On scaling limit of a cost in adhoc network model. Yukio Nagahata

Department of Information Engineering Faculty of Engineering, Niigata University, JAPAN
nagahata@ie.niigata-u.ac.jp

We are interested in giving a mathematical formula of a cost in adhoc network model. In our model, the cost is formulated as an application of first-passage percolation and the motion of devices is random and an asymptotic density of devices is formulated by hydrodynamic limit.

Let $f: \mathbb{Z}_{+} \cup\{\infty\} \rightarrow[0, \infty]$ be a cost function which is convex. Given a configuration $\eta \in\{0,1\}^{\mathbb{Z}}$, we make an element $\tilde{x} \in \mathbb{Z}$ corresponds to $x \in \mathbb{Z}$ by $\tilde{x}=\min \left\{y \in \mathbb{Z} ; y \geq x, \eta_{y}=\right.$ $1\}$. We define minimized total cost $C(x, y ; \eta)$ by

$$
C(x, y ; \eta):=\inf \left\{\sum_{i=1}^{n} f\left(\left|x_{i}-x_{i-1}\right|\right) ; x_{0}=\tilde{x}, x_{n}=\tilde{y}, \eta_{x_{i}}=1, \text { for all } 0<i<n\right\} .
$$

With some extra assumption we can set

$$
\gamma_{\rho}:=\inf _{l} \frac{1}{l} \log E_{\rho}[\exp C(0, l ; \eta)]
$$

where E_{ρ} denotes an expectation with respect to Bernoulli measure on $\{0,1\}^{\mathbb{Z}}$ with $E_{\rho}\left[\eta_{0}\right]=$ ρ.

Let $\Lambda_{N}=\{1,2, \ldots, N\}$ be a discrete torus (N is identified with 0) and $X_{N}:=\{0,1\}^{\Lambda_{N}}$. Let $\tau_{x}, x \in \mathbb{Z}$ denote the shift operators. Given a positive local function $c=c(\eta)>0$ which does not depend on η_{0} and η_{1} we define a generator of lattice gas L_{N} by

$$
L_{N} f(\eta):=\sum_{x \in \Lambda_{N}} \tau_{x} c(\eta)\left(f\left(\eta^{x, x+1}\right)-f(\eta)\right)
$$

where f is a function on X_{N} and $\eta^{x, y}$ is a configuration defined by $\left(\eta^{x, y}\right)_{x}=\eta_{y},\left(\eta^{x, y}\right)_{y}=\eta_{x}$ and $\left(\eta^{x, y}\right)_{z}=\eta_{z}$ for $z \neq x, y$. Given a probability distribution μ_{0}^{N} on X_{N} we set μ_{t}^{N} the law of Markov process generated by $N^{2} L_{N}$ with initial distribution μ_{0}^{N} at time t. In this setting we have hydrodynamic limit, i.e., empirical measure converges to $\rho(t, \theta) d \theta$ in probablilty, where $d \theta$ is a Lebesgue measure on $[0,1)$ and $\rho(t, \theta)$ is give by some classical solution of non-linear diffusion equation. Given a smooth function $\rho:[0,1) \rightarrow[0,1]$, we set $\Gamma(x, y)$ by

$$
\Gamma_{\rho(\cdot)}(x, y)=\min \left\{\int_{x}^{y} \gamma_{\rho(\theta)} d \theta, \int_{0}^{x} \gamma_{\rho(\theta)} d \theta+\int_{y}^{1} \gamma_{\rho(\theta)} d \theta\right\}
$$

for $0 \leq x \leq y<1$.
Theorem 1 Under some assumption on μ_{0}^{N}, for all $t \geq 0$ and for all $0 \leq x \leq y<1$, we have

$$
\lim _{N \rightarrow \infty} E_{\mu_{t}^{N}}\left[\left|\frac{1}{N} C(x N, y N ; \eta)-\Gamma_{\rho(t, \cdot)}(x, y)\right|\right]=0
$$

where $\rho(t, \cdot)$ is given by hydrodynamic limit.

