1

s(Ai)!

(s(Ai)− ki)!
dµ

for any disjoint Ai ∈ B(S), ki ∈ N s.t. k1 + . . .+ km = n.
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Airy RPF – Soft edge scaling limit

• µ is called the determinantal RPF generated by (K,m) if its n-

correlation functions ρn is given by

ρn(xn) = det[K(xi, xj)]1≤i,j≤n

• It is known that (K,m) determines the RPF uniquely.

• The N-particle system of Airy RPF is a determinantal RPF whose

kernel KN
Ai(x, y) is given by orthogonal polynomials.

• The convergence of µNAi,β follows from that of correlation functions.

• This follows from that of kernels KN
Ai(x, y).

• This follows from a calculation of orthogonal polynomials (special

functions).
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Airy RPF – Dynamical soft edge scaling limit

• We return to a dynamical soft edge scaling limit.

• From

µNAi,β(dsN) =
1

Z

∏
i<j

|si − sj|βe−
β
4

∑N
i=1 |2

√
N+N−1/6si|2dsN

we deduce the SDE of the N particle system:

dX
N,i
t = dBi

t +
β

2

N∑
j=1,j ̸=i

1

X
N,i
t −X

N,j
t

dt−
β

2
{N1/3 +

1

2N1/3
X

N,i
t }dt

• • •
• • •
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• From

µNAi,β(dsN) =
1

Z

∏
i<j

|si − sj|βe−
β
4

∑N
i=1 |2

√
N+N−1/6si|2dsN

we deduce the SDE of the N particle system:

dX
N,i
t = dBi

t +
β

2

N∑
j=1,j ̸=i

1

X
N,i
t −X

N,j
t

dt−
β

2
{N1/3 +

1

2N1/3
X

N,i
t }dt

• Indeed, X
N,i
t are associated with the Dirichlet form:

EµNAi,β(f, g) =

∫
RN

1

2

N∑
i

∂f

∂si

∂g

∂si
µNAi,β(dsN) on L2(RN , µNAi,β).

Then, by integration by parts, the generator is

− LN =
1

2
∆N +

β

2

N∑
i=1

[
N∑
j ̸=i

1

si − sj
−

β

2
{N1/3 +

si

2N1/3
}]

∂

∂si
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Airy RPF – Dynamical soft edge scaling limit

• The SDE of the N particle system:

dX
N,i
t = dBi

t +
β

2

N∑
j=1,j ̸=i

1

X
N,i
t −X

N,j
t

dt−
β

2
{N1/3 +

1

2N1/3
X

N,i
t }dt

• The dynamics are also given by the space-time correlation func-

tions.

• Problem: What SDE does the limit Xt = limN→∞XN
t satisfy?

Does lim
N→∞

{
N∑

j=1,j ̸=i

1

X
N,i
t −X

N,j
t

−N1/3} converge ?

How to solve the limit ISDE?
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Airy RPF – Dynamical soft edge scaling limit

For a configuration s =
∑

i δsi, let ℓ(s) = (s1, s2, . . . , ) = s ∈ RN be a

label such that s1 > s2 > · · · , which is well defined for µℓAi,β-a.s..

Thm 1 (O.-Tanemura ’14). [Existence of strong solutions]

Let β = 1,2,4. Define ISDE (6) of X = (Xi)i∈N as

dXi
t = dBi

t +
β

2
lim
r→∞

{(
∑

j ̸=i, |Xj
t |<r

1

Xi
t −X

j
t

)−
∫
|x|<r

ϱ(x)

−x
dx}dt (6)

ϱ(x) =

√
−x

π
1(−∞,0](x).

• For µℓAi,β-a.s. s, ISDE (6) has a strong solution with X0 = s.

• The associated unlabeled dynamics Xt =
∑∞

i=1 δXi
t
is µAi,β-reversible.

• If β = 2 and X0 ∼ µℓAi,2, then X1
t ∼ F2. Here F2 is the Tracy-Widom

distribution and X1
t is the Airy process A(t).
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Remarks:

• The key idea to derive the limit ISDE is to take the rescaled semi-

circle law ςN :

ςN(x) :=N1/3ς(
x

N2/3
+2)

=
1(−4N2/3,0)

π

√
−x(1 +

x

4N2/3
)

as the first approximation of the 1-correlation fun ρ
N,1
Ai,β.

• We expect that our method can be applied to other soft edge

scaling.

• The SDE gives a kind of Girsanov formula.



Airy RPF – Dynamical soft edge scaling limit
Thm 2 (O.-Tanemura ’14). [Pathwise uniqueness]
Let β = 1,2,4. Then:
• Solutions of ISDE (6) of X = (Xi)i∈N starting at s

dXi
t = dBi

t +
β

2
lim
r→∞

{(
∑

j ̸=i, |Xj
t |<r

1

Xi
t −X

j
t

)−
∫
|x|<r

ϱ(x)

−x
dx}dt (6)

satisfying abs cont cond (7) are pathwise unique for µℓAi,β-a.s. s.

µAi,β,t ◦ X−1
t ≺ µAi,β,t for µAi,β-a.s. t. (7)

Here µAi,β,t is a regular conditional probability w.r.t.to the tail σ-field
T of the configuration space. Namely

µAi,β,t = µAi,β( · |T )(t), T =
∞∩

r=1

σ[πSc
r
]

where πA(s) = s(· ∩ A) is a projection on configuration space, and
Sr = {|x| < r}. • • •
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Airy RPF – Dynamical soft edge scaling limit

Thm 3 (O.-Tanemura ’14). [Pathwise uniqueness]

Let β = 1,2,4. Then:

• Solutions of ISDE (6) of X = (Xi)i∈N starting at s

dXi
t = dBi

t +
β

2
lim
r→∞

{(
∑

j ̸=i, |Xj
t |<r

1

Xi
t −X

j
t

)−
∫
|x|<r

ϱ(x)

−x
dx}dt (6)

satisfying abs cont cond (7) are pathwise unique for µℓAi,β-a.s. s.

µAi,β,t ◦ X−1
t ≺ µAi,β,t for µAi,β-a.s. t. ((7))

Here µAi,β,t is a regular conditional probability w.r.t.to the tail σ-field

T of the configuration space.

• If β = 2, then T is µAi,β-trivial. Hence the uniqueness holds.

• The solutions in Thm 1 satisfy (7). Hence tail preserving solutions

exist uniquely.

• Weak solutions satisfying (7) are automatically unique strong so-

lutions.
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Airy RPF – Dynamical soft edge scaling limit : algebraic construction

• If β = 2, then Johansson, Spohn, Katori-Tanemura, Corwin-

Hammond & others show that there exist stochastic dynamics Zt
associated with µAi,2 given by the space-time correlation function.

• The dynamics is originally specified by the finite-dimensional dis-

tributions give by space-time-correlation functions. The space-time-

correlation functions are defined as determinant of kernel (extended

Airy kernel). Hence we call this approach algebraic.

• Continuity of sample path (Johansson).

• Strong Markov property of unlabeled infinte system, and calculation

of the associated Dirichlet form. (Katori-Tanemura)

• Path level approach based on “Brownian-Gibbs property” (Corwin-

Hammond).
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Airy RPF – Dynamical soft edge scaling limit : algebraic construction

• Space-time correlation functions are given by the extended Airy

kernel:

KAi(s, x; t, y) =

{∫∞
0 due−u(t−s)/2Ai(u+ x)Ai(u+ y), t ≥ s

−
∫ 0
−∞ due−u(t−s)/2Ai(u+ x)Ai(u+ y), t < s

.

The unlabeled process Zt =
∑∞

i=1 δZi
t
is given by its moment gener-

ating function (f = (f1, . . . , fM), t = (t1, . . . , tM), ti < ti+1)

Ψt[f] = E[exp{
M∑

m=1

∫
R
fm(x)Ztm(dx)}]

defined as a Fredholm determinant

Ψt[f] = Det(s,t)∈I2, (x,y)∈R2[δstδ(x− y) +KAi(s, x; t, y)χt(y)].

Here I = {t1, . . . , tM} and χtm(y) = efm(y) − 1,
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Airy RPF – Dynamical soft edge scaling limit : algebraic construction

Thm 3 [O.-Tanemura, ’14]

Let β = 2. Then these two dynamics are the same.

• This comes from the uniqueness of Dirichlet forms associated with

these dynamics. To prove the uniqueness of Dirichlet forms, we use

the uniqueness of weak solutions of the ISDE (6) .

• The first approach (ISDE) provides qualitative information, say,

semimartingale property of each tagged particle, Hölder continuity

of sample paths, non-collision property of tagged paticles, and so

on.

• The second construction gives quantative information.

• By construction, if the total system start from the Airy2 RPF µAi,2,

then the distribution of the top particle X1
t equals F2,edge(x), the 2

Tracy-Widom distribution.

• If we label the particles decreasing order as Xi
t > Xi+1

t , then the

top particle X1
t is the Airy process A(t) studied by Spohn.
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Airy RPF – Dynamical soft edge scaling limit

Let XN
t = (XN,i

t )Ni=1 be the N-particle system as before:

dX
N,i
t = dBi

t +
β

2

N∑
j=1,j ̸=i

1

X
N,i
t −X

N,j
t

dt−
β

2
{N1/3 +

1

2N1/3
X

N,i
t }dt

Set XN,m be the first m-component.

XN,m = (XN,1
t , . . . , X

N,m
t )

Thm 4 [O.-Tanemura, O.-Kawamoto] (Finite-particle approximation)

Let β = 1,2,4. Then for each 0 ≤ φ ∈ L1(µℓAi,β) with
∫
φµℓAi,β = 1,

XN,m with X
N,m
0 ∼ φµℓAi,β converge to the first m-component Xm of

the solution of the limit ISDE weakly in C([0,∞);Rm).

• When β = 2, we have two proofs.
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Bulk scaling

Bulk scaling limit & an SDE gap
• • •
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Bulk scaling (geometric)

Bulk scaling limit & an SDE gap
• Bulk scaling:
For −2 < θ < 2 take xi = (si − θ)/

√
N in (3):

µNsin,β,θ(dsN) =
1

Z

N∏
i<j

|si − sj|β
N∏

k=1

e−β|sk−θ|2/4NdsN (8)

As N → ∞, µNsin,β,θ converge to the sineβ RPF such that

lim
N→∞

µNSine,β,θ = µSine,β,θ.

The right-hand side is independent of θ up to constant scaling.
If β = 2, then µSine,2,θ is determinantal with kernel

K(x, y) =

√
1−

(θ
2

)2 sin(x− y)

π(x− y)

• We next consider the dynamical counter part of this scaling limit.
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Bulk scaling (dynamical)

µNsin,β,θ(dsN) =
1

Z

N∏
i<j

|si − sj|β
N∏

k=1

e−β|sk−θ|2/4NdsN (8)

• The associated N particle system is given by the SDE:

dXi
t = dBi

t +
β

2

N∑
j ̸=i

1

Xi
t −X

j
t

dt−
β

4N
Xi

tdt+
βθ

4
dt (9)

• Very loosely, the associated ∞ particle system is given by

dXi
t = dBi

t +
β

2

∞∑
j ̸=i

1

Xi
t −X

j
t

dt+
βθ

4
dt (i ∈ N).

