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STOCHASTIC ANALYSIS OF INFINITE PARTICLE SYSTEMS

— A NEW DEVELOPMENT IN CLASSICAL STOCHASTIC

ANALYSIS AND DYNAMICAL UNIVERSALITY

OF RANDOM MATRICES

HIROFUMI OSADA

Dedicated to the memory of Hiroshi Kunita

Abstract. We examine the stochastic dynamics of infinite particle systems
moving in Rd. The classical stochastic analysis pursues the stochastic dy-

namics of a single particle. We explain how to extend the classical stochastic
analysis when the object becomes an infinite particle system. The equilibrium
states of a system of infinite number of particles resulting from random ma-
trices have the logarithmic function as an interaction potential. Hence, we

develop a theory that applies to interaction potentials having a dominating
influence over long distances. As an application, we show that the universality
of point processes related to random matrices holds for stochastic dynamics.

1. Beginnings of the general theory of interacting Brownian motion

Consider an infinite number of Brownian particles moving in Euclidean space Rd

with interacting potential Ψ:Rd→R∪{∞}. We denote the position of the particles
at time t by Xt = (Xi

t)i∈N ∈ (Rd)N. Then Xt is given by the following stochastic
differential (integral) equation:

Xi
t −Xi

0 = Bi
t −

β

2

∫ t

0

∞∑
j ̸=i

∇Ψ(Xi
u −Xj

u)dt (i ∈ N).(1.1)

Here, β denotes a positive constant called the inverse temperature, B = (Bi)i∈N
the (Rd)N-valued, {Ft}-Brownian motion, and X a continuous, stochastic process
defined on a quadruple (Ω,F , P, {Ft}). By definition, X is a function of time t and
ω ∈ Ω. We write X = Xt = X(t) = Xt(ω) = X(t, ω), frequently omitting ω in X.

We assume the probability space (Ω,F , P ) is complete, and {Ft} is a right
continuous, increasing family of σ-fields containing P -null sets. The (Rd)N-valued
Brownian motion is an infinite number of independent copies of the Rd-value Brow-
nian motion starting at the origin. B is {Ft}-Brownian motion, that is, B describes
Brownian motion such that Bt is Ft-measurable for each t, and Bt − Bs is inde-
pendent of {Ft} for each t ≥ s.
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The meaning of (1.1) needs care because the coefficient on the right-hand side
contains an infinite sum. We consider a set S such that the infinite sum

∞∑
j=1, j ̸=i

∇Ψ(si − sj)

makes sense for each i ∈ N. Moreover, we have to solve equation (1.1) subject to
constraints such that X does not exit from S. How to capture and construct S is
the critical problem. A possible method is first introducing a measure µ̌ on (Rd)N,
and then taking S as a set such that µ̌(Sc) = 0. Indeed, if the number of particles
is finite, the N -particle stochastic differential equation

Xi
t −Xi

0 = Bi
t −

β

2

∫ t

0

N∑
j ̸=i

∇Ψ(Xi
u −Xj

u)dt (i = 1, . . . , N)(1.2)

can be solved (under natural assumptions such as Lipschitz continuity of the coef-
ficients). The solution X = (X1, . . . , XN ) becomes symmetric with respect to the
measure

µ̌N (ds1 · · · dsN ) = mN (s1 · · · sN )ds1 · · · dsN ,(1.3)

where the density mN is given by

mN (s1, . . . , sN ) = exp{−β
N∑
i<j

Ψ(si − sj)}.

We construct our solution starting at µ̌N -a.s. (s1, s2, . . . , sN ) ∈ (Rd)N . Hence, if
we were to have a measure µ̌∞ that has µ̌N as a limit as N goes to infinity, then
we could take the same strategy as the finite particle case. However, this is not the
case. There exists no such measure (even if Ψ = 0).

The relationship between (1.2) and (1.3) in finite-dimensions corresponds to the
fact that mNdx is an invariant measure of the semi-group with generator

1

2
∆ +

1

2
∇ logmN · ∇.

Let us consider the same thing for infinite particle systems. Then invariant mea-
sures contain an infinite product of Lebesgue measures, which does not make sense.
The classical theory of Gibbs measures resolved this difficulty in constructing the
equilibrium state for the interaction potentials Ψ of Ruelle’s class, which is a set
of well-behaved interaction potentials enjoying super stability and integrability at
infinity. We take the configuration space over Rd instead of (Rd)N and construct
point process related to the potential µ via the Dobrushin–Lanford–Ruelle (DLR)
equation. Here, the configuration space is a space of unlabeled particles in Rd, and
a point process is a probability measure on the configuration space. The primary
examples considered in the present article are logarithmic potentials, or, more gen-
erally, the Coulomb potentials. The DLR equation does not make sense for these
interaction potentials because of the non-integrability of the interaction at infinity.
Therefore, we can not apply classical theory to construct the equilibrium states of
these examples, and it thus poses a significant difficulty.
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We expressed the infinite-dimensional stochastic differential equation (ISDE) in
integral form in (1.1); however, usually, it is expressed in differential form,

dXi
t = dBi

t −
β

2

∞∑
j ̸=i

∇Ψ(Xi
t −Xj

t )dt (i ∈ N).(1.4)

We note that the meaning of (1.4) is contained in (1.1).
The study of (1.4) was initiated by Lang [32, 33] for Rd with d ∈ N. He solved

instances when Ψ ∈ C3
0 (Rd) (see also Shiga [56]). Fritz[10] constructed a non-

equilibrium solution for d ≥ 4. Tanemura solved the interacting Brownian motion
of hard-core particles [60].

In finite dimensions, the standard method to solve the stochastic differential
equations involves using the Itô scheme. That is, similar to ordinary differential
equations, we take the Picard approximation based on Brownian motion. Hence, we
need Lipschitz continuity of the coefficients at least locally. In infinite dimensions,
we can not expect that Lipschitz continuity of the coefficients holds and, even if
we could localize the coefficients, it would become very complicated. A feasible
procedure would be to solve the equation for N -particle systems and take the limit
of the solutions as N → ∞. To undertake this procedure, we need to perform a
robust estimate but the manipulations are tedious.

Lang succeeded in obtaining this for potentials Ψ ∈ C3
0 (Rd) combining estimates

for the grand canonical Gibbs measures. However, for polynomial decay potentials
Ψ, one can not solve the ISDE by Lang’s method even if Ψ is in Ruelle’s class.

Generally, we equip the ISDEs with an infinite number of coefficients σi and bi
(i ∈ N) presenting them in the form

dX1
t = σ1(Xt)dB

1
t + b1(Xt)dt(1.5)

dX2
t = σ2(Xt)dB

2
t + b2(Xt)dt

dX3
t = σ3(Xt)dB

3
t + b3(Xt)dt

· · · .

If the (σi, bi) converge sufficiently fast to (0, 0) as i → ∞, then (according to the
speed of convergence) we can solve ISDE (1.5) as usual for the (finite-dimensional)
stochastic differential equations. In the present case, the problem is that the coef-
ficients (σi, bi) have symmetry and, as a result, they do not converge to (0, 0) as

i → ∞. That is, by a pair of functions (σ, b) :Rd×S→ (Rd2×Rd) ∪ {∞} the ISDE
is given by

dX1
t = σ(X1

t ,X
1♢
t )dB1

t + b(X1
t ,X

1♢
t )dt

dX2
t = σ(X2

t ,X
2♢
t )dB2

t + b(X2
t ,X

2♢
t )dt

dX3
t = σ(X3

t ,X
3♢
t )dB3

t + b(X3
t ,X

3♢
t )dt

· · · .

Here, we set Xi♢
t =

∑∞
j ̸=i δXj

t
. We emphasize again that the function (σ, b)(x, s)

does not depend on the label of the particle i ∈ N. Such symmetries provide
a natural framework for problems on statistical mechanics when treating a huge
number of identical or finite species of particles. As we have seen above, symmetries
are a barrier to using the conventional approach to solving ISDEs. However, they
enable us to regard the object as a system in configuration space with the notion
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of unlabeled dynamics X =
∑∞

i=1 δXi being available. The unlabeled dynamics X
has an invariant probability measure (equilibrium state) µ, and thus a geometric
stochastic analysis, the Dirichlet form theory, becomes effective.

In Section 5, we shall introduce the first theory, which solves the ISDEs for which
the equilibrium states µ are a wide class of point processes. We construct solutions
starting at s = (s1, s2, . . .) ∈ (Rd)N for µ-a.s. s =

∑
i δsi . The solutions are of the

form (X,B), that is, a pair of X and Brownian motion B. This is a weak solution,
and the first theory does not solve the uniqueness of the solution. Loosely speaking,
a weak solution (X,B) is called a strong solution if X is a functional of B. That is,
if there exists a function F from the path space of Brownian motion to that of the
solution and X = F (B), then (X,B) is called a strong solution. In Section 6, we
shall introduce the second theory, which proves the pathwise uniqueness and the
existence of strong solutions.

2. Set up and examples.

Let S = Rd and Sr = {|s| ≤ r}. The space of infinite particle systems on Rd is
(Rd)N, which is enormous. We introduce then the configuration space S over Rd:

S = {s =
∑
i

δsi ; s(Sr) < ∞ for all r ∈ N}.

By definition, S denotes the set of Radon measures consisting of a finite or infinite
sum of point measures. We equip S with the vague topology, under which, S is a
Polish space. That is, S is homeomorphic to a complete and separable metric space.
We call a probability measure µ on (S,B(S)) a point process and also a random
point field.

