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Abstract

Randomly fluctuating interfaces, which arise in the situation of phase coexistence to
separate two distinct phases, are studied in several different settings such as Ising
model, effective interface models like ∇φ-interface model or dynamic Young dia-
grams, sharp interface limit for stochastic Allen-Cahn equation (sometimes called
time-dependent Ginzburg-Landau model or stochastic quantization, dynamic P (ϕ)-
model), Kardar-Parisi-Zhang (KPZ) equation and others.

This course focuses on three different topics and approaches, that is, (1) scaling
limits for ∇φ-interface model with pinning (static theory), (2) sharp interface limits
for stochastic Allen-Cahn equation (dynamic theory) and (3) KPZ equation.

Assuming that the interface is represented as a height function measured from
a fixed reference discretized hyperplane, the system is governed by the Hamiltonian
of (gradient of) the height functions. This is called the ∇φ-interface model. I will
discuss the scaling limits for Gaussian (or non-Gaussian) random fields with a pinning
effect under the situation that the rate functional of the corresponding large deviation
principle has non-unique minimizers (joint works with E. Bolthausen and others [11],
[12], [51], [46]).

Sharp interface limit for Allen-Cahn equation, that is a reaction-diffusion equation
with bistable reaction term, leads to a motion of mean curvature for the interface.
Its stochastic perturbation will be discussed. After mentioning some examples of
stochastic partial differential equations (SPDEs), a brief introduction to the Brownian
motions, martingales and stochastic integrals will be given in an infinite dimensional
setting. Regularity property of solutions of SPDEs of parabolic type with additive
noises will be discussed. The references for this part are papers [39], [40], [41], [57],
[89]. A survey is given in [43].

KPZ equation describes a fluctuation of growing interfaces, and recently attracts
a lot of attentions. This is an ill-posed SPDE and requires a renormalization. I will
discuss its invariant measures (joint work with J. Quastel [52], [49]).
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Lecture notes for 3rd NIMS Summer School in Probability.

1



Contents

1 Scaling limits for pinned Gaussian random fields under the presence of
two possible candidates 3

1.1 Macroscopic variational problems . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Wulff shape and Winterbottom shape . . . . . . . . . . . . . . . . . 3

1.1.2 Variational problem with two phases . . . . . . . . . . . . . . . . . . 4

1.1.3 Variational problem with pinning effect . . . . . . . . . . . . . . . . 5

1.1.4 Examples of minimizers of J with pinning effect . . . . . . . . . . . 5

1.2 Microscopic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Wulff shape from microscopic models . . . . . . . . . . . . . . . . . . 6

1.2.2 ∇φ-interface model with pinning . . . . . . . . . . . . . . . . . . . . 7

1.3 Results for d = 1, n ≥ 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Outline of the proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Results for d ≥ 3, n = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 Outline of the proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.6.1 Proof of lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6.2 Proof of upper bound . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.6.3 Proof of LD type estimate . . . . . . . . . . . . . . . . . . . . . . . . 17

1.7 open problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Preliminaries for stochastic partial differential equations 18

2.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 TDGL equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.2 KPZ equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.3 Other examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Brownian motions, martingales and stochastic integrals in an infinite di-
mensional setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Brownian motions and martingales on a Hilbert space . . . . . . . . 23

2.2.2 Stochastic integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Stochastic partial differential equations of parabolic type with additive noises 29

2.3.1 Concepts of Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.2 Regularity of Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.3 Invariant measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Sharp interface limit for stochastic Allen-Cahn equations 32

3.1 Known results without noises . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Results with noises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
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1 Scaling limits for pinned Gaussian random fields under
the presence of two possible candidates

The macroscopic shape of crystals is usually described by variational problems. We first
explain those characterizing Wulff shape, Winterbottom shape and also variational prob-
lems with two phases (or two media), variational problem with pinning effect. We give
some examples of minimizers. Next, we explain underlying microscopic models such as
Ising model and ∇φ-interface model. Macroscopic variational problems and microscopic
models are linked by large deviation principle, or law of large numbers. We will focus
on the ∇φ-interface model with pinning. For such model, results for d = 1, n ≥ 1 (with
Bolthausen, Otobe [12], [51]) and those for d ≥ 3, n = 1 (with Bolthausen, Chiyonobu
[11]) will be presented, where d is the dimension of base space, while n is the dimension
of value space. See [55], [46] for the ∇φ-interface model.

1.1 Macroscopic variational problems

1.1.1 Wulff shape and Winterbottom shape

Let a direction-dependent (anisotropic) surface tension σ : Sd−1 → (0,∞) be given. Then,
for a domain V (a droplet of water located in vapor) in Rd with a nice boundary S = ∂V ,
we define the total surface tension of S (total energy of the interface S) by

J(S) =

∫
S
σ(
⇀
n (x))dx,

where
⇀
n (x) is the outward normal vector at x ∈ S and dx is the surface element of

S. Wulff shape (introduced in 1902) is determined as the minimizer of the variational
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problem:
min

vol V=v
J(S),

for each given volume v > 0.

When the droplet is placed upon solid substrates, in addition to the water-vapor surface
tension σ, one needs to consider the effect of the water-solid surface tension σWS. The
equilibrium shape of droplet is called Winterbottom shape (introduced in 1967). In the
context of the ∇φ-interface model discussed later, if the solid substrates are located at
the height level 0, the variational problem is formulated with pinning effect (see Section
1.1.3) and considered under the conditions h ≥ 0 and the total volume

∫
hdx = v > 0, see

[13].

1.1.2 Variational problem with two phases

We now consider the situation that the interface S can be described by a height function
h measured from a fixed reference hyperplane: S = {(x, y); y = h(x), x ∈ D}, that is, S is
represented as a graph of y = h(x). Such model is called an effective model.

Let D b Rd be given and for h : D → R (or Rn later), consider the total energy given
by

J(h) =

∫
D

{
σ(∇h(x))−Q(x)1{h(x)≤0}

}
dx,(1.1)

where σ : Rd → R is a convex function (e.g., σ(u) = 1
2 |u|

2) and Q(x) ≥ 0. If h takes
negative values, J(h) becomes smaller and this means that the negative side has advantage.
In other words, we consider a domain D × R, which is filled with a predominant media
in the lower half D × (−∞, 0] of this domain and an inferior media in the upper half
D × (0,∞). The analytic theory for J was studied by [1], [2], [91] and others.

It is easy to see that the minimizer h satisfies Euler equation:

div{∇σ(∇h)} ≡
d∑
i=1

∂

∂xi

(
∂σ

∂ui
(∇h)

)
= 0 on D \ Γ,

where Γ = {h = 0}, and the free boundary condition:

Ψ(∇h+)−Ψ(∇h−) = Q on Γ,

where Ψ(u) = u · ∇σ(u)− σ(u).

In particular, when σ(u) = 1
2 |u|

2, Euler equation and the free boundary condition are
given by

∆h = 0 and |∇h+|2 − |∇h−|2 = 2Q(x),

respectively.

Another interpretation of this variational principle is that J describes the energy of
flow of two liquids in models of jets and cavities and in this setting h is called a stream
function.
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D = disc, h|∂D ≥ 0 D = annulus

Figure 1: Shapes of minimizers

1.1.3 Variational problem with pinning effect

The last section discussed the situation that the negative side has advantage. Here, we
consider the situation that a single point {0} (or D×{0}) has advantage. This is called a
pinning effect. The problem becomes a bit singular compared with that discussed in the
last section.

The energy of the height of interface h : D → R (or Rn) with pinning at 0 ∈ R (or Rn)
is given by

J(h) =

∫
D

{
σ(∇h(x))− ξ1{h(x)=0}

}
dx, ξ > 0.(1.2)

Euler equation and the free boundary condition for the minimizer h are similar to the two
phases’ problem at least if h|∂D ≥ 0.

1.1.4 Examples of minimizers of J with pinning effect

Here, we consider the simple case: d = 1, n ≥ 1, σ = 1
2 |u|

2, D = [0, 1]. In this case, for
h : [0, 1] → Rn satisfying h(0) = a, h(1) = b, the energy J with pinning at 0 is given by

J(h) =
1

2

∫ 1

0
|ḣ(x)|2 dx− ξ

∣∣∣{x ∈ [0, 1];h(x) = 0}
∣∣∣,

where |{· · · }| denotes the Lebesgue measure.

This energy J has two possible candidates h̄ and ĥ, where h̄ is a straight line connecting
a and b.

h̄ ĥ ĥ

0 1

a

b

0 1

a

b

P
1

P
2

0 1

a

P
1

P
2

b

Figure 2: Possible candidates of minimizers

The Euler equation is given by ∆h = 0. This means that the minimizers should be line
except when they touch 0. In ĥ, let us denote P1(x1, 0) and P2(1− x2, 0). Then, the free
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boundary condition called Young’s relation is determined by

|a|/x1 = |b|/x2 =
√

2ξ.

We call critical (coexisting) case if J(h̄) = J(ĥ) holds.

Proposition 1.1. Assume d = n = 1, then the coexisting region is given by
√

|a|+
√

|b| =
(2ξ)1/4, ab > 0, see Figure 3.

0

√
2ξ

−
√
2ξ

√
2ξ−

√
2ξ

Figure 3: Coexisting region

The question we want to ask is the following: Which minimizer really appears at critical
case. Macroscopically, these two minimizers have the same superiority. Our hope is that
we can find out the difference if we observe the system from microscopic level.

1.2 Microscopic models

1.2.1 Wulff shape from microscopic models

Dobrushin-Kotecký-Shlosman [25], Ioffe and others [66], [67], [68] proved large deviation
principle (LDP) for Ising model and derived Wulff shape under a scaling limit. Ising
model is a microscopic model, while Wulff shape is a macroscopic shape of crystal. There
are several results for the so-called ∇φ-interface model taking as a microscopic model.
Bolthausen-Ioffe [13] studied the ∇φ-interface model with wall and pinning when d = 2
and derived Winterbottom shape as a macroscopic shape of crystal. Deuschel-Giacomin-
Ioffe [23] proved the LDP for the ∇φ-interface model and derived Wulff shape under the
scaling limit in this setting. Funaki-Sakagawa [53] studied the ∇φ-interface model with
weak self potential, proved the LDP and derived the free boundary problem discussed in
Section 1.1.2.

As we mentioned, macroscopic crystal shapes are characterized by variational problems
and the large deviation principle (LDP) connects microscopic models with macroscopic
variational problems. We quickly recall this procedure: Let {µN}N be a sequence of
probability measures describing microscopic model. Let hN be the scaled heights (random
variables) defined under µN . We call LDP holds with rate function J∗(h)

(
= J(h) −

inf J
)
≥ 0 if

µN (h
N ∼ h) ∼ e−NJ

∗(h), as N → ∞.
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Under the LDP, we easily have the concentration properties: SetH = {h∗;Minimizers of J},
then for any δ > 0, there exists c = cδ > 0 such that

µN
(
dist(hN ,H) ≥ δ

)
≤ e−cN

As we already stated, our question is to see what happens if the variational problem for
J∗ (so that for J) has several minimizers from microscopic model described by µN .

1.2.2 ∇φ-interface model with pinning

Let us introduce our microscopic model called the ∇ϕ-interface model with pinning. The
system is defined on a d-dim square lattice cylinder with size N , being periodic in 2nd-dth
coordinates:

DN = {0, 1, 2, . . . , N} × Td−1
N , Td−1

N = (Z/NZ)d−1.

We denote D◦
N = DN \ ∂DN , ∂DN = ∂LDN ∪ ∂RDN , ∂LDN = {0} × Td−1

N and ∂RDN =

{N} × Td−1
N .

Figure 4: Lattice cylinder

The microscopic objects (height function when n = 1) ϕ = (ϕi)i∈DN
: DN → Rn is a

field defined on DN . The energy (Hamiltonian) of ϕ is given as the sum over all bonds
(i.e., pairs of nearest neighbor sites) ⟨i, j⟩ in DN :

(1.3) HN (ϕ) =
1

2

∑
⟨i,j⟩⊂DN

|ϕi − ϕj |2,

with the boundary conditions at ∂DN determined by given macroscopic values a, b ∈ Rn:

(1.4) ϕi = aN, i ∈ ∂LDN and ϕi = bN, i ∈ ∂RDN .

Then, the microscopic model for ϕ is described by the Gibbs measure with pinning:

(1.5) µεN (dϕ) =
1

ZεN
e−HN (ϕ)

∏
i∈D◦

N

(
εδ0(dϕi) + dϕi

)
,

where ε ≥ 0 is a parameter called the strength of pinning and ZεN is the normalizing
constant called the partition function. Note that µ0N (i.e. ε = 0) is Gaussian. When d = 1,
µεN defines a random walk and we will consider general non-Gaussian case in Section 1.3.

Scaling from microscopic object ϕ to macroscopic object hN is defined as follows: Let
D = [0, 1] × Td−1 be a continuous cylinder of size 1, where Td−1 = (R/Z)d−1. Then the
macroscopic field hN = (hN (x))x∈D ∈ C(D,Rn) is defined as

(1.6) hN
(
i

N

)
=

1

N
ϕi, i ∈ DN ,
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and its extension to D as a step function. We sometimes take a polilinear interpolation
instead of step extension, see [11], [23]. Our problem is to find the limit of hN under µεN
as N → ∞. Microscopic model corresponding to two phases’ case was studied by [53].

Figure 5: Microscopic droplet

The effect of microscopic pinning is macroscopically reflected in the pinning free energy
defined by

(1.7) ξε = lim
ℓ→∞

1

|Λℓ|
log

Z0,ε
Λℓ

Z0
Λℓ

,

where Λℓ = {1, 2, . . . , ℓ}d b Zd, |Λℓ| = ℓd and Z0,ε
Λℓ
, Z0

Λℓ
are partition functions on Λℓ with

0-boundary condition with/without pinning, respectively.

It is known that there exists εc ≥ 0 such that ε > εc ⇔ ξε > 0 (localization) holds.
Moreover, we have that

d = 1, n ≥ 3 ⇒ εc > 0 (Pinning transition occurs),

d ≥ 1, n = 1 or d = 1, n = 2 ⇒ εc = 0 (No transition occurs; always localized).

See Theorem 1.1 of [51] for d = 1 and Section 7 of [46] for localization when d ≥ 2, n = 1.

1.3 Results for d = 1, n ≥ 1

We take DN = {0, 1, 2, . . . , N} and consider the microscopic system ϕ = {ϕi}i∈DN
dis-

tributed under the measure µN ≡ µεN on (Rn)D◦
N defined by

µN (dϕ) =
1

ZεN

N∏
i=1

p(ϕi − ϕi−1)

N−1∏
i=1

(
εδ0(dϕi) + dϕi

)
,

satisfying the boundary condition (1.4): ϕ0 = aN, ϕN = bN with a, b ∈ Rn, where p is a
probability density function on Rn:

∫
Rn p(x)dx = 1. We assume that p satisfies

sup
x∈Rn

eλ·xp(x) <∞

8



for all λ ∈ Rn. Note that µN is a generalization of the Gibbs measure with pinning defined
by (1.5) when d = 1. In fact, we may take p(x) = (2π)−n/2e−|x|2/2.

The macroscopic height hN is defined by (1.6) and its linear interpolation, that is,

hN (x) =
[Nx]−Nx+ 1

N
ϕ[Nx] +

[Nx]−Nx

N
ϕ[Nx]+1, x ∈ D = [0, 1].

We define σ(u), u ∈ Rn by the Legendre transform

σ(u) = sup
λ∈Rn

{λ · u− Λ(λ)}

of

Λ(λ) = log

∫
Rn

eλ·xp(x)dx.