This is not the case for θ ̸= 0.
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Sine RPF – Limit ISDE

For a configuration s =
∑

i δsi, let ℓ(s) = (s1, s2, . . . , ) = s ∈ RN be a

label which is defined for µℓSine,β-a.s..

Limit ISDE:

Thm 5 [O.-Tanemura ’14, O.-Kawamoto ’14] [Existence of strong solutions]

Let β = 1,2,4. Define ISDE (6) of X = (Xi)i∈N as

dXi
t = dBi

t +
β

2
lim
r→∞

{
∑

j ̸=i, |Xj
t |<r

1

Xi
t −X

j
t

}dt (10)

• For µℓSine,β-a.s. s, ISDE (10) has a strong solution with X0 = s.

• The associated unlabeled dynamics Xt =
∑∞

i=1 δXi
t
is µSine,β-reversible.
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Sine RPF - Dynamical bulk scaling limit
Thm 6 [O.-Tanemura ’14] [Pathwise uniqueness]
Let β = 1,2,4. Then:
• Solutions of ISDE (10) of X = (Xi)i∈N starting at s

dXi
t = dBi

t +
β

2
lim
r→∞

{
∑

j ̸=i, |Xj
t |<r

1

Xi
t −X

j
t

}dt (10)

satisfying abs cont cond (11) are pathwise unique for µℓSine,β-a.s. s.

µSine,β,t ◦ X−1
t ≺ µSine,β,t for µSine,β-a.s. t. (11)

• If β = 2, then T is µSine,β-trivial. Hence the uniqueness holds.
• The solutions in Thm satisfy (11). Hence tail preserving solutions
exist uniquely.
• Weak solutions satisfying (11) are automatically unique strong
solutions.
• If β = 2, the solution equal to the stochastic dynamics given by
space-time correlation functions (extended Sine kernels).
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Sine RPF - Dynamical bulk scaling limit

Let XN
t = (XN,i

t )Ni=1 be the N-particle system as before:

dX
N,i
t = dBi

t +
β

2

N∑
j ̸=i

1

X
N,i
t −X

N,j
t

dt−
β

4N
X

N,i
t dt+

βθ

4
dt (9)

Thm 7 [O.-Tanemura, O.-Kawamoto] (Finite-particle approxim)

Let β = 1,2,4. Then for each 0 ≤ φ ∈ L1(µℓAi,β) with
∫
φµℓAi,β = 1,

XN,m with X
N,m
0 ∼ φµℓAi,β converge to the first m-component Xm of

the solution of the limit ISDE

dXi
t = dBi

t +
β

2
lim
r→∞

{
∑

j ̸=i, |Xj
t |<r

1

Xi
t −X

j
t

}dt (10)

weakly in C([0,∞);Rm).

• The limit ISDE (10) is independent of θ.

• In this sense, an SDE gap occurs.
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Bessel RPF: hard edge scaling

Bessel RPF & a hard edge scaling

• Bessel RPFs µαbes,2 (−1 < α < ∞) are probability measures on

the configuration space S over S = [0,∞), whose n-point correlation

functions ρn with respect to the Lebesgue measure are given by

ρn(x1, . . . , xn) = det[K(xi, xj)]1≤i,j≤n. (12)

Here K(x, y) is called the Bessel kernel defined with the Bessel func-

tion Jα of order α such that for x ̸= y

K(x, y) =
Jα(

√
x)

√
yJ ′

α(
√
y)−

√
xJ ′

α(
√
x)

√
yJα(

√
y)

2(x− y)
. (13)

We note that 0 ≤ K ≤ Id as an operator on L2(S, dx).

• By definition µαbes,2 are determinantal random point fields with

Bessel kernels K
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Bessel RPF: hard edge scaling

Thm 8 [O.-Honda, ’14] Let α > 1 and β = 2. Let µαbes,2 be the

Besselα2 RPF. Then the associated ISDE is given by

dXi
t = dBi

t +
α

2Xi
t

dt+
β

2

∑
|Xj

t |<r

j ̸=i

1

Xi
t −X

j
t

dt.

These ISDEs have unique, strong solutions ( as in the same meaning

of the previous theorems).
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Bessel RPF: hard edge scaling

• These random point fields arise as a scaling limit at the hard left

edge of the distributions µ
α,N
bes,2 of the spectrum of the Laguerre

ensemble.

• The random point fields µαbes,2 represent the thermodynamic limit

of the N-particle systems µ
α,N
bes,2, whose labeled densities σNα (x)dx are

given by

σNα (x) =
1

ZN
α
e−

∑N
i=1 xi/4N

N∏
j=1

xαj

N∏
k<l

|xk − xl|2. (14)

Thm 9 [O. Kawamoto] The associated N-particle system XN
t =

(XN,1
t , . . . , X

N,N
t ) converge to the limit Xt = (Xi

t)i∈N in the same

sense as before.

• β = 1,4 is in progress.

27



Universality in one dimension
In one dimension, Sineβ, Airyβ, and Besselβ may be regarded to

have universality because they often appear in bulk, soft edge, and
hard edge scaling limit, respectively. If this is the case, we expext
that so is the ISDEs we discussed:
The following ISDE is universal.

dXi
t = dBi

t +
β

2
lim
r→∞

{
∑

j ̸=i, |Xi
t−X

j
t |<r

1

Xi
t −X

j
t

}dt (bulk)

dXi
t = dBi

t +
β

2
lim
r→∞

{(
∑

j ̸=i, |Xj
t |<r

1

Xi
t −X

j
t

)−
∫
|x|<r

(max{−x,0})α

−x
dx}dt

(soft edge)

dXi
t = dBi

t +
α

2Xi
t

dt+
β

2

∑
|Xj

t |<r

j ̸=i

1

Xi
t −X

j
t

dt. (hard edge)
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Ginibre RPF
Ginibre RPF : Non-hermitian Gaussian random matrixes

• Ginibre RPF µgin is a determinantal RPF on C (R2) with (K, g).

• g(z) = (1/π)e−|z|2 is a Gauss measure on C.
• K is an exponential kernel

K(x, y) = exȳ.

• n-correlation function ρn of Gnibre RPF w.r.t.gndxn is defined as

ρn(x1, . . . , xn) = det[K(xi, xj)]
n
i,j=1

• The N-particle system is given by

µN(dxN) =
1

Z

N∏
i<j

|xi − xj|2gn(xN)dxN

• µN is a determinantal RPF with (KN , dx) such that

KN(x, y) =
N−1∑
m=0

(xȳ)m

m!
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Ginibre RPF

Thm 11 [O.,’13, O.-Tanemura ’14]

Let µgin be a Ginibre RPF. Then the associated ISDE is given by the

following, and has a unique strong solution as in the same meaning

of the previous theorems.

dXi
t = dBi

t + lim
r→∞

∑
|Xi

t−X
j
t |<r

j ̸=i

Xi
t −X

j
t

|Xi
t −X

j
t |2

dt (i ∈ N).

The solution also satisfy the following ISDEs for all a ∈ C:

dXi
t = dBi

t − (Xi
t − a)dt+ lim

r→∞

∑
|a−X

j
t |<r

j ̸=i

Xi
t −X

j
t

|Xi
t −X

j
t |2

dt (i ∈ N)
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Ginibre RPF

The associated N-particle system is given by

dX
N,i
t = dBi

t −X
N,i
t dt+

N∑
j ̸=i

X
N,i
t −X

N,j
t

|XN,i
t −X

N,j
t |2

dt.

Thm 12 [O.-Kawamoto] The N-particle system

XN = (XN,1
t , . . . , X

N,N
t )

converge to the limit X in the same sense as before.

Simulation!!
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Histrical background of IBMs

A histrical background of IBMs

• Interacting Brownian motions in infinite-dimensions X = (Xi)i∈N
are stochastic dynamics in (Rd)N given by ISDE

dXi
t = dBi

t −
β

2

∑
j∈N, j ̸=i

∇Ψ(Xi
t −X

j
t )dt (i ∈ N)

Here Ψ is an interaction potential and β is inverse temperature.

This ISDE has been studied by Lang (’79), Fritz (’87), Tanemura

(’96), and others.

They construct strong solutions.

• So far Ψ is taken to be C3
0(R

d) or exponential decay at infinity.

• Itô scheme (Picard approximation) is used here.
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Known results.

dXi
t = dBi

t −
β

2

∑
j∈N, j ̸=i

∇Ψ(Xi
t −X

j
t )dt (i ∈ N)

• There many interesting potentials Ψ with polynomial decay or

unbounded at infinity:

• These are excluded by the classical approach based on Itô scheme.

• In this talk, we present a new scheme applicable to polynomial

decay or logatithmic potentials:

Ψ(x) = − log |x|.
This appears in random matrix theory and vortex dynamics. If d = 1,

β = 2, and Ψ is as above, then the ISDE is

dXi
t = dBi

t +
∑
j ̸=i

1

Xi
t −X

j
t

dt (i ∈ N).
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Known results.

• Itô scheme uses Lipschitz continuity of coefficients, which does

not hold in infinite dimensions.

• We localize ISDE with increasing sets Hk and exit times τHk
such

that coefficients are Lipschits continuous on each Hk and that

lim
k→∞

τHk
= ∞.

• Since ISDEs like as

dXi
t = dBi

t +
∑
j ̸=i

1

Xi
t −X

j
t

dt (i ∈ N).

are complicated, it is hard to find out such a sequence of subsets

{Hk}. We give an algorithm to find out such sets by Dirichlet form

theory and tail analysis. (In our theoem, exit times do not appear).
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Out line of the proof.

Our approach consists of 6 steps:

By the first three steps we construct weak solutions.

By the next three steps we lift them to strong solutions and prove

the pathwise uniqueness of ISDEs.
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Idea to solve ISDE: S ⇒ C([0,∞); S) ⇒ C([0,∞);SN)
(Step 1) • We start with a random point field µ (a probability mea-

sure on configuration space S).

• We construct µ-reversible unlabeled diffusions X by Dirichlet forms.

Xt =
∞∑
i=1

δXi
t
.

For this we introduce the map from RPF µ on S to bilinear forms :

µ 7→ Eµ(f, g) =

∫
S
D[f, g]dµ on L2(S, µ).

Here D is the standard square field on S:

D[f, g](s) =
1

2

∞∑
i=1

∂f̃

∂si
·
∂g̃

∂si

Here f is a local and smooth function on S, and f̃(s1, . . . , ) is a

symmetric function such that f(s) = f̃(s1, . . . , ), where s =
∑∞

i=1 δsi.
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• If µ is the Poisson RPF = Λ with Lebesgue intensity, then the
associated diffusion Xt is S-valued Brownian motion Bt =

∑∞
i=1 δBi

t
,

which is a reason we call D the standard square field.
Thus this Dirichlet space is a distorted Brownian motion on S al-
though µ does not have a density with respect to Λ usually.

