MAXIMAL EDGE-TRAVERSAL TIME IN FIRST PASSAGE PERCOLATION

SHUTA NAKAJIMA

First passage percolation (FPP) was first introduced by Hammersley and Welsh in 1965. It can be thought of as a model for the speed to percolate some material. In this talk, we focus on the maximal edge-traversal time of optimal paths in FPP and investigate the order of the growth. We shall give precise definitions below.

Let $E(\mathbb{Z}^d)$ be the set of undirected nearest-neighbor edges. We place a non-negative random variables τ_e on each edge e as the passage time. Assume $\{\tau_e\}_{e\in E(\mathbb{Z}^d)}$ are i.i.d. random variables with distribution F. We say $\Gamma=\{x_i\}_{i=0}^k\subset\mathbb{Z}^d$ is a path from x to y (we write $\Gamma:x\to y$) if $x_0=x,\ x_k=y$ and $|x_i-x_{i-1}|_1=1$ for $i=1,\cdots,k$. Given a path $\Gamma=\{x_i\}_{i=0}^k$, the passage time of Γ is defined as $t(\Gamma)=\sum_{i=1}^k\tau_{\{x_{i-1},x_i\}}$ and we set first passage time T(x,y) as $T(x,y)=\inf_{\Gamma:x\to y}t(\Gamma)$ for $x,y\in\mathbb{Z}^d$. Let Opt_n be the set of optimal paths from origin to ne_1 and $\Xi(\Gamma)=\max\{\tau_{\{x_{i-1},x_i\}}:\ 1\leq i\leq k\}$ for $\Gamma=\{x_i\}_{i=0}^k\in Opt_n$.

Let \underline{F} be the infimum of the support of F and $p_c(d)$, $\vec{p_c}(d)$ the critical probability of d-dim percolation, oriented precolation model, respectively. Then F is said to be useful if either holds;

(i)
$$\underline{F} = 0$$
, $F(\{0\}) < p_c(d)$, (ii) $\underline{F} > 0$, $F(\{\underline{F}\}) < \vec{p}_c(d)$.

It is easy to check that if F is useful, Opt_n is not empty almost surely. It is known from the result of van den Berg and Kesten in [1] that if F is unbounded and useful,

$$\min_{\Gamma \in Opt_n} \Xi(\Gamma) \to \infty \quad a.s.$$

Our purpose is to investigate the actual growth of the order of $\Xi(Opt_n)$.

Theorem 1. Suppose $d \geq 2$, F is useful, and there exist a > 1, $c_1 - c_4$, t_1 , r > 0 such that for any $t \geq t_1$, $c_1e^{-c_2t^r} \leq F([t,at]) \leq c_3e^{-c_4t^r}$. Then, there exists K > 0 such that,

$$\mathbb{P}\left(K^{-1}f_{d,r}(n) \leq \min_{\Gamma \in \mathrm{Opt}_n} \Xi(\Gamma) \leq \max_{\Gamma \in \mathrm{Opt}_n} \Xi(\Gamma) \leq Kf_{d,r}(n)\right) \to 1,$$

where, we set

$$f_{d,r}(n) := \begin{cases} (\log n)^{\frac{1}{1+r}} & \text{if } 0 < r < d-1\\ (\log n)^{\frac{1}{d}} (\log \log n)^{\frac{d-2}{d}} & \text{if } r = d-1\\ (\log n)^{\frac{1}{d}} & \text{if } d - 1 < r < d\\ (\log n)^{\frac{1}{d}} (\log \log n)^{-\frac{1}{d}} & \text{if } r = d\\ (\log n)^{\frac{1}{r}} & \text{if } d < r. \end{cases}$$

Theorem 2. Suppose $d \geq 2$, F is useful, $\mathbb{E}[\tau_e^4] < \infty$ and there exist $0 < \alpha$, c, t_1 and a > 1 such that for any $t \geq t_1$, $F([t, at]) \geq ct^{-\alpha}$. Then, there exists K > 0 such that,

$$\mathbb{P}\left(K^{-1}\frac{\log n}{\log\log n}\leq \min_{\Gamma\in \mathrm{Opt}_n}\Xi(\Gamma)\leq \max_{\Gamma\in \mathrm{Opt}_n}\Xi(\Gamma)\leq K\frac{\log n}{\log\log n}\right)\to 1.$$

References

 J. van den Berg and H. Kesten. Inequalities for the time constant in first-passage percolation. Annals Applied Probability, 56-80, 1993

(Shuta Nakajima) RESEARCH INSTITUTE IN MATHEMATICAL SCIENCES, KYOTO UNIVERSITY, KYOTO, JAPAN $E\text{-}mail\ address:}$ njima@kurims.kyoto-u.ac.jp

1