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Chronological loop-erasure of a path

Loop-erased random walk (LERW) is the random simple path
obtained by erasing all loops chronologically from a simple random
walk path. In other words, we erase a loop immediately when it is
created.
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Precise definition of loop erasure (but don’t look at it)

I Given a path λ = [λ(0), λ(1), · · · , λ(m)] ⊂ Zd , we define its
loop-erasure LE(λ) as follows. Let

s0 := max{t
∣∣λ(t) = λ(0)},

and for i ≥ 1, let

si := max{t
∣∣λ(t) = λ(si−1 + 1)}.

We write n = min{i
∣∣si = m}. Then we define LE(λ) by

LE(λ) = [λ(s0), λ(s1), · · · , λ(sn)].

I However, to save brainpower (and time!!), just imagine a kind
of self-repulsive motion on the lattice.

I In fact, it is equivalent to a special case of Laplacian b−walk
(again don’t search for the definition on Google for the
moment).
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Setup

For the sake of simplicity in this talk we always work under the
following setup.

I Let D be the open unit ball in Rd , and consider the rescaled
lattice 1

NZ
d . Let DN = D ∩ 1

NZ
d be the discretized unit ball.

I Let SN be the simple random walk from 0 stopped at exiting
DN , and write γN = LE(SN) for the LERW in DN .

I For x ∈ D, let xN be its discretization. Let

aN,x = P
(
xN ∈ γN

)
be the one-point function (or Green’s function) of LERW.
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Behaviour of LERW on Zd in different dimensions

I LERW on Zd enjoys a Gaussian behavior if d is large.
I The scaling limit of LERW is the Brownian motion if d ≥ 4.
I Consider the one-point function aN,x for a fixed x ∈ D. It is

O
(
N2−d) for d ≥ 5 and O

(
N−2(logN)−1/3

)
for d = 4.

I An intuitive explanation: in high dimensions, it is very difficult
for SRW to intersect itself, hence not much is erased.

I When d = 2, the scaling limit of LERW is SLE2
1

(Lawler-Schramm-Werner). Furthermore, we have the
following asymptotics of the one-point function:

aN,x = cxN
−3/4(1 + O(N−c)

)
. (Beneš-Lawler-Viklund)

1the Schramm-Loewner evolution with parameter 2, which is a random
fractal with Hausdorff dimension 5/4.
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A simulation for 2D LERW

Picture credit: Fredrik Viklund.
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Previously known facts on 3D LERW

I In contrast to other dimensions, relatively little is known for
LERW in three dimensions. The fundamental difficulty is that
we have no a priori description of the scaling limit.

I Let KN stand for the trace of γN (a broken line), understood
as a random subset of D. Kozma proved in ’07 that there
exists K, a random subset of D, s.t.

K2n
w−→ K w.r.t. the Hausdorff metric dH.

I Note that for technically fundamental reasons the convergence
is only along dyadic scales.

I A.s., K is indeed a simple curve (Sapozhnikov-Shiraishi, ’15).

I Shiraishi proved in ’13 that

∃ α ∈ [13 , 1) such that aN,x = N−1−α+o(1).
I This implies (with a lot of work, see Shiraishi ’16) that the

Hausdorff dimension of LERW and K is equal to β = 2− α.
I Numerical experiments and field-theoretical prediction suggest

that β = 1.62± 0.01, but there is no reason to believe that β
is any nice number.
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Results in 3D

Theorem (L.-Shiraishi ’18)

There exist universal δ > 0 and c : D \ {0} → R+ such that
∀n ∈ Z+ and x ∈ D \ {0},

a2n,x
4
= P

(
x2n ∈ γ2n

)
= c(x)

(
2n
)−(1+α)[

1 + d−δx O
(

2−δn
)]

where dx = min
{
|x |, 1− |x |

}
.

