Zero Temperature Limits for Directed Polymers
in Random Environment

Ryoki Fukushima (RIMS, Kyoto University)

The 12th Mathematical Society of Japan, Seasonal Institute
Stochastic Analysis, Random Fields and Integrable Probability
August 9, 2019

Joint works with F. Comets, S. Nakajima, N. Yoshida, S. Junk.

21



Disclaimer

The partition function of a directed polymer:

= Z €Xp Z 7’71 )

v: path

The free energy ¢(8) = limp—0 % log Z? is important.
(Existence by the subadditive ergodic theorem.)

In the zero-temperature limit 5 — oo,

n

1 1
lim lim ﬁ—logzﬁ—— lim — inf (jﬂj)a

B—00 N—0 n—oo N ~: path

when the right-hand side is non-zero. This is the First Passage
Percolation.

)
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A problem on oriented percolation

Q How many open paths of length n in the oriented percolation
cluster starting at (0,0)?

From Durrett: Ten lectures on particle systems



A problem on oriented percolation

Q How many open paths of length n in the oriented percolation
cluster starting at (0,0)?
Let N, = #{open paths from (0,0) to level n}.
» F.—Yoshida 2012: N, > e°” when 3 an infinite path.
» Garet—Gouéré-Marchand 2016: a(p) = lim,_ 00 % log N,
exists when 3 an infinite path.

» Duminil-Copin—Kesten—Nazarov—Peres—Sidoravicius 2019+:
The number of maximizing paths grows exponentially.
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Q How many open paths of length n in the oriented percolation
cluster starting at (0,0)?

Let N, = #{open paths from (0,0) to level n}.
» F.—Yoshida 2012: N, > e°” when 3 an infinite path.
» Garet—Gouéré—Marchand 2016: a(p) = limp_o0 % log N,
exists when 3 an infinite path.

» Duminil-Copin—Kesten—Nazarov—Peres—Sidoravicius 2019+:
The number of maximizing paths grows exponentially.

n
If w is Ber(p), then N, = ﬁll_}moo Z exp —BZw(j,’yj)
~: path j=1
Can we recover a(p) by taking zero-temperature limit?
We have corresponding results only for two toy models...
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Model I: discrete time polymer with
unbounded jumps



Toy model I

» ({"Vn}nen, P): Random walk on Z9 with

P(Ynt1 = x|vn = y) = crexp{—|x — y|T'};

> ({wU, )} xenxze; P): 11D, Ber(p).

Directed polymer measure:

pf () = pox exp{ /J’Zw ,w} (7),

n

ZoP = E !exp {520)(]7%)}] :
j=1

At 8 = oo, we regard exp{---} = 12,”;1 w(jy;)=0
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J=1

Z;Uvﬁ = Z cf exp {Z{BWU?%‘) = -1 - 'Yj’ﬂ } ‘

~: path
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w?ﬁ — n
Zn - E Cy exp
~: path

Zn:{_ﬂw(jﬁj) — -1 - 'Yj’ﬂ } .

Jj=1

o w(j,x) =0



Free energy I

It is standard to show the existence of the free energy:

©(B)=lim flogZ“’B— lim_ E[|ogzwﬁ]

n—oo N

If we naturally define Z;"> = P(3_7_; w(j,7;) = 0), this holds
even at 8 = oo.

The key ingredient is E[log Z,"] < oo,
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Free energy I

It is standard to show the existence of the free energy:

©(B)=lim flogZ“’B— lim_ fIE[IogZ“’ﬂ]

n—oo N

If we naturally define Z;"> = P(3_7_; w(j,7;) = 0), this holds
even at 8 = oo.

The key ingredient is E[log Z,"°] < oo, which fails to hold for
some other models (2nd part).
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Zero temperature limit 1

In this model, we know ¢(c0) exists.
Theorem (Comets—F.—Nakajima—Yoshida 2015, N. 2018)
For any a > 0,
B /o0
p(B) = ¢(c0)-

Remark

1. The joint continuity in (p, 3) is easy on 3 < oo region.

2. The proof shows that for any ¢ > 0, we can choose 5> 1
such that
7950 < 798 < gfn 70,

This gives an alternative proof of the existence of p(o0).

