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on [0, T] x D with Neumann boundary condition.
F(u) = }(u? — 1) the double-well potential
o v=—Au+ F'(v)

well-known model to describe phase separation

e is also H!-gradient flow of the energy functional

£(u) ::%/D|Vu(x)|2dx+/DF(u(x))dx, 2)

If uis a solution to equation (1), then

9 eu(e.) = - /D Vv (x)dx < 0.

The minimizers of the energy (2) are the constant functions v =1 and
u = —1, which represent the “pure phases” of the system.
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In a large scale, let
T = s3t, 1 = EX,

and u® = u(7,n), then u® satisfies
1
0ru° = Ay (—el,uf + gF’(ue)), (3)
o v¢ = —eAuf + 1F'(u): chemical potential

e As e — 0, (3) represent a long time behavior of (1) in a large scale.
e The energy functional of (3) is

e2w) = = [ [vur)Rax+ 2 [ F(uf(x))dx, (4)
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e The energy functional of (3) is
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In a large scale, let
T = s3t, 1 = EX,

and u® = u(7,n), then u® satisfies

0o = B(—ebyu + LF(u)), (3)

o v¢ = —eAuf + 1F'(u): chemical potential
e As e — 0, (3) represent a long time behavior of (1) in a large scale.
e The energy functional of (3) is

1
_ i/ |Vu8(x)|2dx+f/ F (0 (x)) dx, (4)
2 Jp €Jp
and satisfies

755 ) / IVvE2 < 0. (5)

o Ase — 0, F(u®) — 0, which implies u* — —1 + 21 for some
EC[0,T] xD. 'y := JE; is the interface.
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e u approximates to 1 on one region D and to —1in D~, u® — —1+21¢
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Motion of I';

e u approximates to 1 on one region D and to —1in D~, u® — —1+21¢

e V& — v,

28!‘1Et = AV

e Av=0in D\ Ty
%:Oonm);

Formally,

/Ot/patlwz_l/t va—/t e
//D+d|vVv¢ //7d|vVv¢

= 5/0 rt(anV+ — 3,,v7)1/).
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Hele-Shaw model

Formally derived by [Pego: 1989] and rigorous proved by [Alikakos, Bates,Chen:

1994]: v — v, (v,I) solves the following free boundary problem:
Av=0inD\T; t>0,
0
a—: = 0on JD, o
2
V= gH on rt,
1
V= 5(8,,v+ —0pv™) on Ty,
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Let (v,I) be a smooth solution to deterministic Hele-Shaw model (6).
[Alikakos, Bates, Chen 1994]: construct a pair (u3, v§) such that

Oiuy = Avy in D,

1 ..
va = —F'(u3) —eAuy + r; in D1,
€
o [, is the zero level set of uj(t)

o |Irallcpry S X2

o HV/Z - VE”C(DT) < E.

~
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Let (v,I) be a smooth solution to deterministic Hele-Shaw model (6).
[Alikakos, Bates, Chen 1994]: construct a pair (u3, v§) such that

Oiuy = Avy in D,

1
va gF’(uj) —eAuj+ryin D,

I'¢ is the zero level set of u5(t)

Irillcor) S e 2.
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Irillcor) S e 2.

Iva = villeeon S e
For x with d(x,T¢) > Ce,

[ua(t,x) =1 <e or |ui(t,x)+1] e
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Stochastic Cahn-Hilliard equation

du® = Avedt + e?dW in D,
1
Ve = EF/(UE) —eAu® in Dr,

ou®  0Ov®
W—%—O, (t,X)E[O,Tlan
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ou®  0Ov®

W—W—O, (t,X)G[O,T]XaD

[Antonopoulou, Blomker, Karali 2018]: W is a trace-class Wiener process and
o> 2—33 the limit is the same as the deterministic case.
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du® = Avedt + e?dW in D,
1
Ve = EF/(UE) —eAu in Dr,

ou®  Ove

—=—=0 t 0, T| x 0D

=0 ()€, T)
[Antonopoulou, Blomker, Karali 2018]: W is a trace-class Wiener process and
o> 2—33 the limit is the same as the deterministic case.

Idea of proof:
Compare u® and uj + Itd&'s formula.
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Stochastic Cahn-Hilliard equation

du® = Avedt + e?dW in D,
1
ve = EF/(UE) —eAu in Dr,

ou®  Ove
W—W—O, (t,X)G[O,T]XaD
[Antonopoulou, Blomker, Karali 2018]: W is a trace-class Wiener process and

o> 2—33 the limit is the same as the deterministic case.

Idea of proof:
Compare u® and uj + Itd&'s formula.

