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From pollen to Perrin

History: In 1827, Robert Brown observed that
pollen suspended in water seemingly performed a
random walk. Eighty years later, Einstein proposed
a statistical description for this “Brownian motion”
and an explanation: Water molecules jiggle and
knock the pollen in small and seemingly random di-
rections. This model was soon confirmed in experi-
ments of Perrin.

Questions for today:

» Are there senses in which Brownian motion
fails to model such a physical system?

» Are there signatures of the underlying random
media which can be recovered by studying the
motion of particles?

I will argue that diffusion in random media has very
different extreme value statistics / large deviations.
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Diffusion in a random media
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Many small particles moving in a viscous media:
» How does the bulk particle density evolve?
» What about the right-most particle?

Two models for such systems:
» Independent random walks.

» Independent random walks in a random environment (RWRE).

Punchline: Both models have same bulk behavior, but the RWRE dras-
tically changes extreme value scalings / statistics to KPZ type.



Case 1: Independent (simple) random walk X; on Z
p

a+f’

P(Xt+1 =X;+ 1) = P(XtJr]_ =X; - 1) =

a
a+p’
» Law of Large Numbers (LLN):
Xt a— ﬁ
¢ a+p’

> Central Limit Theorem (CLT): For o = “%%, _#(0,1) Gaussian,

» Large Deviation Principle (LDP): For % <x <1, with

I(x) = sup,ep (2x — A(z)) and A(z) :=log (E [eX1 ]),

1og(P(Xt > xt))
t

- _I(x)7

eg. Fora=0,1(x)= %((1 +x)log(1+x)+(1 —x)log(l—x)).



Extreme value statistics for random walks

20




Extreme value statistics for random walks
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» How does the bulk particle density evolve?
» What about the right-most particle?

Let lel), . .Xt(N ) be N -independent copies of X;. Then we have:
» Centered bulk density solves heat equation and is Gaussian.
> If N = and ¢ < ceaturated, then for ¢1 =I71(e) d simitarly explicit constants eg,c3)
nax_ (X} =1 -t +cg-log(t) +c3 - Gumbel
i=1,...

where Gumbel has distribution function e™® "



Deriving exact formulas via a recurrence
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Recurrence formula

Define a function Z(¢,n) via the recursion (with Z(0,n) =1,>1)

B

a+p

Z(tn) = —— Z(t—1,n)+ Z(t-1,n-1).
a+p

We have equality of
Z(t,n)=P(X; =t —2n+2).

This recursion is easily solved in terms of Binomial coefficients.



Asymptotics via contour integrals
Binomial coefficients can be written in terms of contour integrals:

n 1 dz
=— 1+2)%27F =,
(k) 271 £|<1( . z

Can study various asymptotic regimes for n and k.

1 d
- —f e”f(Z)—z, with f(z)=log(1+2)- %logz.
n/2]  2mi Jiz<1 z

Steepest descent analysis expands around f(z)’s critical point z = 1.




Case 2: Random walks in random environment (RWRE)

Let B = (B;4):x be independent random variables with a common fixed
distribution on [0,1]. Call PP the probability measure on B.

For a given instance of B let Pp denote the probability measure on sim-
ple random walks on Z with left / right jump probabilities

PB(Xt+1 =x+1 |Xt =x) :Bt,x7 PB(Xt+1 =x-1 ‘Xt =x) = l_Bt,x'

Consider independent Pg-distributed copies X,fl) ..... Xt(N ) of X;.




CLT and LDP

Theorem (Rassoul-Agha and Seppélédinen, 2004)

Assume P(0<B;, <1)>0and let v=2E[B;x] -1 and 0 = V1-v2
Then for P-almost every choice of jump rates,

X[nt] — |nt|v asaprocessint

BM(t).
a\/ﬁ n—oo )

Theorem (Rassoul-Agha, Seppélédinen and Yilmaz, 2013)
Assume [E[(log(Bt,x))3] <oo. Then Az) :=lim;_.o %log(EB [eZXf]) exists

and is constant P-almost surely. For I(x) the Legendre transform of AMz)

log(PB (x> xt))

t t—oo

P—almost surely

—I(x).

» Finding an explicit formula for A(z) or I(x) is generally not possible.
» Random rate I(x) = deterministic rate I(x) (by Jensen’s inequality).

» Lower order fluctuations of Pg(X; > xt) are lost in this result.



Integrable probability to the rescue

In a lab, how could we distinguish deterministic or random media?

» x Extreme value speed depends non-universally on the
underlying random walk model or media.

» v Extreme value fluctuations have different behaviors than in
the deterministic and random cases. (See below!)