• We assume:
µ is a Ψ-quasi-Gibbs measure.

Roughly speaking, quasi-Gibbs means that µ has a local density con-
ditioned out side. Gibbs measures are of course quasi-Gibbs, and
there exist RPF that are quasi-Gibbs for logarithmic potential Ψ.

• Assume that µ is Ψ-quasi-Gibbs with upper semicontinuous Ψ, and
that

∑∞
m=1mµ(Smr ) < ∞ (Smr = {s; s(Sr) = m}), and that m-density

functions on Sr are in L2(Sm
r ) for all r,m ∈ N. Here Sr = {|s| < r}.

• With these assumption, the bilinear form is closable and its closure
is a quasi-regular Dirichlet form.
• We thus have unlabeled diffusions.
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Step 2

S ⇒ C([0,∞); S) ⇒ C([0,∞);SN)

(Step 2) • Assuming non-collision and non-explosion of tagged par-

ticles, we can construct labeled dynamics.

Indeed, particles keep their initial label forever.

Hence we have the correspondence:

Xt =
∞∑
i=1

δXi
t

⇒ X = (X1
t , X

2
t , . . .).

• The difficulty to construct SN-valued diffusion X, there is no good

measure on SN. (Hence no associated Dirichlet forms).

Even if Brownian motions, the measure should be dxN!
Hence we introduce a countable sequence of spaces

Sk×S (k ∈ N)
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Step 2

S ⇒ C([0,∞); S) ⇒ C([0,∞);SN)

Sk×S (k ∈ N) ⇔ SN

• Hence we consider M-Campbell measure µ[M ] of µ.

Introduce the countable family of Dirichlet forms:

(Eµ[M ]
, L2(SM × S, µ[M ])), X[M ] := (XM,1, . . . , XM,M ,

∞∑
i=M+1

δXM,i)

There is natural coupling associated diffusions. ⇒
XM,i are independent of M . ⇒
From this consistency we can construct the labeled diffusion on SN.

• We use unlabeled diffusion Xt to couple with these X[M ].
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(Step 3) Calculate the logarithmic derivative dµ. ISDE becomes

dXi
t = dBi

t +
1

2
dµ(Xi

t,
∑
j ̸=i

δ
X

j
t
)dt

In the case of Ginibre, Sineβ(Dyson), Bessel, and Gibbs measures:

β∇Φ(x) + β lim
r→∞

∑
j ̸=i, |x−sj|<r

∇Ψ(x− sj)

Then we have the ISDE (weak solution):

dXi
t = dBi

t −
β

2
∇Φ(Xi

t)−
β

2
lim
r→∞

∑
j ̸=i, |Xi

t−X
j
t |<r

∇Ψ(Xi
t −X

j
t )dt

To calculate the logarithmic derivative we use finite particle approx-
imation. In particular, orthogonal polynomials.
The shape of Airy RPF is different.

40



(Step 4) Introduce:
The infinite system of finite-dimensional SDEs with consistency (IFC):
Let (X,B) be a weak solution.
We regard X as a part of coefficients of SDEs.
For each M consider SDE of YM = (Y M,1, . . . , Y M,M):

dY
M,i
t =dBi

t −
β

2
∇Φ(Y M,i

t )

−
β

2

M∑
j=1,j ̸=i

∇Ψ(Y M,i
t − Y

M,j
t )dt−

β

2

∞∑
j=M+1

∇Ψ(Y M,i
t −X

j
t )dt.

These (time inhomogeneous, finite-dimensional) SDEs have unique
strong solution (under suitable assumptions). Hence

YM = XM := (X1, . . . , XM)

• We solve infinite-many finite-dimensional SDEs with consistency
in stead of solving a single ISDE.
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(Step 5)

• Let Tpath(SN) be the tail σ-field of labeled path space w.r.t. label.

Tpath(SN) =
∞∩

M=1

σ[XM , . . . , ].

• YM is a functional of (B, (XM+1, . . . , )).

⇒ If limM→∞YM exists, then σ[B] ∨ Tpath(SN)-measurable.

⇒ Since limM→∞YM = X, X is σ[B] ∨ Tpath(SN)-measurable.

⇒ If Tpath(SN) is trivial, then X is a strong solution.

• Since we see in the (Step 5) that

YM = XM := (X1, . . . , XM),

YM satisy these.
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(Step 6) • We say unlabeled diffusion satisfies the absolutely conti-
nuity condition (ACC) if

Pµ(Xt ∈ ·) ≺ µ for all t.

• If ACC is satisfied and if µ is tail trivial, then Tpath(SN) is trivial.

• Tail triviality of RPF ⇒ tail tiriviality of labeled path space.
• Tpath(SN) is the tail σ-field of the labeled path space w.r.t. the
label.
• We regard Tpath(SN) as a boundary condition of ISDE.
So if its trivial and unique, then the solution of ISDE is unique.
• Our pathwise uniqueness does not exclude the posiibility of the
existence of a tail moving or shock solution. It is related to the
uniqueness of Dirichlet forms (domain choice).
• We have not yet solved the non-equilibrium problem. We have not
yet fully utilize the property of this method, and expect that with
this we can solve the non-equilibrium problem at the lebel of Fritz
(1987).
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Tail triviality of µ is not a real restriction. Indeed,
Prop 1.Determinantal RPFs (in continuous spaces) are tail trivial.
In particular, Ginibre RPF is tail trivial.
This result is a generalization of Shirai-Talahashi, and Russel Lyons

for discrete spaces.
Note that RPFs appearing in random matrix theory are determinantal
random point fields if β = 2. So our results provide the uniqueness
for these.

Even if µ is not tail trivial, we can still apply our results to quasi-
Gibbs measures because of the following result.
Prop 2.Quasi-Gibbs measures µ have decomposition w.r.t.their tail
σ-fields T (S) such that each components are tail trivial: For µ-a.s. s

µ(A|T (S))(s) = 1A(s) for all A ∈ T (S).

This is an analogy of the result of Georgii on Gibbs measures on
discrete spaces.
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• We solve ISDEs of the form

dXi
t = dBi

t + b(Xi
t,X

♢i
t )dt (i ∈ N) (1)

Here Xt = (X1
t , . . . , ) ∈ (R2)N-valued, and

X♢i
t = (Xj

t )j∈N\{i}.

The coefficient b(x,y) is symmetric in y = (yi)i∈N for each x ∈ R2.
Bt = (B1

t , . . . , ) is (R2)N-valued standard Brownian motion.
We will construct weak solution (X,B).
Our method can be applied to the case with σ(Xi

t,X
♢i
t )dBi

t.
For simplicity we talk about (1) only.

• Because of the symmetry of b(x,y) in y, we can rewrite

dXi
t = dBi

t + b(Xi
t,X

♢i
t )dt (i ∈ N) (2)

Here we regard b(x, ·) as a function on the configuration space, and

X♢i
t =

∑
j ̸=i

δ
X

j
t

2



• We recall the examples: (i ∈ N)

dXi
t = dBi

t +
β

2
lim
r→∞

∑
|Xi

t−X
j
t |<r, j ̸=i

1

Xi
t −X

j
t

dt (Sine)

dXi
t = dBi

t +
β

2
lim
r→∞

{(
∑

j ̸=i, |Xj
t |<r

1

Xi
t −X

j
t

)−
∫
|x|<r

ϱ(x)

−x
dx}dt (Airy)

dXi
t = dBi

t +
a

2Xi
t

dt+
β

2

∞∑
j ̸=i

1

Xi
t −X

j
t

dt (Bessel)

dXi
t = dBi

t + lim
r→∞

∑
|Xi

t−X
j
t |<r

j ̸=i

Xi
t −X

j
t

|Xi
t −X

j
t |2

dt (Ginibre)
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• Gibbsian examples for suitable α and d: (i ∈ N)

dXi
t = dBi

t +
β

2

∞∑
j=1,j ̸=i

{
12(Xi

t −X
j
t )

|Xi
t −X

j
t |14

−
6(Xi

t −X
j
t )

|Xi
t −X

j
t |8

}dt (LJ 6-12)

dXi
t = dBi

t +
β

2

∞∑
j ̸=i

Xi
t −X

j
t

|Xi
t −X

j
t |α

dt. (Riesz)
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Cofiguration spaces

Set up:

• S = Rd: Space, where particles move,

• Sr = {|x| ≤ r},
• S = {s =

∑
i δsi, s(Sr) < ∞(∀r)}:

Configuration space over S.

Polish space with vague topology.

The space of unlabeled particles.

• SN is the space of labeled particles.

• s =
∑

i δsi denotes unlabeled particles.

s = (si) ∈ SN denotes labeled particles.

• Since SN is too large, we use S instead.

• Bt =
∑∞

i=1 δBi
t
is S-valued Brownian motion.

• Bt = (Bi
t)i∈N is SN-valued Brownian motion.
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Canonical square field
For a fun f on S let f(s) =: f̃(s1, . . .), where f̃ is symmetric, s =

∑
δsi.

Let D0 be the set of bounded, local, smooth functions f on S.
i.e. f is σ[πr]-measurable for some r < ∞, f̃ is smooth.

Let D be the canonical square field on S:

D[f, g](s) =
1

2

∑
i

∇if̃ · ∇ig̃.

Here ∇i = ( ∂
∂si1

, . . . , ∂
∂sid

).

The rhs is independent of particular choice of label.

• For a RPF µ we set

Eµ(f, g) =

∫
S
D[f, g]µ(ds),

Dµ
0 = {f ∈ D0; Eµ(f, f) < ∞, f ∈ L2(µ)}

• If we take µ = Λ, Poisson RPF with Lebesgue intensiy, then the
bilinear form associates Brownian motion Bt =

∑
i δBi

t
.

In this sense D is the canonical square field.
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From RPF to unlabeled diffusion

Outline of the proof:

µ ⇒(Eµ,Dµ
0, L

2(µ)) ⇒Xt =
∞∑
i=1

δXi
t
⇒X = (Xi

t)i∈N ⇒ ISDE

• The first arrow is automatic. For a given RPF µ, we can associated

a positive bilinear form through the square field D.

• If (Eµ,Dµ
0, L

2(µ)) is closable and its closue is quasi-regular, then by

Dirichlet form theory an associated µ-reversible diffusion Xt exists.

• For this we introduce a notion of quasi-Gibbs measure.

If µ is quasi-Gibbs with upper semi-continuous potential Ψ, then the

bilinear form id closable. In addition, µ satisies a marginal condition

(local boundedness of correlation functions, say), then the form be-

comes quasi-regular. Hence by the general theory of Dirichlet form

there exists the associated unlabeled diffusion Xt.
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Ψ-Quasi-Gibbs meas.

