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Two random surfaces

random planar map (RPM) Liouville quantum gravity (LQG)
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Planar maps

A planar map M is a finite connected graph drawn in the sphere,
viewed up to continuous deformations.
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Planar maps

A planar map M is a finite connected graph drawn in the sphere,
viewed up to continuous deformations.

A triangulation is a planar map where all faces have three edges.

Given n ∈ N let M be a uniformly chosen triangulation with n
vertices.

Enumeration results by Tutte and Mullin in 60’s.
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The Gaussian free field (GFF)

Hamiltonian H(f ) quantifies how much f deviates from being harmonic

H(f ) =
1

2

∑
x∼y

(f (x)− f (y))2, f :
1

n
Z2 ∩ [0, 1]2 → R.

1
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Z2 ∩ [0, 1]2 → R.

Discrete Gaussian free field (GFF) hn : 1
n
Z2 ∩ [0, 1]2 → R is a random function

with hn|∂[0,1]2 = 0 and probability density rel. to Lebesgue measure proportional to

exp(−H(hn)).

hn(z) ∼ N (0, 2
π

log n + O(1)) and Cov(hn(z), hn(w)) = − 2
π

log |z − w |+ O(1).

The Gaussian free field h is the limit of hn when n→∞.

The GFF is a random distribution (i.e., random generalized function).

n = 20, n = 100
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Liouville quantum gravity (LQG)

If h : [0, 1]2 → R smooth and γ ∈ (0, 2), then eγh(dx2 + dy 2) defines the metric
tensor of a Riemannian manifold.
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Liouville quantum gravity (LQG)

If h : [0, 1]2 → R smooth and γ ∈ (0, 2), then eγh(dx2 + dy 2) defines the metric
tensor of a Riemannian manifold.

γ-Liouville quantum gravity (LQG): h is the Gaussian free field.

The definition does not make literal sense, since h is not a function.

Area measure eγhd2z and metric defined via regularized versions hε of h:

µ(U) = lim
ε→0

εγ
2/2

∫
U

eγhε(z)d2z , U ⊂ [0, 1]2,

d(z ,w) = lim
ε→0

cε inf
P:z→w

∫
P

eγhε(z)/d dz , z ,w ∈ [0, 1]2 (2019).
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γ-Liouville quantum gravity (LQG): h is the Gaussian free field.

The definition does not make literal sense, since h is not a function.

Area measure eγhd2z and metric defined via regularized versions hε of h:

µ(U) = lim
ε→0

εγ
2/2

∫
U

eγhε(z)d2z , U ⊂ [0, 1]2,

d(z ,w) = lim
ε→0

cε inf
P:z→w

∫
P

eγhε(z)/d dz , z ,w ∈ [0, 1]2 (2019).

The area measure is non-atomic and any open set has positive mass a.s., but the
measure is a.s. singular with respect to Lebesgue measure.

discrete
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Random planar maps converge to LQG

Two models for random surfaces:

Random planar maps (RPM)

Liouville quantum gravity (LQG)

.
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Two models for random surfaces:
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Liouville quantum gravity (LQG)

.
Conjectural relationship used by physicists to predict/calculate the
dimension of random fractals and exponents of statistical physics models.

1
n

v

P[4 arms from v ] ≈ n−5/4
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Random planar maps converge to LQG

Two models for random surfaces:

Random planar maps (RPM)

Liouville quantum gravity (LQG)

.
Conjectural relationship used by physicists to predict/calculate the
dimension of random fractals and exponents of statistical physics models.
.
What does it mean for a RPM to converge?

Metric structure (Le Gall’13, Miermont’13)

Conformal structure (H.-Sun’19)

Statistical physics observables (Duplantier-Miller-Sheffield’14, ...)
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Conformally embedded RPM converge to
√

8/3-LQG

A

B C

embedding φ

random planar map (RPM) Mn
embedded random planar map

T

scaling limit

I ⇒
√

8/3-LQG h

Cardy

Uniform triangulation Mn with n vertices, boundary length d√ne.
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Conformally embedded RPM converge to
√

8/3-LQG

A

B C

embedding φ

random planar map (RPM) Mn
embedded random planar map

T

scaling limit

I ⇒
√

8/3-LQG h

Cardy

Uniform triangulation Mn with n vertices, boundary length d√ne.
Cardy embedding: uses properties of percolation on the RPM.
Let µn be renormalized counting measure on the vertices in T.
Let dn be a metric (distance function) on T prop. to graph distances.
Let µ be

√
8/3-LQG area measure in T, and d the associated metric.

Theorem (H.-Sun’19)

In the above setting, (µn, dn)⇒ (µ, d).
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√

8/3-LQG

A

B C

embedding φ

random planar map (RPM) Mn
embedded random planar map

T

scaling limit

I ⇒
√

8/3-LQG h

Cardy

Theorem (H.-Sun’19)

In the above setting, (µn, dn)⇒ (µ, d).

