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Goals of first hour

Physical goal: Uncover nonequilibrium Kardar-Parisi-Zhang (KPZ) 

universality class behavior in the equilibrium six vertex model (6V).

Mathematical goal: Describe how to analyze the stochastic six vertex 

model (S6V) via Markov dualities and Bethe ansatz methods. 

Kardar-Parisi-Zhang class                       Six vertex model

Square ice in graphene nanocapillaries, Nature 2015, Algara-Siller et. al.  

Growth dynamics of cancer cell colonies and their comparison 
with noncancerous cells. PRE, 2012, Huergo et. al.
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Six vertex model [Pauling '35], [Slater '41], [Lieb '67]

Square-ice model based on six orientations 

of H20. Other molecules (e.g. KH2PO4) have 

unequal binding energy. Led [Slater '41] to 

the general six vertex model. 

What happens in the large system limit? How do weights matter?

Probability proportional 

to product of weights.

Configurations
(two equivalent 

ways to draw them)

Weights
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Gibbs states

Infinite volume 'Gibbs states'

and free energies are key

to answer these questions.

Should be limits of the model on a torus. 

For (a,b,c) fixed, choosing different H and V external fields should 

lead to (possibly) different Gibbs states. The phase diagram of such 

Gibbs states is mostly conjectural and relies upon a key parameter 

. 

Given boundary of a 

subregion, probability 

of inside proportional 

to product of weights
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Phase diagrams From: Lectures on the integrability of 
the 6-vertex model, 2010, Reshetikhin.

     Ferroelectric:                    Disordered:                    Antiferroelectric:

  A1                                     B1                                     B2                                    A2                                  C

Ordered Gibbs states:

A1 A1 A1 

B1 B1 B1A2 A2

B2 B2

A2

B2

C
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Phase diagrams From: Lectures on the integrability of 
the 6-vertex model, 2010, Reshetikhin.

Ferromagnetic:                   Disordered:                   Antiferromagnetic:

  A1                                     B1                                     B2                                    A2                                  C

Ordered Gibbs states:

A1 A1 A1 

B1 B1 B1A2 A2

B2 B2

A2

B2
What happens in the disordered phase, or at  

its boundary? How disordered is disordered?  

C
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Disordered phase (free fermion case)

Points in disordered phase lead to Gibbs states with various 

average horizontal and vertical line densities. 

[Nienhuis '84] conjectured that disordered states

have Gaussian free field height function fluctuations. 

[Kenyon '01] proved results for free fermion case (         ).

Portion of a 

Gibbs state 

for the aztec 

tiling model

Domain wall 

boundary conditions
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Stochastic point

For           the 'conical points' in the phase diagram correspond 

with a one-parameter family of explicit 'stochastic' Gibbs states. 

[Jayaprash-Sam '84] [Bukman-Shore '95] [Aggarwal '16]

Conical 

points

Stochastic 

Gibbs states
Disordered 

Gibbs states

Disordered 

Gibbs states

A1 

A2 B1 

B2 
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Stochastic six vertex model

On first quadrant, for          , special choice of vertex weights

yields stochastic six vertex model (S6V) [Gwa-Spohn '92]. 

Markov update provides interacting particle system interpretation.

Path 

picture

Particle 

picture
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Stochastic Gibbs states

Let                and (    ,    ) be solutions to                             .

Bernoulli product measure (    on 

the y-axis and     on the x-axis)

is stationary [Aggarwal '16] 

and hence produces an infinite 

volume 'stochastic Gibbs state'. 

Theorem [Bukman-Shore '95] [Aggarwal '16]: 

Stochastic Gibbs states (above) are conical point 

Gibbs states for the symmetric 6V model when                            
           
                                   ,                                       .
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Stationary S6V height fluctuations

Define the height function (zero at the origin):

Theorem [Aggarwal '16]: For fixed            the stochastic Gibbs state height function 

fluctuates like distance1/2 with Gaussian distribution, except along the 'characteristic 

direction' where it's like distance1/3 with stationary KPZ distribution [Baik-Rain '01].

characteristic direction comes from the 

Hamilton-Jacobi hydrodynamic limit flux 

(essentially      as a function of     ).