Quasi-Gibbs measures:
• πr, πc

r :S→S: projections

πr(s) = s(· ∩ Sr), πc
r(s) = s(· ∩ Sc

r)

• For a RPF µ we set

µmr,ξ(·) = µ(πr ∈ ·|s(Sr) = m,πc
r(s) = πc

r(ξ))

• Let Ψ:S→R ∪ {∞} (interaction).

Hr =
∑

si,sj∈Sr,i<j

Ψ(si − sj)

• • •
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Ψ-Quasi-Gibbs meas.

µmr,ξ(·) = µ(πr ∈ ·|s(Sr) = m,πc
r(s) = πc

r(ξ))

Hr =
∑

si,sj∈Sr,i<j

Ψ(si − sj)

Def: µ is Ψ-quasi-Gibbs measure if ∃ cmr,ξ s.t.

cmr,ξ
−1e−HrdΛm

r ≤ µmr,ξ ≤ cmr,ξe
−HrdΛm

r

Here Λm
r = Λ(·|s(Sr) = m) and Λr is the Poisson RPF with 1Srdx.

• The above definition is a simplified version.
• Gibbs measures ⇒ Quasi-Gibbs measures: If

µmr,ξ = cmr e
−Hr−

∑
xi∈Sr,ξj∈Scr Ψ(xi,ξj)

dΛm
r , (QG)

then µ is a canonical Gibbs measure. (QG) does not make sense for

Ψ(x, y) = − log |x− y|
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Application of quasi-Gibbs property to dynamics

µ ⇒(Eµ,Dµ
0, L

2(µ)) ⇒Xt =
∞∑
i=1

δXi
t
⇒X = (Xi

t)i∈N ⇒ ISDE

Unlabeled diffusions
(A1) µ is a Ψ-quasi-Gibbs m with upper-semicont Ψ. ⇒ (closability)

(A2)
∑∞

k=1 kµ(S
k
r) < ∞, σkr ∈ L2(Sk

r , dx) ⇒ (existence of diffusions)
Here Skr = {s(Sr) = k}, σkr is k-density fun on Sk

r .

Thm 1 (O.’96 (CMP)). (1) (A1) ⇒ (Eµ,Dµ
0) is closable on L2(µ).

(2) (A1), (A2) ⇒ ∃ diffusion Xt =
∑

i δXi
t
associated with the closure

(Eµ,Dµ) of (Eµ,Dµ
0) on L2(µ).

Proof. Outline of (1): Let

Eµmr,ξ(f, g) =

∫
S
D[f, g]dµmr,ξ.
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Then (Eµmr,ξ,D
µmr,ξ
0 ) is closable on L2(µmr,ξ) by (A1).

Hence (Êµ
r ,Dµ

0) are closable on L2(µ). Here

Êµ
r (f, g) =

∫
S

1

2

∑
si∈Sr

∂f̌

∂si
·
∂ǧ

∂si
dµ (reflecting BC).

By the monotone convergence theorem of closable forms we see

Êµ(f, f) = lim
r→∞

Êµ
r (f, f), D̂0 = {f ; lim

r→∞
Êµ
r (f, f) < ∞}

is closable. Hence (Eµ,Dµ
0) is closable.

(2) follows from a concrete construction of cut off function.
Remark 1. In general, the closures of the limit Dirichlet forms

(Êµ, D̂) and (Eµ,Dµ)

are not equal. We will prove the coincidence of these by using the
strong uniqueness of the solutions of the associated ISDEs.
Lang’s dynamics (’79) are given by the Dirichlet form (Êµ, D̂).
O’s (’96) dynamics are given by (Eµ,Dµ).



Let Ψ2(x, y) = − log |x− y| be the 2-dim Coulomb potential.

Thm 2 (O. AOP ’13, O.-Honda (14), O.-Tanemura (14)).

(1) Ginibre RPF is a 2Ψ2-quasi Gibbs measure.

(2) Sineβ RPF are βΨ2-quasi Gibbs m for β = 1,2,4.

(3) Bessela2 RPF is a 2Ψ2-quasi Gibbs m.

(4) Airyβ RPF are βΨ2-quasi Gibbs m for β = 1,2,4.
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General theorems on infinite-dim SDEs

µ ⇒(Eµ,Dµ
0, L

2(µ)) ⇒Xt =
∞∑
i=1

δXi
t
⇒X = (Xi

t)i∈N ⇒ ISDE

Labeled dynamics
(A1) µ is a Ψ-quasi-Gibbs m with upper-semicont Ψ.
(A2)

∑∞
k=1 kµ(S

k
r) < ∞, σkr ∈ L2(Sk

r , dx)
(A3) {Xi

t} do not collide each other (non-collision)
(A4) each tagged particle Xi

t never explode (non-explosion)
By (A3) and (A4) the labeled dynamics

Xt = (X1
t , X

2
t , . . .)

can be constructed from the unlabeled dynamics

Xt =
∑
i∈N

δXi
t
.

Indeed, the particles keep the initial label forever.
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Sufficient condition of (A3) & (A4)
Let Ss,i = Ss ∩ Si:

Ss = {s ∈ S ; s({x}) = 0 for all x ∈ S}, Si = {s ∈ S ; s(S) = ∞}.
• (A3) is equaivalent to

Capµ(Scs,i) = 0. (3)

Let ρn be a n-correlation function of µ.
Lem 1. Suppose µ is quasi-Gibbs with Ψ. Let ρ2 be 2-correlation
function of µ. Suppose one of the following holds. Then (A3) holds.
(1) d ≥ 2 and ρ2 are locally bounded.
(2) d = 1 and

ρ2(x, y) ≤ Ch(|x− y|) locally near {x = y}.
Here h(t) such that ∫ 1

0+

1

h(t)
dt = ∞.

Corollary 1.Sineβ, Airyβ, Besselβ (β ≥ 1), Ginibre RPFs satsfy (A2).
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General theorems on infinite-dim SDEs

• By (A3) we represent one-labeled process (X1
t ,

∑∞
j=2 δXj

t
) by the

Dirichlet space

(Eµ[1],Dµ[1], L2(µ[1])).

Applying Takeda criteria based on Lyons-Zheng decomposition we

deduce (A4) from ∃T > 0

lim inf
r→∞

{
∫
|x|≤r+R

ρ1(x)dx}{
∫

r√
(r+R)T

g(u)du} = 0 for all T. (4)

Lem 2. (A4) follows from (4).
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SDE representation

µ ⇒(Eµ,Dµ
0, L

2(µ)) ⇒Xt =
∞∑
i=1

δXi
t
⇒X = (Xi

t)i∈N ⇒ ISDE

ISDE representation
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Log derivative of µ: precise correspondence between RPFs & potentials

• Let µx be the (reduced) Palm m. of µ conditioned at x

µx(·) = µ(· − δx|s(x) ≥ 1)

• Let µ1 be the 1-Campbell measure on Rd×S:

µ1(A×B) =

∫
A
ρ1(x)µx(B)dx

• dµ ∈ L1
loc(R

d×S, µ1) is called the log derivative of µ if∫
Rd×S

∇xfdµ
1 = −

∫
Rd×S

fdµdµ1 ∀f ∈ C∞
0 (Rd)⊗D0

Here ∇x is the nabla on Rd.
• Very informally

dµ = ∇x logµ1

• A caluculation of log derivative of Gibbs measures are trivial.
Indeed, it is immediate from DLR equation.

• This is not the case for RPFs appearing in RMT.
We will give a sufficient condition later.
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Log derivative
A very informal calculation shows:

• If µ1(dxds) = m(x, s1, . . .)dx
∏

i dsi, then

−
∫

∇xf(x, s1, . . .)µ
1(dxds1 · · · )

=−
∫

∇xf(x, s1, . . .)m(x, s1, . . .)dx
∏
i

dsi

=

∫
f(x, s1, . . .)∇xm(x, s1, . . .)dx

∏
i

dsi

=

∫
f(x, s1, . . .)

∇xm(x, s1, . . .)

m(x, s1, . . .)
m(x, s1, . . .)dx

∏
i

dsi.

Hence

dµ =
∇xm(x, s1, . . .)

m(x, s1, . . .)
= ∇x logm(x, s1, . . .).

17



General theorems on infinite-dim SDEs

(A1) µ is a Ψ-quasi-Gibbs m with upper-semicont Ψ.

(A2)
∑∞

k=1 kµ(S
k
r) < ∞, σkr ∈ L2(Sk

r , dx)

(A3) {Xi
t} do not collide each other

(A4) each tagged particle Xi
t never explode

(A5) The log derivative dµ ∈ L1
loc(µ

1) exists ⇒(SDE representation)
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General theorems on infinite-dim SDEs
(A1) µ is a Ψ-quasi-Gibbs m with upper-semicont Ψ.
(A2)

∑∞
k=1 kµ(S

k
r) < ∞, σkr ∈ L2(Sk

r , dx)
(A3) {Xi

t} do not collide each other
(A4) each tagged particle Xi

t never explode
(A5) The log derivative dµ ∈ L1

loc(µ
1) exists ⇒(SDE representation)

Thm 3. (O.12(PTRF)) (A1)–(A5) ⇒ ∃S0 ⊂ S such that µ(S0) = 1,
and that, for ∀s ∈ u−1(S0), there exists a solution (X,B) satisfying

dXi
t = dBi

t +
1

2
dµ(Xi

t,
∑
j ̸=i

δ
X

j
t
)dt, (Xi

0)i∈N = s

Xt ∈ u−1(S0) for all t

Here u :SN→S such that u((si)) =
∑

i δsi.
Corollary 2.Suppose that there exists a RPF µ satisfying (A1)–(A4)
and

∇x logµ[1](x, s) = 2b(x, s).

Then ISDE (1) has a weak solution.
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General theorems on infinite-dim SDEs
Proof:
• SN does not have good measures ⇒ no Dirichlet forms on SN ⇒
Introduce a sequence of spaces with Campbel measures µ[M ]:

SM×S, dµ[M ] = ρM(xM)µxm(ds)dxM

Here ρM is a M-correlation function of µ and µxm is the reduced
Palm measure conditioned at xM .
Let D[M ] be the natural square field of SM×S. Let

E[M ](f, g) =

∫
SM×S

D[M ][f, g]dµ[M ],

L2(µ[M ]), C∞
0 (SM)⊗D◦.

Lem 3. These bilinear forms are closable, and their closures are
quasi-regular Dirichlet forms. Hence associated diffusion (XM

t ,XM∗
t )

exists:

(XM
t ,XM∗

t ) = (XM,1
t , . . . , X

M,M
t ,

∞∑
i=M+1

δ
X

M,i
t

)

20



Coupling of Dirichlet forms:
• Let fix a label ℓ. Let

Xt =
∞∑
i=1

δXi
t

be the unlabeld diffusion associated with the original unlabeled Dirich-
let form

(Eµ,Dµ, L2(µ)).

