Discrete approximations of continuous determinantal measures: tree representations and tail triviality

Shota Osada

Kyushu University

Abstract

A determinantal point process (DPP) μ on S is a probability measure on configuration space S of which correlation functions are given by the determinant of a kernel $\mathsf{K}(x, y)$. If the space is discrete, tail triviality (TT) has been proved by Shirai-Takahashi for $\operatorname{Spec}(\mathsf{K}) \subset (0, 1)$, and Russel Lyons for $\operatorname{Spec}(\mathsf{K}) \subset [0, 1]$. We prove TT of DPPs for continuous spaces.

Let S be a locally compact, complete, and separable metric space equipped with Radon measure m. We consider a (K,m) -determinantal point process μ on S. We assume that K is Hermitian symmetric, of locally trace class, and Spec (K) $\subset [0,1]$, where $\mathsf{K}f(x) = \int_{S} \mathsf{K}(x,y)f(y)\mathsf{m}(dy)$.

We consider a sequence of partitions $\{\Delta_l\}_{l\in\mathbb{N}}$. Using Δ_l , we define the regular conditional probability $\mu_l = \mu(\cdot | \mathcal{G}_l)$, where

$$\mathcal{G}_l = \sigma[\{\mathbf{s} \in \mathbf{S}; \mathbf{s}(\mathcal{A}) = n\}; \mathcal{A} \in \Delta_l, n \in \mathbb{N}].$$
(1)

If μ_l is TT, then we deduce that μ is TT from the martingale convergence theorem.

To prove TT of μ_l , we introduce a kind of Fourier transform of μ_l and point process ν_l , called tree representations, on a discrete space Ω_l . Ω_l can be regarded as a fiber bundle with tree fiber \mathbb{I}_l and base space Δ_l . The key point is that using the Fourier transform, Perseval's equality and Plancherel's formula, we deduce that ν_l is TT. Moreover, we prove $\mu_l = \nu_l \circ \Pi^{-1}$, here Π is a projection. Hence μ_l inherits TT from ν_l .

This is a joint work with H.Osada.