Problems: Singular noise or Small ¢ =7 Stochastic Hele shaw
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Singular noise: space-time white noise

In our case, W is an L%-cylindrical Wiener process.
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1
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Singular noise: space-time white noise

In our case, W is an L%-cylindrical Wiener process.
o Let R = u® — uj,

1
dR® = —eA’Redt + = A (F'(uf + R®) — F'(uf)) dt + Arfdt + 7 dW,;
13

o Da prato-Debussche’s trick: Zg := ¢ [ e (=A% g\, Y© := R® — Z°
satisfies:

1
Y= = —eA?YE 4 A (F/(ulf 4+ Y° + Z°) = F/(ul)) + Arf

o E(|Z%[lcoy) S e
e Stopping time argument yields that

Theorem 1
[Banas, Yang, Z. 19] For o > %, ||R%|| ;3,3 converges to 0 in probability.
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e Stopping time argument yields that

Theorem 1

[Banas, Yang, Z. 19] For o > %, ||R%|| ;3,3 converges to 0 in probability.

= the limit is the same as the deterministic case
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Singular noise for large o

Singular noise: Conservative noise

This method can be applied to

1
due,h — A (EAUE’h 4+ = (F/(us,h) o 3Cﬁtu5,h)> dt + EUV . thh,
€ )
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Singular noise: Conservative noise

This method can be applied to

1
duth = A (sAug’h + = (F'(u™") - 3cﬁtu5’h)> dt + 7V - dW},
- :

o Wh =W x Ph
e ¢, is renormalization constant

o |ch. < e* Hloghl
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Singular noise for large o

Singular noise: Conservative noise
This method can be applied to
1
dush = A (sAug’h + = (F'(u™") = 3c;, tu“’)) dt + &7V - dW},
- .
o Wh =W x Ph
Cp,¢ IS renormalization constant

il S €27 log hi

o Global well-posedness has been obtained in [Réckner, Yang, Z. 18].
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This method can be applied to

1
due,h — A (EAUE’h 4+ = (F/(us,h) o 3Cﬁtu5,h)> dt + EUV . thh,
€ )

o Wh W x Ph

e ¢, is renormalization constant

o [ci| S <21 log hl

o Global well-posedness has been obtained in [Réckner, Yang, Z. 18].

Let R&M = ush — ug,

Theorem 2

[Banas, Yang, Z. 19] Assume € < h?. Then foro > 2 +0,
to 0 in probability.

R"|| 313 converges
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Theorem 2
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Small 7

o [Antonopoulou, Blomker, Karali 2018]: Conjecture: o = 1 formally derive
stochastic Hele Shaw model

o Difficult to prove convergence for small o by the approximate solution uj;
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o [Antonopoulou, Blomker, Karali 2018]: Conjecture: o = 1 formally derive
stochastic Hele Shaw model

o Difficult to prove convergence for small o by the approximate solution uj;
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Singular noise for large o

Small 7

[Antonopoulou, Blémker, Karali 2018]: Conjecture: o = 1 formally derive
stochastic Hele Shaw model

Difficult to prove convergence for small o by the approximate solution u5;

Only possible to prove the convergence to deterministic Hele-Shaw model;

Difficulty: Noise is not regular enough w.r.t. time t.
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Main results for o > 1/2

We consider the stochastic Cahn-Hilliard equation on a bounded smooth open
domain D C R? (d = 2,3):

du® = Avedt +e7dW,, (t,x) €0, T] x D,

1
Ve = —eAuf(t) + gF’(ug(t)), (t.x) € [0, T] x D,
8)

ous  Ove (
an - on 0, (t7X) € [07 T] x 0D,
uf(0,x) = u5(x), xe€D.
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We consider the stochastic Cahn-Hilliard equation on a bounded smooth open
domain D C R (d = 2,3):

du® = Avedt +e7dW,, (t,x) €0, T] x D,
1
Ve = —eAuf(t) + EF’(ug(t)), (t,x) €[0,T] x D,

(8)
out ove
9 an = 0, (t,x)el0,T]xaD,

u®(0,x) = y5(x), xe€D.

Main results [Yang Z. 19]

For o > 1/2, in radial symmetric case the limit is the deterministic Hele Shaw
model
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Main results for o > 1/2

We consider the stochastic Cahn-Hilliard equation on a bounded smooth open
domain D C R? (d = 2,3):

du® = Avedt +e7dW,, (t,x) €0, T] x D,

1

Ve = —eAuf(t) + gF’(ug(t)), (t.x) € [0, T] x D,

ou®  Ov®
an - on 0, (t,X) € [07 T] x 0D,
uf(0,x) = u5(x), xe€D.