Consider J defined by (1.2) with this σ, ξ = ξε and D = [0, 1]; note that ξε can be defined
also in this setting. Then, one can show the sample path LDP [53], [12], [51], which is
roughly formulated as

µN (h
N ∼

L∞
h) ∼ e−NJ

∗(h), as N → ∞,

for h ∈ C([0, 1],Rn). The rate function is given by J∗(h) = J(h)− inf J . Here, “hN ∼
L∞

h”

means hN and h are close in L∞([0, 1])-norm. Note that this result is well-known when
ε = 0 and ϕN is free (instead of ϕN = bN), and σ(u) = 1

2 |u|
2 in the Gaussian case. The

concentration property implies that

hN −→
N→∞

{Minimizers of J},

in probability in L∞-norm.

The results on the scaling limits at criticality (d = 1) are summarized in the following:

Theorem 1.2. ([51], [12]) Let h̄ and ĥ be two possible minimizers given in Section 1.1.4
and assume the condition J(h̄) = J(ĥ).
(1) When n = 1, the limit of hN under µN is ĥ: For every δ > 0,

lim
N→∞

µN (∥hN − ĥ∥∞ ≤ δ) = 1,

where ∥ · ∥∞ is the supremum norm on [0, 1].
(2) When n = 2, a coexistence occurs as N → ∞, that is, the limit of hN under µN is a
mixture of h̄ and ĥ: For every δ > 0 small enough,

lim
N→∞

µN (∥hN − ĥ∥∞ ≤ δ) = λ̂,

lim
N→∞

µN (∥hN − h̄∥∞ ≤ δ) = λ̄,

with some 0 < λ̂ < 1, λ̂+ λ̄ = 1.
(3) When n ≥ 3, the limit of hN under µN is h̄: For every δ > 0,

lim
N→∞

µN (∥hN − h̄∥∞ ≤ δ) = 1.
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Figure 6: Possible minimizers (Free boundary case)

This can be extended to the case of free boundary condition at ∂RD = {N} for the
microscopic system. In fact, the pinning free energy ξε,F is similar but a bit modified and
LDP is essentially the same with ξ = ξε,F . Possible minimizers h̄ and ĥ in this setting are
as in Figure 6.

Critical (coexisting) case (n = 1) is:

J(h̄) = J(ĥ) ⇔ a = ±
√
ξ/2

Theorem 1.3. ([51], [12]) Assume J(h̄) = J(ĥ).
(1) When n = 1, a coexistence occurs as N → ∞.
(2) When n ≥ 2, the limit of hN is h̄.

Another extension is the case with wall effect, that is, we replace dϕi in the definition
of the Gibbs measure with the Lebesgue measure dϕ+i on R+. Then, the free energy is
replaced by ξε,+ or ξε,F,+ and it is known that there exists ε+c ≥ 0 such that ε > ε+c ⇔
ξε,+ > 0. Moreover,

d = 1, n ≥ 1 ⇒ ε+c > εc (≥ 0) (in particular ε+c > 0),

d = 2, n = 1 ⇒ ε+c > 0,

d ≥ 3, n = 1 ⇒ ε+c = 0 (No transition).

See Theorem 1.1 of [12] for d = 1 and Section 7.3 of [46] for d ≥ 2, n = 1. We assume
a, b ∈ Rn+. Then, under the balance condition J+(h̄) = J+(ĥ), theorems analogous to
Theorems 1.2 and 1.3 hold. When d = 1, n ≥ 1, critical exponents of ξε, ξε,+ at ε = εc, ε

+
c

can be computed.

1.4 Outline of the proof

The proofs of Theorems 1.2 and 1.3 go as follows. The balance condition J(h̄) = J(ĥ)
implies that the (leading) exponential order of RN vanishes, where

(1.8) RN =
µN (h

N ∈ nbd of ĥ)

µN (hN ∈ nbd of h̄)
,

and the neighborhoods are in L∞-sense. We then compute its prefactor of the form Nα

and finally obtain that

RN ∼

{
N1−n

2 , in the Dirichlet case,

N
1
2
−n

2 , in the free case.
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This leads to the conclusion of theorems. We show this in the Dirichlet case.

We denote the partition function ZεN by ZaN,bN,εN to indicate the boundary conditions

and ZaN,bN,0N (i.e. ε = 0) simply by ZaN,bNN , respectively. Similarly, we denote µεN by

µaN,bN,εN and ZaN,bN,0N simply by ZaN,bNN , respectively. Then, since the condition: “hN ∈
L∞-nbd of h̄” implies that ϕ never touch 0 (if the line connecting a and b does not touch
0 and if the L∞-neighborhood is chosen small enough), we see that

ZaN,bN,εN µN (h
N ∈ nbd of h̄) ∼ ZaN,bNN .

Therefore, we have

RN ∼
ZaN,bN,εN

ZaN,bNN

µN (h
N ∈ nbd of ĥ)(1.9)

∼
∑
j<k

ΞεN,j,k µ
aN,0
j (hN ∈ nbd of ĥ)

× µ0,0,εk−j (h
N ∈ nbd of ĥ)µ0,bNN−k(h

N ∈ nbd of ĥ),

where

ΞεN,j,k :=
ZaN,0j Z0,0,ε

k−j Z
0,bN
N−k

ZaN,bNN

=
ZaN,0j Z0,0

k−jZ
0,bN
N−k

ZaN,bNN

×
Z0,0,ε
k−j

Z0,0
k−j

=: A× B.

To derive the second line for RN , we expand the product measure
∏N−1
i=1 (εδ0(dϕi) + dϕi)

and show that the probability that ϕ touches 0 at most once is negligible. Thus, we may
only consider the probability that ϕ touches 0 at least twice. In this event, j and k mean
the first and last hitting times of ϕ at 0, respectively.

By the local central limit theorem, as k → ∞ such that k/N → r ∈ (0, 1], we have

Za,bk ∼ 1

(2πk)n/2
√
detQ((b− a)/r)

exp

{
−kσ

(
N(b− a)

k

)}
,

where Q(v) is the covariance matrix of the Cramér transform pλ(v) of p, which has mean
v ∈ Rn. Therefore, we obtain the asymptotic behavior of A:

A ∼
(

N

j(k − j)(N − k)

)n/2
exp

{
−Nf̃ (s1, s2)

}
,

where s1 = j/N, s2 = 1− k/N and

f̃(s1, s2) = s1σ

(
− a

s1

)
+ s2σ

(
b

s2

)
+ (1− s1 − s2)σ(0)− σ(b− a).

On the other hand, applying the renewal theory based on the renewal equation for
Z0,0,ε
N :

Z0,0,ε
N = Z0,0

N + ε
N−1∑
i=1

Z0,0
i Z0,0,ε

N−i , N ≥ 2,

11



with Z0,0,ε
1 = Z0,0

1 = 1, we have

B ∼ (k − j)n/2 exp
{
Nξε(1− s1 − s2)

}
.

These asymptotics of A and B are summarized into

RN ∼
(
N

N3

)n/2
×Nn/2 ×

∑
j∼t1N,k∼(1−t2)N

e−Nf(s1,s2)

∼ N−n/2 × (
√
N)2 = N−n/2+1,

where f(s1, s2) ∼ c1(t1 − s1)
2 + c2(t2 − s2)

2 with some c1, c2 > 0. Note that∑
j∼t1N

e−Nf(s1,s2) ∼
∑
j

e−c1N(j/N)2

=
∑
j

e−c1(j/
√
N)2 ∼

√
N

∫
R
e−c1x

2
dx.

1.5 Results for d ≥ 3, n = 1

We now consider a random field ϕ defined on a higher dimensional lattice cylinder DN . We
assume d ≥ 3 from a technical reason and discuss the case of n = 1 only. The microscopic
model is determined by the Gibbs measure µεN with pinning on RD◦

N introduced in (1.5)
under the boundary condition ϕ = aN on ∂LDN and ϕ = bN on ∂RDN with given a, b ∈ R.
Actually we take a, b > 0. Recall that µ0N (i.e. pinning ε = 0) is Gaussian.

The corresponding macroscopic variational problem with pinning is determined as fol-
lows: Let D = [0, 1] × Td−1 be the continuous cylinder. We write its coordinate as
x = (x1, x) ∈ D. Let ξ > 0 be given and consider

J(h) =
1

2

∫
D
|∇h(x)|2 dx− ξ

∣∣∣{x ∈ D;h(x) = 0}
∣∣∣

for h : D → R satisfying h(0, x) = a, h(1, x) = b, where |{· · · }| stands for the Lebesgue
measure.

The microscopic model and the macroscopic energy functional J are linked by the
(expected) LDP:

µεN (h
N ∼

Lp
h) ∼ e−N

dJ∗(h), as N → ∞,

where 2 ≤ p < 2d
d−2 and the rate function should be given by J∗(h) = J(h) − inf J with

ξ = ξε in (1.7).

Because of the special choice of the domain D, we see that there are only two possible
candidates h̄ and ĥ of minimizers of J determined by

h̄(x) = h̄(1)(x1), ĥ(x) = ĥ(1)(x1),

where h̄(1) and ĥ(1) are possible minimizers in one-dimensional problem; see Figure 7.

The result on the scaling limits at criticality (d ≥ 3) is formulated as follows:

12



h̄ ĥ

Figure 7: Possible minimizers (d ≥ 2)

Theorem 1.4. ([11]) We assume J(h̄) = J(ĥ). If d ≥ 3, n = 1 and if ε > 0 is sufficiently
large, hN converges to ĥ in L1(D) in probability: For every δ > 0,

lim
N→∞

µεN (∥hN − ĥ∥L1(D) ≤ δ) = 1.

In higher dimensions, differently from the one-dimensional case, it is known that sharp
spikes appear at microscopic level as Figure 5 shows. Therefore, the norm in L1(D) cannot
be replaced by that of L∞(D).

1.6 Outline of the proof

If we consider the ratio RN of two probabilities as in (1.8), the leading order (exponential
volume order) vanishes under the balance condition. The proof is reduced to show the
following three assertions. We consider the quantity appearing in (1.9) instead of RN .

• Lower bound (Surface order): For every 0 < α < 1 and 1 ≤ p ≤ 2,

pN :=
ZaN,bN,εN

ZaN,bNN

µεN (∥hN − ĥ∥Lp(D) ≤ N−α) ≥ ecN
d−1

with c = cε(= cε,α) > 0 for N ≥ N0 if ε > 0 is large enough. The upper suffixes

aN, bN in the partition functions indicate the boundary conditions and ZaN,bNN =

ZaN,bN,0N (i.e. ε = 0) as before.

• Upper bound (Capacity order): There exists α0 > 0 such that

qN :=
ZaN,bN,εN

ZaN,bNN

µεN (∥hN − h̄∥Lp(D) ≤ (logN)−α0) ≤ 2

for N ≥ N0. (Note that if ∥ · ∥Lp could be replaced by ∥ · ∥L∞ , then “qN ≤ 1” is
trivial. But this is not the case when d ≥ 2 because of spikes as we pointed out.)

• LD type estimate: There exists α1 > 0 such that

lim
N→∞

µεN
(
distL1(hN , {ĥ, h̄}) ≥ N−α1

)
= 0.

13



1.6.1 Proof of lower bound

This part is a rather rude estimate and we need to assume that the strength of pinning
ε > 0 is large enough. We divide D◦

N as D◦
N = AL ∪ γL ∪B ∪ γR ∪AR:

AL =
(
[1, NsL1 −K − 1] ∩ Z

)
× Td−1

N ,

γL =
(
[NsL1 −K,NsL1 ] ∩ Z

)
× Td−1

N ,

B =
(
[NsL1 + 1, NsR1 ] ∩ Z

)
× Td−1

N ,

γR =
(
[NsR1 + 1, NsR1 +K] ∩ Z

)
× Td−1

N ,

AR =
(
[NsR1 +K + 1, N − 1] ∩ Z

)
× Td−1

N ,

with some K ∈ N, where sL1 and sR1 ∈ (0, 1) are the first and last s’s such that ĥ(1)(s) = 0.
Then, restricting the probability appearing in pN on the event that ϕi = 0 for all i ∈
γL ∪ γR, the Markov property of µaN,bN,εN proves that

pN ≥
ZaN,0AL

Z0,0,ε
B Z0,bN

AR

ZaN,bNN

ε|γL|+|γR| × µaN,0AL
(∥hN − ĥ∥Lp(DL) ≤ δ)

× µ0,0,εB (∥hN − ĥ∥Lp(DM ) ≤ δ)µ0,bNAR
(∥hN − ĥ∥Lp(DR) ≤ δ),

where the definitions of the measures µaN,0AL
, µ0,0,εB , µ0,bNAR

are similar as above and clear,
and DL, DM , DR are the macroscopic regions corresponding to AL, B, AR, respectively.
However, LDP for µaN,0AL

, µ0,0B , µ0,bNAR
and FKG type argument applied for µ0,0,εB show that

the three probabilities in the right hand side are all close to 1 for N sufficiently large.
Thus, for every c > 0, we obtain

pN ≥
ZaN,0AL

Z0,0,ε
B Z0,bN

AR

ZaN,bNN

ε|γL|+|γR| × (1− c) =: ΞN × (1− c),

for N ≥ N0.

Next, we need estimates on the partition functions. By the Gaussian property, we have

ZaN,bNN = exp

{
−N

d

2
(a− b)2

}
Z0,0
N ,

ZaN,0AL
= exp

{
− a2Nd

2(sL1 −K/N)

}
Z0,0
AL
,

Z0,bN
AR

= exp

{
− b2Nd

2(1− sR1 −K/N)

}
Z0,0
AR
.

However, we have the expansion 1/(sL1 −K/N) = 1/sL1 +KN−1/(sL1 )
2 + O(N−2) and a

similar one for 1/(1− sR1 −K/N) as N → ∞. Thus, we have

Ξ1
N = exp

{
f(a, b)Nd −Kf̃(a, b)Nd−1 −O(Nd−2)

}
Ξ0
N ,

where Ξ0
N is Ξ with a = b = 0, and

f(a, b) =
1

2
(a− b)2 − a2

2sL1
− b2

2(1− sR1 )
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= J(h̄)− J(ĥ)− ξε(sR1 − sL1 ),

f̃(a, b) =
a2

2(sL1 )
2
+

b2

2(1− sR1 )
2
.

Note that f̃(a, b) = 2ξε holds from Young’s relation for the angles of ĥ at s = sL1 and sR1 :
a/sL1 = b/(1− sR1 ) =

√
2ξε.

On the other hand, by the random walk representation of partition functions, we have

Z0,0
AL
Z0,0
AR

Z0,0
N

≥ exp
{
q̂0(|AL|+ |AR| − |D◦

N |)− C1N
d−1

}
,

where

q̂0 =
1

2
(log

π

d
+ q), q =

∞∑
k=1

1

2k
PRW

d

0 (η2k = 0)

Moreover, by the decoupling estimate [13], we have

Z0,0,ε
B ≥ exp

{
q̂ε|B| − 3

2
cNd−1

}
,

where q̂ε = q̂0 + ξε, c = G(0, 0) and G is the Green function of the d-dimensional random
walk on Zd; recall d ≥ 3.

Summarizing these estimates, the leading term of eO(Nd) cancels by the balance condi-
tion, and then by noting ξε ≤ log 2ε (for ε ≥ 1), we have

log pN ≥
(
(2K + 1)(log ε− q̂0)− 2Kξε − C1 −

3

2
c
)
Nd−1 −O(Nd−2)

≥
(
log ε− (2K + 1)q̂0 − 2K log 2− C1 −

3

2
c
)
Nd−1 −O(Nd−2).

The coefficient of Nd−1 is positive if ε > 0 is large enough. This completes the proof of
the lower bound.