Thm 4.Associated diffusions have consistency

(XM,1
t , . . . , X

M,M
t , X

M,M+1
t , . . .) = (X1

t , . . . , X
M
t , XM+1

t , . . .) in law

or equivalently

(XM
t ,XM∗

t ) = (X1
t , . . . , X

M
t ,

∞∑
i=M+1

δXi
t
) in law

From this coupling and Fukushima decomposition (Itô formula) we
prove that (Xi

t) satisfies the ISDE. We use the M-labeled process
(XM

t ,XM∗
t ), to apply Itô formula to coordinate functions x1, . . . , xM .

21



Coupling of Dirichlet forms:

• The key point here is that, instead of large space

SN

we use a system of countably infinite good infinite dimensional sapce

S1×S, S2×S, S3×S, S4×S, S5×S, S6×S, S7×S, · · ·
• By the diffusion X on the original unlabeled space

S,

we construct a coupling of diffusions (XM ,XM∗) on these inifinite

many spaces SM×S.

• From this coupling, we have the ISDE representation. Indeed, we

can apply Itoô formula to each coordinate functions f(x) = xk. We

use E[M ](f, g) for 1 ≤ k ≤ M .
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Log derivative of µ: precise correspondence between RPFs & potentials

• The log derivative gives the precise correspondence

between RPFs µ and potentials (Φ,Ψ).

• We next give examples of logarithmic derivatives
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dµ = ∇x logµ1

Thm 5 (O. PTRF 12).

(1) Let µgin be the Ginibre RPF. Then

dµgin(x, s) = lim
r→∞

2
∑

|x−si|<r

x− si
|x− si|2

dµgin(x, s) = −2x+ lim
r→∞

2
∑

|si|<r

x− si
|x− si|2

(2) Let µsin,β be the Sineβ RPF. Suppose β = 1,2,4. Then

dµsin,β(x, s) = lim
r→∞

β
∑

|x−si|<r

1

x− si

Thm 6 (O.-Honda). Let µabes,2 be the Bessela2 RPF. Then

d
µabes,2(x, s) =

a

x
+2

∑
|x−si|<r

1

x− si
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Thm 7 (O.-Tanemura). [ Airy RPFs: µAi,β ]

Let β = 1,2,4. Then the log derivative dµAi,β is

dµAi,β(x, s) = β lim
r→∞

{(
∑

|x−si|<r

1

x− si
)−

∫
|x|<r

ϱ(x)

−x
dx}

Here

ϱ(x) =

√
−x

π
1(−∞,0)(x)



A criteria of Quasi-Gibbs property

A criteria of Quasi-Gibbs property.
For Φ:S→R ∪ {∞} and Ψ:S×S→R ∪ {∞}, let

HΦ,Ψ
A (x) =

∑
xi∈A

Φ(xi) +
∑

xi,xj∈A,i<j

Ψ(xi, xj), where x =
∑
i

δxi.

We assume Φ < ∞ almost everywhere (a.e.) to avoid triviality.
We set

Hr(x) = HΦ,Ψ
Sr

(x). (5)

For a subset A ⊂ S, we define the map πA :S→S by πA(s) = s(A ∩ ·).
Let Λ be the Poisson RPF for which the intensity is the Lebesgue

measure on S. We set

Λr = Λ(· ∩ Smr ).

We write ν1 ≤ ν2 if ν1(A) ≤ ν2(A) for all A ∈ B. Here ν1, ν2 are
measures on (Ω,B).
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A criteria of Quasi-Gibbs property

Definition 1.A RPF µ is called a (Φ,Ψ)-quasi-Gibbs measure if

(1) There exists an increasing sequence {br} ⊂ N such that, for each

r,m ∈ N, there exists a sequence of Borel subsets Smr,k satisfying

Smr,k ⊂ Smr,k+1 ⊂ Smr for all k, (6)

lim
k→∞

µmr,k = µmr weakly, (7)

where µmr,k = µ(· ∩ Smr,k) and µmr = µ(· ∩ Smr ).

(2) For all r,m, k ∈ N and µmr,k-a.e. s ∈ S,

1

C
e−Hr(x)1Smr (x)Λ

m
r (dx) ≤ µmr,k,s(dx) ≤ Ce−Hr(x)1Smr (x)Λ

m
r (dx). (8)

Here, C = C(r,m, k, πSc
r
(s)) is a positive constant and µmr,k,s is the

regular conditional probability measure of µmr,k defined as

µmr,k,s(dx) = µmr,k(πSr ∈ dx| πSc
r
(s)). (9)
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A criteria of Quasi-Gibbs property

We give a set of conditions for the quasi-Gibbs property.

(H.1) The measure µ has a locally bounded, n-correlation function

ρn for each n ∈ N.

(H.2) ∃ probability measures {µN}N∈N on S such that:

(1) The n-correlation functions ρnN of µN satisfy

lim
N→∞

ρnN(xn) = ρn(xn) a.e. for all n ∈ N, (10)

sup{ρnN(xn);N ∈ N, xn ∈ Sn
r } ≤ {Cnδ}n for all n, r ∈ N, (11)

where C = C(r) > 0, and δ = δ(r) < 1.

(2) µN(s(S) = nN) = 1 for each N , where nN ↑∈ N.
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[A good finite-particle approximation {µN}N∈N]

(3) µN is a (ΦN ,ΨN)-canonical Gibbs measure.

(4) There exists a sequence {mN
∞}N∈N in Rd such that

lim
N→∞

{ΦN(x)− mN
∞ · x} = Φ(x) for a.e. x, (12)

inf
N∈N

inf
x∈S

{ΦN(x)− mN
∞ · x} > −∞.

(5) The interaction potentials ΨN :S×S→R ∪ {∞} satisfies

lim
N→∞

ΨN = Ψ compactly and uniformly in C1(S×S\{x = y}), (13)

inf
N∈N

inf
x,y∈Sr

ΨN(x, y) > −∞ for all r ∈ N.
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[Airy RPF (soft edge scaling limit)]

Remark 2.

• For the GUE soft-edge (the Airy RPF), we take mN
∞ = N1/3.

• In fact, in this case, the limit of ΦN diverges.

• Hence, we substitute mN
∞ · x from ΦN(x) to make the limit finite.

• We see that the terms mN
∞ ·x are cancelled by the interaction terms.

−
β

4

N∑
i=1

|2
√
N +N−1/6xi|2 = −

β

4

N∑
i=1

{4N +N−1/3|xi|2 +4N1/3xi}.
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[Ψ-tightness]
• The next assumption (H.3) is a tightness condition on {µN} ac-
cording to the interaction ΨN .
• Let x =

∑
δxi, y =

∑
δyj ∈ S, Srs = Ss\Sr, and Sr∞ = Sc

r.
For r < s ≤ t < u ≤ ∞, we set

ΨN
rs,tu(x, y) =

∑
xi∈Srs, yj∈Stu

ΨN(xi, yj) . (14)

We write ΨN
0r,rs(x, y) = ΨN

0r,rs(x, y) if x = δx.

Ψ̃N
rs,tu(x, y) = ΨN

rs,tu(x, y) + {
∑

xi∈Srs

xi} · (mN
t − mN

u ). (15)

For {ΨN}, r, k ∈ N, and {mN
s }

HN
r,k = {y ∈ S ; y(S) = nN , { sup

r<s∈N
sup

x,w∈Sr
x̸=w

|Ψ̃N
0r,rs(x, y)− Ψ̃N

0r,rs(w, y)|
|x− w|

} ≤ k}.
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[A sufficient condition of quasi-Gibbs property]

We define Hr,k as

Hr,k =
∞∑

N=1

HN
r,k. (16)

(H.3) There exists a sequence {mN
s } in Rd such that the set Hr,k

satisfies the following:

lim
k→∞

lim sup
N→∞

µN(Hc
r,k) = 0 for all r ∈ N, (17)

lim
s→∞

mN
s = mN

∞, (18)

sup
N∈N

|mN
s | < ∞ for all s ∈ N. (19)

Thm 8. Assume (H.1), (H.2) and (H.3). Then µ is a (Φ,Ψ)-quasi-

Gibbs measure.
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[d = 1,2]

• We next assume d = 1,2. To unify these two cases, we set S = C
and regard here R2 as C.
• We assume ΨN is independent of N and of the form

Ψ(x, y) := ΨN(x, y) = −β log |x− y| (β ∈ R). (20)

• We give a suff condition of (H.3) through correlation functions.

• Let x =
∑

i δxi and S̃rs = S̃s\Sr, where Sr = {s ∈ S; |s| < r}, as

before. For 1 ≤ r < s ≤ ∞ let vℓ,rs :S→C such that

vℓ,rs(x) = β
{ ∑
xi∈S̃rs

1

xℓi

}
(ℓ ≥ 2) (21)

vN1,rs(x) = β
{ ∑
xi∈S̃rs

1

xi

}
+ m̄N

r − m̄N
s (ℓ = 1). (22)

Here m̄N
r = mN

r,1 −
√
−1mN

r,2 is the complex conjugate of mN
r .
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[d=1,2]
Now the key assumption is as follows.

(H.4) There exists an ℓ0 such that 2 ≤ ℓ0 ∈ N and that

sup
N∈N

{
∫
1≤|x|<∞

1

|x|ℓ0
ρ1N(x)dx} < ∞ (23)

and that, for each 1 < ℓ < ℓ0,

sup
N∈N

∥vℓ,rs ∥L1(µN) < ∞ for all r < s ∈ N, (24)

lim
s→∞

sup
N∈N

∥vℓ,s∞ ∥L1(µN) = 0 (25)

and that, for each ℓ = 1,

sup
N∈N

∥ sup
M∈N

vMℓ,rs ∥L1(µN) < ∞ for all r < s ∈ N, (26)

lim
s→∞

sup
N∈N

∥ sup
M∈N

vMℓ,s∞ ∥L1(µN) = 0. (27)

Thm 9. Assume (20) and S = C. Assume (H.1), (H.2) and (H.4).
Assume (18). Then µ is a (Φ,Ψ)-quasi-Gibbs measure.