In the study of an ISDE (1.4), an equilibrium state µ plays an important role. By
definition, µ becomes a point process. Below we present various examples of ISDEs.
We give a point process µ first. Then we proceed with the explicit representation
of the associated ISDE.

2.1. Poisson point process. For a Radon measure m on S the Poisson point
process Poim with intensity m is the point process on S such that the distribution
of the numbers of the particles on a Borel set A is given by the Poisson distribution

Poim({s(A) = k}) = e−m(A)m(A)k

k!

and random variables πA and πB are independent under Poim. Here, πA : S→ S
denotes the projection such that πA(s) = s(· ∩A).

Example 2.1 (Infinite-dimensional Brownian motion). Let m be the Lebesgue
measure. We write Poim = Λ. Λ plays the role of a Lebesgue measure on the
configuration space S and Λ is an invariant probability measure of the S-valued
Brownian motion B = {Bt} defined by Bt =

∑
i∈N δBi

t
. The construction of a

(Rd)N-valued Brownian motion (Bi)i∈N is obvious because we can take Bi to be an
independent Brownian motion {Bi}i∈N. Then B corresponds to unlabeled dynam-
ics. For each initial starting point s = (si) ∈ (Rd)N we can construct Bs starting at
s by taking Bs

t = (Bi
t + si)i∈N. Note that the associated unlabeled dynamics B is

not necessary S-valued process. For example, if s = (0, 0, . . .) is the origin in (Rd)N,
then Bt ̸∈ S for each t.
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2.2. Gibbs measures. Let µn
r,ξ be the regular conditional probability of µ such

that for A ∈ B(Sn
r )

µn
r,ξ(A) = µ(πSr (x) ∈ A|πSc

r
(x) = πSc

r
(ξ), x(Sr) = n).(2.1)

We refer to [54, 55]. For Snr = {s ∈ S; s(Sr) = n} we set Λn
r = Λ(· ∩ Snr ). µ is called

a (Φ,Ψ)-canonical Gibbs measure if it satisfies the relation (DLR equation).

µn
r,ξ(dx) =

1

Z
e−Hr,ξΛn

r (dx),(DLR)

where Z denotes a normalizing constant and Hr,ξ = Hr + Ir,ξ. Here, Hr is the
Hamiltonian on Sr, and Ir,ξ is the term of the interaction between the inside and
the outside. Moreover, β > 0 is a constant called the inverse temperature. Then,
by definition,

Hr(s) = β{
n∑

i=1

Φ(si) +
∑

i<j, si,sj∈Sr

Ψ(si − sj)},(2.2)

Ir,ξ = β
∑

si∈Sr, ξk∈Sc
r

Ψ(si − ξk).

Generally speaking, ISDEs with free and interaction potentials are of the form

dXi
t = dBi

t −
β

2
∇Ψ(Xi

t)dt−
β

2

∞∑
j ̸=i

∇Ψ(Xi
t −Xj

t )dt (i ∈ N).

We present three examples of stochastic dynamics with equilibrium states given by
Gibbs measures that are translation invariant.

Example 2.2 (Lennard-Jones 6-12 potential [45, 49]). Let d = 3 and Ψ6,12 be the
Lennard–Jones 6-12 potential given by Ψ6,12(x) = {|x|−12−|x|−6}. The associated
ISDE is

dXi
t = dBi

t +
β

2

∞∑
j ̸=i

{12(Xi
t −Xj

t )

|Xi
t −Xj

t |14
− 6(Xi

t −Xj
t )

|Xi
t −Xj

t |8
}
dt (i ∈ N).

Example 2.3 (Riesz potentials of Ruelle’s class [45, 49]). d < a, Ψa(x) = (β/a)|x|−a,

dXi
t = dBi

t +
β

2

∞∑
j ̸=i

Xi
t −Xj

t

|Xi
t −Xj

t |a+2
dt (i ∈ N).(2.3)

At first glance, ISDE (2.3) resembles ISDEs (2.6) and (2.10). Indeed, (2.3) corre-
sponds to (2.6) and (2.10) with a = 0. The drift terms in (2.3) converge absolutely
unlike (2.6) and (2.10).

Example 2.4 (Hard core Brownian balls. [60]). Let d ∈ N and ΨR be the hard
core potential such that ΨR(x) = ∞ · 1SR

(x). Then the associated ISDE is

dXi
t = dBi

t +
∞∑
j ̸=i

1{R}(|Xi
t −Xj

t |)dL
ij
t .(2.4)

Here Lij
t are non-decreasing continuous processes with Lij

0 = 0, Lij
t = Lji

t , and

Lij
t =

∫ t

0

1{R}(|Xi
s −Xj

s |)dLij
s .
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ISDE (2.4) describes the stochastic dynamics consisting of infinitely many, Brow-
nian particles, all with a hard core of radius R. The stochastic dynamics corre-
sponding to the lattice gas are simple exclusion processes on Zd, which is the most
simple and natural model of a lattice gas obeying Kawasaki dynamics.

2.3. Determinantal point process. For a point process µ on S we call a sym-
metric function ρn :Sn→ [0,∞) the n-point correlation function of µ with respect
to Radon measure m if ρn satisfies (2.5),∫

A
k1
1 ×···×Akm

m

ρn(x1, . . . , xn)m(dx1) · · ·m(dxn) =

∫
S

m∏
i=1

s(Ai)!

(s(Ai)− ki)!
dµ.(2.5)

Here, A1, . . . , Am ∈ B(S), k1, . . . , km ∈ N, and k1 + · · ·+ km = n. If s(Ai)− ki < 0,
then we interpret s(Ai)!/(s(Ai)− ki)! = 0. A determinantal point process µ with
kernel K : S×S → C and m is a point process for which the n-point correlation
function ρn with respect to m is given by

ρn(x1, . . . , xn) = det[K(xi, xj)]
n
i,j=1.

It is known that for given (K,m) the associated determinantal point process exists
uniquely if the operator Kf(x) =

∫
K(x, y)f(y)m(dy) on L2(S,m) is Hermitian

symmetric with spectrum Spec(K) ⊂ [0, 1] [34, 57, 58]. Determinantal point pro-
cesses emerge in unexpected places. For example, we shall introduce the planner
Gaussian analytic function (GAF) in Section 10. Although the planner GAF is not
a determinantal point process, its counterpart on the Poincaré disk {|z| < 1} is and
is called the hyperbolic GAF. This point process consists of the zero points of the
analytic function Fdisk with random coefficients.

Fdisk(z) =

∞∑
k=0

ξkz
k.

Here {ξk} is i.i.d. with distribution 1
π e

−|z|2dz. The formula gives the kernel function
of the hyperbolic GAF given in [53],

Kdisk(x, y) =
1

π

1

(x− ȳ)2
.

In the rest of this section, we shall show three examples arising from random
matrix theory. In the following, if β = 2, then the point processes are determinantal.
For d = 1, we have a class of point processes referred to as Pfaffian with β =
1, 4, having a structure similar to determinantal point processes. In the following
examples, it is not easy to obtain explicit presentations of the formula associated
with ISDEs with point processes.

In the Gibbsian case, the potentials are a priori given, and the coefficients of the
ISDEs are easily determined. It is not apparent the coefficients for these ISDEs exist
because of the infinite sums of derivatives of pair interactions in the coefficients.
The classical theory has developed the Gibbs measures under the constraints such
that such sums converge.

We give the kernel functions first in the following examples. Hence, identifying
the associated potentials is required. In the first theory, we have introduced the
notion of a logarithmic derivative of the point processes, and we have solved the
ISDEs determined by these logarithmic derivatives. In doing so, we encounter two
issues: the existence of the logarithmic derivatives and their explicit representations.
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Example 2.5 (sineβ interacting Brownian motion [59, 45, 63]). Let d = 1. We
take Ψ(x, y) = − log |x− y|. Consider the ISDE,

dXi
t = dBi

t +
β

2
lim
r→∞

∑
|Xi

t−Xj
t |<r, j ̸=i

1

Xi
t −Xj

t

dt (i ∈ N).(2.6)

For β = 2, ISDE (2.6) is called Dyson’s model in infinite-dimensions. The
equilibrium state µsin,β of the unlabeled dynamics Xt =

∑∞
i=1 δXi

t
has translation

invariance and the limit in the coefficient does not converge absolutely. Here, µsin,β

is called the sineβ point process. Suppose β = 2. Then the sine2 point process is
determinantal and the kernel function Ksin,2 is given by

Ksin,2(x− y) =
sin 2(x− y)

π(x− y)
.(2.7)

ISDE (2.6) was solved for β = 1, 2, 4 in [45, 49] and for β ≥ 1 by Tsai [63].

Example 2.6 (Airyβ interaction Brownian motion. [50]). Let d = 1 and β = 1, 2, 4.
We take the logarithmic potential Ψ(x, y) = − log |x− y| and consider the ISDE,

dXi
t = dBi

t +
β

2
lim
r→∞

{( ∑
j ̸=i, |Xj

t |<r

1

Xi
t −Xj

t

)
− 2

√
r

π

}
dt (i ∈ N).(2.8)

The equilibrium state of the ISDE is µAi,β for β = 1, 2, 4. If β = 2, then µAi,2 is a
determinantal point process with continuous kernel given by

KAi,2(x, y) =
Ai(x)Ai′(y)−Ai′(x)Ai(y)

x− y
(x ̸= y).