1.6.2 Proof of upper bound

We expand the measure
∏
i∈D◦

N

(
εδ0(dϕi) + dϕi

)
to have

qN =
∑
A⊂D◦

N

ε|A
c|Z

aN,bN,0
A

ZaN,bNN

µaN,bN,0A (∥hN − h̄∥Lp(D) ≤ δ),

with δ = (logN)−α0 , α0 > d/p. Here, µaN,bN,0A denotes the Gibbs measure without pinning
and with boundary conditions 0 on Ac = D◦

N \A and (1.4) on ∂DN . If |Ac| ≥ (N/ logN)d,

then hN = 0 on 1
NA

c so that ∥hN − h̄∥Lp ≥ c(logN)−d/p and µaN,bN,0A (∥hN − h̄∥Lp(D) ≤
δ) = 0. Therefore, we may prove

rN :=
∑

A⊂D◦
N :|Ac|≤(N/ logN)d

ε|A
c|Z

aN,bN,0
A

ZaN,bNN

≤ 2.
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To this end, we first introduce several notation:

PAc(i, j) = Pi(RW enters Ac at j before reaching ∂DN ),

pL(i) = Pi(RW does not return to Ac and leave DN on ∂LDN ),

pR(i) = Pi(RW does not return to Ac and leave DN on ∂RDN ),

eAc(i) = 1−
∑
j∈Ac

PAc(i, j)
(
= pL(i) + pR(i)

)
,

capDN
(Ac) =

∑
i∈Ac

eAc(i),

where RW means the random walk on Z × Td−1
N starting at i. eAc(i) and capDN

(Ac) are
called the escape probability and the capacity. Then, by the Gaussian property, we get

(1.10)
ZaN,bN,0A

ZaN,bNN

=
1√

(2π)|A
c| det ΓAc

exp {−d ⟨m, (I − PAc)m⟩Ac} ,

where PAc = (PAc(i, j))i,j∈Ac ,ΓAc = (I − PAc)−1 and m is the linear interpolation on D◦

satisfying the boundary condition (1.4). The denominator in the right hand side of (1.10)
can be estimated by e−d|A

c| from below.

On the other hand, for the numerator, we see that

m (i) =
∑
j∈Ac

PAc (i, j)m (j) + pL (i) aN + pR (i) bN.

Therefore, we obtain

(I − PAc)m(i) ≥ min (a, b)NeAc (i) , i ∈ Ac.

Since we also have m (i) ≥ min (a, b)N , this combined with the estimate on the denomi-
nator leads to

(1.11)
ZaN,bN,0A

ZaN,bNN

≤ ed|A
c|−cN2capDN

(Ac),

with some c > 0.

However, we have the capacity bound:

(1.12) capDN
(Ac) ≥ c|Ac|(d−2)/d.

In fact, this can be shown as follows. First we chop the cylinder DN into several boxes
and show that (1.12) follows once we can show this for A which is not connected in the
vertical direction (i.e. the direction of Td−1

N ). This reduces the problem on Zd. But (1.12)
on Zd in place of DN follows from the isoperimetric inequality:

|∂A| ≥ c|A|(d−1)/d

combined with the result of [69].
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Now, setting χ(k) = ♯{A; |Ac| = k}, we have from (1.11) and (1.12)

rN ≤
(N/ logN)d∑

k=0

χ(k)εkedk−c̄N
2k(d−2)/d

.

The term with k = 0 is 1, while the sum of other terms ≤ 1 if N is large. This concludes
the proof of the upper bound.

1.6.3 Proof of LD type estimate

We first show the stability of J at macroscopic level:

(1.13) J∗(h) ≤ δ =⇒ distL1(h, {h̄, ĥ}) ≤ C
√
δ.

Next, we introduce mesoscopic regions as follows: Given 0 < β < 1, we divide DN into
Nd(1−β) subboxes of sidelength Nβ. We write BN for the set of these subboxes, and B̂N
for the set of unions of boxes in BN . For B ∈ B̂N , which is called a mesoscopic region, set

EN,0(B) = inf
ϕ∈RDN :(1.14)

HN (ϕ),

EN (B) = EN,0(B)− ξε|Bc|,
E∗
N (B) = EN (B)− min

B∈B̂N

EN (B),

where HN (ϕ) is defined in (1.3) and the infimum is taken over all ϕ ∈ RDN satisfying the
condition:

(1.14) ϕi =


aN if i ∈ ∂LDN

bN if i ∈ ∂RDN

0 if i ∈ D◦
N\B.

Then, the stability (1.13) of J at macroscopic level can be extended to the mesoscopic
level: For α > 0, there exists δ = δ(α) > 0 such that, if N is large enough,

E∗
N (B) ≤ Nd−δ =⇒ distL1(hNB , {h̄, ĥ}) ≤ N−α,

holds for B ∈ B̂N , where hNB is defined as follows: Let ϕ̄B be the harmonic function on
B subject to the condition (1.14). Then, the macroscopic profile hNB is defined from the
microscopic profile ϕ̄B by polilinearly interpolating 1

N ϕ̄
B
[Nx], x ∈ D.

We further introduce mesoscopic wetted region: Fix γ > 0 and

MN ≡ MN (ϕ)
def
=

∪{
C ∈ BN : ϕcg,β,NC ≥ Nγ

}
,

where, for C ∈ BN ,
ϕcg,β,NC

def
= N−dβ

∑
j∈C

ϕj .
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We now decompose and estimate the probability of target as follows:

µεN

(
distL1(hN , {h̄, ĥ}) ≥ N−α

)
=

∑
B∈B̂N

µεN

(
distL1(hN , {h̄, ĥ}) ≥ N−α,MN = B

)
≤ ♯{B̂N} max

B∈B̂N

µεN

(
distL1(hN , {h̄, ĥ}) ≥ N−α,MN = B

)
.

Since the number of mesoscopic regions ♯{B̂N} = eN
d(1−β) log 2 is sub-exponential in Nd,

if one can show that the above probability for each B is bounded by e−N
d−δ

with some
δ < dβ, we obtain the conclusion.

If E∗
N (B) ≤ Nd−δ′ , by mesoscopic stability, this event is hard to happen so that the

probability can be bounded by e−N
d−δ

with a suitable choice of δ′. On the other hand, if
E∗
N (B) ≥ Nd−δ′ , this probability is bounded by

≤ µεN (MN = B) ≍ e−E
∗
N (B) ≤ e−N

d−δ′

by the mesoscopic averaging effect, under which the free energy ξε arises.

The last part of the above explanation is rough. In the course of the proof, we use
super-exponential estimate, analysis of super harmonic functions on DN and volume filling
lemma. To avoid technical difficulty caused by the (aN, bN)-boundary condition, we
actually consider on an extended region and replace it by the 0-boundary condition.

1.7 open problems

There are several unsolved questions in higher dimensional setting. The case d = 2 is
unsolved because the Green function diverges. But we think the limit should be ĥ, since
this is the case for both d = 1 and d ≥ 3. When d ≥ 3, we assume that ε > 0 is sufficiently
large. But, the conjecture is that this assumption can be removed. We need to refine the
proof of the lower bound.

Other questions: What happens for general domain D or DN? What happens when
d ≥ 3 and n ≥ 2? How about the non-Gaussian case? What happens for different boundary
conditions as we discussed when d = 1? What happens when the set of minimizers is
continuous (as the example in p.1010 of [51])?

2 Preliminaries for stochastic partial differential equations

Stochastic partial differential equations (SPDEs) are partial differential equations contain-
ing random terms or space-time noises. They appear in a wide variety of fields such as
physics, biology, engineering (e.g., in control theory, filtering), economy (e.g., in finance)
and others.

Before giving precise formulation, we state motivations for the problems discussed in
Sections 3 and 4. SPDEs used in physics are sometimes ill-posed.
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2.1 Examples

2.1.1 TDGL equation

The first example is an equation for stochastic quantization or dynamic P (ϕ)d-model:

(2.1) ∂tϕ = ∆ϕ− ϕ3 + Ẇ (t, x), x ∈ Rd,

where Ẇ (t, x) is a space-time (Gaussian) white noise, that is, a Gaussian system with
mean 0 and (formal) covariance structure:

(2.2) E[Ẇ (t, x)Ẇ (s, y)] = δ(t− s)δ(x− y), t, s ≥ 0, x, y ∈ Rd.

It is known that the noise is very irregular: Ẇ ∈ C− d+1
2

− := ∩δ>0C
− d+1

2
−δ a.s. The

solution at least in the linear case (without ϕ3) has a better regularity: ϕ ∈ C
2−d
4

−, 2−d
2

−
t,x

(a.s.) because of the regularization property of the Laplacian ∆. This implies ϕ can be
a usual function only when d = 1 so that the nonlinear equation (2.1) is well-posed only
when d = 1.

Hairer [63] introduced the theory of regularity structures and systematic way of renor-
malization for these ill-posed SPDEs. For (2.1) with d = 2 or 3, we need to replace Ẇ by a
smeared noise Ẇ ε and introduce a renormalization factor −Cεϕ. Then, the limit of ϕ = ϕε

as ε ↓ 0 exists (in time locally). The solution obtained in the limit is not continuous in ξ
(in place of Ẇ ε), but continuous in ξ and their (finitely many) polynomials.

The equation (2.1) is sometimes called the time-dependent Ginzburg-Landau (TDGL)
equation. TDGL equation plays a vital role as a model equation in physics. It has a form
for R-valued u = u(t, x):

∂tu = −1

2
(−∆)α

δH

δu(x)
(u) + (−∆)α/2Ẇ (t, x), x ∈ Rd,(2.3)

where Ẇ (t, x) is the space-time Gaussian white noise and H(u) is a (formal) Hamiltonian,
called Ginzburg-Landau-Wilson free energy, given by

H(u) =

∫
Rd

{
1

2
|∇u(x)|2 + V (u(x))

}
dx,(2.4)

with a self-potential V : R → R; see Hohenberg-Halperin [65]. This is a kind of Langevin
equation. The formula (2.2) is formal and more precise definition due to the white noise
process will be explained in Section 2.2. When α = 0, the equation is called Model
A (non-conservative system), whereas when α = 1, it is called Model B (system with
conservation law). In the latter case, the integral

∫
Rd u(t, x)dx is preserved under the time

evolution at least at heuristic level. This integral represents total mass, total volume or
other quantities.

Since the functional derivative of H is given by

δH

δu(x)
= −∆u+ V ′(u(x)),
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the SPDE (2.3) has the forms

∂tu =
1

2
∆u− 1

2
V ′(u) + Ẇ (t, x),(2.5)

in the case α = 0 and

∂tu = −1

2
∆2u+

1

2
∆{V ′(u)}+

√
−∆Ẇ (t, x),(2.6)

in the case α = 1. The SPDEs (2.5) and (2.6) are called the TDGL equation of non-
conservative type and the TDGL equation of conservative type, respectively. The noise√
−∆Ẇ can be interpreted as the time derivative of a Q-cylindrical Brownian motion

on L2(Rd, dx) with a covariance operator Q = −∆; see Section 2.2. If V is a double-
well potential: V (u) = 1

4(u
2 − 1)2 with two bottoms at u = ±1 of same depth, then

−V ′(u) = u−u3 gives a bistable reaction term (u = ±1 are stable and u = 0 is unstable).
When Ẇ = 0 (i.e., noise is not added), (2.5) is known as Allen-Cahn equation or the
reaction-diffusion equation of bistable type, while (2.6) is known as Cahn-Hilliard equation.

−1 +1

Figure 8: Double-well potential

The SPDEs (2.3) are studied related to the sharp interface limit (for Model A: Kawasaki-
Ohta [72], Funaki [39], [40], [41], Weber [88], [89], for Model B: Antonopoulou-Karali-
Kossioris [4], Antonopoulou-Blömker-Karali [3]) and the hydrodynamic limit (for Model
B: Funaki [34], [35]).

The sharp interface limit or the problem of the dynamic phase transition is to study
the limit as ε ↓ 0 of TDGL equation (=stochastic Allen-Cahn equation):

(2.7) ∂tu = ∆u+
1

ε
f(u) + Ẇ (t, x), x ∈ Rd,

where f = −V ′ with a potential V of double-well type, e.g., f(u) = u − u3. The limit is
expected to satisfy:

u(t, x) −→
ε↓0

{
+1

−1

+1

−1

Γt

Figure 9: Phase separation

In other words, a random phase separating hyperplane Γt appears and the problem to be
discussed is to determine its dynamics under a proper time scaling.

The SPDEs (2.3) with reflection (i.e., u is confined to be u ≥ 0 or stay between two
walls) are studied by Nualart-Pardoux [80], Funaki-Olla [50] for Model A and Debussche-
Zambotti [22] for Model B. If the self-potential V has a discontinuity such as V (u) =

20



β1[0,∞)(u), then V ′(u) = βδ0(u) and the SPDE admits a singular drift. This potential
physically means that the space is filled by two different media separated by an interface
located at the level u = 0. Note that J in (1.1) essentially has the same form as H in (2.4)
in this case. If β > 0 and α = 0, the solution u of (2.5) is pushed toward the negative
side with strength β when it touches the interface located at 0. Bounebache-Zambotti [15]
studied such SPDE with singular drift.

The SPDE (2.3) has mathematically meaningful solution, only when the spatial dimen-
sion d = 1; see Section 2.3. For higher dimensions, SPDEs do not have solutions caused
by the roughness of the noise, cf. [63]. Instead, one can consider spatially discretized
equations. The ∇φ-interface model is a typical such example with the self-potential∫
V (u(x))dx replaced by the nearest neighbor pair-potential

∑
x,y∈Zd:|x−y|=1 V (u(x) −

u(y)); see Funaki-Spohn [55], Funaki [46].

2.1.2 KPZ equation

The second example is the Kardar-Parisi-Zhang (KPZ) equation which describes a motion
of a growing interface with fluctuation:

(2.8) ∂th =
1

2
∂2xh+

1

2
(∂xh)

2 + Ẇ (t, x), x ∈ R,

where h(t, x) denotes the height of interface. As we saw, in the linear case (without
1
2(∂xh)

2), h ∈ C
1
4
−, 1

2
−

t,x a.s. Therefore, the KPZ equation (2.8) itself is ill-posed. The right
form is the equation with renormalization:

∂th =
1

2
∂2xh+

1

2

{(
∂xh

)2 − δx(x)
}
+ Ẇ (t, x), x ∈ R.

See Section 4.

KPZ equation and its Cole-Hopf solution are one of the recent trends in the study of
probability theory. See Sasamoto-Spohn [84], [85], Hairer [62], [63], Quastel [82], Ferrari,
Corwin, O’Connell, Takeuchi-Sano, Funaki-Quastel [52] and others.

Figure 10: Color changes in time.

2.1.3 Other examples

Stochastic Navier-Stokes or Euler equations are typical examples of SPDEs, but we don’t
touch. Random traveling waves are studied in the case when α = 0, Ẇ = 0 and V (x, u, ω) =
g(x, ω)V0(u) by Nolen-Ryzhik [78], Nolen [79]. Continuous version of parabolic Anderson
model, that is, the heat equation with random potential term is given by

∂tu = ∆u+ V (t, x, ω)u,(2.9)

21



and studied with motivation to the random environment, homogenization (results depend
on dimension and structure of randomness, Bal [6], Pardoux-Piatnitski [81]), localization
of wave in random media. The equation (2.9) is in the class of the equations (2.3) with
α = 0, Ẇ = 0 and V (u) replaced by a random quadratic potential 1

2V (t, x, ω)u2.

Fluctuation limit in the hydrodynamic limit for microscopic interacting (particle) sys-
tems leads to SPDEs. Related fluctuation-dissipation theorem or Green-Kubo formula are
studied. See Funaki-Olla [50], Funaki-Sasada-Sauer-Xie [54].

Strings in Rd (Funaki [33]), strings on a manifold M (Funaki [38]) and strings in a
convex domain D with reflection (Bounebache [14]) are studied, and provide Rd or M or
D-valued SPDEs.