Main results [Yang Z. 19]

For o > 1/2, in radial symmetric case the limit is the deterministic Hele Shaw
model

= Conjecture in [Antonopoulou, Bldmker, Karali 2018] may not ture.
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We consider the stochastic Cahn-Hilliard equation on a bounded smooth open
domain D C R? (d = 2,3):

du® = Avedt +e7dW,, (t,x) €0, T] x D,

1
Ve = —eAuf(t) + gF’(ug(t)), (t.x) € [0, T] x D,
8)

ous  Ove (
an - on 0, (t7X) € [07 T] x 0D,
uf(0,x) = u5(x), xe€D.

Main results [Yang Z. 19]

For o > 1/2, in radial symmetric case the limit is the deterministic Hele Shaw
model

= Conjecture in [Antonopoulou, Bldmker, Karali 2018] may not ture.
We conjecture in general case for o > 1/2, the limit is the deterministic Hele Shaw
model.
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Idea of Proof: Lyapunov property

Recall

£5(F) = %/D|VUE(X)|2dX—|-g/DF(UE(X))dX.
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Idea of Proof: Lyapunov property

Recall
£5(F) = %/D|VUE(X)|2dX+g/DF(UE(X))dX.

By Itd's formula

520

d&¢(uf) = (DE*(uf), du®) + 7Tr(QD%SE(uE))dt
20+1 62071
Tr(—AQ)dt +

= (VVvE, Vo)t + & Te(F "(0%)Q)dt + £ (vE, dW,)
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Idea of Proof: Lyapunov property

Recall
£5(F) = %/D|VUE(X)|2dX+g/DF(UE(X))dX.

By Itd's formula

520

d&¢(uf) = (DE*(uf), du®) + 7Tr(QD%SE(uE))dt

20+1 62071
Tr(—AQ)dt +

= (VVE,VvE)dt + & Te(F " (uF)Q)dt + €7 (ve, dW,)
Lemma 3

(Lyapunov property) Assume Tr(—AQ) < oo and supy...1 E(u§) < & then
there exists eg € (0,1) such that for any € € (0,&0] and any p > 1,

E sup &5(1)° < (27 + &),
te[0,T]

p

,
E(/ |Vv6||§2dr> < (e £ &)P.
0
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Idea of Proof: Tightness for o > %

Lemma 4

Assume o > 1. For any B € (0, 15

E (||l cago,mi2)) S 1
For any 6 > 0, there exists a constant C = C(4, T) > 0, such that

.
P / IVE(O)|Badt < C ) > 16,
0
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Idea of Proof: Tightness for o > %

Lemma 4

Assume o > 1. For any 3 € (0,

’ 12
E ([|u®|lcso,m12)) S 1

For any 6 > 0, there exists a constant C = C(4, T) > 0, such that

.
P (/ V() [Bpdt < c) >1-4
0

Tightness + Skorohod theorem =

Theorem 5

[Y, Zhu: 19] For any o > % P—as. w,
o uf — —1+21¢ in C([0, T], L2),
o v: — vinL2(0, T;HY)
o 1€ L>(0,T;BV)
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Weak approach and tightness for small o

The Limit equation for o > %

Since
du® = Avedt + e dW,,

Rongchan Zhu (Beijing Institute of Technology) stochastic Cahn-Hilliard equation July 29, 2019 15 /20



Weak approach and tightness for small o

The Limit equation for o > %

Since
du® = Avedt + e dW,,

e — 0, in a weak sense
20:.1g = Av.
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Weak approach and tightness for small o

The Limit equation for o > %

Since
du® = Avedt + e dW,,
e — 0, in a weak sense
20:1 = Av.

= weak solutions to the deterministic model
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Weak approach and tightness for small o

The Limit equation for o > 3

Since

du® = Avedt + e dW,,

e — 0, in a weak sense

20,1¢ = Av.

= weak solutions to the deterministic model

=> rigorously proved in radial symmetric case and conjectured in general case to

the deterministic Hele Shaw model:

Av=0inD\T; t>0,
ov
— =00n 0D,
on
2
v=—-H on rt,
3
1., _
V= 5(8,,v —d,v7) on T
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Weak approach and tightness for small o

The Limit equation for o > 3

Since
du® = Avedt + e dW,,
e — 0, in a weak sense
20:1 = Av.

