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Introduction

Introduction

The Cahn-Hilliard equation

∂tu = ∆(−∆u + F ′(u)), (1)

on [0,T ]× D with Neumann boundary condition.

F (u) = 1
4 (u2 − 1)2: the double-well potential

v = −∆u + F ′(u)

well-known model to describe phase separation

is also H−1-gradient flow of the energy functional

E(u) :=
1

2

∫
D
|∇u(x)|2dx +

∫
D
F (u(x))dx , (2)

If u is a solution to equation (1), then

d

dt
E(u(t, ·)) = −

∫
D
|∇v(x)|2dx ≤ 0.

The minimizers of the energy (2) are the constant functions u ≡ 1 and
u ≡ −1, which represent the “pure phases” of the system.
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Introduction

Introduction

In a large scale, let
τ = ε3t, η = εx ,

and uε = u(τ, η),

then uε satisfies

∂τu
ε = ∆η(−ε∆ηu

ε +
1

ε
F ′(uε)), (3)

vε = −ε∆uε + 1
εF
′(uε): chemical potential

As ε→ 0, (3) represent a long time behavior of (1) in a large scale.

The energy functional of (3) is

Eε(uε) :=
ε

2

∫
D
|∇uε(x)|2dx +

1

ε

∫
D
F (uε(x))dx , (4)

and satisfies

d

dt
Eε(uε) = −

∫
D
|∇vε|2 ≤ 0. (5)

As ε→ 0, F (uε)→ 0, which implies uε → −1 + 21E for some
E ⊂ [0,T ]×D. Γt := ∂Et is the interface.
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Introduction

Motion of Γt

uε approximates to 1 on one region D+ and to −1 in D−, uε → −1 + 21E

vε → v ,
2∂t1Et = ∆v .

∆v = 0 in D \ Γt ;
∂v
∂n = 0 on ∂D;

Formally,∫ t

0

∫
D
∂t1Etψ = −1

2

∫ t

0

∫
D+

∇v∇ψ − 1

2

∫ t

0

∫
D−
∇v∇ψ

=
1

2

∫ t

0

∫
D+

div(∇vψ) +
1

2

∫ t

0

∫
D−

div(∇vψ)

=
1

2

∫ t

0

∫
Γt

(∂nv
+ − ∂nv−)ψ.
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Introduction

Hele-Shaw model

Formally derived by [Pego: 1989] and rigorous proved by [Alikakos, Bates,Chen:
1994]: vε → v , (v , Γ) solves the following free boundary problem:

∆v = 0 in D \ Γt , t > 0,

∂v

∂n
= 0 on ∂D,

v=
2

3
H on Γt ,

V =
1

2
(∂nv

+ − ∂nv−) on Γt ,

(6)

H: mean curvature of Γt ; V: normal velocity of Γ
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Introduction

Approximate solution to the deterministic Hele-Shaw

Let (v , Γ) be a smooth solution to deterministic Hele-Shaw model (6).
[Alikakos, Bates, Chen 1994]: construct a pair (uεA, v

ε
A) such that

∂tu
ε
A = ∆vεA in DT ,

vεA =
1

ε
F ′(uεA)− ε∆uεA + rεA in DT ,

(7)

Γt is the zero level set of uεA(t)

‖rεA‖C(DT ) . εK−2.

‖vεA − vε‖C(DT ) . ε.

For x with d(x , Γt) > Cε,

|uεA(t, x)− 1| . ε or |uεA(t, x) + 1| . ε.

‖uε − uεA‖C(DT ) → 0.
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Singular noise for large σ

Stochastic Cahn-Hilliard equation


duε = ∆vεdt + εσdW in DT ,

vε =
1

ε
F ′(uε)− ε∆uε in DT ,

∂uε

∂n
=
∂vε

∂n
= 0, (t, x) ∈ [0,T ]× ∂D

[Antonopoulou, Blömker, Karali 2018]: W is a trace-class Wiener process and
σ > 23

3 , the limit is the same as the deterministic case.

Idea of proof:
Compare uε and uεA + Itô’s formula.

