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Abstract:
We study an isomorphism problem between translation invariant determinantal point processes (DPPs) and

Poisson point processes (PPPs) in the sense of ergodic theory.
In measure-preserving dynamical systems (m.p.d.s.), two m.p.d.s. (X1,F1,P1,T1) and (X2,F2,P2,T2) are said

to be isomorphic if there is a bi-measurable bijection ϕ : X1 → X2 such that P1 ◦ ϕ−1 = P2 and ϕ ◦ T1 = T2 ◦ ϕ.
Let ν be a translation invariant process indexed by Zd. We call ν Bernoulli if ν is isomorphic to an i.i.d. process.
In the isomorphism problem, Bernoulli is a special class where Kolmogorov-Sinai entropy is a complete invariant
of isomorphisms. In translation invariant processes indexed by Rd, Poisson point processes play a role of Bernoulli
shifts with infinite entropy because Poisson point processes have no interaction between particles.

DPPs and PPPs greatly differ in terms of interaction among particles. For instance, a rigidity of determinantal
point processes has proved in [1,3,4,6]. We prove, however, DPPs and PPPs are isomorphic.

Theorem. Let µK be a determinantal point process on Rd with a translation invariant kernel K(x, y) = k(x − y).
Assume

k(x) =

∫
Rd

k̂(t)e2πix·tdt

for some k̂ ∈ L1(Rd, [0, 1]) . Then µK is isomorphic to a Poisson point process.

Translation invariant DPPs on Zd have been proved to be Bernoulli [8,9]. However, isomorphisms between DPPs
on Rd and Poisson point processes have not been studied. Our theorem also provides another proof of tail triviality
of µK , which is a partial result of [2,5,7].
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