0         1     2   3

  1      2      3   4
             3   4   5
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Stationary S6V height fluctuations

Define the height function (zero at the origin):

Theorem [Aggarwal '16]: For fixed            the stochastic Gibbs state height function 

fluctuates like distance1/2 with Gaussian distribution, except along the 'characteristic 

direction' where it's like distance1/3 with stationary KPZ distribution [Baik-Rain '01].

characteristic direction comes from the 

Hamilton-Jacobi hydrodynamic limit flux 

(essentially      as a function of     ). 

0         1     2   3

  1      2      3   4
             3   4   5

Compare to conjectural Gaussian free 

field disordered phase behavior with   

logarithmic scale fluctuations.               
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Step initial data S6V height fluctuations

Theorem [Borodin-C-Gorin '14]: For step initial data S6V

                                                     where the limit shape is 

The fluctuations around the limit shape are given by

0         1     2   3

  1      2      3   4
             3   4   5
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SPDE limit of S6V

Theorem [C-Ghosal-Shen-Tsai '18]: Let                                with                                  .

The stationary initial data S6V height function converges (after centering and 

scaling) along the characteristic directions to the

stationary (Brownian initial data) solution to the 

KPZ equation:                                                                                               .

Stochastic Gibbs states converge to stationary 

solutions to the stochastic Burgers equation!

KPZ equation
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Recap and what's next

Gibbs states arise from 6V on torus with external fields. Mapping  

between field strength and Gibbs state line densities is not simple.

•

Disordered states should have GFF and log-correlated fluctuations.•

Stochastic Gibbs states arise at conical point. Fluctuations have 

1/3 KPZ exponent in characteristic directions, and the entire 

field admits a limit when            to the stationary KPZ equation.

•

There are other KPZ class / equation convergence results.•

Rest of the talk will focus on two methods (Markov duality and 

Bethe ansatz) which play important roles in these type of results.

•
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Markov duality

Definition: Two Markov processes                  and                 are dual with respect to                              

                            if for all                        and           :                                                         .

Theorem [C-Petrov '15]: The S6V particle process         and the independent, space 

reversed S6V k-particle process          are dual with respect to                                        ,      
                                                                             

where                                   and                                                   .

Such dualities can be proved directly (as above or in [Borodin-C-Sasamoto '12]…), inductively ([Lin '19]) or 

based on quantum group symmetries ([Schutz '95], [Carinci-Giardina-Redig-Sasamoto '16], [Kuan '17]…)
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Microscopic stochastic heat equation

Definition: The Cole-Hopf solution to the KPZ equation

is                                      ,where      solves the stochastic heat equation (SHE)

                                                                                                      .

S6V duality implies that                                                    .

-->           solves a discrete SHE with an explicit martingale whose 

quadratic variation involves the k=2 duality function.

Key challenge in convergence to SHE is to control the martingale. 

[Bertini-Giacomin '95] does this for ASEP via complicated identity (doesn't work for S6V). •

[C-Ghosal-Shen-Tsai '17] uses 2-particle duality and Bethe ansatz.•
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(Coordinate) Bethe ansatz

[Borodin-C-Gorin '14]: Explicit formulas for transition probabilities 

for k-particle S6V (in spirit of [Tracy-Widom '07] and [Lieb '67]) 

where                                        and                              .

Explicit formulas like these 

are also starting points for 

KPZ universality asymptotics
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Plancherel theory

For                                  and                                                       define 

Left/right eigenfunctions diagonalize k-particle S6V transition matrix: 

                                                                 ,
                       and
                                           
                                                                                                           .

Plancherel theory [Borodin-C-Petrov-Sasamoto '14]:

The forward transform                                                and the backward transform

                                                                                                                     

are mutual inverses so that                 and               .   

   Stochastic six vertex 1 Page 19    



Some extensions

[Borodin '14], [Borodin-Petrov '16], [Borodin-Wheeler '17] prove Cauchy identities, 

Pieri and branching rules for 'spin Hall-Littlewood' and 'spin q-Whittaker' functions.

○

Symmetric functions: •

[C-Petrov '15] (building on [Kulish-Reshetikhin-Sklyanin '81] and [Mangazeev '14]) 

introduce higher-spin stochastic vertex models (Beta RWRE arises from this).

○

Fusion: •

[Borodin '16] lifts to elliptic level 'dynamic S6V' and 'dynamic ASEP'. [Borodin-C '17]

prove duality for dynamic ASEP and [C-Ghosal-Matetski '19] prove SPDE limit. 