Problems: Singular noise or Small σ ⇒? Stochastic Hele shaw
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Singular noise for large σ

Singular noise: space-time white noise

In our case, W is an L2-cylindrical Wiener process.

Let Rε = uε − uεA,

dRε = −ε∆2Rεdt +
1

ε
∆
(
F ′(uAε + Rε)− F ′(uAε )

)
dt + ∆rAε dt + εσdWt ;

Da prato-Debussche’s trick: Z εt := εσ
∫ t

0
e−(t−s)ε∆2

dWs , Y ε := Rε − Z ε

satisfies:

∂tY
ε = −ε∆2Y ε +

1

ε
∆
(
F ′(uAε + Y ε + Z ε)− F ′(uAε )

)
+ ∆rAε ;

E(‖Z ε‖C(DT )) . ε(σ− 1
4 )− ;

Stopping time argument yields that

Theorem 1

[Banas, Yang, Z. 19] For σ > 107
12 , ‖Rε‖L3

t L
3
x
converges to 0 in probability.

⇒ the limit is the same as the deterministic case
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Singular noise for large σ

Singular noise: Conservative noise

This method can be applied to

duε,h = ∆

(
−ε∆uε,h +

1

ε

(
F ′(uε,h)− 3cεh,tu

ε,h
))

dt + εσ∇ · dW h
t ,

W h = W ∗ ρh
cεh,t is renormalization constant

|cεh,t | . ε2σ−1| log h|
Global well-posedness has been obtained in [Röckner, Yang, Z. 18].

Let Rε,h = uε,h − uεA,

Theorem 2

[Banas, Yang, Z. 19] Assume εθ . h2. Then for σ > 26
3 + θ, ‖Rε,h‖L3

t L
3
x
converges

to 0 in probability.
⇒ the limit is the same as the deterministic case
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Singular noise for large σ

Small σ?

[Antonopoulou, Blömker, Karali 2018]: Conjecture: σ = 1 formally derive
stochastic Hele Shaw model

Difficult to prove convergence for small σ by the approximate solution uεA;

Only possible to prove the convergence to deterministic Hele-Shaw model;

Difficulty: Noise is not regular enough w.r.t. time t.
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Weak approach and tightness for small σ

Main results for σ ≥ 1/2

We consider the stochastic Cahn-Hilliard equation on a bounded smooth open
domain D ⊂ Rd (d = 2, 3):

duε = ∆vεdt + εσdWt , (t, x) ∈ [0,T ]×D,

vε = −ε∆uε(t) +
1

ε
F ′(uε(t)), (t, x) ∈ [0,T ]×D,

∂uε

∂n
=
∂vε

∂n
= 0, (t, x) ∈ [0,T ]× ∂D,

uε(0, x) = uε0(x), x ∈ D.

(8)

Main results [Yang Z. 19]

For σ ≥ 1/2, in radial symmetric case the limit is the deterministic Hele Shaw
model

⇒ Conjecture in [Antonopoulou, Blömker, Karali 2018] may not ture.
We conjecture in general case for σ ≥ 1/2, the limit is the deterministic Hele Shaw
model.
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Weak approach and tightness for small σ

Idea of Proof: Lyapunov property

Recall

Eε(uε) :=
ε

2

∫
D
|∇uε(x)|2dx +

1

ε

∫
D
F (uε(x))dx .

By Itô’s formula

dEε(uε) = 〈DEε(uε), duε〉+
ε2σ

2
Tr(QD2Eε(uε))dt

=− 〈∇vε,∇vε〉dt +
ε2σ+1

2
Tr(−∆Q)dt +

ε2σ−1

2
Tr(F ′′(uε)Q)dt + εσ〈vε, dWt〉.

Lemma 3

(Lyapunov property) Assume Tr(−∆Q) <∞ and sup0<ε<1 Eε(uε0) < E0 then
there exists ε0 ∈ (0, 1) such that for any ε ∈ (0, ε0] and any p ≥ 1,

E sup
t∈[0,T ]

Eε(t)p . (ε2σ−1 + E0)p,

E

(∫ T

0

‖∇vε‖2
L2dt

)p

. (ε2σ−1 + E0)p.
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Weak approach and tightness for small σ

Idea of Proof: Tightness for σ ≥ 1
2

Lemma 4

Assume σ ≥ 1
2 . For any β ∈ (0, 1

12 )

E
(
‖uε‖Cβ([0,T ];L2)

)
. 1

For any δ > 0, there exists a constant C ≡ C (δ,T ) > 0, such that

P

(∫ T

0

‖vε(t)‖2
H1dt ≤ C

)
≥ 1− δ.