21



Proof idea: a <1

The proof of Z;">° < Z9P < gen 79,0 goes as follows:

n

Z;”ﬁ = Z cf exp Z[—ﬁw(jﬁj) = -1 =l

~: path j=1

= >+ >+ >

no traps  few traps  many traps

_ U_hoo . P
D notraps = Znand D0 s i negligible when 3 ~ oco.
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Proof idea: a <1

The proof of Z;">° < Z9P < gen 79,0 goes as follows:

n

Z,‘;’ﬁ = Z cf exp Z[—ﬁw(jﬁj) = -1 =l

~: path j=1

= >+ >+ >

no traps  few traps  many traps

_ U_hoo . P
D notraps = Znand D0 s i negligible when 3 ~ oco.

For > few trapsr We €an deform paths to trap free paths without too
much extra cost and multiplicity:

— ¥ < ¥

few traps no traps
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Proof idea: o« > 1

The "deformation cost” is too large in this case.
The proof is based on a control of the rate of convergence:

log Z; — np(§8) = log Z, — E[log Z] +E[log Z,] — nyo(6)

random error non-random error

We need (uniformly in 8 € [0, o0]):

P (’Iog ZP —Ellog Z,fj]’ > n1_5) <n M
Bllog Z¢] — np(8)] < 0.
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Proof idea: o« > 1

The "deformation cost” is too large in this case.
The proof is based on a control of the rate of convergence:

log Z; — np(§8) = log Z, — E[log Z] +E[log Z,] — nyo(6)

random error non-random error

We need (uniformly in 8 € [0, o0]):
P (’Iog ZP —Ellog Z,fj]’ > n1_5) <n M
[Ellog 2] — n(8)] < n'".

In fact, the first bound implies the second (Y. Zhang 2010).
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Maximal jump

Proof of concentration requires a control on the influence, which is
related to the jump size.

Lemma (Nakajima 2018)
For any o > 1, “typical” polymers of length n jumps at most n°1).

Remark

Numerical experiment shows that there is a big jump when o < 1.
| have a proof that the maximal jump is larger than (log n)< but for
all o € (0, 00).
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Model II: Brownian polymer in
Poissonian environment



Toy model II

» ((B(t))t>0, Px): standard Brownian motion on R9, B(0) = x.

> (w =130t ) P): Poisson point process on (0,00) x R?
with unit intensity.

+ + + ~<graph of (s, B(s))o<s<t

e : Poisson points

+ + + + : Enlarged by unit disk

Directed polymer measure:

1 L
,u‘f’ﬁ(dB) — Zw,ﬂ e—ﬁ#{hlttmg to e up to t} Po(dB)
t

See a survey article by Comets—Cosco for known results.
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Directed polymer measure:

1 _ i _tRB 2
,Uf:’ﬁ(dB) _ Z;;,ﬁe B#{hitting to ¢ up to t}— [ |B(s)| ds.
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Free energy II
Existence of the free energy ¢(3) for 5 € R is standard:

— 1 1 w76_ H 1 w,B
e(B)= tli[‘go? log Z,"" = t|L>r‘ro10 ?]E[Iog Z; ]

At 8 = oo, the model makes sense by setting 7(w) to be the hitting
time to ¢ and Z,7% = Py(7(w) > t).
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Free energy II
Existence of the free energy ¢(3) for 5 € R is standard:

— 1 1 w76_ H 1 w,B
e(B)= tli[‘go? log Z,"" = t|L>r‘ro10 ?]E[Iog Z; }

At 8 = oo, the model makes sense by setting 7(w) to be the hitting
time to ¢ and Z,”°° = Py(7(w) > t). But E[Iog Z;‘”OO] = —00.