Here Ai′(x) = dAi(x)/dx and Ai(z) = 1
2π

∫
R dk ei(zk+k3/3) (z ∈ R) is the Airy

function. The representation of ISDE (2.8) was given in [50], and (2.8) was solved
for β = 1, 2, 4.

Example 2.7 (Besselα,β interacting Brownian motion. [18]). Let d = 1 and S =
[0,∞). We take 1 ≤ α < ∞ and β > 0. We consider the ISDE,

dXi
t = dBi

t + { α

2Xi
t

+
β

2

∞∑
j ̸=i

1

Xi
t −Xj

t

}dt (i ∈ N).(2.9)

The equilibrium state µBe,α,β are called the Besselα,β point process. Here, β =
1, 2, 4. If β = 2, then µBe,α,2 is the determinantal point process with continuous
kernel such that

KBe,α,2(x, y) =
Jα(

√
x)
√
yJ ′

α(
√
y)−

√
xJ ′

α(
√
x)Jα(

√
y)

2(x− y)
(x ̸= y).

The n-point correlation function ρnBe,α,2 with respect to the Lebesgue measure on

[0,∞) is

ρnBe,α,2(x
n) = det[KBe,α,2(xi, xj)]

n
i,j=1.

The ISDE (2.9) is given in [18] for β = 2.
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Example 2.8 (Ginibre interacting Brownian motion [45]). Let d = 2 and Ψ(x, y) =
− log |x− y|. We consider two ISDEs, (2.10) and (2.11):

dXi
t = dBi

t + lim
r→∞

∑
|Xi

t−Xj
t |<r, j ̸=i

Xi
t −Xj

t

|Xi
t −Xj

t |2
dt (i ∈ N),(2.10)

dXi
t = dBi

t −Xi
t + lim

r→∞

∑
|Xj

t |<r, j ̸=i

Xi
t −Xj

t

|Xi
t −Xj

t |2
dt (i ∈ N).(2.11)

The equilibrium states of these ISDEs coincide and are the Ginibre point process
µGin, which is a determinantal point process with kernel

KGin(x, y) =
1

π
exp{−1

2
|x|2 + xȳ − 1

2
|y|2}.

Here we identify R2 as C in an obvious manner. Clearly, (2.10) and (2.11) are
different ISDEs. Nevertheless, they have the same unique, strong solution on the
support of the Ginibre point process µGin. For µGin-a.s. s, the solution of (2.10)
and (2.11) starting at s = l(s) is pathwise unique. Here l :S→(R2D)N is a label.

3. Random matrices and interacting Brownian motions

All the examples in Section 2.3 are related to random matrix theory in such
a way that the equilibrium states are limits of the distributions of the eigenval-
ues of random matrices as N → ∞. There are many random matrices of var-
ious kinds. We describe the Gaussian random matrices that have become pro-
totypical examples. A Gaussian random matrix of order N is a square matrix
MN = [mij ]

N
i,j=1, the elements of which are independent Gaussian random vari-

ables subject to symmetry constraints –real/Hermitian/quaternion–in accordance
with the orthogonal/unitary/symplectic invariance of the distribution. These ran-
dom matrices are called GOE, GUE, GSE [3, 9, 37]. Choosing a suitable variance
and mean, the distribution of the eigenvalues of MN is

mN
β (dxN ) =

1

Z
{

N∏
i<j

|xi − xj |β} exp

{
−β

4

N∑
k=1

|xk|2
}
dxN ,(3.1)

Here GOE, GUE, and GSE correspond to β = 1, 2, 4, respectively.
Let P denote the set consisting of all the probability measures on (R,B(R)). We

consider a P-valued random variable

XN =
1

N

N∑
i=1

δxi/
√
N

under mN
β (dxN ) and denote the distribution of XN by µN

β . Let

σsemi(x) =
1

π

√
4− x21(−2,2)(x).(3.2)

Then, by definition, σsemi(x)dx ∈ P. σsemi(x)dx is called the semi-circle distri-
bution. The celebrated Wigner semi-circle law asserts that the distribution {µN

β }
converges weakly to the non-random measure δσsemi(x)dx.

From the view point of a semi-circle distribution σsemi(x)dx, we call each point
θ ∈ R a macro position. For each macro position θ ∈ R of (3.2) we may take an
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effective scaling of (3.1). This is possible for |θ| < 2 and θ = ±2; the former is
called the bulk, and the latter a soft edge.

3.1. A bulk limit and small universality. For a macro position θ such that
{|θ| < 2}, we rescale (3.1) with

xi 7→
si + θN√

N
.

Then the distribution of mN
β (dsN ) = mN

β (sN )dsN is

mN
β (dsN ) =

1

Z
{

N∏
i<j

|si − sj |β} exp

{
−β

4

N∑
k=1

|si + θN√
N

|2
}
dsN .(3.3)

We denote by µN
β,θ the corresponding distribution of the configuration space S. The

limit µβ,θ is called the sineβ,θ point process. If β = 2, then µ2,θ is a determinantal
point process with kernel

Kθ(x, y) =
sin{

√
4− θ2(x− y)}
π(x− y)

.

Here, the instance θ = 0 was treated in (2.7). Each sineβ,θ point process µβ,θ is a
constant scaling in the space of µ2,θ. Therefore, the bulk limit has a (very small)
universality.

We next focus on the dynamical counterpart of universality given above. We
first introduce the Dirichlet form describing the reversible stochastic dynamics of
N particles with equilibrium state mN

β (dsN ) = mN
β (sN )dsN . Let

EmN
β (f, g) =

∫
RN

1

2

N∑
i=1

∂f

∂si

∂g

∂si
mN

β dsN

on the L2 space

L2(RN ,mN
β ).

Because the measures of the energy form and the L2 space are common, the Dirichlet
form is called a distorted Brownian motion. We calculate the generator of the
Dirichlet space using integration by parts,

EmN
β (f, g) = −

∫
RN

{1

2
∆f +

1

2

N∑
i=1

∂ logmN
β

∂si

∂f

∂si

}
gmN

β dsN .(3.4)

Then, by a straightforward calculation, we have from (3.3)

∂ logmN
β (sN )

∂si
= β

N∑
j ̸=i

1

si − sj
− β

N
si − βθ.(3.5)

Hence, we deduce from (3.5) the stochastic differential equation ofXN = (XN,i)Ni=1,

dXN,i
t = dBi

t +
β

2

N∑
j ̸=i

1

XN,i
t −XN,j

t

dt− β

2N
XN,i

t dt− β

2
θdt.(3.6)
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Taking N → ∞ in (3.6), we arrive at the ISDE in the limit

dX∞,i
t = dBi

t +
β

2

∞∑
j ̸=i

1

X∞,i
t −X∞,j

t

dt− β

2
θdt.(3.7)

The ISDE however does not provide a correct answer except for θ = 0. Indeed, we
prove,

Theorem 3.1 (Kawamoto-O.[27]). Let β = 2. Take the initial distribution of the
unlabeled particles as µN

2,θ and choose the label suitably. Then for each m ∈ N
the distributions of the first m-particles of XN = (XN,i)Ni=1 converge weakly in
C([0,∞);Rm) to the distribution of the first m-particles of the solution of ISDE
(2.6).

Theorem 3.1 is an application of the result given in [28], where we constructed a
general result on the convergence and transition of a stochastic differential equation
for N particles to that for infinite particle systems. The assumption required to
apply this result is not simple and therefore is skipped here. Intuitively, the as-
sumption requires the uniform control of the tail of the coefficients of the stochastic
differential equations for finite particle systems.

We apply the result in [28] to non-symmetric infinite particle systems. In addi-
tion, if the interaction potential Ψ is of Ruelle’s class, then we can apply the result
given in [28] easily. However, we need a fine calculation concerning the logarithmic
potential, specifically Theorem 3.1. Later, we shall introduce another convergence
theorem (Theorem 9.1). Although Theorem 9.1 is restricted to particle systems
given by the symmetric Dirichlet form, the necessary assumption is simple and eas-
ily checked. Theorem 9.1 has various applications and provides a second and simple
proof of Theorem 3.1. If θ = 0, then Theorem 3.1 can be proved by a calculation
of the space-time correlation functions [52]. We therefore see that, for the one-
dimensional infinite particle systems with logarithmic potential and β = 2, there
exist three completely different methods proving the convergence of Theorem 3.1.
We expect Theorem 3.1 holds also for general β.

3.2. Soft edge limit and the Airy interacting Brownian motion. We con-
sider a scaling at θ = ±2, called soft edge scaling, such that

x 7−→ 2
√
N +

s

N1/6
.(3.8)

Then, the distribution of the N particle systems is

mN
Ai,β(dsN ) =

1

Z
{

N∏
i<j

|si − sj |β} exp
{
− β

4

N∑
k=1

∣∣∣2√N +
sk

N1/6

∣∣∣2}dsN .