2.2 Brownian motions, martingales and stochastic integrals in an infinite
dimensional setting

We now discuss more precisely. To construct the space-time Gaussian white noise Ẇ (t, x)
having the covariance structure (2.2), take a complete orthonormal system (CONS) {ψk}∞k=1

of L2(Rd, dx) and a system of independent 1-dimensional Brownian motions {Bk
t }∞k=1 re-

alized on a certain probability space (Ω,F , P ), and consider a formal Fourier series with
random coefficients:

(2.10) W (t, x) =

∞∑
k=1

Bk
t ψk(x).

Then, one would have that

E[W (t, x)W (s, y)] =
∞∑

k,j=1

E[Bk
t B

j
s ]ψk(x)ψj(y)

=

∞∑
k=1

(t ∧ s)ψk(x)ψk(y) = (t ∧ s)δ(x− y),

and thus its time derivative is expected to satisfy the relation (2.2). As the CONS {ψk}∞k=1,
for example, one can take the Hermite functions:

hk(x) =
(
2kk!

√
π
)− 1

2 e−
x2

2 Hk(x),

where Hk(x) are the Hermite polynomials:

Hk(x) = (−1)kex
2 dk

dxk
e−x

2
.

Unfortunately, the series (2.10) does not converge in the space L2(Rd, dx). If we add a
dumping factor {λk > 0}∞k=1 satisfying

∑∞
k=1 λk <∞ and consider

(2.11) W (t, x) =
∞∑
k=1

√
λkB

k
t ψk(x),
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then it converges in L2(Rd, dx) or even in smaller spaces; see (a) below. Its time derivative
is called a colored noise.

To discuss the construction of noises rigorously, we extend the definitions of Brown-
ian motions, martingales and stochastic integrals to an infinite dimensional setting in a
systematic way. This part is taken from my Japanese book [47].

2.2.1 Brownian motions and martingales on a Hilbert space

(a) H-valued Brownian motions

Let H be a separable real Hilbert space equipped with an inner product (·, ·)H . A
typical example is H = L2(Rd, dx). Let Q be a self-adjoint nonnegative linear operator
on H of nuclear type. In other words, there exists {λk ≥ 0}∞k=1 and CONS {ψk}∞k=1 of H
such that Q is orthogonalized as Qψk = λkψk and TrQ :=

∑∞
k=1 λk < ∞. We denote the

family of all such Q by L+,1(H), cf. Kuo [75].

Definition 2.1. An H-valued continuous process W = (Wt)t≥0 defined on a probability
space (Ω,F , P ) is called a Brownian motion with covariance operator Q ∈ L+,1(H) or Q-
Brownian motion in short, if (Wt, ψ)H/

√
(Qψ,ψ)H is a 1-dimensional Brownian motion

for every ψ ∈ H such that Qψ ̸= 0.

Let {Bk
t }∞k=1 be a system of independent 1-dimensional Brownian motions defined on

(Ω,F , P ) and set

(2.12) Wt =
∞∑
k=1

√
λkB

k
t ψk := lim

n→∞

n∑
k=1

√
λkB

k
t ψk.

Then, the right hand side converges in L2(Ω,H) for every t ≥ 0 and converges a.s. as
random variables taking values in C([0, T ],H) for all T > 0. This can be roughly seen
from the computation:

E[∥Wt∥2H ] =
∞∑
k=1

λkE[(Bk
t )

2] = t

∞∑
k=1

λk = tTrQ <∞.

If we take Q = I, the above computation suggests that Wt /∈ H and indeed this is true in
an infinite dimensional setting. The process Wt constructed in this way is a Q-Brownian
motion. In fact, we have that

E[(Wt, ψ)
2
H ] = E

{ ∞∑
k=1

√
λkB

k
t (ψk, ψ)H

}2
(2.13)

= t
∞∑
k=1

λk(ψk, ψ)
2
H = t(Qψ,ψ)H , ∀ψ ∈ H.

Its characteristic functional is given by

(2.14) E[ei(Wt,ψ)H ] = e−t(Qψ,ψ)H/2, ψ ∈ H.
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Even though Q /∈ L+,1(H), if Q is a bounded operator, the computation (2.13) suggests
that there might be a possibility to define (Wt, ψ)H , that is, to give a meaning to Wt in
a weak sense. This is called the cylindrical Brownian motion and will be discussed in the
next paragraph (b).

Example 2.1. (i) (finite-dimensional case) Let α be a d×N matrix and let Bt be an N -
dimensional Brownian motion. Then, αBt is an H-valued Brownian motion with H = Rd
and its covariance operator is determined by Q = α tα ∈ L+,1(H), where the inner product
of H = Rd is the usual one.
(ii) For a given µ = {µx > 0}x∈Zd, set ℓ2(µ) = ℓ2(Zd, µ) := {ψ = (ψ(x))x∈Zd ∈
RZd

; ||ψ||2µ =
∑

x∈Zd ψ(x)2µx < ∞}. Then, ℓ2(µ) is a real Hilbert space equipped with
the inner product (ψ,φ)µ =

∑
x∈Zd ψ(x)φ(x)µx. We assume Trµ :=

∑
x µx < ∞. Let

{Bt(x)}x∈Zd be a system of independent 1-dimensional Brownian motions. Then, Wt :=
(Bt(x))x∈Zd is an ℓ2(µ)-valued Brownian motion with a covariance operator Qψ(x) =
µxψ(x), x ∈ Zd. In fact, from E[||Wt||2µ] = tTrµ <∞, we find that Wt is ℓ

2(µ)-valued and
we can easily see that E[(Wt, ψ)

2
H ] = t(Qψ,ψ)H .

(iii) We regard Zd as a square lattice embeded in Rd. Then, the Brownian motion Wt =
(Bt(k))k∈Zd introduced in (ii) can be regarded as a process taking values in the space of
generalized functions on Rd by means of

W̃t(x) =
∑
k∈Zd

Bt(k)δk(dx), x ∈ Rd,

where δk stands for the Dirac’s δ-measure at k. We can find a Hilbert space H, which is
a subclass of generalized functions, such that W̃t becomes an H-valued Brownian motion.

H-valued martingales. Let a reference family (Ft)t≥0 be given on a probability space
(Ω,F , P ). Let us denote the family of all H-valued continuous square integrable (Ft)-
martingalesM = (Mt)t∈[0,T ] satisfying M0 = 0 by M2

T (H). Namely, for every t ≥ 0, Mt is
an H-valued Ft-measurable random variable such that E[||Mt||2H ] < ∞, and E[Mt|Fs] =
Ms (i.e., E[(Mt, ψ)H |Fs] = (Ms, ψ)H ,∀ψ ∈ H) is satisfied if 0 ≤ s ≤ t ≤ T . We simply
write M2

T for M2
T (R). The space M2

T (H) is a Hilbert space equipped with an inner
product

(M,N)M2
T (H) = E[(MT , NT )H ],

in particular, M2
T (H) is complete. As usual, we identify Mt, Nt ∈ M2

T (H) if these two
processes satisfy P (Mt = Nt, ∀t ∈ [0, T ]) = 1. The quadratic variation Vt of M ∈ M2

T (H)
is defined by the following two conditions and such Vt always exists.

(1) Vt is an L+,1(H)-valued (Ft)-adapted process which is increasing as operators: 0 ≤
s ≤ t implies 0 = V0 ≤ Vs ≤ Vt, where V ≤ V ′ means that V ′ − V is a nonnegative
operator.

(2) For every φ,ψ ∈ H, ⟨(Mt, φ)H , (Mt, ψ)H⟩ = (Vtφ,ψ)H holds, where the left hand
side is the quadratic variation (cross variation) of R-valued martingales.

Lévy’s theorem, which characterizes the Brownian motion by means of martingales, can
be extended to the infinite-dimensional setting:

24



Theorem 2.1. Let Q ∈ L+,1(H). Then, M is a Q-Brownian motion if and only if
M ∈ M2

T (H) has a quadratic variation Vt = tQ.

(b) Cylindrical Brownian motions

Let Q be more general self-adjoint nonnegative bounded linear operator on H. Here we
assume Q > 0 for simplicity, that is Qψ ̸= 0 for every ψ ̸= 0. We denote the family of
all such Q by L+(H). Then, the Brownian motion with covariance operator Q cannot be
realized as an H-valued process in general, however we can define it in the following weak
sense.

Definition 2.2. A cylindrical Brownian motion on H with covariance operator Q ∈
L+(H), or Q-cylindrical Brownian motion in short, is a family of R-valued processes
W = {Wt(ψ); t ≥ 0, ψ ∈ H} parametrized by H satisfying the following two conditions:

(1) For every ψ ∈ H,ψ ̸= 0, Wt(ψ)/
√

(Qψ,ψ)H is a 1-dimensional Brownian motion.

(2) For every α, β ∈ R, ψ, φ ∈ H, Wt(αψ + βφ) = αWt(ψ) + βWt(φ), ∀t ≥ 0 holds a.s.

If Q ∈ L+,1(H) and Wt is a Q-Brownian motion, then Wt(ψ) := (Wt, ψ)H , ψ ∈ H
becomes a Q-cylindrical Brownian motion. In this way, Q-cylindrical Brownian motion
is realized as an H-valued process if and only if Q ∈ L+,1(H). In particular, when
H = L2(Rd) and Q = Id (=identity operator), W = {Wt(ψ); t ≥ 0, ψ ∈ L2(Rd)} is called
a d-dimensional white noise process.

Let {ψk}∞k=1 be a CONS ofH and let {Bk
t }∞k=1 be a system of independent 1-dimensional

Brownian motions. Then, for every Q ∈ L+(H),

(2.15) Wt(ψ) :=

∞∑
k=1

Bk
t (
√
Qψk, ψ)H , ψ ∈ H,

converges in M2
T and defines a Q-cylindrical Brownian motion, where

√
Q is defined by

means of the spectral decomposition of Q and the reference family (Ft)t≥0 for M2
T is that

naturally defined from {Bk
t }∞k=1.

The computation (2.13) holds in this generalized setting and we have that

E[Wt(ψ)
2] = t(Qψ,ψ)H , ψ ∈ H,

or more generally,

E[Wt(ψ)Ws(φ)] = t ∧ s
∞∑
i=1

(
√
Qψi, ψ)H(

√
Qψi, φ)H

= t ∧ s(Qψ,φ)H , ψ, φ ∈ H,

which is finite. This computation suggests that the derivative Ẇt(x) of the white noise
process in t would have the covariance structure (2.2).

Remark 2.1. For the white noise in time Ḃt =
dBt
dt , we formally have

E[ḂtḂs] = δ(t− s),
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since we would have for φ,ψ ∈ C∞
0 ((0,∞))∫ ∞

0
dt

∫ ∞

0
dsφ(t)ψ(s)E[ḂtḂs] = E[⟨φ, Ḃ⟩⟨ψ, Ḃ⟩]

= E[⟨φ̇, B⟩⟨ψ̇, B⟩] =
∫ ∞

0
dt

∫ ∞

0
ds φ̇(t)ψ̇(s)E[BtBs]

=

∫ ∞

0
φ̇(t)dt

∫ ∞

0
ψ̇(s)(t ∧ s)ds =

∫ ∞

0
φ(t)ψ(t)dt.

Example 2.2. (i) µ = 1 denotes µx = 1 for all x ∈ Zd and write ℓ2(Zd,1) simply ℓ2.
Then, independent system of Brownian motions Wt = (Bt(x))x∈Zd considered in Example
2.1-(ii) is Wt /∈ ℓ2 a.s. However, the series

Wt(ψ) =
∑
x∈Zd

Bt(x)ψ(x) := lim
n→∞

∑
x∈Zd:|x|≤n

Bt(x)ψ(x), ψ ∈ ℓ2,

converges in M2
T for every T > 0 and the limit is a cylindrical Brownian motion with co-

variance operator Q = Id ∈ L+(ℓ
2). As is stated in Example 2.1, Wt ∈ ℓ2(µ) if Trµ <∞.

This means that Id-cylindrical Brownian motion on ℓ2 can be realized as ℓ2(µ)-valued
Brownian motion by extending the Hilbert space ℓ2 to ℓ2(µ).
(ii) The space-time scaling applied to W̃t(x), x ∈ Rd considered in Example 2.1-(iii) deter-
mines

W̃
(n)
t (x) :=

∑
k∈Zd

Bt/n(k)δk/n(dx), x ∈ Rd, n ∈ N.

Then, W̃
(n)
t (x) as generalized functions valued process satisfies ⟨W̃ (n)

t , ψ⟩ =
∑

k∈Zd Bt/n(k)ψ(k/n),
and therefore we have

E[⟨W̃ (n)
t , ψ⟩2] = t

n

∑
k∈Zd

ψ

(
k

n

)2

−→
n→∞

t||ψ||2L2(Rd).

This suggests that the white noise process appears as the limit of independent Brownian
motions under a suitable scaling in lattice width and time length.

2.2.2 Stochastic integrals

Let W = (Wt)t≥0 be the (Ft)-cylindrical Brownian motion on H with covariance operator
Q ∈ L+(H) defined on a probability space (Ω,F , P ) equipped with (Ft)t≥0. In particular,
for every ψ ∈ H, Wt(ψ) is (Ft)-adapted and Wt(ψ) −Ws(ψ) and Fs are independent if
0 ≤ s < t. The goal is to define stochastic integrals with respect to Wt.

(a) H-valued integrands

Let L2
T,Q(H) be the family of all (Ft)-adapted H-valued stochastic processes f =

(ft(ω))t∈[0,T ] satisfying

∥f∥2L2
T,Q(H) = E[

∫ T

0
||
√
Qft||2H dt] <∞.
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We define the stochastic integral Mt(f) ≡
∫ t
0 (fs, dWs)H ∈ M2

T of f ∈ L2
T,Q(H) by

(2.16) Mt(f) :=
∞∑
k=1

∫ t

0
(fs, ψk)H dWs(ψk),

where {ψk}∞k=1 is an arbitrary CONS of H. Each term in the right hand side is defined
as a usual stochastic integral since Wt(ψk) is a 1-dimensional Brownian motion except a
constant multiplier. The series (2.16) is defined by expanding Wt like Wt =

∑
kWt(ψk)ψk

though it is not necessarily H-valued process. To observe that the right hand side of (2.16)

converges in the space M2
T , we set the sum in (2.16) up to nth term asM

(n)
t ∈ M2

T . Then,
noting that ⟨W (ψk),W (ψk′)⟩t = t(Qψk, ψk′)H , we see that

E[|M (n)
T −M

(m)
T |2] = E

 m∑
k,k′=n+1

∫ T

0
(ft, ψk)H(ft, ψk′)H(Qψk, ψk′)H dt


= E

[∫ T

0
(Qf

(n,m)
t , f

(n,m)
t )H dt

]
,

where f
(n,m)
t :=

∑m
k=n+1(ft, ψk)Hψk. Since f ∈ L2

T,Q(H), by means of Lebesgue’s conver-

gence theorem, this tends to 0 as m > n→ ∞. Thus, {M (n)
t }n∈N is a Cauchy sequence in

the space M2
T and by its completeness we can find the limit Mt(f). It can be shown that

the limit Mt(f) is uniquely determined independently of the choice of the CONS {ψk}∞k=1.

Proposition 2.2. The quadratic variation (cross variation) of the stochastic integral
Mt(f) is given by

⟨M(f),M(g)⟩t =
∫ t

0
(Qfs, gs)H ds, f, g ∈ L2

T,Q(H).

In particular, Itô isometry: ∥M(f)∥M2
T
= ∥f∥L2

T,Q(H) holds.

Proof. Similar computations for M
(n)
t presented above show that

⟨M (n)⟩t =
∫ t

0
(Qf (n)s , f (n)s )H ds, f (n)s :=

n∑
k=1

(fs, ψk)Hψk.

Letting n→ ∞, this implies ⟨M(f)⟩t =
∫ t
0 ||

√
Qfs||2H ds. The cross variation ⟨M(f),M(g)⟩t

can be computed easily from this.