Definition
The Beta RWRE has Beta(a, f)-distributed jump probabilities By 4:

a— 1(1_ )ﬂ lr(a+ﬁ)

P(Bix € ly,y+dyl) =y T(@r(p) ™

If @« = B =1, we recover the uniform distribution on [0, 1].

Aim
We will show how to compute the distribution of Pp(X; = x) exactly.



Large deviations and cube-root fluctuations

For simplicity lets take a = p =1 (i.e. B;, uniform on [0, 1]).

Theorem (Barraquand-C ’15)

For By x uniform on [0,1], the large deviation principle rate function is

=Ix)=1-V1-22.

Moreover, as t — oo, we have convergence in distribution of

log (PB (x: > xt)) +I(x)t
= % s
where Lgur is the GUE Tracy-Widom distribution, and o(x)® = ff(lx(f)

Cube-root ZLgyg fluctuations are a hallmark of random matrix theory
and the Kardar-Parisi-Zhang universality class.



Extreme value fluctuations
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Corollary (Barraquand-C ’15)

For By x uniform on [0,1], let Xt(l), ... ,Xt(N) be random walks drawn
independently according to Pg. For N = e with c € (0,1),

maxly, {X} -t/ 1= (T =c)?
d(C) . t1/3

=  ZLoUE-

Compare MaXy(andom probabilities) to MaXd(eterministic probabilities)-
» max, has a slower speed than maxq (the random B;; routes many
walkers along the same path and hence decreases entropy).

» max, fluctuates O¢Y3) versus O(1) for maxq.



Diffusion in a (random) media
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Many small particles moving in a viscous media:
» How does the bulk particle density evolve?
» What about the right-most particle?

Two models for such systems:
» Independent random walks.

» Independent random walks in a random environment (RWRE).

Punchline: Both models have same bulk behavior, but the RWRE dras-
tically changes extreme value scalings / statistics to KPZ type.



Walking across a city (the a, f — 0 limit)

» For every edge, let E, be i.i.d. exp(1) and
for each vertex ¢; j i.i.d. Bernoulli(1/2).

» Define the passage time of an edge

[ & E. if vertical (i,j) — (i,j + 1),
* (1 -¢;)E, if horizontal (i,j) — (i + 1,)).

-
RR——

» Define the first passage-time T'(n,m) from
o (0,0) to the half-line D, ,,, by

**:Y**:V%;':'.A. T(n’m): min Z le-

1:(0,00=Dnm éen

(,

Theorem
For any x > 1, there are explicit functions p(x) and t(x) such that

T(n,xn)—1(x)n

= % .



Dynamical construction of percolation cluster

4 Alternative description

» At time 0, only one random
walk trajectory (in black).

» From each point in the cluster,
at exponential rate one we add
the trace of a new random walk
(until it rejoins the cluster).

» Colors represent when a point
joined the cluster.

Barraquand-Rychnovsky 18

Prove a limit theorem for the shape
of the percolation cone and that its
fluctuations have a 4/9 exponent!



Sticky Brownian motion (another a, f — 0 limit)

Brownian motion sticky A W

at the origin (Feller ’52): /\ A
Random walk away from [ [
origin; at origin, escape N |

. o [ w A |
with probability n~2 Y AT AV A U W LA

A pair of sticky Brownian motions has difference sticky at the origin.

A\
“A;J/' \\‘“\M‘\
/
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W
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N-particle sticky Brownian motion: Diffusive limit of N particles in
the same random environment, when the B, , are close to 0 or 1.

Need to specify rate for clusters of & + ¢ particles to “split” into separate
clusters of size k£ and ¢. Rate for limit of Beta RWRE is %. Barraquand-
Rychnovsky ’19 prove KPZ extreme value results for this model.



KPZ equation limit

Theorem (C-Gu ’16)

Consider the RWRE with By, = 2(1 +el wtyx) for i.i.d. bounded, mean
zero w; .. Fix any velocity v €(0,1), and any t >0 and x € R. Then

6‘_1

-2 =il
> ¢ W RIWpy(x o, = 2vt+¢ ) = Ult, %),

where U solves the multiplicative stochastic equation equation

_ 2

8 U(t,x) = 1-v -0 U(t, x) + v2E[w?] - U(t, x)é(t, X)

with space time white noise ¢ and initial data U(0,X) = 6,-¢. Here

1+v).

1
I(v)——lg(l )+1og(1+u) and J(v)=§log(1_v

2
The logarithm of the SHE solves the KPZ equation!



A first step into integrable probability

The following result shows that this model is exactly solvable:
Proposition (Barraquand-C ’15)
Fort,n,k=1,

[E[PB(XtBt—zn+2)k] -

1 f f H ZA — 2B ﬁ(d-l‘ﬁ-l-zj) ( a+z; )t de
(2im)* 1<A<B<r?A—2B—1 a+f+zi) a+P+z;

where the contour for z;, is a small circle around the origin, and the
contour for z; contains the contour for zj;1+1forall j=1,...,k—1, as
well as the origin, but all contours exclude —a — .