33



Calculation of logarithmic derivative

• Assume that n-point cor funs {ρN,n} satisfy for each r, n ∈ N

lim
N→∞

ρN,n(x) = ρn(x) uniformly on Sn
r , (28)

sup
N∈N

sup
x∈Sn

r

ρN,n(x) ≤ C−n
1 nC2n, 0 < C < ∞,0 < C2 < 1, . (29)
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Calculation of logarithmic derivative

• We assume that µN have log derivative dN such that

dN(x, y) = uN(x) + gNs (x, y) + wN
s (x, y) (30)

Here g, gN , v, vN :S2→Rd and w :S→Rd and set (y =
∑

i δyi)

gs(x, y) =

∫
|x−y|<s

v(x, y)dy +
∑

|x−yi|<s

g(x, yi),

gNs (x, y) =

∫
|x−y|<s

vN(x, y)dy +
∑

|x−yi|<s

gN(x, yi),

wN
s (x, y) =

∫
s≤|x−y|

vN(x, y)dy +
∑

s≤|x−yi|
gN(x, yi) ∈ L

p̂
loc(µ

1).
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Calculation of logarithmic derivative

• Let 1 < p < p̂ < ∞. Assume that

lim sup
N→∞

∫
Sr×S

|dN − uN |p̂dµN,1 < ∞ for all r ∈ N (31)

lim
N→∞

uN = u in L
p̂
loc(S, dx) (32)

lim
N→∞

gNs = gs in L
p̂
loc(µ

1) for all s, (33)

lim
s→∞

lim sup
N→∞

∫
Sr×S

|wN
s (x, y)− w(x)|p̂dµN,1 = 0. (34)

Recall that

gs(x, y) =

∫
|x−y|<s

v(x, y)dy +
∑

|x−yi|<s

g(x, yi)

Thm 10.Assume (28)–(34). Then dµ exists in L
p
loc(µ

1) given by

dµ(x, y) = u(x) + lim
s→∞

gs(x, y) + w(x). (35)
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Calculation of logarithmic derivative

Recall that

gs(x, y) =

∫
|x−y|<s

v(x, y)dy +
∑

|x−yi|<s

g(x, yi)

Thm 10 The log derivative dµ exists in L
p
loc(µ

1) and is given by

dµ(x, y) = u(x) + lim
s→∞

gs(x, y) + w(x). (36)

Example 1. In the case of Ginibre RPF, we take

uN(x) = u(x) = −2x, w(x) = 2x,

vN(x, y) = v(x, y) = 0,

gN(x, y) = g(x, y) =
2(x− y)

|x− y|2
.
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Calculation of logarithmic derivative

Example 2. In the case of Airy RPF, we take

uN(x) = β{
∫
R

ρ
N,1
β,x (y)

x− y
dy} −N1/3 −

N−1/3

2
x

u(x) = β lim
s→∞

{
∫
|s|<s

ρ1β,x(y)

x− y
dy −

∫
|y|<s

ϱ(y)

−y
dy}

w(x) = 0

vN(x, y) = −β
ρ
N,1
β,x (y)

x− y

v(x, y) = −β
ρ1β,x(y)

x− y

gN(x, y) = g(x, y) =
β

x− y
.
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Strong solutions and pathwise uniqueness
2014/9/1/Mon–2014/9/5/Wed Warwick

UK-Japan Stochastic Analysis School (JSPS Core-to-Core programme)

Outline:

• Unique strong solutions of ISDEs (general theorems)

• Triviality of tail σ-fields of labeled path spaces.

• Applications to interacting Brownian motions in infinite dimensions.



General theorems on infinite-dim SDEs

(A1) µ is a Ψ-quasi-Gibbs m with upper-semicont Ψ.

(A2)
∑∞

k=1 kµ(S
k
r) < ∞, σkr ∈ L2(Sk

r , dx)

(A3) {Xi
t} do not collide each other

(A4) each tagged particle Xi
t never explode

(A5) The log derivative dµ ∈ L1
loc(µ

1) exists

2



General theorems on infinite-dim SDEs
(A1) µ is a Ψ-quasi-Gibbs m with upper-semicont Ψ.
(A2)

∑∞
k=1 kµ(S

k
r) < ∞, σkr ∈ L2(Sk

r , dx)
(A3) {Xi

t} do not collide each other
(A4) each tagged particle Xi

t never explode
(A5) The log derivative dµ ∈ L1

loc(µ
1) exists

l:isde

Thm 1. (O.12(PTRF)) (A1)–(A5) ⇒ ∃S0 ⊂ S such that

µ(S0) = 1,

and that, for ∀s ∈ u−1(S0), ∃u−1(S0)-valued pr. (Xi
t)i∈N and ∃SN-

valued Brownian m. (Bi
t)i∈N satisfying

dXi
t = dBi

t +
1

2
dµ(Xi

t,
∑
j ̸=i

δ
X

j
t
)dt, (Xi

0)i∈N = s (1)
:isde

Here u :SN→S such that u((si)) =
∑

i δsi.
• The solution (X,B) is not a strong solution.
• In this talk we construct a strong solution from a weak solution,
and prove pathwise uniqueness.
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Tail σ-field

Tail σ-field of configuration space S
• To construct strong solutions, we use two geometric properties of

RPFs. : Tail triviality & Tail decomposition

• Let πc
r :S→S such that πc

r(s) = s(· ∩ Sc
r), where Sr = {|s| < r}.

• Let T = T (S) be the tail σ field of S:

T (S) =
∞∩

r=1

σ[πc
r].

l:tail

Thm 2. Let µ be a determinantal RPF. Then T (S) is µ-trivial.

• Thm
l:tail

2 is a generalization of the result for the discrete determi-

nantal RPFs due to Russel Lyons, Shirai-Takahashi.

• In general, quasi-Gibbs measures µ are not tail trivial. Hence we

introduce the tail decomposition of µ.

• • •
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Tail triviality of determinantal RPFs & Tail decomp of quasi-Gibbs m

Let T = T (S) be the tail σ field of S as above.

Let µ(·|T ) be the regular conditional probability.

Then by construction

µ(·) =

∫
S
µ(·|T )(ξ)µ(dξ)

and, for any A ∈ T ,

µ(A|T )(ξ) = 1A(ξ) for µ-a.s.ξ.

We can interchange the roll of “for any A ∈ T ” and “for µ-a.s. ξ”.
l:decom

Thm 3. Let µ be a quasi-Gibbs measure. Then for µ-a.s. ξ,

µ(A|T )(ξ) = 1A(ξ) for any A ∈ T .

• Thm
l:decom

3 is a generalization of the result for the discrete Gibbs m

due to Georgii.

• With this, the assumption of tail triviality of µ turn out to be not

an essential restriction.
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existence of strong solution

dXi
t = dBi

t +
1

2
dµ(Xi

t,
∑
j̸=i

δ
X

j
t
)dt, (Xi

0)i∈N = s

We introduce the condition such that the drifts dµ(x, s) are locally

Lipschitz continuous in x for fixed outside πc
r(s).

Let Sr = {|x| < r} and

H(r, n) = {s =
∑
i

δsi; |∇xd
µ(si, s− δsi)| < n for ∀i s.t. si ∈ Sr},

H =
∞∩

r=1

∞∪
n=1

H(r, n).

(A6) Capµ(Hc) = 0 + marginal assumption

• We pose in (A6) a condition that the coefficients dµ(x,Xi♢t ) in x

are Lipschitz constinuous in each H(r, n). Here Xi♢t =
∑

j ̸=i δXj
t
.
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existence of strong solution

(A1) µ is a Ψ-quasi-Gibbs m with upper-semicont Ψ.

(A2)
∑∞

k=1 kµ(S
k
r) < ∞, σkr ∈ L2(Sk

r , dx)

(A3) {Xi
t} do not collide each other

(A4) each tagged particle Xi
t never explode

(A5) The log derivative dµ ∈ L1
loc(µ

1) exists

(A6) Capµ(Hc) = 0.l:strong

Thm 4 (O.-Tanemura). (A1)–(A6). ⇒ (1) The ISDE

dXi
t = dBi

t +
1

2
dµ(Xi

t,
∑
j̸=i

δ
X

j
t
)dt, (Xi

0)i∈N = s

has a strong solution for s = (si) ∈ SN s.t.
∑

i δsi ∈ H.

• • •
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existence of strong solution

(A1) µ is a Ψ-quasi-Gibbs m with upper-semicont Ψ.

(A2)
∑∞

k=1 kµ(S
k
r) < ∞, σkr ∈ L2(Sk

r , dx)

(A3) {Xi
t} do not collide each other

(A4) each tagged particle Xi
t never explode

(A5) The log derivative dµ ∈ L1
loc(µ

1) exists

(A6) Capµ(Hc) = 0.

Thm
l:strong

4[O.-Tanemura] (A1)–(A6). ⇒ (1) The ISDE

dXi
t = dBi

t +
1

2
dµ(Xi

t,
∑
j̸=i

δ
X

j
t
)dt, (Xi

0)i∈N = s

has a strong solution for s = (si) ∈ SN s.t.
∑

i δsi ∈ H.

(2) The ass unlabeled diffusion X =
∑

i δXi satisfies

Pµξ ◦ X−1
t ≺ µξ (∀t) for µ-a.s. ξ

Here µξ = µ(·|T (S))(ξ) in Thm
l:decom

3.
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Decomposition of unlabeled state space of strong solutions 1

• By construction µ(·|ξ)(A) are T -measurable in ξ for each A ∈ B(S).
• By Thm

l:decom

3, we take a version of µ(·|ξ) such that, for µ-a.s. a ∈ S,

µ(·|ξ)(A) = 1A(a) for all A ∈ T . (2)
:22w

• Let ∼T be the equivalence relation such that a ∼T b if and only if

1A(a) = 1A(b) for all A ∈ T . (3)
:22x

• From (
:22w

2) we deduce that the set H in Thm
l:strong

4 can be decomposed

as a disjoint sum

H =
∑

[ξ]∈H/∼T

Hξ such that µ(·|ξ)(Hξ) = 1. (4)
:22y

The solution in Thm
l:strong

4 satisfy for µξ-a.s. s ∈ Hξ

Ps(Xt ∈ Hξ for all t) = 1.
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Uniqueness of strong solutions 1
l:strong0

Thm 5 (O.-Tanemura).Assume (A1)–(A6).

Let X = (Xi) and X̂ = (X̂i) be strong sol of the ISDE

dXi
t = dBi

t +
1

2
dµ(Xi

t,
∑
j̸=i

δ
X

j
t
)dt, (Xi

0)i∈N = s = (si)i∈N

on the same Brownian motion B = (Bi
t)i∈N. Let

Xt =
∞∑
i=1

δXi
t

and X̂t =
∞∑
i=1

δX̂i
t
.

Suppose, for µ-a.s. ξ,

Pµξ ◦ X−1
t ≺ µξ and Pµξ ◦ X̂−1

t ≺ µξ (∀t).
Then

Ps(X = X̂) = 1 for µ-a.s. s =
∞∑
i=1

δsi

.
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Uniqueness of strong solutions
l:strongx

Thm 6 (O.-Tanemura).Assume (A1)–(A7). Here

(A7) µ is tail trivial.

Then the strong solution X = (Xi) such that

Pµ ◦ X−1
t ≺ µ for all t

is unique for µ-a.e. x =
∑

i δxi.

Here X is the unlabeled dynamics of X:

Xt =
∞∑
i

δXi
t

Cor If µ is a determinantal RPF, then the associated ISDE has a

unique strong solution that is reversible w.r.t. µ.