[Aggarwal '16] gives higher-spin dynamic models.

○

Elliptic: •

[Kuniba-Mangazeev-Maruyama-Okado '16] introduce high rank models and [Kuan '17]

proves their duality. [Borodin-Wheeler '18] develop their symmetric function theory.

○

High rank: •

And much more…•
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Summary

Six vertex model has an interesting (mostly conjectural) phase diagram.•

Disordered Gibbs states are expected to have GFF fluctuations.•

Using the stochastic six vertex model, we can construct the one-

parameter family of stochastic Gibbs states which arise at the 

conical point in the phase diagram.

•

Stochastic Gibbs states show KPZ universality class fluctuations

along their characteristic direction, and when             they 

converge to the stationary solutions to the KPZ equation.

•

Duality and Bethe ansatz are key tools in proving both results.•
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Stochastic six vertex model

Ivan Corwin (Columbia University)
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Goals of second hour

Prove a stochastic heat equation (SHE) Laplace transform formula:•

where          is the fundamental solution to the SHE:

and                     is the Airy2 point process. 

Tomorrow: Tsai will use this identity as the parting point to derive 

large deviations and tails for the KPZ equation.

•

Yang-Baxter equation and Macdonald processes○

Today: We will derive this result using a combination of two tools:•
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Airy2 point process

Edge limit of GUE:•

A determinantal point process with a simple explicit kernel.○

The spectrum of the stochastic Airy operator.○

The limit of many other point processes, e.g. the Schur measure

that we will encounter later.

○

Airy2 point process has other characterizations:•

Airy2

point 

process
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How to prove the identity?

[Borodin-Gorin '16] proved this as an easy corollary of the SHE 

Fredholm determinant formula [Sasamoto-Spohn '10], [Calabrese-

Le Doussal-Rosso '10], [Dotsenko '10], [Amir-C-Quastel '10].

•

Where does such a formula come from? Can compute SHE moments 

via 'replica trick' (a version of Markov duality). Moments DO NOT 

determine the distribution of the SHE, so that route is not rigorous! 

•

Proof: We lift to a discrete regularization, the S6V model and use a 

non-trivial relationship between S6V and measures on partitions.

•

There are other approaches (including duality) I will not discuss…
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Inhomogeneous stochastic six vertex model

Consider an inhomogeneous version of S6V with weights•

with ax for column x and by is for row y

such that axby and t in [0,1).

Fix step initial data and define 

a height function H(x,y) as shown
(this picture is flipped versus earlier for convenience)
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A lifting of the identity

Limit 1: Convergence result from S6V to KPZ/SHE that we already 

saw along with limit of the Pochhammer symbol to an exponential.

Identities 2 and 3: We will focus on these. Identity 2 uses ideas from 

[Betea-Wheeler-Zinn-Justin 14] + [Borodin-Bufetov-Wheeler 16].

Limit 4: Follows from convergence of explicit determinantal kernels.

The identity!

Limit as          and 

Recall

   Stochastic six vertex 1 Page 27    



t-Boson vertex model

Consider the following vertex weights [Tsilevich '06] with arbitrary 

vertical lines and 0/1 horizontal lines, subject to line conservation:

Here t and a or in [0,1). We can put together weights like this

where the internal line configurations are summed over. 
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Skew Hall-Littlewood polynomials

Taking         , the weight of                  is non-zero only when 

there is no incoming arrow on the right. 

Skew Hall-Littlewood polynomial             = weight from     to    .

Multivariable skew Hall-Littlewood 

polynomial                         involves 

stacking rows with variables a1,…,aM

and summing weights over all possible

internal configurations and j1,…,jM.

Line conservation implies 

partition lengths satisfy

                          .

Partition notation:
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Yang-Baxter equation

The relationship between Hall-Littlewood polynomials and the S6V 

model can be seen from the Yang-Baxter equation:

External lines are fixed and internal lines are summed over. 

Spectral variables flip and the X's are S6V vertices rotated by 45o.

Iterating:
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Q polynomials and limiting Yang-Baxter equation

YBE involves a and b-1. We introduce a dual set of t-Boson weights 

(in salmon) by replacing a by b-1 and multiplying through by b.