= weak solutions to the deterministic model

=> rigorously proved in radial symmetric case and conjectured in general case to
the deterministic Hele Shaw model:

Av=0inD\T; t>0,
0
8: =0on 0D, o
2
v= gH on rt,
1
V= E(@,,v+ —d,v7) on T

= The only possibility to converge to "stochastic Hele-Shaw model” is ¢ = 0.
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Weak approach and tightness for small o

Equation driven by “smeared” noise

We consider the following random PDE:

ou* € o
W:AV +5 E, (t,X)E[O,T]XD,
1
Ve = —eAu(t) + ~F'(°(t)), (t,x) € [0, T] x D,
9
ou®  Ov®
= = t T D
=Sl —0, (5 €[0, T x 0D,
uf(0,x) = u5(x), xe€D,
aw
where SE — gt
Rongchan Zhu (Beijing Institute of Technology) stochastic Cahn-Hilliard equation
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Weak approach and tightness for small o

Equation driven by “smeared” noise

We consider the following random PDE:

€
aaut =Ave+:7¢, (t,x)€[0,T] x D,
1
ve = —eAu(t) + gF'(ue(t)), (t,x) € [0, T] x D, (10)
ou®  Ov®
W—W—(), (t,X)G[O,T]XaD,
uf(0,x) = u5(x), xe€D,
where £ — %.
Theorem 6

[Y, Zhu 19]: For anyo >0, P —a.s. w,
o uf — —1+21g in C([0, T], L2),
o v = vinL2(0, T;HY),
e 1 € L>(0, T; BV).
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Weak approach and tightness for small o

Equation driven by “smeared” noise

We consider the following random PDE:

€
aaut =Ave+:7¢, (t,x)€[0,T] x D,
1
ve = —eAu(t) + gF'(ue(t)), (t,x) € [0, T] x D, (10)
ou®  Ov®
W—W—(), (t,X)G[O,T]XaD,
uf(0,x) = u5(x), xe€D,
where £ — %.
Theorem 6

[Y, Zhu 19]: For anyo >0, P —a.s. w,
o uf — —1+21g in C([0, T], L2),
o v = vinL2(0, T;HY),
e 1 € L>(0, T; BV).

o > 0 = deterministic model (9).
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Weak approach and tightness for small o

Stochastic Hele-Shaw model

For 0 =0, 0;u® = Av® + £°.
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Weak approach and tightness for small o

Stochastic Hele-Shaw model

For 0 =0, 0;u® = Av® + £°.

Main results for o = 0 [Y, Zhu: 19]

the limit equation (weak formula for stochastic Hele Shaw model):

2d1g, = Avdt + dW,.
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Stochastic Hele-Shaw model

For o0 =0, 0;u® = Av® + &°.

Main results for o = 0 [Y, Zhu: 19]

the limit equation (weak formula for stochastic Hele Shaw model):
2d1g = Avdt + dW,.

In radial symmetric case,

2
v = §H on .
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Stochastic Hele-Shaw model

For o0 =0, 0;u® = Av® + &°.

Main results for o = 0 [Y, Zhu: 19]

the limit equation (weak formula for stochastic Hele Shaw model):
2d1g = Avdt + dW,.

In radial symmetric case,

2
v = §H on .

Formally
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Stochastic Hele-Shaw model

For o0 =0, 0;u® = Av® + &°.

Main results for o = 0 [Y, Zhu: 19]

the limit equation (weak formula for stochastic Hele Shaw model):
2d1g = Avdt + dW,.

In radial symmetric case,

2
v = §H on .

Formally
° —AV:E:: dg}:’ in D\rt;
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Stochastic Hele-Shaw model

For o0 =0, 0;u® = Av® + &°.

Main results for o = 0 [Y, Zhu: 19]

the limit equation (weak formula for stochastic Hele Shaw model):
2d1g = Avdt + dW,.

In radial symmetric case,

2
v = §H on .

Formally
° —AV:E:: dg}:’ in D\rt;
olet v =v+ AL

t 1 t 1 t
//31»1511#:—5/ V\A/V1/)—§// Vv
0 D 0 D+ 0 -
1 t
5 | [ o
2 0 e
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Weak approach and tightness for small o

Stochastic Hele-Shaw model

For o = 0, we proved in radial symmetric case, that the sharp interface limit of
(10) is the weak formula of the following "stochastic Hele-Shaw" model:

Avdt = —dW, in D\ Ty, t >0,
ov
o = 0on 0D,
v = gH on Iy, (11)
3
170
== A~Ldw,
Vdt > [&)Lt(vdt%— dWy),

where H: mean curvature

or -

o1 . oft  of
r, " On on
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Further plan
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Further plan

e Rigorous meaning of stochastic Hele-Shaw model (11);
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Further plan

e Rigorous meaning of stochastic Hele-Shaw model (11);

o Approximate solution to (11);
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Further plan

e Rigorous meaning of stochastic Hele-Shaw model (11);
o Approximate solution to (11);

e Rigorous proof of convergence to (11) in general case;
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Further plan

e Rigorous meaning of stochastic Hele-Shaw model (11);

Approximate solution to (11);

e Rigorous proof of convergence to (11) in general case;

Singular noise for small o.
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Weak approach and tightness for small o
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Weak approach and tightness for small o

Thank youl
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