• Tail σ-fields of Airy, Sine, Ginibre RPFs with β = 2 and all other

determinantal RPFs are trivial.
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Uniqueness of Dirichlet forms

Let Dµ
poly be the closure of the set of polynomials on S such that

Eµ
1(f, f) < ∞. Then

Dµ
poly ⊂ Dµ

because polynomials are local and smooth.l:strong2

Thm 7 (O.-Tanemura ’14).Assume (A1)–(A7). Then quasi-regular

Dirichlet forms that are extension of (Eµ,Dµ
poly) are unique.

In particular, Dµ
poly = Dµ, and Lang’s construction and O.’s con-

struction are same.
r:df

Remark 1. (1) Dirichlet forms here are same as those constructed by

Albeverio-et al, and Yoshida.

(2) If (A5) (non-explosion) does not hold. Then Thm
l:strong2

7 does not

hold. This is very natural theorem that says the uniqueness of Dirich-

let forms is related to the non-explosion problem of tagged problem.
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Idea of ”strong sol of ISDEs”

• General theory to construct unique, strong solutions of

infinite-dimensional stochastic differential equations

• Weak solution: (O. JPSJ 10, PTRF 12, AOP 13, SPA 13)

• logarithmic derivative dµ: Very informally,

dµ(x, y) = ∇x logµ[1]

Here µ[1] is a 1-Campbell measure of µ.

• µ is quasi-Gibbs with upper semi-continuous potential Ψ.

• mariginal assumptions

Then ISDE has a weak solution (X,B):

dXi
t = dBi

t +
1

2
dµ(Xi

t,
∞∑
j ̸=i

δ
X

j
t
)dt (i ∈ N)



Strong solutions of ISDE: Non Markov type

• Strong solutions and uniqueness:

• We lift weak solutions to strong solutions.

• IFC solutions.

• Tail analysis.

• The key idea is the following:

• We interpret single ISDE as an infinite system of finite dimensional

SDEs with consistency (IFC).

• We regard the tail σ-field of the labeled path spaces as boundary

condition of ISDEs.
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Strong solutions of ISDE: Non Markov type

• We consider non-Markov SDEs because the arguement is general.

S = Rd, [0,∞),C, e.t.c.. (the space where particles move),

W (SN) = C([0, T ];SN), (0 < T < ∞) (labeled path spaces)

• a quadruplet (Wsol,S0, {σi}, {bi})
Wsol： a Borel subset of W (SN) (space of solutions of ISDE)

S0: a Borel subset of SN (initial starting points of ISDE)

σi, bi :Wsol→W (SN) (coefficients of ISDE)

• the ISDE on SN of the form

dXi
t = σi(X)tdB

i
t + bi(X)tdt (i ∈ N) (5)

:q0a

X0 = s = (si)i∈N ∈ S0 (6)
:q0b

X ∈ Wsol. (7)
:q0c

• X = {(Xi
t)i∈N}t∈[0,T ]

• B = (Bi
t) (i ∈ N) is the SN-valued standard Brownian motion.

14



Strong solutions of ISDE: Assump (P1)

dXi
t = σi(X)tdB

i
t + bi(X)tdt (i ∈ N)

X0 = s = (si)i∈N ∈ S0
X ∈ Wsol.

(P1) ISDE (
:q0a

5) has a weak solution (X,B). (not a strong solution!)

Here B = (Bi)i∈N is Brownian motion on SN

Problem: Prove that X is a functional of the Brownian motion B

Idea:
Strong solutions of Infinite-dimensional SDE

⇔
Infinite-many, Finite-dimensional SDEs with Consistency (IFC)

+
Tail Triviality of Labeled path spaces w.r.t. the label (TTL)

15



Assump (P2) 　 infinite-many, finite-dimensional SDEs with consistency

• P̄s: a prob meas on W (SN)×W 0(SN): dist.of weak sol (X,B).
• Ps = P̄s(X ∈ ·)
• P∞

Br = P̄s(B ∈ ·).
• For each X ∈ Wsol, s ∈ S0, and m ∈ N, we define the new SDE of

Ym = (Y m,1
t , . . . , Y

m,m
t )

such that

dY
m,i
t = σi(Ym,Xm∗)tdB

i
t + bi(Ym,Xm∗)tdt (8)

:q1b

Ym
0 = (s1, . . . , sm) ∈ Sm, where s = (si)

∞
i=1,

(Ym,Xm∗) ∈ Wsol.

Here we set

Xm∗ = (Xm+1
t , Xm+2

t , . . .)

(Ym,Xm∗) = (Y m,1
t , . . . , Y

m,m
t , Xm+1

t , Xm+2
t , . . .).

Xm∗ is interpreted as a part of the coefficients of the SDE (
:q1b

8).

In fact, we regard (
:q1b

8) as SDEs of Y such as

16



For m = 1

dY
1,1
t = σ1(Y1,X1∗)tdB

1
t + b1(Y1,X1∗)tdt. (m = 1)

For m = 2

dY
2,1
t = σ1(Y2,X2∗)tdB

1
t + b1(Y2,X2∗)tdt (m = 2)

dY
2,2
t = σ2(Y2,X2∗)tdB

2
t + b2(Y2,X2∗)tdt.

For m = 3

dY
3,1
t = σ1(Y3,X3∗)tdB

1
t + b1(Y3,X3∗)tdt (m = 3)

dY
3,2
t = σ2(Y3,X3∗)tdB

2
t + b2(Y3,X3∗)tdt

dY
3,3
t = σ3(Y3,X3∗)tdB

3
t + b3(Y3,X3∗)tdt.
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For m = 4

dY
4,1
t = σ1(Y4,X4∗)tdB

1
t + b1(Y4,X4∗)tdt (m = 4)

dY
4,2
t = σ2(Y4,X4∗)tdB

2
t + b2(Y4,X4∗)tdt

dY
4,3
t = σ3(Y4,X4∗)tdB

3
t + b4(Y4,X4∗)tdt

dY
4,4
t = σ4(Y4,X4∗)tdB

4
t + b4(Y4,X4∗)tdt.

For m = 5

dY
5,1
t = σ1(Y5,X5∗)tdB

1
t + b1(Y5,X5∗)tdt (m = 5)

dY
5,2
t = σ2(Y5,X5∗)tdB

2
t + b2(Y5,X5∗)tdt

dY
5,3
t = σ3(Y5,X5∗)tdB

3
t + b5(Y5,X5∗)tdt

dY
5,4
t = σ4(Y5,X5∗)tdB

4
t + b4(Y5,X5∗)tdt

dY
5,5
t = σ5(Y5,X5∗)tdB

5
t + b5(Y5,X5∗)tdt.

• • •



Strong solutions of ISDE: (P2) seq of finite-dim SDEs with consistecy

dY
m,i
t = σi(Ym,Xm∗)tdB

i
t + bi(Ym,Xm∗)tdt (

:q1b

8)

Ym
0 = (s1, . . . , sm) ∈ Sm,

(Ym,Xm∗) ∈ Wsol.

(P2) The SDE (
:q1b

8) has a unique, strong solution
for each s ∈ S0, X ∈ W s

sol, and m ∈ N.

• (P2) is a reasonable assumption. Since X ∈ Wsol and Wsol is a
nice subset of W , we can assume this for the weak solution we have
constructed. Here we use Dirichlet form theory again to prove X
stay Wsol.
• In the case of Dyson Brownian motions with m = 1, we see that

b1(x,y) =
1

2
dµ(x, y) = lim

r→∞

∞∑
j=1,|yj|<r

1

x− yj
.

Hence we see that b1(x,X1∗
t ) is locally Lipschitz continuous in x for

fixed weak solution X.
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Strong solutions of ISDE: (P3) Tail triviality

Let Tpath(SN) be the tail σ-field of W (SN); we set

Tpath(SN) =
∞∩

m=1

σ[Xm∗]. (9)
:q0y

(P3) Tpath(SN) is Ps-trivial for each s ∈ S0.
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Strong solutions of ISDE: Theorem
l:q1

8
(P1) ISDE (

:q0a

5) has a solution (X,B).
(P2) SDE (

:q1b

8) has a unique, strong solution for all s,X,m.
(P3) Tpath(SN) is Ps-trivial for each s ∈ S0.l:q1

Thm 8.Assume (P1)–(P3). Then
(1) ISDE (

:q0a

5)–(
:q0c

7) has a strong solution for each s ∈ S0.
(2) Let Ys and Y′

s be strong solutions of ISDE (
:q0a

5)–(
:q0c

7) starting at
s ∈ S0 defined on the same space of Brownian motions B. Then

Ys = Y′
s a.s.

if and only if

Ys|Tpath(SN) = Y′
s|Tpath(SN) in Law.. (10)

:q1d

• Since Ys is strong solution, Tpath(SN) is trivial w.r.t. Ys. Hence
(
:q1d

10) is equivalent to

Tail [1](Ys) = Tail [1](Y′
s)

Here

Tail [1](Ys) = {A ∈ Tpath(SN) ; P (Ys ∈ A) = 1}. (11)
:q1f

20



Strong solutions of ISDE: Idea of Theorem
l:q1

8

(P1) ISDE (
:q0a

5) has a solution (X,B).

(P2) SDE (
:q1b

8) has a unique, strong solution for all s,X,m.

(P3) Tpath(SN) is Ps-trivial for each s ∈ S0.

• (X,B): sol of ISDE by (P1). Let (X,B) be fixed.

• Ym is a unique strong sol of SDE(
:q1b

8) by (P2)

• Ym is σ[B]
∨

σ[Xm∗]-m’ble. Xm∗ = (Xn)m<n<∞.

• Ym = (X1, . . . , Xm). 　by (P2)

• X is σ[B]
∨

Tpath(SN)-m’ble by m → ∞.

• Tpath(SN) is trivial by (P3) ⇒ X is a strong solution.
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IFC and ISDE
Let (X,B) be a weak solution.

• For (X,B) we introduce IFC: (m ∈ N)

dY
m,i
t = σi(Ym,Xm∗)tdB

i
t + bi(Ym,Xm∗)tdt (

:q1b

8)

Ym
0 = (s1, . . . , sm) ∈ Sm,

(Ym,Xm∗) ∈ Wsol.

• We emphasize IFC is a collection of infinitely many finite dimen-
sional equations:
• This system is equivalent to a single ISDE:

dXi
t = σi(X)tdB

i
t + bi(X)tdt (i ∈ N) (

:q0a

5)

X0 = s = (si)i∈N ∈ S0 (
:q0b

6)

X ∈ Wsol. (
:q0c

7)

• We show that these two are equivalent, and by using IFC we give
a notion of strong solution and pathwise uniqueness in terms of tail
σ-field of the labeled path space.
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IFC solutions

• We set

S = Wsol×W (SN).

• Let Fm :S→Wsol the map defined as

Fm(s,X,B) = (Ym,Xm∗).

Here Ym is a unique strong solution of (
:q1b

8). (by (P2)).