Taking N → ∞, we obtain µAi,β . The logarithmic derivative of mN
Ai,β is

∂ logmN
Ai,β

∂si
(sN ) = β

N∑
j ̸=i

1

si − sj
− β

{
N1/3 +

si
2N1/3

}
.
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Hence, the stochastic differential equation of theN -particle systemsXN = (XN,i
t )Ni=1

is

dXN,i
t = dBi

t +
β

2

N∑
j=1, j ̸=i

1

XN,i
t −XN,j

t

dt− β

2

{
N1/3 +

XN,i
t

2N1/3

}
dt.(3.9)

The difficulty of taking the limit N → ∞ in (3.9) is that the coefficient of (3.9)

includes the divergent term −β
2N

1/3dt. In [50], we solved the ISDE

dXi
t = dBi

t +
β

2
lim
r→∞

{( ∑
j ̸=i, |Xj

t |<r

1

Xi
t −Xj

t

)
− 2

√
r

π

}
dt(3.10)

and we proved the convergence of the solutions of the N -particle systems (3.9) to
that of ISDE (3.10) in [28].

We derive the representation (3.10) from the semi-circle distribution (3.2) and
the scaling (3.8) intuitively. Indeed, rescaling the semi-circle function by (3.8), we
obtain ς(x) = 1

π1(−∞,0)(x)
√
−x. Hence

2
√
r

π
=

∫ 0

−r

ς(x)

−x
dx.

We expect such a relation holds for a general limit distribution other than the semi-
circle distribution, and the corrector function according to the limit distribution
exists. Such a derivation seems to be universal.

4. Space-time correlation functional method.

In one-dimensional particle systems with the logarithmic interaction potential
and β = 2, one constructs the stochastic dynamics by the explicit formula given by
the space–time correlation functions via the extended kernels. Following Katori–
Tanemura [23, 24, 25, 26], we present the extended kernels for sine, Airy, and Bessel
point processes with β = 2.

We set the multi-time, moment generating functions of the S-valued process Xt

by

Ψt[f ] = E

[
exp

{
M∑

m=1

∫
R
fmdXtm

}]
.

LetK(s, x; t, y) be an extended kernel. Using the Fredholm determinant ofK(s, x; t, y),
we represent Ψt[f ] as

Ψt[f ] = Det
(s,t)∈{t1,t2,...,tM}2,

(x,y)∈R2

[
δstδ(x− y) +K(s, x; t, y)χt(y)

]
, .

Here M ∈ N, f = (fi)
M
i=1 ∈ C0(R)M , t = (ti)

M
i=1 (0 < t1 < · · · < tM ), and

χti = efi − 1 (1 ≤ i ≤ M) [23, 26].
(i)Extended sine kernel Ksin: For s, t ∈ R+ and x, y ∈ R, we set

Ksin(s, x; t, y) =


1

π

∫ 1

0

du eu
2(t−s)/2 cos{u(y − x)} if s < t,

Ksin(x, y) if s = t,

− 1

π

∫ ∞

1

du eu
2(t−s)/2 cos{u(y − x)} if s > t.
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(ii) Extended Airy kernel KAi: For s, t ∈ R+ and x, y ∈ R, we set

KAi(s, x; t, y) =



∫ ∞

0

du e−u(t−s)/2Ai(u+ x)Ai(u+ y) if s < t,

KAi(x, y) if s = t,

−
∫ 0

−∞
du e−u(t−s)/2Ai(u+ x)Ai(u+ y) if s > t.

(iii) Extended Bessel kernel KJν : For s, t ∈ R+ and x, y ∈ R+, we set

KJν (s, x; t, y) =



∫ 1

0

du e−2u(s−t)Jν(2
√
ux)Jν(2

√
uy) if s < t,

KJν (x, y) if s = t,

−
∫ ∞

1

du e−2u(s−t)Jν(2
√
ux)Jν(2

√
uy) if s > t.

Using these kernels, we construct the S-valued stochastic dynamics. The corre-
sponding representation for finite particle systems also exists, and the infinite par-
ticle systems are the limit. Combining the construction above with the results in
[49, 50, 51, 52, 30], we see that the stochastic dynamics derived from the space-time
correlation functions and that arising out of the stochastic analysis are the same.
We also remark that other constructions are known [17, 7] for one-dimensional
infinite particle systems with logarithmic interaction potentials and β = 2.

5. Dirichlet form approach and weak solutions: The first theory.

The aim of this section is to develop a general theory solving the ISDE,

dXi
t = σ(Xi

t ,X
i♢
t )dBi

t + b(Xi
t ,X

i♢
t )dt (i ∈ N), X ∈ Wsol.(5.1)

We shall solve the equation in the time interval [0,∞). Wsol is a symmetric subset
of W ((Rd)N) = C([0,∞); (Rd)N) and is the space of solutions of the ISDE. We
regard the coefficients as functions defined on subsets of W ((Rd)N) and suppose
Wsol are contained by the domains of the functions.

5.1. Construction of the unlabeled diffusion processes. In the present sec-
tion, we introduce a general theorem constructing the unlabeled diffusions from the
Dirichlet form associated with point process µ. We begin by introducing the notion
of quasi-Gibbs measure.

Definition 5.1 (quasi-Gibbs measures). Let Φ and Ψ be the free and the in-
teraction potentials, respectively. We say µ is a (Φ,Ψ)-quasi-Gibbs measure if the
regular conditional probability µn

r,ξ defined in (2.1) satisfies, for µ-a.s. ξ and r, n ∈ N
with positive constant C = C(r, ξ, n) depending on (r, ξ, n),

C(r, ξ, n)−1e−Hr(s)dΛn
r ≤ µn

r,ξ(ds) ≤ C(r, ξ, n)e−Hr(s)dΛn
r .(5.2)

Here, for the two measures µ and ν we set µ ≤ ν if µ(A) ≤ ν(A) for any A. Hr(s)
is a Hamiltonian defined on Sr defined by (2.2).

Remark 5.2. We note that C(r, ξ, n) in (5.2) depends on ξ. The notion of quasi-
Gibbs is robust under the perturbation of free potentials. Indeed, if µ is a (Φ,Ψ)-
quasi-Gibbs measure, then for any locally bounded Φ0 µ is a (Φ+Φ0,Ψ)-quasi-Gibbs
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measure. In particular, the sine, Airy, Bessel, and Ginibre point processes are all
(0,−β log |x− y|)-quasi-Gibbs measures.

Let σ be as in (5.1) and take a(x, s) = σ(x, s) tσ(x, s). We assume:
(A1) a is uniformly elliptic and bounded. a(·, s) is smooth for each s. µ is a (Φ,Ψ)-
quasi-Gibbs measure, and there exist upper semi-continuous potentials (Φ0,Ψ0)
and positive constants c1 and c2 such that

c1(Φ0,Ψ0) ≤ (Φ,Ψ) ≤ c2(Φ0,Ψ0).

(A2)
∑∞

k=1 kµ(S
k
r ) < ∞ for each r ∈ N, where Skr = {s(Sr) = k}. For some p > 1,

the n-point correlation function of µ is locally Lp-bounded for each n ∈ N.
With µ and a, we define the Dirichlet form as

Ea,µ(f, g) =

∫
S

Da[f, g]dµ, Da[f, g] =
1

2

∑
i

a(si, s
i♢)

∂f̌

∂si
· ∂ǧ

∂si
.

Here for s =
∑

i δsi we set si♢ =
∑

j ̸=i δsj . Let D◦ be the set consisting of local

and smooth functions on S. Here we say f is local if f is σ[πSr ]-measurable for
some r ∈ N. We also say f is smooth if f̌(s1, . . . , ) is smooth by regarding f(s) as
a symmetric function f̌(s1, . . . , ) on a symmetric subset of SN ∪

∑
i S

i . We refer
the reader to [41, 5] for a more rigorous definition. We set

Da,µ
◦ = {f ∈ D◦ ∩ L2(S, µ); Ea,µ(f, f) < ∞}(5.3)

Theorem 5.3 ([41, 42, 46, 49]). Assume (A1) and (A2). Then, (Ea,µ,Da,µ
◦ ) is

closable on L2(S, µ). There exists a diffusion (X, {Ps}s∈S) associated with the closure
(Ea,µ,Da,µ).

In [2, 64], a space of polynomials on S was taken as a core of the domain of the
Dirichlet form. These two Dirichlet forms coincide with each other [51].

5.2. Label dynamics and coupling of Dirichlet spaces. We set

Ss,i = {s; s({x}) = 0 or 1 ∀x ∈ Rd, s(Rd) = ∞}.

We assume the following:
(A3) Non-collision and infinite: Pµ(Xt ∈ Ss,i ∀t ∈ [0,∞)) = 1.
(A4) Non-explosion: Pµ(

∩∞
i=1{sup0≤u≤t |Xi

u| < ∞ ∀t ∈ [0,∞)}) = 1.

See [43] for the non-collision property in (A3) and [49] for other conditions. It is
known that non-explosion holds if the one-point correlation function grows at most
exp(|x|c) (c < 2) as |x| → ∞.

Under these assumptions, we initially label the path of unlabeled particles {Xt}
at time t = 0 using label l such that l(X0) = X0. It then is retained forever under
(A3) and (A4), and defines the map from the unlabeled path to the labeled path.
We denote this correspondence by lpath.

By definition lpath is a map from C([0,∞);Ss,i) to C([0,∞); (Rd)N). Generally,
lpath(X)t ̸= l(Xt).

Theorem 5.4 ([44]). We impose assumptions (A1)–(A4). For the unlabeled dy-
namics X in Theorem 5.3 we define the labeled dynamics X by X = lpath(X). X is
an (Rd)N-valued diffusion.
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Once the labeled dynamics X = lpath(X) has been constructed, we define the
m-labeled dynamics by labeling only the first m-particles,

(X1, . . . , Xm,

∞∑
i=m+1

δXi).