Composing and take           only 

non-zero with right incoming line:

If we take the            limit of the YBE, we arrive at:

Weight 

of
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Hall-Littlewood process and Cauchy identity

Fixing parameters a1,…,aM and b1,…bN, define the Hall-Littlewood 

process to be the probability measure on sequences of partitions: 

Normalization is given by the 

Cauchy-Littlewood identity: 

In terms of the t-Boson vertex model, 

the Hall-Littlewood process is the weight 

of this configuration:

?'s relate to change in length of partitions.
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Hall-Littlewood process lengths

Consider the probability of seeing lengths T(1),…,T(M+N) under the 

Hall-Littlewood process. This equals the sum of weights of all 

configurations like

Now, use the YBE to sequentially swap b and a rows:
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Enter the S6V height function

After swapping the order of all a's and b's, the normalizing constant 

has been fully absorbed and we are left equality to the weight of

The weight of the left side of the picture is 1 and the right side 

weight is precisely the probability of seeing the given sequence of 

output lines for the step initial data S6V model. 
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We have proved identity 2

Recall identity 2:

We used the Yang-Baxter equation to match the distribution of the 

Hall-Littlewood process lengths to the distribution of the output 

lines for the S6V model. Identity 2 follows readily from this.

•

The marginal of the Hall-Littlewood measure on a single 

intermediate partition is the Hall-Littlewood measure on a partition

•

with Hall-Littlewood polynomials P and Q, and same Z as before.
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Identity 3: Enter the Macdonald measure

Replacing P and Q by Macdonald symmetric polynomials depending 

on q and t in [0,1), [Borodin-C '11] define the Macdonald measure:

The normalization is now given by the Cauchy-Littlewood identity:

Hall-Littlewood polynomials when q=0,○

Schur polynomials when q=t.○

Macdonald polynomials have many degenerations, including
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q-independence

Define the Macdonald difference operator which act the a-variables

Here, u is arbitrary and       shifts ai to qai. The eigenrelation      

                                            with

not only defines the polynomials, but also enables us to calculate 

                                                               .

It is easy to see that the right side is, in fact, q-independent! 

Equating q=0 (Hall-Littlewood) and q=t (Schur) yields identity 3.

                                                                             .
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Recap

To prove an identity between SHE and Airy, we found an identity 

Identity 2 relates S6V to the Hall-Littlewood process using the 

Yang-Baxter equation for t-Bosons.

○

Identity 3 relate the Hall-Littlewood and Schur measure using a 

further lifting to Macdonald measures.

○

between two discrete regularizations, S6V and Schur measure. 
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Some extensions

[Bufetov-Matveev '17] provide a Markov chain on interlacing partitions which preserves 

that class of Hall-Littlewood processes and whose marginal on lengths is the S6V model. 

○

Hall-Littlewood RSK:•

[Bufetov-Petrov '17] and [Bufetov-Mucciconi-Petrov '19] use Yang-Baxter equation to 

construct other Markov chains like above, also for higher-spin models.

○

Yang-Baxter fields and bijectivization:•

[Barraquand-Borodin-C-Wheeler '17] provide relation between half-space versions of 

the S6V and Hall-Littlewood process (special case of half-space Macdonald process 

[Barraquand-Borodin-C '18]) and prove half-space identity and asymptotics.

○

Half-space:•

[C-Dimitrov '17] interpret S6V and Hall-Littlewood relationship via Gibbsian line 

ensembles [C-Hammond '11] and prove predicted KPZ 2/3 transversal exponent.

○

Gibbsian line ensembles•

And much more…•
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Summary of three lectures

Lecture 1: Conjured and 'solved' the Beta RWRE out of thin air.○

Lecture 2: 'Solved' S6V via Bethe ansatz diagonalization and Markov duality.○

Lecture 3: Revealed a key source of solvability, the Yang-Baxter equation, and 

connected vertex models to symmetric function measures on partitions.

○

What did I do•

Lots! For example, how does the Beta RWRE arises from S6v? From where does duality 

come? How does one do actually perform asymptotics?...

○

What didn't I do?•

Imamura: Higher-spin models and another other routes to get Fredholm determinant 

formulas for measures in the Macdonald hierarchy.

○

Tsai: How to use the identity we discussed in this lecture to prove KPZ equation tail 

and large deviation results.

○

Basu: How inputs from integrable probability inform geometric problems in LPP.○

What will other people do at this program?•
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