Proof.
Brownian motion has to avoid the first disaster

in [0, o0] x [—%,% . If it occurs at time F, then

log Po(7(w) > t) < logexp (—(%)Q/F) (0,0) ®
1
~aF =

Since F < Exp(1), 1/F is not integrable. O
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Free energy II
Existence of the free energy ¢(3) for 5 € R is standard:

o1 wp 1 w.B
e(B)= tll[‘go p log Z,"" = t|L>r‘ro10 ?]E[Iog Z; }
At 8 = oo, the model makes sense by setting 7(w) to be the hitting
time to ¢ and Z;"* = Po(r(w) > t). But E[Iog Z;"’OO] = 0.

Proof.
Brownian motion has to avoid the first disaster

in [0, o0] x [—%,% . If it occurs at time F, then 1
log Po(7(w) > t) < logexp (—(%)Q/F) (0,0) ®
1
=—2F r
Since F < Exp(1), 1/F is not integrable. O

— Direct sub-additivity argument fails.
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Zero temperature limit 11

Theorem
There exists p(o0) € (—o0,0) such that the following hold:

(i) P-almost surely, lim;_,o 1 log Z;"> = p(c0);

(i1) limg_e0 P(B) = p(c0).

16 /21



Zero temperature limit 11

Theorem
There exists p(o0) € (—o0,0) such that the following hold:

(i) P-almost surely, lim;_,o 1 log Z;"> = p(c0);

(i1) limg_e0 P(B) = p(c0).

The proof follows the same line as a > 1 case of Model 1.
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Modified death time

Lemma (non-integrability is due to the first disaster)

Let F; be the first disaster in [0, t] x [—%, 2]9. Then there exists

¢ > 0 such that

E [log Po(r(w) > 1) ] Rl > —c(t+FY).

Thus the following modification ensures the integrability:

Hw) :=inf {s > 1: (s, Bs) hits a disaster} .
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Modified death time

Lemma (non-integrability is due to the first disaster)

Let F; be the first disaster in [0, t] x [—%, 2]9. Then there exists

¢ > 0 such that

E [log Po(r(w) > 1) ] Rl > —c(t+FY).

Thus the following modification ensures the integrability:
Hw) :=inf {s > 1: (s, Bs) hits a disaster} .
Problem: Standard argument for super-additivity yields

E [log P(t}(w) > s+ t)]
>E [Iog P(r(w) > s)] + E[log P(7(w) > t)].
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Effect of changing disasters in a slab

We show an almost super-additivity by estimating

log P(Tl(w) > s+ t) — log P(TI(W[S7S+1]C) > s+ t)
=log P (TH(w) > s+t | TH(w[ss11)c) =S5+ 1).
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Effect of changing disasters in a slab

We show an almost super-additivity by estimating
log P(7!(w) > s+ t) — log P(r' (w[s s15c) = 5+ t)
=log P (TH(w) > s+t | T (w[ss11)c) > s+1).

R

>s +t

5 s+1

We need a control on the survival in tubes and that the polymer is
“spread out” under P(- | 7' (w[ss1]c) > s + t).
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Survival in tube

Lemma
Let F; and L; be the first and last disaster in [0,t] x [-5, %
respectively. Then

i ty
X,YG[I—%fz,S/z]dE |:|Og PO’X (T(w) A T[_3»3] > t) ‘ Fta Lt]

> —c(t+F 4 (t— L)),

19/21



Concentration bound

Previous Lemma and “spread-out” estimate for polymer measure
(skipped) yield almost super-additivity

1
= Existence of lim ~E[log P(7*(w) > t)].
t—oo t
Control on the effect of changing disasters in a slab

= Concentration around the mean
= Existence of lim;_, 1 log P(71(w) > t), P-as.
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Concentration bound

Previous Lemma and “spread-out” estimate for polymer measure
(skipped) yield almost super-additivity

1
= Existence of lim ~E[log P(7*(w) > t)].
t—oo t

Control on the effect of changing disasters in a slab
= Concentration around the mean
= Existence of lim;_, 1 log P(71(w) > t), P-as.

Once we get a concentration around the mean, as before,

%Iog P(rl(w) > t) — p(c0)| < 77,

which extends to the positive temperature uniformly in 5 € R.
This yields the continuity of p(5).
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Proof of survival in tube Lemma

Thank you for your attention!
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