We next introduce the Dirichlet space for the m-labeled dynamics. Let µ[m] be the
m-reduced Campbell measure of µ:

µ[m](dxds) = ρm(x)dxµx(ds).

Here, ρm is the m-point correlation function of µ and µx is the reduced Palm
measure conditioned at x = (x1, . . . , xm) ∈ (Rd)m. Loosely, µx is given by

µx(ds) = µ(ds−
m∑
i=1

δxi | s(xi) ≥ 1 for all i).

For µ[m] we have the analogy of Theorem 5.3 on the m-labeled dynamics. Hence,
we set by Ξ[m](µ) the Dirichlet space on (Rd)m×S for µ[m], where m ∈ N. Let
Ξ[0](µ) be the Dirichlet space given by Theorem 5.3.

Theorem 5.5 ([44]). Assume (A1)–(A4). Let X[m] be the diffusion given by
Ξ[m](µ). Then Ξ[m](µ) satisfies

X[m] = (X1, . . . , Xm,
∞∑

i=m+1

δXi) (in law).(5.4)

Here, Xi denotes the component of the labeled dynamics X = (Xi)i∈N given by
Theorem 5.4.

The right–hand side of (5.4) is a functional of the diffusion given by the Dirichlet
space Ξ[0](µ). Note that Ξ[0](µ) is independent of m. In this sense, Theorem 5.5
indicates the coupling of the sequence of the Dirichlet spaces {Ξ[m](µ)}m.

5.3. ISDE. We nexst solve ISDE (5.1). We want to construct a solution X of (5.1)
such that the equilibrium state of the associated unlabeled dynamics X is µ. For
this purpose, we introduce the notion of the logarithmic derivative dµ of µ.

Definition 5.6. dµ is called the logarithmic derivative of µ if∫
Rd×S

dµfdµ[1] = −
∫
Rd×S

∇xfdµ
[1] for any f ∈ C∞

0 (Rd)⊗D◦.

Taking Definition 5.6 into account, we set

dµ(x, s) = ∇x logµ
[1](x, s).

With this notation, we introduce the geometric, differential equation (5.5) for µ.

(A5) µ has a logarithmic derivative dµ such that

2b(x, s) = ∇xa(x, s) + a(x, s)∇x logµ
[1](x, s).(5.5)

Suppose that a is the unit matrix. For a given interaction potential Ψ we set

b(x, s) = −1

2

∑
i

∇xΨ(x, si).

If Ψ is an interacting potential of Ruelle’s class, then there exists a µ satisfying the
DLR equation. Then µ becomes a solution of (5.5).
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For determinantal point processes, a point process µ is a priori given by a kernel.
Solving (5.5) becomes an inverse problem. In [45, 47], we prepared a general theory
for the calculation of the logarithmic derivative of µ. Using this theory, we can
calculate the logarithmic derivative of all examples in the present article. The key
idea for the calculation is proving geometric rigidity according to point processes
µ as well as the proof of the quasi-Gibbs property. This part of the calculation
requires fine estimates depending on the free potential of µ [45, 50, 18, 5].

Once the logarithmic derivative dµ of µ is obtained and shown to satisfy (5.5),
we can solve the ISDE (5.1). The next theorem has high versatility and applies to
all examples given in this article.

Theorem 5.7 ([45]). Assume (A1)–(A5). Then the ISDE (5.1) has a solution
(X,B) starting at µ ◦ l−1-a.s. s for a given label l. X is a diffusion on (Rd)N and
the associated unlabeled dynamics X is µ-reversible.

The key point of the proof of Theorem 5.7 is Theorem 5.5. Indeed, for x =
(xi)

∞
i=1 ∈ (Rd)N, each coordinate function xi belongs locally to the domain of

the Dirichlet form Ξ[m] (i ≤ m). Then, applying the Itô formula to each xi, we
derive the set of Dirichlet processes given by the coordinate function and the m-
labeled process satisfying the stochastic differential equation (5.1). Here, we use the
Fukushima decomposition and the Revuz correspondence as a substitution of the
classical Itô formula. At this stage, we describe the motion of the first m-particles
by the stochastic differential equation. This holds for each m ∈ N. Accordingly,
we have solved the stochastic differential equation (5.1) for each i ∈ N using the
coupling obtained in Theorem 5.5. Therefore, we have solved ISDE (5.1).

6. Existence of strong solutions and pathwise uniqueness: the
second theory

In this section, we introduce the second theory due to the author and Tanemura,
and using this, we show the existence and pathwise uniqueness of strong, solutions
of the ISDE [49].

The solution obtained by the first theory is a weak solution in the sense that
the solution is a pair (X,B) of the (Rd)N-valued continuous process X and the
(Rd)N-valued Brownian motion B. If X is a function of the Brownian motion B in
addition, (X,B) is called a strong solution. This is not the case for the solution
in the first theory. We see the solution associated with the given Dirichlet form is
unique in law. Because the uniqueness of Dirichlet forms is not established by the
first theory, we have not yet proved the uniqueness of solutions by the first theory.

In this section, we consider a sequence of tiny infinite-dimensional spaces (Rd)m×
S instead of the huge infinite-dimensional space (Rd)N. On (Rd)m×S, we regard
S as a random environment and interpret (Rd)m (m ∈ N) as a sequence of spaces
where the existence and uniqueness theorems of the solution of stochastic differential
equations hold. We therefore introduce a sequence of finite-dimensional stochastic
differential equations of random-environment type. We construct couplings between
these stochastic differential equations (6.1) on (Rd)m, where m ∈ N.

The critical point is the equivalence of the ISDE as a sequence of finite-dimensional
stochastic differential equations with consistency (IFC). For this equivalence, we use
the weak solution (X,B) obtained in the first theory.
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6.1. Existence and uniqueness of solutions of the ISDE.. Let (X,B) be a
weak solution of (5.1) defined on (Ω,F , P, {Ft}). Let l be a label and µ be a point
process. We suppose the distribution of X0 is given by µ◦l−1. The solution starting
s is given by (X,B) under the conditional distribution Ps = P (·|X0 = s).

We consider a family of (Rd)m-valued stochastic differential equations by (X,B).
For each m ∈ N we consider the stochastic differential equation of Ym = (Y m,i)mi=1:

dY m,i
t = σ(Y m,i

t ,Ym,i♢
t + Xm∗

t )dBi
t + b(Y m,i

t ,Ym,i♢
t + Xm∗

t )dt, Ym
0 = sm.(6.1)

Here for s = (si)i∈N we set sm = (s1, . . . , sm) and

Ym,i♢ =

m∑
j ̸=i

δY m,j , Xm∗ =

∞∑
k=m+1

δXk , Xm∗ = (Xk)∞k=m+1.

Fix X. Then (6.1) is a time-inhomogeneous dm-dimensional stochastic differential
equation. Hence for well-behaved X, the finite-dimensional stochastic differential
equation (6.1) has a pathwise unique, strong solution for each m. Therefore, we
assume

(IFC) For each m ∈ N, (6.1) has a pathwise unique strong solution.

The solution Ym of (6.1) is a function of (Bm,Xm∗) and sm. Hence, we write

Ym = Ym(sm,Bm,Xm∗) = Ym(s,B,Xm∗).

We see Ym is σ[s,B,Xm∗]-measurable. Using the assumption that (X,B) is a weak
solution of the ISDE, as well as the pathwise uniqueness of solutions of (6.1), we
obtain

Xm = Ym.(6.2)

Hence, the limit limm→∞ Ym clearly exists. That is, the following holds;

X = lim
m→∞

Ym(s,B,Xm∗).(6.3)

The solution X is a fix point by (6.2). The next section considers the general case.
Let T (S) be the tail σ-field of the configuration space S of Rd;

T (S) =
∞∩
r=1

σ[πSc
r
].

Here. Sc
r = {s ∈ Rd; |s| > r} and πSc

r
(s) = s(· ∩ Sc

r).
The critical point for the passage from the property of the unlabeled dynamics

X to that of the labeled dynamics X is the control of the random variable

mT,r(X) = inf{m ∈ N;Xi ∈ C([0, T ];Sc
r) for m < ∀i ∈ N}.

Here, X = (Xi)i∈N and T, r ∈ N.
We set X =

∑∞
i=1 δXi and recall that the distribution of X0 is µ ◦ l−1. Then, the

distribution of X0 is µ. We introduce a condition for (X,B),

(TT) µ(A) ∈ {0, 1} for all A ∈ T (S) (tail triviality)
(AC) P ◦ X−1

t ≺ µ for all 0 < t < ∞ (absolute continuity)
(NBJ) P (mT,r(X) < ∞) = 1 for all T, r ∈ N (no big jump)

A weak solution (X,B) satisfying (IFC) is called an IFC solution.
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Theorem 6.1 ([49]). Assume that µ satisfies (TT). Let (X,B) be an IFC solution
satisfying (AC) and (NBJ). Then (5.1) has a unique strong solution Fs starting
at µ ◦ l−1-a.s. s under the constraints (AC), (NBJ), and (IFC).

Here, the claim that Fs is a unique strong solution under the constraints (AC),
(NBJ), and (IFC) means that arbitrary weak solutions (X′,B′) satisfying (AC),

(NBJ), (IFC) satisfy X′ = Fs(B
′), and that for any {Ft}-Brownian motion B̂,

Fs(B̂) becomes a strong solution satisfying (AC), (NBJ), and (IFC).
The weak solution obtained in the first theory satisfies (AC) and (NBJ). A

general theorem verifying (IFC) is given by [49]. This result requires that the
solution is associated with the quasi-regular Dirichlet form. In on-going work, we
are preparing a result without quasi-regularity of the Dirichlet form.