More precisely, ∃ coupling of Mn and h s.t. with probability 1, as n→∞,∫
fdµn →

∫
fdµ ∀ continuous f : T→ [0, 1] (measure convergence)

dn(z ,w)→ d(z ,w), uniformly in z ,w ∈ T (metric convergence)
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The Schramm-Loewner evolution (SLE)

One-parameter family of random fractal curves indexed by κ ≥ 0,
which describe the scaling limit of statistical physics models

loop-erased random walk, κ = 2
Ising, κ = 3, and FK-Ising, κ = 16/3
percolation, κ = 6
discrete Gaussian free field level line, κ = 4
uniform spanning tree, κ = 8

SLE0 SLE2 SLE4

Holden (ETH Zürich) August 1, 2019 8 / 20



The Schramm-Loewner evolution (SLE)

One-parameter family of random fractal curves indexed by κ ≥ 0,
which describe the scaling limit of statistical physics models

loop-erased random walk, κ = 2
Ising, κ = 3, and FK-Ising, κ = 16/3
percolation, κ = 6
discrete Gaussian free field level line, κ = 4
uniform spanning tree, κ = 8
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The Schramm-Loewner evolution (SLE)

One-parameter family of random fractal curves indexed by κ ≥ 0,
which describe the scaling limit of statistical physics models

loop-erased random walk, κ = 2
Ising, κ = 3, and FK-Ising, κ = 16/3
percolation, κ = 6
discrete Gaussian free field level line, κ = 4
uniform spanning tree, κ = 8

Introduced by Schramm’99: SLE uniquely characterized by conformal
invariance and domain Markov property.
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Percolation on uniform triangulations ⇒ SLE6

A

B

C

B

C A

ηn ηn

Smirnov’01, Camia-Newman’06: ηn ⇒ SLE6 on triangular lattice.

H.-Sun’19: ηn ⇒ SLE6 on Cardy embedded triangulation in a
quenched sense.
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Percolation on uniform triangulations ⇒ CLE6

A

B

C

B

C A

Γn Γn

The conformal loop ensemble (CLE6) is the loop version of SLE6.

Smirnov’01, Camia-Newman’06: Γn ⇒ CLE6 on triangular lattice.

H.-Sun’19: Γn ⇒ CLE6 on Cardy embedded triangulation.
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Convergence of percolation crossing probability

Let Mn be a uniformly chosen triangulation with n (resp. d√ne) inner
(resp. boundary) vertices.
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Convergence of percolation crossing probability

Let Mn be a uniformly chosen triangulation with n (resp. d√ne) inner
(resp. boundary) vertices.

Pick edges an, bn, cn, dn uniformly at random from ∂Mn.
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Convergence of percolation crossing probability

Let Mn be a uniformly chosen triangulation with n (resp. d√ne) inner
(resp. boundary) vertices.
Pick edges an, bn, cn, dn uniformly at random from ∂Mn.
Let Pn = Pn(Mn, an, bn, cn, dn) ∈ [0, 1] denote the probability of a
blue crossing from anbn to cndn.
The random variable Pn converges in law as n→∞.
Pn gives some notion of extremal distance between anbn and cndn.

an

bn

cndn

Pn =
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cndn
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Cardy embedding: percolation-based embedding

A

B C

Cardy embedding φ

random planar map

embedded random planar map

T
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B C

Cardy embedding φ
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a

b

c
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Cardy embedding: percolation-based embedding

What is the “correct” position of v in T?

v

b

c

a
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Cardy embedding: percolation-based embedding

What is the “correct” position of v in T?

A

B

C

x

blue
crossing

pA(x) = P

B

C A

x
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Cardy embedding: percolation-based embedding

What is the “correct” position of v in T?

Map v ∈ V (M) to x ∈ T such that

(pA(x), pB(x), pC (x)) = (p̂a(v), p̂b(v), p̂c(v)).

pA(x) = P

B

C A

x
v

b

c

ap̂a(v) = P
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RPM ⇒ LQG under conformal embedding

A

B C

embedding φ

random planar map (RPM) Mn
embedded random planar map

T

scaling limit

I ⇒
√

8/3-LQG h

Cardy

Our result is for uniform triangulations and the Cardy embedding, but
is also believed to hold for other

1 conformal embeddings,

2 local map constraints, and

3 universality classes of random planar maps.
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Discrete conformal embeddings

Circle packing

Riemann uniformization

Tutte embedding

Cardy embedding

circle packing (sphere topology) circle packing (disk topology)
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Discrete conformal embeddings

Circle packing

Riemann uniformization

Tutte embedding

Cardy embedding

.
Uniformization theorem: For any simply connected Riemann surface M
there is a conformal map φ from M to either D, C or S2.