For the white noise process {Wt(x)} on Rd, we denote the stochastic integral as∫ t

0

(
fs, dWs

)
L2(Rd)

=

∫ t

0

∫
Rd

fs(x)W (dsdx).

(b) Operator-valued integrands

We extend the result obtained in (a) to stochastic integrals with operator-valued inte-
grands. Let us introduce another separable real Hilbert space (H, (·, ·)H). We denote the
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family of all linear operators Φ : H → H such that Φ
√
Q are Hilbert-Schmidt operators

by L2,Q(H,H). Namely, Φ satisfies that

(2.17) ||Φ||22,Q :=

∞∑
k=1

||Φ
√
Qψk||2H <∞,

for every CONS {ψk}∞k=1 of H, cf. Kuo [75]. Note that ||Φ||2,Q defines a norm of the space
L2,Q(H,H), which does not depend on the choice of {ψk}∞k=1, and

(2.18) ||Φ||22,Q =

∞∑
j=1

||(Φ
√
Q)∗φj ||2H = Tr(ΦQΦ∗)

holds for a CONS {φj}∞j=1 of H, where Φ∗ is the adjoint operator of Φ. In fact, this follows

from ||Φ||22,Q =
∑

k,j(Φ
√
Qψk, φj)

2
H =

∑
k,j(ψk, (Φ

√
Q)∗φj)

2
H =

∑
j ||(Φ

√
Q)∗φj ||2H .

We denote the family of all (Ft)-adapted and L2,Q(H,H)-valued processes Φ = (Φt(ω))t∈[0,T ]
satisfying

∥Φ∥2L2
T (L2,Q(H,H)) = E[

∫ T

0
||Φt||22,Q dt] <∞

by L2
T (L2,Q(H,H)). Then, for each Φ ∈ L2

T (L2,Q(H,H)), we define the stochastic integral

Mt(Φ) ≡
∫ t
0 Φs dWs ∈ M2

T (H) by Mt, which satisfies

(2.19) (Mt, φ)H =

∫ t

0
(Φ∗

sφ, dWs)H , ∀t ≥ 0 a.s.

for every φ ∈ H. The right hand side of (2.19) is defined as a stochastic integral introduced
in (a) by noting that (Φ∗

tφ)t∈[0,T ] ∈ L2
T,Q(H). Note that the Brownian motion Ws is not

necessarily H-valued, but the stochastic integral obtained by acting Φs : H → H becomes
H-valued process.

Proposition 2.3. (i) Mt(Φ) ∈ M2
T (H) exists uniquely.

(ii) The quadratic variation Vt of Mt(Φ) is determined by

Vt =

∫ t

0
ΦsQΦ∗

s ds ∈ L+,1(H).

In particular, ||
∫ t
0 Φs dWs||2H−

∫ t
0 ||Φs||

2
2,Q ds is a martingale, and this implies Itô isometry:

∥M(Φ)∥MT (H) = ∥Φ∥L2
T (L2,Q(H,H)).

(iii) (Burkholder’s inequality) For every p ≥ 1, there exists Cp > 0 such that

(2.20) E

[
sup

0≤t≤T

∣∣∣∣∣∣∣∣∫ t

0
Φs dWs

∣∣∣∣∣∣∣∣2p
H

]
≤ CpE

[(∫ T

0
||Φt||22,Q dt

)p]
.

Proof. (i) The uniqueness is immediate from the definition (2.19). For the existence,
consider an approximation by

M
(n)
t :=

n∑
j=1

∫ t

0
(Φ∗

sφj , dWs)Hφj ∈ M2
T (H)
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for a CONS {φj}∞j=1 of H. Then, by Proposition 2.2 and (2.18), {M (n)
t }n is a Cauchy

sequence in M2
T (H) and the limit satisfies the property (2.19).

(ii) For every φ,ψ ∈ H, from (2.19) and Proposition 2.2, we have that

⟨(Mt, φ)H, (Mt, ψ)H⟩ =
∫ t

0
(QΦ∗

sφ,Φ
∗
sψ)H ds = (Vtφ,ψ)H.

This implies that the quadratic variation ofMt is given by Vt. In particular, (
∫ t
0 Φs dWs, φj)

2
H−

(Vtφj , φj)H is a martingale and thus ||
∫ t
0 Φs dWs||2H−

∑∞
j=1(Vtφj , φj)H is also a martingale.

Therefore, noting (2.18), we obtain that

∞∑
j=1

(Vtφj , φj)H =
∞∑
j=1

∫ t

0
(ΦsQΦ∗

sφj , φj)H ds

=
∞∑
j=1

∫ t

0
||(Φs

√
Q)∗φj ||2H ds =

∫ t

0
||Φs||22,Q ds.

(iii) We omit the proof. The details are in [47].

Remark 2.2. With f ∈ H, associate an operator Φf determined by Φfψ := (f, ψ)H , ψ ∈
H. Then, since ||Φf ||2,Q = ||

√
Qf ||H <∞, we see that Φf ∈ L2,Q(H,R). In this way, the

stochastic integral introduced in (a) can be regarded as a special case introduced in (b) by
taking H = R.

2.3 Stochastic partial differential equations of parabolic type with ad-
ditive noises

We consider the TDGL equations (2.5) of non-conservative type and (2.6) of conservative
type in extended forms. This section is mostly taken from [37].

Let us consider the following SPDEs of parabolic type with additive noises for u =
u(t, x), t ≥ 0, x ∈ Rd:

(2.21) ∂tu = Au+B(u) + CẆ (t, x),

where

(1) A =
∑

|α|≤2m aα(x)D
α with aα ∈ C∞

b (Rd), m ∈ N and α = (α1, . . . , αd) ∈ Zd+.

The derivative is the usual Dα =
(

∂
∂x1

)α1

· · ·
(

∂
∂xd

)αd

. The coefficients satisfy the

uniform ellipticity condition:

inf
x,σ∈Rd,|σ|=1

(−1)m+1
∑

|α|=2m

aα(x)σ
α > 0,

where σα = σα1
1 · · ·σαd

d for σ = (σ1, . . . , σd).

(2) B(u) is a nonlinear term. To be precise, we assume that it has the form: B(u)(x) =
B{b(x, u)}, whereB =

∑
|α|≤n bα(x)D

α with bα ∈ C∞
b (Rd), n ∈ Z, and b(u) = b(x, u)

is a nonlinear functional of u defined on a suitable function space and taking values
in another function space.
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(3) C =
∑

|α|≤ℓ cα(x)D
α with cα ∈ C∞

b (Rd), ℓ ∈ Z. The integers n and ℓ may be
negative, then B and C are regarded as integral operators. Here we assume n, ℓ ≥ 0.

(4) Ẇ (t, x) is the space-time Gaussian white noise, i. e. a Gaussian system with mean
0 and covariance structure (2.2).

Note that m = 1, n = 0, ℓ = 0 for the TDGL equation (2.5) of non-conservative type,
while m = 2, n = 2, ℓ = 1 for the TDGL equation (2.6) of conservative type.

2.3.1 Concepts of Solutions

We take the weighted L2-spaces

L2
r = L2(Rd, e−2rχ(x)dx), r > 0,

over Rd as the state spaces for solutions of (2.21), where χ ∈ C∞(Rd) such that χ(x) = |x|
for |x| ≥ 1.

Definition 2.3. u(t, x) is called a solution of (2.21) with an initial value u0 in the sense
of generalized functions, if it satisfies

(2.22) ⟨u(t), φ⟩ = ⟨u0, φ⟩+
∫ t

0
{⟨u(s), A∗φ⟩+ ⟨b(·, u(s)), B∗φ⟩}ds+Wt(C

∗φ),

for all φ ∈ C∞
0 (Rd), where ⟨u, φ⟩ =

∫
Rd u(x)φ(x)dx.

We have multiplied (2.21) by the test function φ and integrate it in t and x. Then, we
formally obtain (2.22) by regarding∫ t

0
ds

∫
Rd

CẆ (s, x)φ(x)dx =

∫ t

0

∫
Rd

C∗φ(x)W (ds, dx) =Wt(C
∗φ).

Another way to give a mathematical meaning to (2.21) is due to Duhamel’s principle:

Definition 2.4. u(t, x) is called a mild solution of (2.21), if it satisfies

u(t) = T (t)u0 +

∫ t

0
T (t− s)B(u(s))ds+

∫ t

0
T (t− s)CdWs,

where T (t) is the semigroup generated by the operator A in the space L2
r; see also (2.24)

below. The last term is defined as a stochastic integral introduced in Section 2.2-(b) with
non-random operator as its integrand.

In some typical cases the two notions of solutions are equivalent, see [47], [56]. If b(x, u)
is Lipschitz continuous as a map from u ∈ L2

r to b(·, u) ∈ L2
r, the (mild) solution of the

SPDE (2.21) exists uniquely under the conditions on m,n, ℓ of Proposition 2.4 stated
below. One can apply the standard method of successive approximations. The pathwise
uniqueness holds.
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2.3.2 Regularity of Solutions

Since the noise Wt(x) lives only in a bad space, we need the regularizing properties of the
operator A.

Proposition 2.4. Assume 2m > 2ℓ+d and in addition, for simplicity, n < 2ℓ+ d
2 . Then,

for the solution u(t, x) of (2.21), we have that

(2.23) u(t, x) ∈
∩
δ>0

Cα−δ,β−δ((0,∞)× Rd), a.s.,

with

α =
2m− 2ℓ− d

4m
and β =

2m− 2ℓ− d

2
.

In particular, for the TDGL equation (2.5) of non-conservative type, we have that

u(t, x) ∈
∩
δ>0

C
2−d
4

−δ, 2−d
2

−δ((0,∞)× Rd),

and for the TDGL equation (2.6) of conservative type, we have that

u(t, x) ∈
∩
δ>0

C
2−d
8

−δ, 2−d
2

−δ((0,∞)× Rd).

Therefore the solutions live in the usual function spaces, only when d = 1. If d = 2, the
solutions are already generalized functions. Of course, this can be improved, if we take
ℓ to be negative, which results in a more regular noise in the space variable, that is, a
colored noise. Otherwise, the solution cannot be defined in a classical sense.

Proof of Proposition 2.4. Let q(t, x, y) be the fundamental solution of the parabolic oper-
ator ∂t −A. Then, the following estimates are known:∣∣∣∂jtDα

xD
β
y q(t, x, y)

∣∣∣ ≤ t−
|α|+|β|

2m
−j q̄(t, x, y), t ∈ (0, T ], x, y ∈ Rd,

where

q̄(t, x, y) = K1t
− d

2m exp

{
−K2

(
|x− y|2m

t

) 1
2m−1

}
, t ∈ (0, T ], x, y ∈ Rd.

We consider the mild solution and set

(2.24) u(t, x) = u1(t, x) + u2(t, x) + u3(t, x),

where

u1(t, x) =

∫
Rd

q(t, x, y)u0(y)dy,

u2(t, x) =

∫ t

0

∫
Rd

C∗
yq(t− s, x, y)dWs(y)dy,
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u3(t, x) =

∫ t

0

∫
Rd

B∗
yq(t− s, x, y)b(y, u(s))dsdy.

Then, for the term u2(t, x) involving the stochastic integrals, using Itô isometry, one can
show that

E
[∣∣Dαu2(t, x)−Dαu2(t

′, x′)
∣∣2]

≤ C
{
|t− t′|

2m−2l−d−2|α|
2m + |x− x′|(2m−2l−d−2|α|−δ)∧2

}
,

t, t′ ∈ (0, T ], x, x′ ∈ Rd, δ > 0,

as long as both exponents are positive. Noting that u2(t, x) is Gaussian and apply-
ing Kolmogorov-Čentsov’s theorem (see, for example, Kunita [74]), we obtain (2.23) for
u2(t, x). Other terms u1 and u3 have better regularity at least if n < 2ℓ + d

2 ; see [37] for
details.

If we consider the stochastic Navier-Stokes equations as an example of the equation
(2.21), the nonlinear term u · ∇u appears, so that the noise has to be colored, or some
special way to interpret the nonlinearity is required. See Section 6 for the KPZ equation.

2.3.3 Invariant measures

Once the existence, uniqueness and regularity of solutions are established, the next interest
might be in studying their asymptotic behavior as time t becomes large, in particular, the
existence and uniqueness of invariant measures and ergodicity. For finite-dimensional
Markov processes, one can apply the well-known lower bound technique due to Doeblin.
However, the problem becomes delicate for processes taking values in infinite-dimensional
spaces. The solutions of SPDEs take values in certain Polish spaces. In order to investigate
the above mentioned properties for such processes, the following general methods are
known: (1) strong-Feller property (Da Prato-Zabczyk [21]), (2) asymptotic strong-Feller
property (Hairer-Mattingly [64], Hairer [61]), and (3) e-property (Komorowski-Peszat-
Szarek [73]). These methods are applied to various types of SPDEs.

Funaki [36] studied the invariant or reversible measures of the TDGL equation. It is
shown that the (grandcanonical) Gibbs measure associated with the Hamiltonian H(u) is
reversible under the TDGL equation (2.5) of non-conservative type and the uniqueness of
(tempered) invariant measure is shown under the convexity of the potential V . Contrarily,
the reversible measures of the TDGL equation (2.6) of conservative type are not unique.
This equation has a family of canonical Gibbs measures (Gibbs measures associated with
the Hamiltonian Hλ(·) = H(u)−

∫
λ(x)u(x)dx with external fields λ which satisfy ∆λ = 0)

as its reversible measures. This fact is essential to discuss the hydrodynamic limit.

3 Sharp interface limit for stochastic Allen-Cahn equations

Let us consider the stochastic Allen-Cahn equation (stochastic reaction-diffusion equation
or modified TDGL equation) with a small parameter ε > 0:

(3.1) ∂tu = ∆u+
1

ε
f(u) + Ẇ ε(t, x), t > 0, x ∈ D,
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where Ẇ ε(t, x) is a space-time noise depending on ε, which will be specified later, and D
is a domain in Rd. In the TDGL equation (2.5) of non-conservative type, the noise was the
space-time Gaussian white noise and the nonlinear term was given by −1

2V
′(u). In this

section, we will treat different noises, as well. We assume the reaction term f ∈ C∞(R) is
bistable, that is,

∃u∗ ∈ (−1, 1) s.t. f(±1) = f(u∗) = 0, f ′(±1) < 0, f ′(u∗) > 0.

Figure 11: Bistable reaction term

A typical example is f(u) = u−u3. We would expect that limε↓0 u
ε(t, x) = +1 or −1 holds

for the solution u = uε(t, x) of (3.1), since ±1 are stable points of f (or of the reaction
dynamical system u̇ = f(u)). Note that u∗ is an unstable point of f . The goal is to find
the evolutional law of the random interface separating two stable phases ±1.

Before precisely stating results on the sharp interface limit for stochastic Allen-Cahn
equations, we give a quick overview:

(1) d = 1 (Funaki [39], [40]) Replace Ẇ (t, x) by a small space-time Gaussian white noise
εγẆ (t, x) with γ > 0. Recall that the SPDE is well-posed only in one-dimension.
Then, under a proper initial condition, we can show that

uε(t, x) := u(ε−2γ− 1
2 t, x) −→χηt(x) = 1(−∞,ηt) − 1(ηt,∞),

where ηt behaves as a Brownian motion (BM) multiplied by a constant called inverse
surface tension. Numerical simulation due to Y. Otobe will be shown:
(a) ε = 0.01, γ = 0.25: strong force to ±1 compared to (b), BM is observed.
(b) ε = 0.1, γ = 0.25: BM is observed.
(c) ε = 0.1, γ = 0.375: a bit small fluctuation compared to (b), BM is observed.
(d) ε = 0.1, γ = 2.0: very small but some fluctuation is observed. Time is too short

to see BM.

