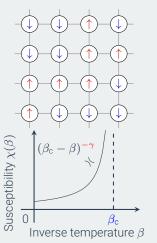
Mean-field behavior for the quantum Ising model


Yoshinori Kamijima joint work with S. Handa and A. Sakai

Department Mathematics, Hokkaido University

5th August 2019

OVERVIEW OF MY POSTER

Let Λ be a finite lattice on \mathbb{Z}^d .

$$\chi(\beta) := \frac{\partial}{\partial h} \mathbb{E}_{\beta,h}[\text{tensor prod.}]$$

Classical Ising model

We consider spin configurations $\sigma \in \{-1, +1\}^{\Lambda}$, which are r.v.'s.

↓ a generalization

Quantum Ising Model

We consider tensor products, e.g., $1 \otimes \cdots \otimes S^3 \otimes S^3 \otimes \cdots \otimes I \in \bigotimes_{x \in \Lambda} \mathbb{C}^2$.

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, $S^3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Question

What is the value of γ ?

For the classical Ising, $\gamma = 1$ in d > 4.