φ
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Discrete conformal embeddings

Circle packing

Riemann uniformization

Tutte embedding

Cardy embedding

Tutte embedding
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Conformally embedded RPM converge to
√

8/3-LQG

A

B C

embedding φ

random planar map (RPM) Mn
embedded random planar map

T

scaling limit

I ⇒
√

8/3-LQG h

Cardy
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Conformally embedded RPM converge to
√

8/3-LQG

The proof is based on multiple works, including:

Percolation on triangulations: a bijective path to
Liouville quantum gravity (Bernardi-H.-Sun)

Minkowski content of Brownian cut points
(Lawler-Li-H.-Sun)

Natural parametrization of percolation interface
and pivotal points (Li-H.-Sun)

Uniform triangulations with simple boundary
converge to the Brownian disk (Albenque-H.-Sun)

Joint scaling limit of site percolation on random
triangulations in the metric and peanosphere sense
(Gwynne-H.-Sun)

Liouville dynamical percolation
(Garban-H.-Sepúlveda-Sun)

Convergence of uniform triangulations under the
Cardy embedding (H.-Sun)
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Convergence as metric measure space

Mn is a uniform triangulation with n vertices and bdy length d√ne.
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Convergence as metric measure space

Mn is a uniform triangulation with n vertices and bdy length d√ne.
Mn is a random metric measure space.
Gromov-Hausdorff-Prokhorov (GHP) topology on the space of
metric measure spaces.

Theorem (Albenque-H.-Sun’19)

Mn ⇒ M in the GHP topology, where M is
√

8/3-LQG (equivalently, the
Brownian disk).

Building on Le Gall’13, Miermont’13, Bettinelli–Miermont’17, Poulalhon–Schaeffer’06,

Addario-Berry–Albenque’17, Addario-Berry–Wen’17

n−1/4
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Convergence as metric measure space with loops

Theorem (Albenque-H.-Sun’19)

Mn ⇒ M in the GHP topology, where M is
√

8/3-LQG (the Brownian disk).
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Convergence as metric measure space with loops

Theorem (Albenque-H.-Sun’19)

Mn ⇒ M in the GHP topology, where M is
√

8/3-LQG (the Brownian disk).

Let Pn be a uniform percolation on Mn.

Gromov-Hausdorff-Prokhorov-uniform (GHPU) topology on the space of metric
measure spaces with a collection of loops.
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Convergence as metric measure space with loops

Theorem (Albenque-H.-Sun’19)

Mn ⇒ M in the GHP topology, where M is
√

8/3-LQG (the Brownian disk).

Let Pn be a uniform percolation on Mn.

Gromov-Hausdorff-Prokhorov-uniform (GHPU) topology on the space of metric
measure spaces with a collection of loops.

Theorem (Gwynne-H.-Sun’19)

(Mn,Pn)⇒ (M, Γ) in the GHPU topology, where Γ is the conformal loop ensemble CLE6.

Building on Gwynne-Miller’17, Bernardi-H.-Sun’18
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Liouville dynamical percolation

Dynamical percolation (Pt)t≥0 on M: Each vertex has an exponential clock and
its color is resampled when its clock rings.
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Holden (ETH Zürich) August 1, 2019 19 / 20



Liouville dynamical percolation

Dynamical percolation (Pt)t≥0 on M: Each vertex has an exponential clock and
its color is resampled when its clock rings.
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Liouville dynamical percolation

Dynamical percolation (Pt)t≥0 on M: Each vertex has an exponential clock and
its color is resampled when its clock rings.

(Pn−1/4t)t≥0 ⇒ (Γt)t≥0, for (Γt)t≥0 Liouville dynamical percolation.

Γt is a CLE6 for each t ≥ 0.
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Holden (ETH Zürich) August 1, 2019 19 / 20



Liouville dynamical percolation

Dynamical percolation (Pt)t≥0 on M: Each vertex has an exponential clock and
its color is resampled when its clock rings.

(Pn−1/4t)t≥0 ⇒ (Γt)t≥0, for (Γt)t≥0 Liouville dynamical percolation.

Γt is a CLE6 for each t ≥ 0.

(Γt)t≥0 is mixing (in particular, ergodic): Γt is asymptotically indep. of Γ0.

limt→∞ Cov(E1(Γ0),E2(Γt)) = 0 for all events E1,E2.

Noise sensitivity: If a fraction Cn−1/4 of the vertices are resampled for C � 1, we
get an essentially independent limiting CLE6.

Corollary: k indep. percolations on a map M give k indep. CLE6’s in the scaling
limit ⇒ convergence of Cardy embedding of M via LLN argument.

(M,P ) (M, P̃ )
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