(2) d ≥ 2 (Funaki [41], Weber [89]) Take Ẇ ε(t, x) ≡ Ẇ ε(t) = 1√
ε
ξε(t) with ξε(t) ∼ Ẇt

(time-dependent white noise) as ε ↓ 0. Then, the dynamics of the phase separating
hyperplane Γt appearing in the limit is given by

V = κ+ c0ẇt,

where V is an inward normal velocity of Γt, κ is the mean curvature of Γt and

c0 =
√
2∫ 1

−1

√
V (u)du

.

(3) Mass conserving stochastic Allen-Cahn equation (Funaki-Yokoyama [57]):

∂tu
ε = ∆uε +

1

ε

(
f(uε)−−

∫
D
f(uε)

)
+ αẆ ε(t), t > 0, x ∈ D.
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The limit is governed by

v = κ−−
∫
Γt

κ+
α|D|
2|Γt|

◦ Ẇ (t),

where −
∫
U means the average over U .

3.1 Known results without noises

First, assume Ẇ ε = 0 and set A(f) :=
∫ 1
−1 f(u) du = V (−1) − V (1), where V is the

potential corresponding to f such that f = −V ′. A traveling wave solution m =
m(y), y ∈ R with speed c = c(f) ∈ R is determined as an increasing solution of the
ordinary differential equation:{

m′′ + cm′ + f(m) = 0, y ∈ R,
m(±∞) = ±1,

where m′ = dm/dy and m′′ = d2m/dy2. In particular, v(t, y) = m(y − ct) is a solution of
the 1-dimensional reaction-diffusion equation:

(3.2) ∂tv = ∂2yv + f(v), t > 0, y ∈ R,

see [60], [30], [5]. We normalize the function m as m(0) = 0. It is known that A(f) and
−c(f) have the same signs; especially, A(f) = 0 is equivalent to c(f) = 0. If A(f) > 0,
then, since V (−1) > V (1), the solution v moves from the metastable state −1 to the lower
bottom +1 of V and this yields a wave moving to the left so that c(f) < 0.

(a) The case A(f) ̸= 0: The proper time scale is O(ε1/2), i.e., for the solution uε of (3.1)

with Ẇ ε = 0, we have that

ūε(t, x) := uε(ε1/2t, x) −→ χΓt(x) (ε ↓ 0),

where Γt is a hyperplane in D and χΓt(x) = 1(x ∈ outside of Γt), χΓt(x) = −1(x ∈
inside of Γt). Γt evolves according to the Huygens’ principle: waves with speed c(f)
are created from each point of Γt to all outward directions, and Γt is determined as the
envelope of the wave fronts. See [31], [32], [26] for f of KPP type, Gärtner [58] for f of
bistable type in higher dimensional spaces and [29] for f of bistable type in 1-dimensional
space.

(b) The case A(f) = 0, d ≥ 2: Under the condition A(f) = 0, we have that c(f) = 0
and therefore the wave front is immobile. Such wave is called the standing wave. The
result in (a) shows that Γt does not move under the time scale O(ε1/2) so that one should
consider longer time scale. In fact, the proper time scale is O(1), i.e.,

uε(t, x) −→ χΓt(x) (ε ↓ 0)

and Γt moves according to the motion by mean curvature; see [77], [27] and many
other references.

(c) The case A(f) = 0, d = 1: This is a plane wave so that the curvature is 0. The proper
time scale is therefore much longer than O(1). In fact, Carr-Pego [18] showed that the
proper scale is O(expCε−1/2), which is extremely long.
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3.2 Results with noises

We only consider the cases (b) and (c) with noises, so that our assumptions in this sub-
section are: f is bistable, A(f) = 0 together with a technical condition

(3.3) ∃C, p > 0 s.t. |f(u)| ≤ C(1 + |u|p), sup
u∈R

f ′(u) <∞.

3.2.1 The case d = 1, D = R, Ẇ ε(t, x) = εγa(x)Ẇ (t, x)

Let γ > 0 and a ∈ C2
0 (R) be an intensity of the noise (we assume that it has a compact

support to localize the problem and to kill the fluctuation near x = ±∞), and Ẇ (t, x)
be the space-time Gaussian white noise with the covariance structure (2.2). Under the
condition (3.3) on f , the SPDE (3.1) with Ẇ ε(t, x) = εγa(x)Ẇ (t, x) has a unique solution
(in generalized functions’ sense or in mild sense) which is Hölder continuous:

uε(t, x) ∈ ∩δ>0C
1
4
−δ, 1

2
−δ((0,∞)× R), a.s.

Theorem 3.1. (Funaki [39]) If the initial value has the form uε(0, x) = m((x − ξ)/
√
ε)

with some ξ ∈ R and the reaction term has the symmetry f(u) = −f(−u), then for all
sufficiently large γ > 0, we have the convergence in law:

(3.4) ūε(t, x) := uε(ε−2γ−1/2t, x) =⇒ χξt(x) (ε ↓ 0),

where χξ(x) = 1(x > ξ), χξ(x) = −1(x < ξ). The phase separation point ξt moves
according to the following stochastic differential equation (SDE):

(3.5) dξt = α1a(ξt)dBt + α2a(ξt)a
′(ξt)dt, ξ0 = ξ,

where Bt is a 1-dimensional Brownian motion, α1 = ||m′||−1
L2(R),

α2 = −||m′||−2
L2(R)

∫ ∞

0
dt

∫
R2

xp(t, x, y)2f ′′(m(y))m′(y)dxdy,

and p(t, x, y) is a fundamental solution of the linearized operator ∂t − {∂2y + f ′(m(y))}.

This theorem shows that the diffusion coefficient (mobility) α2
1 is given by the inverse of

the surface tension ||m′||2L2(R) and this coincides with the conjecture made by Kawasaki-

Ohta [72] and Spohn [86]. The condition on γ being sufficiently large guarantees that the
effect of the reaction term 1

εf is dominant over the random fluctuation term εγa(x)Ẇ (t, x).
If the random fluctuation is much stronger, it may happen that the shape of the wave front
formed in the solution u is totally destroyed by the fluctuation.

We can also study the self-similar space-time Gaussian (colored) noise {Ẇh(t, x), 1/2 ≤
h ≤ 1} with mean 0 and the covariance structure:

E[Ẇh(t, x)Ẇh(s, y)] = δ0(t− s)Qh(x− y),

where Qh is the Riesz potential kernel of (2h− 1)th order:

Qh(x) =

{
h(2h− 1)|x|2h−2, 1/2 < h ≤ 1,

δ0(x), h = 1/2.
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Note that Ẇ 1
2
(t, x) is the space-time Gaussian white noise and Ẇ1(t, x) = ẇ(t) is the white

noise in t. One can show that ūε(t, x) := uε(ε−2γ−ht, x) converges to χξt(x) as ε ↓ 0 and
the same SDE (3.5) is obtained in the limit with the constants α1, α2 modified according
to the kernel Qh. It is reasonable to choose the self-similar noises from the viewpoint of
the scalings.

The time change ε−2γ−1/2 in (3.4) is very different from the case without noise, recall
Section 3.1-(c). The intuitive reason for the properness of this time scale is explained as
follows: ū = ūε satisfies (in law) the SPDE:

(3.6) ∂tū = ε−2γ−1/2

{
∆ū+

1

ε
f(ū)

}
+

(
ε−2γ−1/2

)1/2
· εγa(x)Ẇ (t, x).

Note that the noise term becomes a(x)ε−1/4Ẇ (t, x). The strong drift ε−2γ−1/2 pushes ū
to the neighborhood of

M ε :=

{
ū; ∆ū+

1

ε
f(ū) = 0, ū(±∞) = ±1

}
={m

(
(x− ξ)/

√
ε
)
; ξ ∈ R},

so that ūε(t, x) is close to m ((x− ξt)/
√
ε) with some ξt. In particular, the width of the

interface is O(ε1/2). The contribution of the noise Ẇ (t, x) comes only from this region,
therefore its order is O({ε1/2}1/2) = O(ε1/4) by self-similarity. This balances with the
factor ε−1/4 in front of the noise. On the other hand, since ε−2γ−1/2 ≪ exp(Cε−1/2), the
time scale is too short to observe the deterministic movement found by Carr-Pego [18].

If the centering condition on f (i.e., the oddness of f) is violated (A(f) = 0 is always
assumed), we can show the law of large numbers:

uε(ε−2γt, x) =⇒ χξt(x), ξ̇t = α3a
2(ξt),

with the constant

α3 = − 1

2||m′||2
L2(R)

∫ ∞

0
dt

∫
R2

p(t, x, y)2f ′′(m(y))m′(y)dxdy.

The centering condition implies α3 = 0, so that we get the central limit theorem and obtain
the random motion of the interface in the limit under longer time scale as in Theorem 3.1.
Brassesco-De Masi-Presutti [17] discussed a similar problem at microscopic level under the
centering condition. Brassesco-Buttà [16] studied the existence of non-odd function f for
which α3 ̸= 0 holds. See Bertini-Brassesco-Buttà [8] for recent progress.

The proof of Theorem 3.1 consists of the following two steps:

(1) To show that ūε stays near M ε, we take Ginzburg-Landau-Wilson free energy

Hε(u) :=

∫
R

{
1

2
|∇u|2(x) + 1

ε
V (u(x))

}
dx

as a Lyapunov function, where V is the potential corresponding to f (i.e., f = −V ′).
However, since uε is not differentiable in x, we cannot insert uε into Hε and require
some extra trick. The convergence speed of uε to M ε is controlled by the spectral
gap property of the Hesse operator (Schrödinger operator) −∂2y + V ′′(m) of H1(u)
(i.e., ε = 1) at u = m.
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(2) We introduce a nice coordinate in the tubular neighborhood of M ε (or on M1 under
the spatial scaling x = ε1/2y). Consider the PDE (3.2). If its initial data v0 is in
an L2-tubular neighborhood of M1, the solution v = v(t, y) converges to a certain
mζ(y) := m(y − ζ) in M1 as t → ∞. The limit ζ depends on the initial value v0 so
that we denote it by ζ = ζ(v0) ∈ R. This defines a nice coordinate in an L2-tubular
neighborhood of M1. In fact, if we compute the time derivative of ζ(uε(t)), the
diverging factor cancels.

We outline the derivation of the SDE (3.5): We first introduce vε(t, y) := ūε(t, ε1/2y) by
observing ūε(t, x) under the microscopic spatial variable y. Then, from (3.6), vε satisfies
the SPDE:

(3.7) ∂tv = ε−2γ−3/2 {∆v + f(v)}+ ε−1/2a(ε1/2y)Ẇ (t, y),

in law sense. The coordinate ζ(v) ∈ R defined in the L2-tubular neighborhood of M1

introduced above enjoys the following properties. We denote its first and second Fréchet
derivatives by Dζ(y, v) and D2ζ(y1, y2, v), respectively. The shifted standing wave m is
defined by mη(y) = m(y − η), y ∈ R for η ∈ R.

Lemma 3.2. (1) For every v in the neighborhood of M1, we have that

⟨Dζ(·, v),∆v + f(v)⟩L2 = 0.

(2) For every η ∈ R, we have that

Dζ(y,mη) = −
m′
η(y)

||m′||2
L2

.

(3) For every η ∈ R, we have that

D2ζ(y, y,mη) = − 1

||m′||2
L2

∫ ∞

0
dt

∫
R
p(t, y, z;mη)

2f ′′(mη(z))m
′
η(z) dz,

where p(t, y, z;mη) denotes the fundamental solution of ∂t − {∂2y + f ′(mη(y))}.

Indeed, (1) follows from the observation that ζ(v(t)) = const in t along the solution v(t)
of the PDE (3.2). We may let t ↓ 0 in the identity

0 =
d

dt
ζ(v(t)) = ⟨Dζ(·, v(t)),∆v(t) + f(v(t))⟩, t > 0.

Another coordinate η(v) ∈ R in an L2-tubular neighborhood of M1 is definable as the
minimizer of dist (v,M1) = minη∈R ∥v − mη∥L2 and this is called the Fermi coordinate.
The first Fréchet derivatives of two coordinates ζ(v) and η(v) actually coincide at v = mη,
however the second derivatives are different. (2) and (3) are some concrete computations
and we omit them.

Define the macroscopic phase separation point of vε(t) by ξεt := ε1/2ζ(vε(t)). Then,
applying Itô’s formula and from the SPDE (3.7), we have that

(3.8) dξεt =

∫
R
Dζ(y, vε(t))a(ε1/2y)W (dtdy) +

1

2
ε−1/2

∫
R
D2ζ(y, y, vε(t))a2(ε1/2y)dy dt.
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Note that the diverging factor (the first term in (3.7)) vanishes due to Lemma 3.2-(1).
The quadratic variation of the first term in (3.8) is given by∫

R
Dζ(y, vε(t))2a2(ε1/2y)dy dt.

We can assume that vε(t) is close to mε−1/2ξt
for some ξt, and thus, from Lemma 3.2-(2),

this integral is close to

a2(ξt)

∫
R

(mε−1/2ξt
(y))2

||m′||4
L2

dy dt = a2(ξt)α
2
1 dt,

which leads to the first term in the SDE (3.5). Note that a2(ε1/2y) is close to a2(ξt) under
the integration in y as we explain below.

On the other hand, in the second term in (3.8), the contribution of D2ζ(y, y,mε−1/2ξt
)

comes only from the vicinity of y = ε−1/2ξt. Therefore, we may expand a2(ε1/2y) as

a2(ε1/2y) = a2(ξt) +
1

2
(a2)′(ξt) · ε1/2(y − ε−1/2ξt) + · · · .

However, the contribution of the first a2(ξt) vanishes under the integration in y, since∫
R
D2ζ(y, y,mη) dy = 0,

which follows from Lemma 3.2-(3) noting the symmetry of f . The contribution of the
second term, after cancellation of ε−1/2 and ε1/2, gives

1

2
(a2)′(ξt)α2 dt,

from Lemma 3.2-(3), and this is just the second term in the SDE (3.5).

S. Weber [90] studied the case where several interfaces (multi-kinks) appear on [0, 1]
with periodic boundary conditions. The noise is εγẆ (t, x) (space-time white noise). An-
nihilating Brownian motions are obtained in the limit. His methods are: (1) Consider
approximate slow manifold M and coordinate system around M (PDE case: Carr-Pego,
Xinfu Chen). (2) Use the idea of expansion in stochastic case due to Antonopoulou-
Blömker-Karali [3] when u is close to M. (3) Show annihilation when two interfaces
touch.

Antonopoulou-Blömker-Karali [3] studied Cahn-Hilliard equation with smooth noise
(TDGL equation of conservative type with Q-BM in place of space-time white noise) on
[0, 1] with no-flux boundary conditions of Neumann type:

∂xu = ∂3xu = 0 at x = 0, 1.

SDEs are obtained in the sharp interface limit for multi-kinks before collisions (result is
local in time). The arguments are rather heuristic.

Bertini-Brassesco-Buttà [9] considered Cahn-Hilliard equation with the noise
√
−∆Ẇ (t, x)

as in (2.6) multiplied by ε1/2. The motion of the phase separation point is governed by a
fractional Brownian motion with self-similarity parameter 1

4 .
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3.2.2 The case d = 2 on a bounded domain with smooth boundary

Consider the SPDE (3.1) in higher dimensions with Neumann boundary condition: ∂u/∂n =
0 (x ∈ ∂D). We assume A(f) = 0, but don’t require the oddness assumption on f . The
noise Ẇ ε(t, x) = ξεt /

√
ε depends only on t, and ξεt has the form ξεt = ε−γξ(ε−2γt), 0 < γ <

1/3, where ξ(t) ∈ C1(R+) (a.s.) is a stationary process with mean 0 satisfying the strong
mixing property. We have the convergence in law: ξεt ⇒ αẆ (t) (ε ↓ 0). Unfortunately,
we cannot treat the white noise αẆ (t) directly. Instead, we consider a mild noise ξεt
converging to αẆ (t). Here, W (t) is a 1-dimensional Brownian motion and α is a constant
given by

α =

√
2

∫ ∞

0
E[ξ(0)ξ(t)] dt.

Then, under some condition on the initial value, which will be stated below in the
outline of the proof, we have the following theorem for the solution uε(t, x) of (3.1) with
Ẇ ε(t, x) = ξεt /

√
ε when D ⊂ R2.