We assume (IFC) and generalize the consistency in (6.2) in an asymptotic form.
Let Wsol be the space of solutions of ISDE (5.1); then

Wsol
s = {X ∈ Wsol;X0 = s}, W0 = {X ∈ W ((Rd)N) ; X0 = 0} .

We set Fm
s :Wsol

s ×W0→Wsol
s by

Fm
s (X,B) = {(Y m,1

t , . . . , Y m,m
t , Xm+1

t , Xm+2
t , . . .)}0≤t≤T .

Here Ym = (Y m,i)mi=1 is a unique strong solution of (6.1) given by (IFC).

6.2. IFC solution and pathwise unique strong solution. For each (s,B),
Fm
s ( · ,B) defines the map Fm

s = (Fm,i
s )mi=1 from Wsol

s to Wsol
s . Let P̄s be a

probability measure on Wsol
s ×W0. Then we write

F∞
s (X,B) = lim

m→∞
Fm
s (X,B) in Wsol under P̄s(6.4)

if, for each i ∈ N the limits (6.5)–(6.7) in W (S) exist for P̄s-a.s. (X,B)

lim
m→∞

Fm,i
s (X,B) =F∞,i

s (X,B),(6.5)

lim
m→∞

∫ ·

0

σi(Fm
s (X,B)u)dB

i
u =

∫ ·

0

σi(F∞
s (X,B)u)dB

i
u,(6.6)

lim
m→∞

∫ ·

0

bi(Fm
s (X,B)u)du =

∫ ·

0

bi(F∞
s (X,B)u)du,(6.7)

and F∞
s (X,B) ∈ Wsol. Here σi(Zt) = σ(Zi

t ,Z
i,♢
t ), and we set bi similarly.

Definition 6.2. P̄s is called an AIFC solution of (5.1) if it satisfies (6.4) and
P̄s(B ∈ ·) = P∞

Br .

We now construct a weak solution of (5.1) from an AIFC solution.

Lemma 6.3 (O.-Tanemura [49]). Let s be fixed and assume (IFC). Let P̄s be an
AIFC solution of (5.1). Then (F∞

s (X,B),B) under P̄s is a weak solution of (5.1).

We next define the tail σ-field Tpath((Rd)N) of the labeled path space with respect
to the label

Tpath((Rd)N) =

∞∩
m=1

σ[Xm∗].

We denote by P̄s,b(·) = P ((X,B) ∈ · |(X0,B0) = (s,b)) the regular conditional
distribution conditioned at the initial stating point X0 and Brownian motion B.
Let P∞

Br be the distribution of B and fix s.
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(PT1) For P∞
Br -a.s.b, P̄s,b|Tpath((Rd)N) is trivial.

(PT2) For P∞
Br -a.s.b, P̄s,b|Tpath((Rd)N) is unique.

The uniqueness means for any IFC solutions (X,B) and (X′,B′) starting at s

P̄s,b|Tpath((Rd)N) = P̄ ′
s,b|Tpath((Rd)N).

Theorem 6.4 (O.-Tanemura [49]). Fix s and let (X,B) be an IFC solution of (5.1)
staring at s. Then
(1) (X,B) is a strong solution if and only if (PT1) holds.
(2) (X,B) is a unique strong solution if and only if (PT1)–(PT2) hold.

In the second theory, we regard the tail σ-field Tpath((Rd)N) of the labeled path
space for the label as the boundary condition of the ISDE. If Tpath((Rd)N) is trivial
and the restriction of the distributions of solutions Tpath((Rd)N), then the solutions
of the original ISDE is unique. We remark the claim in Theorem 6.4 is necessary
and sufficient.

The claim of Theorem 6.4 holds beyond ISDEs of infinite particle systems, even
if the ISDEs do not have symmetry. What we need is a criterion such that we
can interpret the infinite-dimensional equation as a scheme of finite-dimensional
equations.

(PT1)–(PT2) involve the tail σ-field of the enormous infinite-dimensional space.
Hence, one may think it is challenging to prove triviality. As we shall explain in
the next section, we deduce this from µ-triviality of the configuration space.

6.3. A sufficient condition of (PT1)–(PT2). We present a sufficient condition
of triviality of the path space in the previous section.

Theorem 6.5 (O.-Tanemura [49]). Assume (TT), (IFC), (AC), and (NBJ).
Then (PT1)–(PT2) hold for µ ◦ l−1-a.s. s.

Therefore, tail triviality of the labeled path space with respect to the label follows
from tail triviality of the configuration space. We have obtained triviality of the
huge infinite-dimensional space from that of the tiny infinite-dimensional space.

Determinantal point processes satisfy (TT) [48, 35, 6]. Any quasi-Gibbs mea-
sures can be decomposed to tail trivial components, and we can apply Theorem 6.1
to each tail trivial component. Indeed, for quasi-Gibbs measure µ, we consider the
regular conditional probability µ(·|T (S))(s) with respect to the tail σ-field T (S)
and decompose µ as

µ(·) =
∫
S

µ(·|T (S))(s)µ(ds).(6.8)

Then, s µ µ(·|T (S))(s) becomes tail trivial for µ-a.e. [49]. Because T (S) is not
countably determined, this fact is non-trivial.

For (A1)–(A3) and (A5), we see these properties of µ are inherited by µ(·|T (S))(s)
through (6.8). A feasible sufficient condition of (A4) is a growth condition of
the one-point correlation function at infinity. This condition is also inherited by
µ(·|T (S))(s) through the Fubini theorem. Therefore, if (TT) does not hold, then
we have an unlabeled dynamics that keeps the tail σ-field invariant, and such a
solution is unique under the constraint that keeps the tail σ-field. This result does
not deny the possibility of the existence of solutions with a varying tail σ-fields.
We conjecture that under a mild assumption, the unlabeled dynamics preserve the
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tail σ-field. We also expect that there exist unlabeled dynamics that vary the tail
σ-field.

We consider the solution of (5.1) such that the associated unlabeled dynamics
X is µ-reversible. Hence (AC) is automatically satisfied. Using the µ-reversibility,
we apply the Lyons–Zheng decomposition to the solution to obtain (NBJ). We do
not necessarily assume that the solution is associated with a quasi-regular Dirichlet
form. We perform the Lyons–Zheng decomposition because of the representation of
the solution given by (5.1) and the fact that the unlabeled dynamics is a µ-reversible
Markovian semi-group.

7. Classical stochastic analysis and infinite particle systems

We review the results in the previous two sections from the viewpoint of the
development of the classical stochastic analysis to the stochastic analysis of infinite
particle systems. The stochastic analysis was initiated by Kiyosi Itô in 1942, and
prototypes of the theory such as the stochastic integral based on Brownian motion,
the stochastic differential equation, and the Itô formula, which are indispensable
now, were born.

After a period of stagnation, Kunita and Watanabe revived the theory in 1967
by extending the stochastic analysis to the framework of martingales from that of
Brownian motion. This tide was followed by the martingale problem by Stroock
and Varadhan, the Yamada–Watanabe theory on stochastic differential equations,
the Dirichlet form theory by Fukushima, the Malliavin calculus, stochastic flow,
and other advancements. The field has developed significantly from the 1960s to
the 1980s.

Stochastic analysis was disseminated in Japan through the book “Stochastic Dif-
ferential Equations” (Kakuritsu Bibun Houteisiki in Japanese) written by Shinzo
Watanabe [65]. Moreover, the new developments of the Malliavin calculus, sto-
chastic flow, and stochastic analysis on manifolds, were also added in the book
“Stochastic differential equations”, Ikeda and Watanabe also published the semi-
nal book “Stochastic differential equations and diffusion processes” in 1981, which
was reprinted in 1989 [20, 21]. This book brought the stochastic analysis of the
Japanese school to the world.

Indeed, the spread of stochastic analysis was triggered socially by its application
to mathematical finance in the 1990s. A wide variety of textbooks appeared but the
Ikeda–Watanabe book became prototypical of many books on stochastic analysis
that appeared around the world. The Dirichlet form theory initiated by Masatoshi
Fukushima was spread throughout Japan by the book “Dirichlet forms and Markov
process (in Japanese, Dirichlet keishiki to Markov katei)” (1975) [11] and to the
world by the book “Dirichlet forms and Markov processes” (1980) [12], which was
an extension of the earlier book. Further developments were presented in the book
by Fukushima, Oshima, and Takeda [13, 14]. The classical stochastic analysis in
the present review means the theory was developed over 50 years since 1942.

How can the classical stochastic analysis be developed in the context of infinite
particle systems? We explain this by taking up the Yamada–Watanabe theory as
an example, which is the method used to prove (IFC) in the previous section.

Roughly speaking, (a part of) the Yamada–Watanabe theory of stochastic dif-
ferential equations derives the existence and uniqueness of strong solutions from
the existence of weak solutions and pathwise uniqueness. When demonstrating the
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existence of strong solutions to stochastic differential equations, Lipschitz continu-
ity and boundedness of the coefficients are required at least locally. If pathwise
uniqueness of the solution is demonstrated, the Yamada–Watanabe theory requires
only Lipschitz continuity of the coefficients. Hence, this theory provides a unique,
strong solution under milder conditions than usual.