Since P € [0, 1], its moments uniquely identify its distribution. Combin-
uPp(X;=x)

ing these into a formula for E [e we may extract asymptotics.



Random recurrence
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Recurrence formula
Define a function Z(¢,n) via the recursion (with Z(0,n) =1,>1)

Z(t,n) =Bty -Z(t-1,n)+(1—-B;,)-Z(t-1,n-1).
For fixed ¢,n, we have equality in law of

Z(t,n) = PB(Xt 2t—2n+2).



Recursion for moments

Z(t,n) =Bty -Z(t-1,n)+(1-B;,)-Z(t-1,n-1).
We wish to compute formulas for moments of Z(¢,n), and more generally
u(t,n) :=E[Z(t,n1)Z(t,ng) -+~ Z(t,np) .

When & =1, u satisfies u(t + 1,n) = u(t n)+ 355 u(t n—1).

True evolution equation for general k

Forn=(n,...,n)

k
u(t+1,7 =Z ( ) [31(1 B Z(t,ny Z(t,n - 1)k—J]

k
.Z (J) (@i P u(t,(n,...,n,n—-1,...,n-1)).

j=0 (a+ ﬂ)k

where B is Beta(a, ) distributed and (), =a(a +1)...(a +£—1).



Non-commutative binomial identity

For general 7 e W¥ = {fie Z* :ny 2 ng = --- = n;}, we find that
u(t+1,n)= Lult,n),

where £ acts on functions from W* — C as the direct sum of the previous
action on each cluster of equal coordinates in 7.

Lemma (Rosengren ’00, Povolotsky "13)

Let X,Y generate an associative algebra such that
XX+ (a+p-1DXY +YY —(a+pB+1)YX =0.

Then we have the following non-commutative binomial identity:

¢ x, P Y)kzi(k) P iyt

a+p a+p =0 \J) (a+Pk



Factorizing £

Let 7 act on a function f(7i) by changing n; to n; — 1.
Define the operator L on functions f: Z¥ = Cby X —1,Y — 1)

ﬁ i _F Lo

a+ﬁ a+p

This equals £ for 7 strictly in W*.

Define the boundary condition
BED 1 4 (@4 f— DD 4 7076D (1 4 g 4 p)r®.

Corollary
Any function u : Z*¥ — C which satisfies (forall 1<i<k—1)

B(i’i+1)u(7l) =0

ni=ni+1

has, for all 7i € Wk,
Lu() = Lu(@i).



Moment formula

It is now easy to check the following formula.

Proposition (Barraquand-C ’15)

Fornizng=---2n; =1,

E|Zt,n0) -+ 26, m) | =

1 f / l_[ ZA—2B H(a+ﬁ+zj
(2im)* 1<A<B<k?A ~?B~ 1]:1

boundary condition solution of u(t+1)=Lu(t) initial condition

( a+zj )t dz;
a+pf+zj) a+pf+z;

where the contour for zj, is a small circle around the origin, and the
contour for z; contains the contour for zj,1+1forallj=1,...,k -1, as
well as the origin, but all contours exclude —a — f.



Stochastic quantum integrable systems

Beta RWRE: moments solved a closed evolution equation which could
be “factorized” and solved explicitly via contour integrals.

KPZ equation / SHE: moments solve the §-Bose gas which is explicitly
diagonalizable via Bethe ansatz (see, e.g. Kardar ’87).

These are special cases of a general theory of stochastic vertex models
which come from the theory of quantum integrable systems.

» Model ~~ transfer matrix for representations of Uq(S/[\g) R matrix.
» Moment evolution equation ~~ Markov self duality.
» Moment formulas ~ Bethe ansatz eigenfunctions

vaGit,v)i= )

0€Sy, 1=a<bzk 20(b) ~?0(a) j=1

Zo(b) — tZo(a) 1 ( 1-vze()\Y
1- 24(j)

and Plancherel theory (i.e., completeness and orthogonality).



Summary

Physics goal: Study the effect of space-time random jump probabilities
on the behavior of random walks in one dimension.

» Bulk behaviors are unchanged from deterministic case.

» Extreme value statistics show different scaling and statistics
(connected to Kardar-Parisi-Zhang universality class).

» This is only demonstrated for special Beta distribution case.
Math goal: Use quantum integrable system tools in probability.

» Relate to a random recurrence relation whose moments solve a
Bethe ansatz diagonalizable evolution equation.

» Utilize moment formulas to compute the distribution (and
subsequently perform asymptotics).

» Connect to theory of stochastic vertex models.

Tomorrow we will further study stochastic vertex models.