Theorem 3.3. (Funaki [41]) As long as the limit phase separation curve Γt is strictly
convex and stays inside D, we have the convergence in law:

uε(t, x) =⇒ χΓt(x) (ε ↓ 0),

where the curve Γt moves according to the randomly perturbed curvature flow:

(3.9) V = κ+ (c0α)Ẇ (t),

where V denotes the inward normal velocity of Γt, κ is the curvature of Γt and

c0 =
√
2

/∫ 1

−1
du

√∫ 1

u
f(v) dv.

A heuristic derivation of (3.9) is given as follows: Since ξεt is close to αẆ (t), (3.1) is
almost

∂tu = ∆u+
1

ε

{
f(u) +

√
εαẆ (t)

}
.

In other words, the potential V is randomly perturbed to V (u) − (
√
εαẆ (t))u and this

yields a small traveling wave toward the minimizer of the perturbed fluctuating potential.
This gives c0αẆt in (3.9).

Figure 12: Fluctuating potential

More precisely, for a ∈ R (with small |a|), define the traveling wave solution m = m(y; a)
and its speed c = c(a) by

(3.10)

{
m′′ + cm′ + {f(m) + a} = 0, y ∈ R,

m(±∞) = m∗
±,
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where m∗
± ≡ m∗

±(a) = ±1+O(a) (a→ 0) are solutions of f(m∗
±)+a = 0. Then, since the

solution of (3.1) behaves as

uε(t, x) ∼ m(d(x,Γt)/
√
ε;
√
εαẆ (t)),

d(x,Γt) = signed distance between x and Γt,

by putting this in (3.1), we obtain

0 = ∂tu
ε −∆uε − 1

ε
f(uε)− α√

ε
Ẇ (t)

∼ 1√
ε
m′

(
d√
ε

)
∂td−

{
1√
ε
m′

(
d√
ε

)
∆d+

1

ε
m′′

(
d√
ε

)
|∇d|2

}
− 1

ε
f(m)− α√

ε
Ẇ (t)

∼ 1√
ε
m′

(
d√
ε

){
∂td−∆d− c0αẆ (t)

}
.

The last line follows from (3.10), |∇d| = 1 near Γt and c(a) = c(0) + c′(0)a + O(a2) =
−c0a + O(a2). The ODE (3.10) was used to cancel the terms of order O(1/ε). Thus the
condition to cancel the terms of the order O(1/

√
ε) becomes

∂td = ∆d+ c0αẆ (t).

Since ∆d describes the curvature on Γt, we obtain the limit equation (3.9).

The actual proof of Theorem 3.3 is given as follows: Since we assume the noise is
mild, we can directly apply the PDE methods, in particular, we can construct super/sub
solutions of (3.1) due to the comparison theorem. Those are given as functions close to
ũε(t, x) := m(d(x,Γεt )/

√
ε;
√
εξεt ) (assume this for t = 0), where the curve Γεt in D is

determined by

(3.11) V = κ− 1√
ε
c(
√
εξεt ).

However, if Γεt is convex, in terms of the Gauss map (θ ∈ S1 7→ x(θ) ∈ Γεt ), (3.11) can be
rewritten into a PDE for the curvature function κ = κε(t, θ):

∂tκ = κ2
{
∂2θκ+ κ− 1√

ε
c(
√
εξεt )

}
.

Then, one can study its limit as ε ↓ 0 and obtain the following SPDE in the limit:

(3.12) ∂tκ = κ2
{
∂2θκ+ κ+ c0α ◦ Ẇ (t)

}
,

where ◦ denotes the Stratonovich’s stochastic integral. The equation (3.12) gives the
precise mathematical meaning to the random perturbation of the curvature flow (3.9).

H. Weber [89] extended Theorem 3.3 to arbitrary dimensions d ≥ 2 and established
short time sharp interface limit under non-convex setting of the interfaces. Convergence
was shown in a.s.-sense due to the result by Dirr-Luckhaus-Novaga [24], who gave pathwise
solution to V = κ+ Ẇ (t).

Antonopoulou-Karali-Kossioris [4] considered Cahn-Hilliard equation with deterministic
noise (under white noise scaling) and gave formal expansion of the solutions. For the
deterministic Cahn-Hilliard equation, it is known that Hele-Shaw free boundary problem
appears in the sharp interface limit (instead of mean curvature motion in Allen-Cahn
case).
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3.2.3 Mass conserving stochastic Allen-Cahn equation

Cahn-Hilliard equation has a mass conservation law. Another one which has such property
is the mass conserving Allen-Cahn equation, that is (3.13) with α = 0. We add a stochastic
term similar to the one introduced in Section 3.2.2.

Let u = uε(t, x) be a solution of the following SPDE in a smooth bounded domain D
in Rn:

(3.13)


∂tu

ε = ∆uε +
1

ε

(
f(uε)−−

∫
D
f(uε)

)
+ αẆ ε(t), x ∈ D

∂νu
ε = 0, x ∈ ∂D

uε(·, 0) = gε(·),

where α > 0, ν is the inward normal vector on ∂D and

−
∫
D
f(uε) =

1

|D|

∫
D
f(uε(t, x))dx.

Here, Ẇ ε(t) is a time derivative of W ε(t) ∈ C([0,∞)) (a.s.) such that W ε(t) converges to
one-dimensional Brownian motionW (t) in a suitable sense. The reaction term f ∈ C∞(R)
is bistable satisfying A(f) = 0. Mass conservation law is destroyed by the noise, but the
following identity holds:

−
∫
D
uε(t) = −

∫
D
uε(0) + αW ε(t).

Our goal is to study the limit of uε(t, x) as ε ↓ 0.

To state our result, let us introduce an evolution of limit hypersurfaces Γt ⊂ D governed
by

(3.14) V = κ−−
∫
Γt

κ+
α|D|
2|Γt|

◦ Ẇ (t), t ∈ [0, σ],

up to a certain stopping time σ > 0 (a.s.), where V is the inward normal velocity of Γt, κ
is the mean curvature of Γt (multiplied by n − 1), Ẇ (t) is the white noise process and ◦
means Stratonovich’s stochastic integral.

Evolution of approximating herpersurfaces Γεt ⊂ D is defined by

(3.15) V ε = κ−−
∫
Γε
t

κ+
α|D|
2|Γεt |

Ẇ ε(t), t ∈ [0, σε],

We assume Γεt → Γt in a proper sense. This can be shown at least in 2-dimensional case
for convex curves.

Theorem 3.4. ([57]) Assume that Γ0 has the form Γ0 = ∂D0 with some D0 b D
and satisfies the same condition as in [19]. Suppose that a smooth local solution Γ =
∪0≤t≤σ(Γt × {t}) of (3.14) such that Γt b D for all t ∈ [0, σ] uniquely exists. Then, there
exist a family of continuous functions {gε(·)}ε∈(0,1) satisfying

lim
ε→0

gε(x) =

{
1, x ∈ D\D̄0

−1, x ∈ D0,
(3.16)

and stopping times σε such that (uε(t ∧ σε, ·), σε) converges weakly to (χΓt∧σ(·), σ) on
C([0, T ], L2(D))× [0,∞) and σ > 0 a.s.
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The method of the proof is the asymptotic expansion employed by Chen-Hilhorst-
Logak [19] in the case without noise. Under the expansion, diverging terms like (Ẇ ε(t))2,
(Ẇ ε(t))3 etc. appear. Usually, we cannot control such terms, but fortunately they ap-
pear only in the higher order terms in the expansion. Therefore, if the diverging speed of
derivatives of W ε(t) is sufficiently slow, we can control them.

3.3 Motion of kinks – Random Hamilton-Jacobi equation

This part is taken from unpublished notes presented at Saitama University, 1997. Moti-
vated by the above mentioned results (cf. [90]), let us consider a simple equation like

V = Ẇ (t) (= white noise in t)

for the interface Γt. For instance in Theorem 3.1, only a single phase separation point
arises in the limit. Here we study the case where phase separation points are multiple.
We employ the level set approach and then the normal velocity V can be expressed as

V =
ut

|∇u|
if Γt = {x ∈ Rd |u(t, x) = 0}.

Therefore, our basic equation becomes

(3.17) ut − |∇u|Ẇ (t) = 0.

Question: For every continuous function W (t), can one give a mathematical meaning to
the equation (3.17)?

The answer is “No”. We need some additional condition on W (t). Our basic idea to
construct a solution to (3.17) is the following: Since one can not directly give meaning
to (3.17) in “viscosity sense”, we first approximate W (t) by smooth functions W δ(t) and
then, take the limit δ ↓ 0.

Assuming that W (t) is smooth, the viscosity solution of (3.17) is given as follows: If
Ẇ (t) ≥ 0 on [0, t1], Ẇ (t) ≤ 0 on [t1, t2] and so on, then

u(t, x) = sup{u0(y) ; y ∈ [x−W (t), x+W (t)]}, t ∈ [0, t1]

(i.e. + region expands in time),

u(t, x)=inf{u(t1, y) ; y ∈ [x− (W (t1)−W (t)), x+ (W (t1)−W (t))]}, t ∈ [t1, t2]

(i.e. − region expands in time),

· · ·

Since the equation (3.17) is geometric, we may assume that the initial data is a kink:

u0(x) = (−1)i, x ∈ (xi, xi+1), 0 ≤ i ≤ n, x0 = −∞, xn+1 = ∞,

namely, taking this type of functions for initial data is enough for studying the motion of
interfaces. For such initial data, we have the following picture for solutions:

If Ẇ (t) ≥ 0,
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Figure 13: Motion of kinks

Here

xi(t) =

{
xi +W (t), i : odd,

xi −W (t), i : even.

When two phase separation points intersect, both points immediately disappear. If we let
W δ(t) → W (t), the limit has the same structure (with probability one, since the sample
path of the Brownian motion is “regular”). In this sense, one can give a meaning to the
equation (3.17) for W (t) which is continuous in t and “regular”.

Dirichlet boundary value problem: Consider the equation (3.17) on R+ = [0,∞)
with Dirichlet boundary condition:

u(t, 0) = +1,

and initial value:
u0(x) = 1[0,x0)(x)− 1(x0,∞)(x), x0 > 0.

Then, if W (t) is smooth, + region expands for t such that Ẇ (t) ≥ 0, while − region
expands for t such that Ẇ (t) ≤ 0, and the phase separation point moves according to

x(t) = x0 +W (t)

as before. Once x(t) reaches the boundary x = 0 (in this case Ẇ (t) < 0), it stays at 0
until the time that Ẇ (t) > 0. Therefore, the motion is given by

x(t) = x0 +W (t)− inf
s≤t

((x0 +W (s)) ∧ 0) .

This formula is meaningful also for non-smooth curve W (t). In particular, if W (t) is a
Brownian motion, x(t) is the so-called reflecting Brownian motion.

Spatially dependent noise: For the noise Ẇ (t, x) depending on the spatial variable
x, let us consider an equation:

V = Ẇ (t, x).

Simplest such noise is
Ẇ (t, x) = a(x)Ẇ (t), a(x) > 0.

Then the Hamilton-Jacobi equation becomes

ut − |∇u|a(x)Ẇ (t) = 0.

If W (t) is smooth, similarly as above the phase separation points move after the ODE:

dxi(t) = a(xi(t))Ẇ (t) dt, i = 1, 2, . . . , n.
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Now, for the Brownian motion W (t), we approximate it by smooth one. For instance, if
we take mollified function

W δ(t) = δ−1 (W ∗ ρ(·/δ)) (t)

or polygonal approximation, then the limit is described by the SDE of Stratonovich type:

dxi(t) = a(xi(t)) ◦ dW (t).

However, one can take other approximations to derive different types of SDEs in the limit.
As a conclusion, it is not clear how to define the notion of “viscosity solutions” to the
stochastic Hamilton-Jacobi equation when the noise is spatially dependent.

Related topics “Kink Stochastics” are discussed by Grant Lythe (University of Leeds):

Figure 14: http://www1.maths.leeds.ac.uk/˜grant/

Zero temperature limit for interacting Brownian particles: Motion of kinks
can be discussed from microscopic particle systems; see Funaki [44], [45]. The coagulation
in one dimension is studied by [45], while the motion of a single crystal in higher dimensions
is discussed by [44].

4 KPZ equation

4.1 KPZ equation, its ill-posedness and renormalization

Kardar-Parisi-Zhang [71] introduced the following SPDE for a height function h(t, x) of a
growing interface with random fluctuation:

(4.1) ∂th =
1

2
∂2xh+

1

2
(∂xh)

2 + Ẇ (t, x), t > 0, x ∈ R (or S = R/Z),

where Ẇ (t, x) is the space-time Gaussian white noise. The coefficients 1
2 are not important,

since we can change them under space-time scaling.

If a curve Ct = {(x, y); y = h(t, x), x ∈ R} located in a plane R2 evolves upward with
normal velocity V = κ+A, where κ is the (signed) curvature of Ct and A > 0 is a constant,
then its height function h(t, x) satisfies the nonlinear PDE:

∂th =
∂2xh

1 + (∂xh)2
+A(1 + (∂xh)

2)1/2,
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see, e.g., Matano-Nakamura-Lou [76]. The KPZ equation (4.1) is obtained by taking the
leading terms in this equation (more precisely saying, in the equation for h(t, x)−At rather
than h(t, x) itself) under the situation that the tilt ∂xh of the interface is small and taking
the fluctuations caused by a space-time noise into account. Note that 1

2 is put in front of
the second derivative and A is chosen as A = 1. This simplification is essential in view of
the scaling property or universality of the KPZ equation.

The KPZ equation (4.1) is actually ill-posed. Indeed, in (4.1), dropping the nonlinear

term, we have seen that h ∈ C
1
4
−, 1

2
−((0,∞)×R) a.s. and for such h the spatial derivative

∂xh is defined only in generalized functions’ sense. Therefore, the nonlinear term (∂xh)
2

is not definable in a usual sense. The roughness caused by the noise and the nonlinearity
does not match. Instead, the following renormalized KPZ equation with compensator
δx(x) (= +∞) has a meaning:

(4.2) ∂th =
1

2
∂2xh+

1

2

{(
∂xh

)2 − δx(x)
}
+ Ẇ (t, x), x ∈ R,

as we will see later. This is discussed by Hairer [62], [63].
1
3-power law: The research of KPZ equation has recently attracted a lot of attention

because of its special feature called 1
3 -power law. Balász-Quastel-Seppäläinen [7] showed

that if we choose Z(0, x) = eB(x) with B being a two-sided Brownian motion independent
of the noise Ẇ (t, x) (i.e., we consider a stationary solution) then

ct
2
3 ≤ Var(h(t, 0)) ≤ Ct

2
3 ,

i.e., the fluctuations of h(t, 0) are of order t
1
3 . This is a different behavior from the usual

central limit theorem. Sasamoto-Spohn [84], [85] showed that the limit distribution of
h(t, 0) under the scaling is given by the so-called Tracy-Widom distribution. See Quastel
[82].

4.2 Cole-Hopf solution and linear stochastic heat equation

Another natural approach to the renormalized equation (4.2) is due to the Cole-Hopf
transformation. Consider the tilt of the interface u(t, x) = ∂xh(t, x), which satisfies the
viscous stochastic Burgers equation from (4.1):

(4.3) ∂tu =
1

2
∂2xu+

1

2
∂xu

2 + ∂xẆ (t, x).