Remark
Our result also only works on dyadic scales, for relatively less
fundamentally technical reasons. However, recently, we have found
some tricks to extend the above theorem to any mesh size.
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Non-intersection probability

I In parallel to the one-point function estimates, we also
investigate the following non-intersection probability of simple
random walk and LERW.

I Recall that SN is the random walk from 0 stopped at exiting
DN and γN = LE(SN). Let S ′N be an i.i.d. copy of SN , ending
at time T ′. We are interested in

Es(N)
4
= P

(
γN ∩ S ′N [1,T ′] = ∅

)
the probability that LERW γN and simple random walk S ′N do
not intersect except at the origin.
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Proof strategy for the non-intersection probability

Theorem (L.-Shiraishi ’18)

There exist c > 0 and δ > 0 such that for all n ∈ Z+,

Es(2n) = c2−αn
(
1 + O(2−δn)

)
.

I Replacement of discrete objects by continuous objects:

- SRW −→ Brownian motion;
- LERW −→ K, the scaling limit provided by Kozma.

I However, lattice effects around the origin and error bounds
from Kozma’s result do not allow us to do this directly.

I Solution: Replace the starting points by two points far away
through conditioning and modifying a recent coupling result
from Greg Lawler (The infinite two-sided loop-erased random
walk, arXiv:1802.06667).
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“Asymptotically Markov” property of LERW

I The input of the argument is that LERW is in some sense
asymptotically independent of its initial configuration.

I Let γ, γ′ be LERWs starting from different locations in B(ε).

I Then it is possible to couple γ and γ′ such that their “outer”
part agree with high probability.

I This allows us to separate the “local” behavior and the
“global” behaviour of LERW.
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Let bn = Es(2n)/Es(2n−1). Want to show bn+1/bn = 1 +O(2−δn).

13 / 19



Convergence of 3D LERW to its scaling limit in natural
parametrization

I Recall that DN is the discretized unit ball with mesh size 1/N,
and let γN is the LERW on N−1Z3, from the origin and
stopped at exiting DN . Recall that β ∈ (1, 5/3] is the
Hausdorff dimension of K.

I We write

µN := N−β
∑

x∈γN δx

for the renormalized occupation measure of γN .

Theorem (L.-Shiraishi ’18)

As n→∞,
(γ2n ;µ2n)

w−→ (K;µ∗).

Moreover, µ∗ is measurable w.r.t. K.
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Convergence of 3D LERW to its scaling limit in natural
parametrization

Theorem (L.-Shiraishi ’18)

As n→∞,
(γ2n ;µ2n)

w−→ (K;µ∗)

in the product topology of (H(D); dHaus) and the topology of the
weak convergence on M(D). Moreover, µ∗ is measurable w.r.t. K.

Here

I H(D) is the space of non-empty compact subsets of D;

I dHaus is the the Hausdorff metric on H(D);

I M(D) is the space of finite measures on D.
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Convergence of 3D LERW to its scaling limit in natural
parametrization

I The previous theorem allows as to upgrade the convergence to
the convergence of continuous curves in the uniform norm.

I Namely, let
I (C(D), d∞) be the space of continuous curves λ : [0, tλ]→ D

equipped with the uniform norm
d∞(λ1, λ2) = max0≤s≤1

∣∣λ1(stλ1)− λ2(stλ2)
∣∣+
∣∣tλ1 − tλ2

∣∣;
I ηN(t) := γN(Nβt) be the properly time-rescaled LERW as an

element of C(D);
I η∗ be the curve obtained through parametrizing K by µ∗.

Theorem (L.-Shiraishi ’18)

As n→∞, η2n
w→ η∗ with respect to the topology of (C(D), d∞).

Remark
As γ2n is traversed at a constant speed, what we obtain is a
convergence in the natural parametrization. We conjecture that µ∗

can also be given through the Minkowski content of K.
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L2-approximation in the style of Garban-Pete-Schramm
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Thank you for your attention!
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-Mashikoyaki pottery made by Shoji HAMADA et al., ca. 1929.
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