The details of the Yamada-Watanabe theory are complicated, but the point of
the idea for deriving a strong solution from the existence of weak solutions and
pathwise uniqueness is simple and presented below.

Let X and Y be two random variables defined on a Polish space that are (1)
independent and (2) X = Y a.s. Then X and Y are constant a.s. Taking this
into account, let P and Q be the distributions of two given weak solutions (X,B)
and (Y,B). Let Px,B and Qx,B be the conditional probabilities conditioned at the
initial starting point as x and Brownian motion B. Note that B is common here.
Under the product probability measure of Px,B and Qx,B , we consider (X,B) and
(Y,B). Then, by pathwise uniqueness, we deduce that X = Y a.s. under the
product probability measure. Hence, by the result above, X and Y are constant
depending only on x and B. They are then functions of x and B; that is, X and Y
are strong solutions. Here, measurability on (x,B) and others are non-trivial and
require a delicate discussion, but the essence is exhausted by this idea.

The coefficients of the finite-dimensional stochastic differential equations in Sec-
tion 6.1 contains Xm∗. Regarding Xm∗ as a random environment, the finite-
dimensional stochastic differential equations are seen as those with random en-
vironments. These are different from the conventional one.

Even if we generalize the notion of a strong solution from the function of (s,B)
to that of (x,B,Xm∗) and accordingly modify the relevant statements, some parts
of the Yamada–Watanabe theory are still valid. Meanwhile, we can control the
behavior of Xm∗ by the Dirichlet form of the unlabeled dynamics. We see that the
coefficients of (6.1) are locally Lipschitz continuous if the interaction potentials are
of Ruelle’s class or are logarithmic functions. Hence, we obtain (IFC) in this case.

A single infinite-dimensional system with symmetry is

infinitely many finite-dimensional systems with consistency

is the grand design of the theory, and

Classic stochastic analysis can be carried in finite-dimensions

even if the random environment is equipped

is what we believe. We introduce a scheme of finite-dimensional objects depend-
ing on the problem and apply classical stochastic analysis to it via each finite-
dimensional stochastic differential equation of random environment type. Then, we
arrive with an object of the ISDE of infinite particle systems by consistency. This
is the essence of the theory.

We introduced the scheme of the Dirichlet spaces describing the m-labeled dy-
namics for the construction of weak solutions in the first theory (Theorem 5.7). We
considered the scheme of the finite-dimensional stochastic differential equations of
random environment type for the existence and uniqueness of strong solutions of the
ISDE in the second theory (Theorem 6.4). Therefore, schemes of finite-dimensions
depend on the problems and differ from each other.
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We expect that with this grand design above, we can perform an analogous clas-
sical stochastic analysis on a single particle in the world of infinite particle systems.
Other than the two examples above, we expect that we can apply the strategy to
many problems. Examples include the construction of stochastic flow of infinite
particle systems, non-equilibrium solutions, a kind of smoothness of probability
density of stochastic dynamics for the initial starting points, ergodicity of unla-
beled dynamics, and ergodic decomposition of state space of unlabeled dynamics.

8. Two approximation schemes and uniqueness of Dirichlet forms.

Let SR = {s ∈ S ; |s| ≤ R}, and consider square fields capturing energy only
inside SR.

Da
R[f, g] =

1

2

∑
si∈SR

a(si, s
i♢)

∂f̌

∂si
· ∂ǧ

∂si
.

From this, we define the bilinear form

Ea,µ
R (f, g) =

∫
S

Da
R[f, g]dµ.

From (A1), we see (Ea,µ
R ,Da,µ

◦ ) is closable on L2(S, µ). We then denote its closure
by (Ea,µ

R ,Da,µ
R ).

Clearly, (Ea,µ
R ,Da,µ

R ) is increasing in R ∈ N. Then, we denote by (Ea,µ,Da,µ),
the closed form in the limit. It is known that (Ea,µ

R ,Da,µ
R ) converges to (Ea,µ,Da,µ)

in the strong resolvent sense.
Let Da,µ

◦ be as in (5.3) and let πc
R(s) = s(· ∩ Sc

R). We set

Da,µ
◦,R = {f ∈ Da,µ

◦ ; f is σ[πc
R]-measurable}.

Suppose f ∈ Da,µ
◦,R. Then f is continuous on S and σ[πc

R]-measurable by definition.

Hence, f(s) is constant in πR(s) and depends only on πc
R(s). In particular, when a

single particle sj in the configuration πR(s) =
∑

si∈SR
δsi approaches the boundary

∂S, the limit points of f(s) depends only on s′ =
∑

si ̸∈SR
δsi , which is the particles

in s outside SR.
By construction, Da,µ

◦ ⊃ Da,µ
◦,R and Ea,µ

R (f, f) = Ea,µ(f, f) for any f ∈ Da,µ
◦,R.

Then

(Ea,µ
R ,Da,µ

◦ ) ≤ (Ea,µ,Da,µ
◦,R).

Hence, from closability of (Ea,µ
R ,Da,µ

◦ ) on L2(S, µ) we see that of (Ea,µ,Da,µ
◦,R). We

denote its closure by (Ea,µ
R ,Da,µ

R ). By construction

(Ea,µ
R ,Da,µ

R ) ≤ (Ea,µ
R ,Da,µ

R ).(8.1)

Clearly, (Ea,µ
R ,Da,µ

R ) (R ∈ R) are non-decreasing in R and converge in a strong
resolvent sense to (Ea,µ,Da,µ). Similarly, (Ea,µ

R ,Da,µ
R ) (R ∈ R) are non-increasing

in R and converge in a strong resolvent sense to (Ea,µ,Da,µ). Therefore, with (8.1),
we see

(Ea,µ,Da,µ) ≤ (Ea,µ,Da,µ).(8.2)

We pursue the problem when the equality holds in (8.2), that is,

(Ea,µ,Da,µ) = (Ea,µ,Da,µ).(8.3)

This equality plays a critical role in Section 9.
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A sufficient condition of (8.3) was given by [30]. We verify this condition in all
examples but GAF in the present article. Following [30], we outline the idea of the
proof of (8.3).

A Dirichlet form on L2(S, µ) is a closed bilinear form with Markov property. If its
domain is regular or, more generally, quasi-regular, then there exists an associated
Markov process [14, 36]. This Markov process is a family of probability measures
starting at each point of the state space S. The construction of the stationary
Markovian process is immediate from the existence of the Markovian semi-group
given by the bilinear form, whereas the construction of the Markov process starting
at each point is not. The regularity of Dirichlet forms guarantees this. Once (quasi)
regularity of Dirichlet forms is established, one uses the tools of stochastic analysis
such as Fukushima decomposition. We have already proved quasi-regularity of
(Ea,µ,Da,µ) in the proof of Theorem 5.3, and hence we can apply stochastic analysis.
This is a crucial point of solving the ISDE in Theorem 5.7.

Although (Ea,µ,Da,µ) is a Dirichlet form, we do not know whether it is quasi-
regular. Therefore, it is not clear whether (Ea,µ,Da,µ) gives a solution of ISDE
(5.1) by the method valid for (Ea,µ,Da,µ).

However, (Ea,µ,Da,µ) has an associated Markovian semi-group on L2(S, µ). Then,
the stationary Markov process can be constructed. In [30], under a mild assump-
tion on the coefficients of the ISDE, we proved the convergence of the solutions
of the stochastic differential equations associated with (Ea,µ

R ,Da,µ
R ) to that associ-

ated with (Ea,µ,Da,µ) using the strong resolvent convergence of the Dirichlet forms.
From this, we find that the stationary Markov process associated with (Ea,µ,Da,µ)
is a solution of ISDE (5.1).

Here, (Ea,µ
R ,Da,µ

R ) is a regular Dirichlet form, and the particles are reflected on
the boundary ∂SR. From this, we deduce that finite particle systems satisfy finite-
dimensional stochastic differential equations. Taking the limit with the strong
resolvent convergence as above, we see the limit points are solutions of ISDE (5.1).

For the Markov semi-groups associated with Dirichlet forms (Ea,µ,Da,µ) and
(Ea,µ,Da,µ), there exist stochastic processes that are solutions of (5.1) for almost-
surely starting points. Hence, from the uniqueness in law of weak solutions starting
for almost-surely starting points we obtain the coincidence of these two Markovian
semi-groups, which implies the coincidence of the Dirichlet forms (8.3).

The critical idea is that the uniqueness of the Dirichlet forms follows from the
uniqueness of the solutions of the associated ISDE. This result is due to Tanemura
[61]. Originally, (8.3) is not a problem on stochastic differential equations, but on
Dirichlet forms. We do not know a direct proof based on Dirichlet form theory.

We explain more about the behavior of particles in the bounded domain SR.
As seen above, (Ea,µ

R ,Da,µ
R ) is a Dirichlet form posited in the reflecting bound-

ary condition on SR. The particles out of SR are frozen and affect the behavior of
particles inside SR via interaction potentials. For particles inside, this effect is inter-
preted as an effect of free potentials. The particles are reflected from the boundary.
Hence, local-time-type terms appear in the stochastic differential equations.

In contrast, (Ea,µ
R ,Da,µ

R ) is not a regular Dirichlet form. Hence, we can not
construct the associated Markov (diffusion) process as is. We impose an equivalence
relation on the configuration space, which is the state space of the Dirichlet form.
Then, we construct the diffusion process associated with the Dirichlet form (with
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respect to the new domain). Note that S is equipped with a new topology. We
emphasize here that the original Dirichlet forms are not regular.