Here the noise has even less regularity, but a formal application of the Cole-Hopf trans-
formation

Z(t, x) := e−
∫∞
x u(t,y)dy = eh(t,x)−h(t,∞),

or setting
Z(t, x) := eh(t,x)

leads to the linear SPDE with a multiplicative noise:

(4.4) ∂tZ =
1

2
∂2xZ + ZẆt(x),
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which is called the linear stochastic heat equation (SHE). In fact, the last multiplicative
term in (4.4) should be interpreted in Stratonovich’s sense. Or, if we start from (4.2), since
E[Ẇ (t, x)2] = δx(x), a formal application of Itô’s formula leads to (4.4). This SPDE is
well-posed, has a unique continuous solution and we interpret (4.1) or (4.2) by (4.4) with
h(t, x) = logZ(t, x). Such h is called the Cole-Hopf solution of (4.1) and was introduced
by Bertini-Giacomin [10].

The solution Z(t) of (4.4) is defined in a generalized functions’ sense or in a mild form
due to Duhamel’s principle using heat kernel p(t, x, y) = 1√

2πt
e−(y−x)2/(2t). These two

notions are equivalent, and there exists a unique solution s.t. Z ∈ C([0,∞) × R) and
supx∈R e

−r|x||Z(t, x)| <∞ for every r > 0 a.s. The following strong comparison is known:
Z(0, x) ≥ 0 for all x ∈ R and Z(0, x) > 0 for some x ∈ R, then Z(t, x) > 0 holds for every
t > 0, x ∈ R a.s. Therefore, we can define the Cole-Hopf transformation:

(4.5) h(t, x) := logZ(t, x).

Heuristic derivation of the KPZ equation (with renormalization factor δx(x)) from SHE
(4.4) under the Cole-Hopf transformation (4.5) is given as follows: Apply Itô’s formula for
h = log z:

∂th = Z−1∂tZ − 1

2
Z−2(∂tZ)

2

= Z−1

(
1

2
∂2xZ + ZẆ

)
− 1

2
δx(x)

=
1

2
{∂2xh+ (∂xh)

2}+ Ẇ − 1

2
δx(x),

where the second line follows by SHE (4.4) and (dZ(t, x))2 = (ZdW (t, x))2, dW (t, x)dW (t, y) =
δ(x− y)dt.

This leads to the renormalized KPZ equation (4.2). The function h(t, x) defined by
(4.5) is meaningful and called the Cole-Hopf solution of the KPZ equation, although the
equation (4.1) does not make sense.

Hairer [62], [63] gave a meaning to (4.2) without bypassing SHE. Goncalves-Jara-
Sethuraman [59] introduced a notion of probability energy solution to (4.3).

4.3 KPZ approximating equations

Our goal is to introduce approximations for (4.2), in particular, well adapted to finding
invariant measures.

4.3.1 Simple approximation

Let us first introduce a symmetric convolution kernel: Let η ∈ C∞
0 (R) s.t. η(x) ≥ 0,

η(x) = η(−x) and
∫
R η(x)dx = 1 be given, and set ηε(x) := 1

εη(
x
ε ) for ε > 0. Then, we

define the smeared noise by

W ε(t, x) = ⟨W (t), ηε(x− ·)⟩
(
=W (t) ∗ ηε(x)

)
.
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Approximating Equation-1 is given by

∂th =
1

2
∂2xh+

1

2

(
(∂xh)

2 − ξε
)
+ Ẇ ε(t, x)

∂tZ =
1

2
∂2xZ + ZẆ ε(t, x),

where ξε = ηε2(0) (:= ηε ∗ ηε(0)). It is easy to show that Z = Zε converges to the solution
Z of SHE, and therefore h = hε converges to the Cole-Hopf solution of the KPZ equation.

4.3.2 Approximation adapted to finding invariant measures

We want to introduce an approximation which is suitable to study the invariant measures.
Here is a general principle: Consider the SPDE

∂th = F (h) + Ẇ ,

and let A be a certain operator. Then, the structure of the invariant measures essentially
does not change for

∂th = A2F (h) +AẆ .

This may not be true in non-reversible situation.

We introduce the KPZ approximating equation-2:

(4.6) ∂th =
1

2
∂2xh+

1

2

(
(∂xh)

2 − ξε
)
∗ ηε2 + Ẇ ε(t, x),

where η2(x) = η ∗ η(x), ηε2(x) = η2(x/ε)/ε and ξε = ηε2(0). Note that the solution h of
(4.6) is smooth in x, so that we can consider the associated tilt process ∂xh.

4.4 Invariant measures at approximating level

Let νε be the distribution of ∂x(B ∗ ηε(x)), where B is the two-sided Brownian motion.
νε is independent of choice of B(0).

Theorem 4.1. νε is invariant for the tilt process ∂xh determined by SPDE (4.6).

DaPrato-Debussche-Tubaro (2007) studied a similar SPDE to (4.6) on S.

Sketch of the proof:

Step 1: Consider on a discrete torus TN = {1, 2, . . . , N}. The discretization of (∂xh)
2

should be carefully chosen (cf. Sasamoto-Spohn [83]):

1

3

{
(hi+1 − hi)

2 + (hi − hi−1)
2 + (hi+1 − hi)(hi − hi−1)

}
, i ∈ TN

Discrete version of νε defined on TN is invariant.

Step 2: Continuum limit as N → ∞ leads to the result on S. This can be easily extended
to a torus SM = R/MZ of size M .

Step 3: Take an infinite-volume limit as M → ∞ by usual tightness and martingale
problem approach.
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Remark 4.1. Infinitesimal invariance can be directly shown based on Wiener-Itô expan-
sion of tame functions Φ [49]:

(4.7)

∫
LεΦ(h)νε(dh) = 0,

where Lε is (pre) generator of the SPDE (4.6).

Lε = Lε0 +Aε,

Lε0Φ(h) =
1

2

∫
R2

D2Φ(x1, x2;h)η
ε
2(x1 − x2)dx1dx2 +

1

2

∫
R
∂2xh(x)DΦ(x;h)dx,

AεΦ(h) =
1

2

∫
R

(
(∂xh)

2 − ξε
)
∗ ηε2(x)DΦ(x;h)dx.

Combined with the well-posedness of Lε-martingale problem, which can be shown at least
on S, it is expected that the infinitesimal invariance implies Theorem 4.1. But this is not
clear in infinite-dimensional setting; cf. Echeverria (1982), Bhatt-Karandikar (1993).

4.5 Passing to the limit ε ↓ 0

The goal is to pass to the limit ε ↓ 0 in the KPZ approximating equation (4.6). We
consider its Cole-Hopf transform: Z (≡ Zε) := eh. Then, by Itô’s formula, Z satisfies the
SPDE:

(4.8) ∂tZ =
1

2
∂2xZ +Aε(x,Z) + ZẆ ε(t, x),

where

Aε(x,Z) =
1

2
Z(x)

{(
∂xZ

Z

)2

∗ ηε2(x)−
(
∂xZ

Z

)2

(x)

}
.

The complex term Aε(x,Z) looks vanishing as ε ↓ 0. But this is not true.

Indeed, under the average in time t, Aε(x,Z) can be replaced by a linear function 1
24Z,

see Theorem 4.2 below. Thus, the limit as ε ↓ 0 (under stationarity of tilt),

∂tZ =
1

2
∂2xZ +

1

24
Z + ZẆ (t, x).

Or, heuristically at KPZ level,

∂th =
1

2
∂2xh+

1

2
{(∂xh)2 − δx(x)}+

1

24
+ Ẇ (t, x).

We prove that Aε(x,Zε(s)) can be replaced asymptotically by 1
24Z

ε(s, x). For the proof,
a similar method to showing Boltzmann-Gibbs principle is applied. To avoid the complex-
ity arising from the infiniteness of invariant measures, we view hε(t, ρ) =

∫
hε(t, x)ρ(x)dx

(height averaged by ρ ∈ C∞
0 (R),≥ 0,

∫
ρ(x)dx = 1) in modulo 1 (called wrapped process).

48



Theorem 4.2. For every φ ∈ C0(R) satisfying supp φ ∩ supp ρ = ∅, we have that

lim
ε↓0

Eπ⊗νε
[{∫ t

0
Ãε(φ,Zε(s))ds

}2
]
= 0,

where π is the uniform measure for hε(0, ρ) ∈ [0, 1),

Ãε(φ,Z) =

∫
R
Ãε(x,Z)φ(x)dx

Ãε(x,Z) = Aε(x,Z)− 1

24
Z(x).

Proof. (1) Reduction of equilibrium dynamic problem to static one: The expectation is
bounded by

≤ 20 t sup
Φ∈L2(π⊗νε)

{
2Eπ⊗ν

ε
[
Ãε(φ,Z)Φ

]
− ⟨Φ, (−Lε0)Φ⟩π⊗νε

}(
= 20t∥Aε(φ,Z)∥2−1,ε

)
,

where Lε0 is the symmetric part of Lε. This is a generic bound in a stationary situation.
Here,

2Eπ⊗ν
ε
[
Ãε(φ,Z)Φ

]
= Eπ

[
ZρE

νε [Bε(φ,Z)Φ(h(ρ),∇h)]
]
,

where Zρ = exp{
∫
R logZ(x)ρ(x)dx}, Bε(x,Z) = 2Aε(x,Z)

Zρ
andBε(φ,Z) =

∫
RB

ε(x, Z)φ(x)dx.

(2) The key is the following static bound:

Proposition 4.3. For Φ = Φ(∇h) ∈ L2(C̃, ν) such that ∥Φ∥21,ε = ⟨Φ, (−Lε0)Φ⟩π⊗νε <∞ ,
and φ satisfying the condition of Theorem 4.2, we have that

(4.9)
∣∣Eνε [Bε(φ,Z)Φ]

∣∣ ≤ C(φ)
√
ε∥Φ∥1,ε,

with some positive constant C(φ), which depends only on φ, for all ε: 0 < ε ≤ δ
2 ∧ 1

6 .

Once this proposition is shown, the proof of Theorem 4.2 is concluded, since the sup in
the last slide is bounded by

≤ 20t sup{2eC(φ)
√
ε∥Φ∥1,ε − ∥Φ∥21,ε} = const(

√
ε)2 → 0.

Proof of Proposition 4.3. First note that

Eν
ε
[Bε(φ,Z)Φ]

= Eν
ε

[
Z(x)

Zρ

(
{Ψε ∗ ηε2(x)−Ψε(x)} − 1

12

)
Φ

]
To compute this expectation, since {Ψε ∗ ηε2(x)−Ψε(x)} is 2nd order Wiener functional,
we need to pick up the 2nd order and 0th order terms of the products of two Wiener
functionals Z(x)Zρ

×Φ. We apply the diagram formula to compute the Winer chaos expansion
of products of two functions.

49



Note that, under ν,

Z(x)

Zρ
= eB(x)−

∫
RB(y)ρ(y)dy

= ea(x)

{
1 +

∞∑
n=1

1

n!

∫
Rn

ϕ⊗nx (u1, . . . , un)dB(u1) · · · dB(un)

}
,

where,

ϕx(u) = 1(−∞,x](u)−
∫ ∞

u
ρ(y)dy,

a(x) =
1

2

∫
R
ϕx(u)

2du.

Note that the kernel ϕx has jump.
1
24 is the speed of growing interface, and already appears in some previous talks and in

many KPZ related papers. For general convolution kernel η, this constant is given by J/2,
where

J = P (R1 +R3 > 0, R2 +R3 > 0)− P (R1 > 0, R2 > 0),

and {Ri}3i=1 are i.i.d. r.v.s distributed under η2(x)dx.

If η is symmetric,

P (R1 +R3 > 0, R2 +R3 > 0) = P (R1 −R3 > 0, R2 −R3 > 0)

= P (R3 = minRi) =
1

3
,

so that J = 1
3 − 1

4 = 1
12 . (If the support of η ⊂ [0,∞) (or ⊂ (−∞, 0]), then J = 0.)

Wrapping can be removed by showing uniform estimate:

sup
0<ε<1

E

[
sup

0≤t≤T
hε(t, ρ)2

]
<∞.

Namely, height cannot move very fast. This is shown only on a torus (since we need
Poincaré inequality).

Under the stationary situation of the tilt processes, in the limit, we obtain the SHE:

(4.10) ∂tZ =
1

2
∂2xZ +

1

24
Z + ZẆ (t, x).

This looks different from the original SHE (4.4), but the solution Zt of (4.10) gives the

solution Z̃t of (4.4) under the simple transformation Z̃t := e−
t
24Zt. This implies the invari-

ance of the distribution of the geometric Brownian motion for the tilt process determined
by the SHE (4.4), and therefore that of BM for Cole-Hopf solution.

We formulate the results more precisely in the next section.
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4.6 Invariant measures of Cole-Hopf solution and SHE

As a byproduct, one can give a class of invariant measures for the stochastic heat equation
(4.4) and for the Cole-Hopf solution of the KPZ equation. Let µc, c ∈ R be the distribu-
tion of eB(x)+c x, x ∈ R on C+, where B(x) is the two-sided Brownian motion such that
µc(B(0) ∈ dx) = dx. Let νc be the distribution of B(x) + c x on C. Note that these are
not probability measures.

Theorem 4.4. {µc}c∈R are invariant under SHE (4.4), i.e.,

Z(0)
law
= µc ⇒ Z(t)

law
= µc for all t ≥ 0 and c ∈ R.

Corollary 4.5. {νc}c∈R are invariant under the Cole-Hopf solution of the KPZ equation.

c means the average tilt of the interface. We have different invariant measures for
different average tilts. Reversibility does not hold, but a kind of Yaglom reversibility
holds.

(Scale invariance) If Z(t, x) is a solution of (4.4), then

Zc(t, x) := ecx+
1
2
c2tZ(t, x+ ct)

is also a solution (with a new white noise). Therefore, once the invariance of µ0 is shown,
µc is also invariant for every c ∈ R.

One expects µc, c ∈ R to be all the extremal invariant measures (except constant
multipliers), but this remains open; cf. Funaki-Spohn [55] for ∇φ-interface model.

The argument at the end of the last section combined with Theorem 4.1 at approximat-
ing level shows the invariance of µ for tilt processes.

To extend this to the height processes Zt, we introduce the transformation hε(x,Z) :=
log(Z ∗ ηε(x)). Then, the evolution of hε(x,Zt) is governed only by the tilt variables and
the initial data hε(x,Z0).

4.7 Multi-component KPZ equation

Ferrari-Sasamoto-Spohn [28] studied Rd-valued KPZ equation for h(t, x) = (hα(t, x))dα=1

on R:

(4.11) ∂th
α =

1

2
∂2xh

α +
1

2
Γαβγ∂xh

β∂xh
γ + Ẇα(t, x), x ∈ R,

where Ẇ (t, x) = (Ẇα(t, x))dα=1 is an Rd-valued space-time Gaussian white noise. The
constants (Γαβγ)1≤α,β,γ≤d satisfy the condition:

(4.12) Γαβγ = Γαγβ = Γγβα.

Similar SPDE appears to discuss motion of loops on a manifold, cf. Funaki [38], Hairer
[63].

We introduce the smeared noise:

W ε(t, x) ≡ (Ẇ ε,α(t, x))dα=1 = ⟨W (t), ηε(x− ·)⟩,
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and consider Rd-valued KPZ approximating equation for h = hε(t, x) ≡ (hε,α(t, x))dα=1:

(4.13) ∂th
α =

1

2
∂2xh

α +
1

2
Γαβγ(∂xh

β∂xh
γ − ξεδβγ) ∗ ηε2 + Ẇ ε,α(t, x),

where δβγ denotes Kronecker’s δ. Let νε be the distribution of ∂x(B ∗ ηε(x)) on C =
C(R;Rd), where B is the Rd-valued two-sided Brownian motion satisfying B(0) = 0.

Theorem 4.6. The probability measure νε on C is infinitesimally invariant for the tilt
process ∂xh of the SPDE (4.13).

Acknowledgments. The author thanks Professors Kyeonghun Kim, Panki Kim and
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