• Let P̄s be a probability on S such that P̄s(X0 = s) = 1. We say

lim
m→∞

Fm = F∞ in Wsol under P̄s

if for P̄s-a.s. s and ∀i ∈ N

lim
m→∞

Fm(s,X,B) = F∞(s,X,B) ∈ Wsol,

lim
m→∞

∫ t

0
σi(Fm(s,X,B))udB

i
u =

∫ t

0
σi(F∞(s,X,B))udB

i
u,

lim
m→∞

∫ t

0
bi(Fm(s,X,B))udu =

∫ t

0
bi(F∞(s,X,B))udu.
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IFC solutions

Let P̄s be an IFC solution, andl:ifc

Lem 1. (
:q1b

8) has an IFC solution P̄s iff (
:q0a

5) has a weak solution (X,B).

Proof. • Set

Y∞ = F∞(s,X,B).

Then (Y∞,B) under P̄s is a weak solution.

• Let (X,B) be a weak solution with distribution P̄s. Since X is a fix

point of F∞, P̄s is an IFC solution.
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IFC solutions

Let P̄s,B = P̄s(X ∈ ·|B): the regular conditional probability.l:ifc

Thm 9. (1) (Y,B) under P̄s is a strong solution of (
:q0a

5) iff Tpath(SN)
is P̄s,B-trivial for P∞

Br B.

(2) Let Xs and X′
s be strong solutions defined on the same Brownian

motion starting at s. Then

Xs = X′
s for a.s. ⇐⇒ Xs|Tpath(SN) = X′

s|Tpath(SN) in Law.. (12)
:q1dd
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Strong solutions of ISDE:

Application of Thm
l:q1

8 to

interacting Brownian motions.
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Application of Thm
l:q1

8 to interacting Brownian motions.

• We apply Thm
l:q1

8 to ISDE (
:isde

1):

dXi
t = dBi

t +
1

2
dµ(Xi

t,
∑
j ̸=i

δ
X

j
t
)dt, (Xi

0)i∈N = s (
:isde

1)

or more generally

dXi
t = σ(Xi

t,
∑
j ̸=i

δ
X

j
t
)dBi

t + b(Xi
t,
∑
j ̸=i

δ
X

j
t
)dt. (

:isde

1)

Here a = σtσ and

b(x, y) =
1

2
{∇a(x, y) + a(x, y)dµ(x, y)}dt (13)

dµ(x, y) is the logarithmic derivative (informally) defined as

∇x logµ[1]

with 1-Campbel measure µ[1] of µ:

dµ[1] = ρ1(x)µx(dy)dx
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Strong solutions of ISDE:

We check (P1)–(P3) for (
:isde

1).

(P1) ISDE (
:q0a

5) has a solution (X,B). (by Thm
l:isde

1 )

(P2) SDE (
:q1b

8) has a unique, strong solution for all s,X,m.

(P3) Tpath(SN) is Ps-trivial for each s ∈ S0.

• How to prove (P2)？⇒ ∇xdµ ∈ Dµ[1]

loc

• How to prove (P3)？⇒ Tail Theorems.
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Strong solutions of ISDE: How to prove (P3)

• We give a sufficient condition of (P3):

(P3) Tpath(SN) is Ps-trivial for each s ∈ S0.

• The following implies (P3):

(Q1) µ is tail trivial.

(Q2) Pµ ◦ X−1
t ≺ µ for all t.

(Q3) Pµ(∩∞
r=1{mr(X) < ∞}) = 1.

Here Sr = {|x| < r}, Xt =
∑

i∈N δXi
t
, Xi = {Xi

t},

mr = inf{m ∈ N;Xi ∈ C([0, T ];Sc
r) for m < ∀i ∈ N}.

l:tail3

Thm 10.Assume (Q1)–(Q3). Then (P3) holds.

• (Q2) is trivial because the unlabeled dynamics is µ-reversible.

• (Q3) is immediate from Lyons-Zheng decomposition.
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Out line of the proof of Thm
l:tail3

10 :

• Let T = {t = (t1, . . . , tm) ; ti ∈ [0, T ],m ∈ N}.
• T̃path(S) is the cylindrical tail σ-field of the unlabeled path space

T̃path(S) =
∨
t∈T

∞∩
r=1

σ[πSc
r
(Xt)]. (14)

:40a

• T̃path(SN) is the cylindrical tail σ-field of the labeled path space:

T̃path(SN) =
∨
t∈T

∞∩
n=1

σ[Xn∗
t ]. (15)

:40a

Here Xn∗
t = (Xn∗

t1
, . . . ,Xn∗

tm
).

• We will deduce the triviality of Tpath(SN) from that of S. We will
do this along the scheme: (Pµ =

∫
SPsdµ).

T (S)⇒ T̃path(S)⇒ T̃path(SN)⇒ T̃path(SN)⇒ Tpath(SN)
Pµ Pµ Pµℓ Ps a.s. s Ps a.s. s
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Out line of the proof of Thm
l:tail3

10 :

Below we assume (Q1): µ is tail trivial.

T (S) ⇒ T̃path(S) ⇒ T̃path(SN) ⇒ T̃path(SN) a.s. ⇒ Tpath(SN) a.s.

l:tt0

Lem 2. T (S) is Ps(Xt ∈ ·)-trivial for µ-a.s. s.

Proof. Since Xt is µ-reversible, Pµ(Xt ∈ ·) = µ.

Hence by (Q1) we see that T (S) is Pµ(Xt ∈ ·)-trivial.
From this we easily obtain Lem

l:tt0

2.
l:tt1

Lem 3. T̃path(S) is Pµ-trivial and Ps-trivial for µ-a.s. s.

Proof. From Lem
l:tt0

2 and the Markov property of unlabeled dynamics

yields Lem
l:tt1

3.
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T (S) ⇒ T̃path(S) ⇒ T̃path(SN) ⇒ T̃path(SN) a.s. ⇒ Tpath(SN) a.s.

l:tt2

Lem 4. T̃path(SN) is Pµℓ-trivial.

Proof. For a label ℓ, we have a natural map ℓpath :W (S)→W (SN):

ℓpath(X) = (X1, X2 . . .).

For each A ∈
∩∞

n=1 σ[X
n∗
t ] for some t ∈ T, we see

ℓ−1
path(A) =

∞∩
r=1

[ℓ−1
path(A)

∩
{mr(X) < ∞}]

⊂
∞∩

r=1

σ[πSc
r
(Xt)]

∩
{mr(X) < ∞}

=
∞∩

r=1

σ[πSc
r
(Xt)] ⊂ T̃path(S)
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Out line of the proof of Thm
l:tail3

10 :

T (S) ⇒ T̃path(S) ⇒ T̃path(SN) ⇒ T̃path(SN) a.s. ⇒ Tpath(SN) a.s.

l:tt3

Lem 5. T̃path(S) is Ps-trivial for µℓ-a.s. s.

Proof. Easy.
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Out line of the proof of Thm
l:tail3

10 :

T (S) ⇒ T̃path(S) ⇒ T̃path(SN) ⇒ T̃path(SN) a.s. ⇒ Tpath(SN) a.s.

l:tt4

Thm 11. Tpath(SN) is Ps-trivial for µℓ-a.s. s.

The difficulty is that the σ-field Tpath(SN) is not countbly deter-

mined because tail fields are not topologcally well behaved. But if

we restrict the support of F∞, then Tpath(SN) is coutably determined

under Ps.

• Recall the map

F∞(s,X,B) = Y

given by the IFC solution of ISDE.

• Then X is a weak solution.

• Hence X is a fix point:

F∞(s,X,B) = X.
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Out line of the proof of Thm
l:tail3

10 :
For a measurable space (U,U) we call a subset V ⊂ U a determi-

nation class of (U,U) if any two probability measures P and Q on
(U,U) are equal if and only if P (A) = Q(A) for all A ∈ V.l:ifc2

Lem 6. Let V = {Vn}n∈N be a countable determination class of
(U,U). Let m be a probability measure on (U,U). Then

m(Vn) ∈ {0,1} for all Vn ∈ V ⇒ m(A) ∈ {0,1} for all A ∈ U.

Proof. Let N(1) = {n ∈ N;m(Vn) = 1}. If N(1) = ∅, then m is the
zero measure. If N(1) ̸= ∅, then we take

V =
( ∩
n∈N(1)

Vn
)∩( ∩

n ̸∈N(1)

V c
n

)
.

Clearly, we obtain m(V ) = 1.
Let A ∈ U. Suppose that V ∩ A ̸∈ {∅, V }. Then we can not

determine the value of m(V ∩ A) by the value of m(Vn) (n ∈ N).
This yields contradiction. Hence V ∩ A ∈ {∅, V }. If V ∩ A = ∅, then
m(A) = 0. If V ∩A = V , then m(A) ≥ m(V ) = 1.
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Out line of the proof of Thm
l:tail3

10 :

• Since SN is Polish, ∃ a countable dense set SN
0 = {sk}. Let

U = ∪∞
k=1A[Ur(sk); 0 < r ∈ Q, k ∈ N]

Here Ur(s) is a ball centered at s with radius r, A[·] denotes the

algebra generated by ·. Let

V = ∪∞
j=1{(Xt)

−1(A) ; A ∈ Uj, t ∈ {Q ∩ [0, T ]}j}.

Then V becomes a countable determination class of (W (SN),B(W (SN))).l:ifc3

Lem 7.Then, for each V ∈ V,
F∞(s, ·,B)−1(V)

∩
WT,fix ∈ T̃path(SN)

∩
WT,fix for P∞

Br-a.s. B
l:ifc4

Lem 8. For each A ∈ T̃path(SN),

P̄s,B(A) ∈ {0,1} for P∞
Br-a.s. B
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Proof of Thm
l:tt4

11:

Thm
l:tt4

11 Tpath(SN) is Ps-trivial for µℓ-a.s. s.
Proof. From F∞(s,X,B) = X, we deduce that, for P∞

Br-a.s. B,

P̄s,B ◦ F∞(s, ·,B)−1 = P̄s,B. (16)
:45a

• From Lem
l:ifc3

7, Lem
l:ifc4

8, and F∞(s, ·,B)(WT,fix) = 1, for all V ∈ V,

P̄s,B ◦ F∞(s, ·,B)−1(V) ∈ {0,1} for P∞
Br-a.s. B.

Since V is countable, we deduce that, for P∞
Br-a.s. B,

P̄s,B ◦ F∞(s, ·,B)−1(V) ∈ {0,1} for all V ∈ V. (17)
:45b

Since V is a countable determination class, we obtain from (
:45b

17) and
Lem

l:ifc2

6 that

P̄s,B ◦ F∞(s, ·,B)−1(A) ∈ {0,1} for all A ∈ B(W (SN)). (18)
:45c

Hence we deduce that

P̄s,B ◦ F∞(s, ·,B)−1 = δX for some X = X(s,B) ∈ W (SN).

In particular, X is a function of (s,B). This combined with (
:45a

16)
implies that P̄s,B = δX(s,B), and Tpath(SN) is Ps-trivial for µℓ-a.s..
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