Nevertheless, all is well. The limit Dirichlet form (Ea,µ,Da,µ) of (Ea,µ
R ,Da,µ

R )
is proved directly to be quasi-regular, and the associated diffusion process exists.
Moreover, quasi-regularity enables us to apply stochastic analysis. That is, using
the Fukushima decomposition and the schemes of the m-labeled Dirichlet forms,
we can directly prove that the diffusion generates the solution of ISDE (5.1). We
emphasize again; we do not show that the stochastic dynamics of the finite parti-
cles given by the Dirichlet form (Ea,µ

R ,Da,µ
R ) is a solution of stochastic differential

equations.
In summary, we have two natural Dirichlet forms (Ea,µ,Da,µ) and (Ea,µ,Da,µ).

Both are the limits of different finite particle systems. When Lang [32] solved ISDE
(5.1), he took the finite particle systems associated with (Ea,µ

R ,Da,µ
R ). Therefore, his

solutions are associated with (Ea,µ,Da,µ). Although the Dirichlet form (Ea,µ,Da,µ)
are natural, it was introduced in [41] and the difference between (Ea,µ,Da,µ) and
(Ea,µ,Da,µ) were distinguished from the view point of ISDE (5.1).

9. Dynamical universality of random matrices

In Section 3, we stated limits of the point processes consisting of eigenvalues of
Gaussian random matrices as N → ∞. In the last two decades, the universality
of random matrices has been actively studied. There exist two types of frame-
works for this problem. One is a generalization of Gaussian random variables to
general random variables. Another is a generalization of free potentials x2 in the
logarithmic gas to general functions. They have been solved under quite general
assumptions [62, 4]. The former is the extension of the classical central limit the-
orem to dependent variables originating with the eigenvalues of random matrices
with independent variables. The latter also presents new results arising from the
strong and long-range effects of the logarithmic potential.

The non-random probability measure appearing in Wigner’s semi-circle law is a
counterpart of the mean of the classical law of large numbers and varies depending
on the models. In contrast, the rescaled point processes are much more universal
and depend only on the macro-positions such as the bulk, the soft edge, and the
hard edge in one dimension. They correspond to sine, Airy, and Bessel point process
in one dimension. In two dimensions, the bulk corresponds to the Ginibre point
process. These point fields have universality in the sense that they do not depend
on the details of the models.

The results in [62, 4] demonstrated the weak convergence of the correlation
functions, being on the same level as the classical central limit theorem. Several
works are at a level of the local central limit theorem in the sense that they give a
local uniform convergence of the correlation functions [1, 8].

We next state a dynamical counterpart. Recall that the equality (Ea,µ,Da,µ) =
(Ea,µ,Da,µ) in (8.3) holds under mild assumptions.

Theorem 9.1 (Kawamoto-O.[29]). Assume (Ea,µ,Da,µ) = (Ea,µ,Da,µ). Assume
that the m-point correlation function of µN converges uniformly on each compact
set to that of µ and the capacity of the zero points of the limit correlation functions
vanish. Then the first m-component of the stochastic dynamics of the N -particle
systems converge weakly in C([0,∞);Sm) to that of the limit stochastic dynamics
for each m.
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The idea of the proof of Theorem 9.1 is an application of the generalized Mosco
convergence due to Kuwae and Shioya [31] to two sequences of approximations of
the Dirichlet forms.

Theorem 9.1 is valid not only for random matrices but also for a wide range of
finite particle approximations µN . In particular, the two convergence theorems in
Section 3 follow immediately from Theorem 9.1.

We present two applications; the necessary uniform convergence of correlation
functions for Theorem 9.1 is already known for these examples. The assumption
concerning the capacity of the zero points of the limit correlation functions follows
from [43, 22].

9.1. Universality of the Airy interaction Brownian motion. Let l ∈ N,
κ2l > 0 and V (x) =

∑2l
i=0 κix

i. We set µN
Ai,V by

µN
Ai,V (ds

N ) =
1

Z

N∏
i<j

|si − sj |2
N∏

k=1

exp(−NV (N− 1
2l (cN

(
1 +

sk

αNN
2
3

)
+ dN ))) dsN .

Here, αN , cN , and dN are constants depending on V and N [8]. The stochastic
differential equation of the N -particle systems is

dXN,i
t = dBi

t +
N∑
j ̸=i

1

XN,i
t −XN,j

t

dt− N
1
3−

1
2l cN

2αN
V ′

( 1

N
1
2l

{
cN

(
1 +

XN,i
t

αNN
2
3

)
+ dN

})
dt.

The solutions converge to the Airy interacting Brownian motion (2.8) as N → ∞.

9.2. Universality of the Ginibre interacting Brownian motion (Non-Hermitian
model). Let γ ≥ 0, Kp ∈ R, τ ∈ [0, 1) be constants. We define the probability
measure on the space J (N) of normal matrices of order N by

σ(J) =
1

Z
exp

{
− N

1− τ2
Tr(JJ∗ − τ

2
(J2 + J∗2))− γ(TrJJ∗ −NKp)

2
}
.

Then the density of the eigenvalues is given by a constant multiple,

N∏
i<j

|zi − zj |2×exp
{
− N

1− τ2

( N∑
i=1

|zi|2 −
τ

2

N∑
i=1

(z2i + z̄i
2)
)
− γ

( N∑
i=1

|zi|2 −NKp

)2}
.

Here c1, c2, c3 > 0 are constants depending on Kp and γ, τ , and we set

E = {z ∈ C; c1(ℜz)2 + c2(ℑz)2 < 1}.

Lemma 9.2 ([1, Theorem 1]). For ζ ∈ E, k ∈ N, we have

lim
N→∞

1

N
ρ1N (ζ) =

c3
π
1E(ζ),

1

(c3N)k
ρkN

(
ζ +

z1√
c3N

, . . . , ζ +
zk√
c3N

)
= ρkgin(z1, . . . , zk) + o

( 1√
N

)
.

The N particle systems XN = (XN,i) satisfy for i = 1, . . . , N

dXN,i
t = dBi

t +
1

2

{( N∑
j ̸=i

2(XN,i
t −XN,j

t )

|XN,i
t −XN,j

t |2
)
− τN

1− τ2

(
ζ +

XN,i
t√
c3N

) 1√
c3N

+
τN

1− τ2

(
ζ +

XN,i
t√
c3N

)† 1√
c3N

−
(
ζ +

XN,i
t√
c3N

) 2γ√
c3N

{ N∑
k=1

∣∣∣ζ + XN,k
t√
c3N

∣∣∣2 −NKp

}
dt.
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Here, (x, y)† = (x,−y) ∈ R2. Then XN,m = (XN,1, . . . , XN,m) converge weakly
to the first m-components of the Ginibre interaction Brownian motion (2.10) as
N → ∞.

10. Ginibre, GAF, and vortices

In the final section, we introduce two more stochastic dynamics that look similar
to the Ginibre interacting Brownian motion but have essentially different properties.

10.1. Planner Gaussian analytic function. Let Fplane be the entire function
with random Gaussian coefficients such that [19, 16, 15].

Fplane(z) =

∞∑
k=0

ξk√
k!
zk.

Here, {ξk} is a sequence of i.i.d. with distribution (1/π)e−|z|2dz. F is called the
planner Gaussian analytic function (GAF).

Let µGAF be the point process on C consisting of zero points of Fplane. It is known
that µGAF is invariant under translations and rotations. It resembles the Ginibre
point process but has a stronger rigidity than the Ginibre point process. Indeed,
if we impose a condition outside of Sr = {|x| ≤ r}, then the mean of the inside
particles is deterministic. This implies µGAF is not a quasi-Gibbs measure but has a
density with respect to the low-dimensional Lebesgue measure [15]. By generalizing
the first theory, we prove closability and quasi-regularity of the associated Dirichlet
form and construct the diffusion. The existence of the logarithmic derivative of
µGAF is known but its explicit representation is not known. It does not come from
the sum of the derivatives of two-body potentials, and hence may be difficult to
describe. 1

Random analytic functionals appear in various situations. Therefore, point pro-
cesses consisting of zero points or poles of random analytic functions by the method
described in the present article would be interesting to investigate.

10.2. Vortex equation. We conclude this article with an ISDE not yet solved.
Consider infinite-many vortices in a viscous fluid in the whole plane. Taking the
Ginibre interacting Brownian motion into account, we suppose all the vortices have
the same sign and the same strength. Let Xt = (Xi

t)i∈N ∈ (R2)N be the position of
the i vortices. Choosing suitable viscosity and vorticity, we have

dXi
t = dBi

t +

∞∑
j ̸=i

(Xi
t −Xj

t )
†

|Xi
t −Xj

t |2
dt (i ∈ N).

The ISDE is the same as the Ginibre ISDE except for the presence of † in the
sum. The dynamics behind the ISDE is very different from the Ginibre interacting
Brownian motion. Indeed, this describes a skew motion of the particles.

With the number of vortices finite, the equation was solved for arbitrary vortici-
ties of the vortices. Indeed, the associated heat equation is of generalized divergence
form in the sense of [38] and was solved by using the global Gaussian both sides
esitimates [38]. Using this estimate, an unique strong solution of the stochastic
differential equation was obtained [38, 39, 40].

1We obtained an explicit formula of the logarithmic derivative of the planner GAF after the
original review was published in Japanese.
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