Tightness + Skorohod theorem ⇒

Theorem 5

[Y, Zhu: 19] For any σ ≥ 1
2 , P− a.s. ω,

uε → −1 + 21E in C ([0,T ], L2
w ),

vε → v in L2
w (0,T ;H1)

1E ∈ L∞(0,T ;BV )
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Weak approach and tightness for small σ

The Limit equation for σ ≥ 1
2

Since
duε = ∆vεdt + εσdWt ,

ε→ 0, in a weak sense
2∂t1E = ∆v .

⇒ weak solutions to the deterministic model
⇒ rigorously proved in radial symmetric case and conjectured in general case to
the deterministic Hele Shaw model:

∆v = 0 in D \ Γt , t > 0,

∂v

∂n
= 0 on ∂D,

v=
2

3
H on Γt ,

V =
1

2
(∂nv

+ − ∂nv−) on Γt .

(9)

⇒ The only possibility to converge to ”stochastic Hele-Shaw model” is σ = 0.
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Weak approach and tightness for small σ

Equation driven by “smeared” noise

We consider the following random PDE:

∂uε

∂t
= ∆vε + εσξεt , (t, x) ∈ [0,T ]×D,

vε = −ε∆uε(t) +
1

ε
F ′(uε(t)), (t, x) ∈ [0,T ]×D,

∂uε

∂n
=
∂vε

∂n
= 0, (t, x) ∈ [0,T ]× ∂D,

uε(0, x) = uε0(x), x ∈ D,

(10)

where ξε → dW
dt .

Theorem 6

[Y, Zhu 19]: For any σ ≥ 0, P− a.s. ω,

uε → −1 + 21E in C ([0,T ], L2
w ),

vε → v in L2
w (0,T ;H1),

1E ∈ L∞(0,T ;BV ).

σ > 0⇒ deterministic model (9).
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Weak approach and tightness for small σ

Stochastic Hele-Shaw model

For σ = 0, ∂tu
ε = ∆vε + ξε.

Main results for σ = 0 [Y, Zhu: 19]

the limit equation (weak formula for stochastic Hele Shaw model):

2d1Et = ∆vdt + dWt .

In radial symmetric case,

v =
2

3
H on Γt .

Formally

−∆v = ξ := dWt

dt in D \ Γt ;

Let v̂ = v + ∆−1ξ∫ t

0

∫
D
∂t1Etψ = −1

2

∫ t

0

∫
D+

∇v̂∇ψ − 1

2

∫ t

0

∫
D−
∇v̂∇ψ

=
1

2

∫ t

0

∫
Γt

(∂nv̂
+ − ∂nv̂−)ψ.
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Weak approach and tightness for small σ

Stochastic Hele-Shaw model

For σ = 0, we proved in radial symmetric case, that the sharp interface limit of
(10) is the weak formula of the following ”stochastic Hele-Shaw” model:

∆vdt = −dWt in D \ Γt , t > 0,

∂v

∂n
= 0 on ∂D,

v =
2

3
H on Γt ,

Vdt =
1

2

[
∂

∂n

]
Γt

(vdt + ∆−1dWt),

(11)

where H: mean curvature [
∂

∂n

]
Γt

f =
∂f +

∂n
− ∂f −

∂n
.
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Weak approach and tightness for small σ

Further plan

Rigorous meaning of stochastic Hele-Shaw model (11);

Approximate solution to (11);

Rigorous proof of convergence to (11) in general case;

Singular noise for small σ.
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Weak approach and tightness for small σ
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Weak approach and tightness for small σ

Thank you!
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